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Abstract 

Multiprocessor Systems-on-Chip (MPSoCs) is a trend in 
VLSI design, since they minimize the “design crisis” (gap 
between silicon technology and actual SoC design capac-
ity) and reduce the time to market. Important issues in 
MPSoC design are the communication infrastructure and 
task mapping. MPSoCs may employ NoCs to integrate 
multiple programmable processor cores, specialized 
memories, and other IPs in a scalable way. Applications 
running in MPSoCs execute a varying number of tasks 
simultaneously, and their number may exceed the available 
resources, requiring task mapping to be executed at run-
time to meet real-time constraints. Most works in the lit-
erature present static MPSoC mapping solutions. Static 
mapping defines a fixed placement and scheduling, not 
appropriate for dynamic workloads. Task migration has 
also been proposed for use in MPSoCs, with the goal to 
relocate tasks when performance bottlenecks are identi-
fied. This work investigates the performance of mapping 
heuristics in NoC-based MPSoCs with dynamic workloads, 
targeting NoC congestion minimization, a key cost function 
to optimize the NoC performance. Here, tasks are mapped 
on the fly, according to communication requests and the 
load in the NoC links. Results show execution time and 
congestion reduction when congestion-aware mapping 
heuristics are employed. 

1 Introduction 

While single processor may be sufficient for low-
performance applications, that are typical of early micro-
controllers, an increasing number of applications require 
multiprocessors to meet their performance goals [1]. Mul-
tiprocessor Systems-on-Chip (MPSoCs) are custom archi-
tectures that balance the constraints of VLSI technology 
with application requirements. 

An important issue in MPSoC design is the communica-
tion infrastructure implementation. Networks-on-Chip 
(NoCs) are an alternative to busses, with several advan-
tages, including scalability and shorter wires, which mini-

mizes power consumption. MPSoCs may employ NoCs to 
integrate multiple programmable processor cores, special-
ized memories, and other intellectual property (IP) compo-
nents on a single chip. MPSoC heterogeneity increases 
with IP integration and component customization to opti-
mize performance and power consumption. 

Applications running in heterogeneous MPSoCs, as 
multimedia and networking, normally contain a dynamic 
workload of tasks. This implies a varying number of tasks 
simultaneously running, with their number possibly ex-
ceeding the available resources. This may require the exe-
cution of task mapping at run time, to meet real-time con-
straints.  

Most works in the literature propose static mapping so-
lutions [2][3]. Static mapping tries to define the best place-
ment of tasks at design time, for a given application. Con-
sequently, such methods are not appropriate for dynamic 
workloads. Task migration [4][5] has also been used in 
heterogeneous MPSoCs to optimize the performance at 
run-time. Task migration relocates tasks either when a per-
formance bottleneck is detected or to distribute the work-
load more homogeneously among the MPSoC processors. 
Differently from task migration, dynamic mapping can 
insert new tasks into the system at run time. 

This work investigates the performance of different 
mapping algorithms in NoC-based MPSoCs with dynamic 
workload. The main cost function in mapping algorithms is 
to optimize the occupation of the NoC links. It is possible 
to achieve performance gains if the mapping algorithm is 
able to minimize NoC congestion. 

The paper is organized as follows. Section 2 presents 
related works on task mapping. Section 3 presents the 
MPSoC architecture. Section 4 presents task mapping al-
gorithms. Section 5 presents the experimental setup and 
the results. Finally, Section 6 presents some conclusions 
and directions for future work. 

2 Related Works 

Usually, task mapping is a two-step process. The first 
step, task binding, selects the set of IPs able to execute a 



given task. The task may be, for example, a software task 
to be executed in an embedded processor, a hardware task 
to be executed in an embedded FPGA or in a co-processor, 
or an input/output operation. Next, task placement, the 
feasible placements are evaluated according to a specific 
cost function, as area fragmentation, power consumption 
or link usage, in order to get the best performance. 

Examples of generic task placement are presented in 
[6], [7], and [8]. These authors represent the system area as 
a two-dimensional matrix, developing methods to manage 
the used and free spaces. Tabero et al. [8] presents two 
placement heuristics: tasks exchanging messages are 
placed as nearest as possible, and area fragmentation 
minimization. These works are target to homogeneous 
MPSoC (all IP are identical, not requiring task binding) 
and the communication infrastructure are not considered.  

A second group of works present static mapping algo-
rithms for bus-based ([9]) and NoC-based MPSoCs 
([2][3][10]). Even if these procedures are inadequate for 
MPSoC with dynamic workload, such methods may be 
used to compute the initial task placement, or be optimized 
to be employed at run-time. 

Ruggiero et al. [9] employs a homogeneous platform, 
composed by ARM processors interconnected by an 
AMBA bus. Applications are modeled as pipelined task 
graphs, targeting stream-oriented tasks (e.g. multimedia). 
They solve the task mapping in a two-step process: task 
allocation followed by task scheduling. 

Hu and Marculescu [2] present a static mapping heuris-
tic. The system area is defined as a tile-based NoC archi-
tecture. The authors propose a mapping approach named 
Communication Weighted Model (CWM), modeling ap-
plications as graphs, being the vertices the tasks and the 
edges the communication between tasks. The weight of 
each edge corresponds to the number of bits exchanged 
between tasks. The main goal of the approach is to reduce 
the overall power consumption by decreasing the con-
sumed energy on communication. 

Marcon et al. [3] extend the work of Hu and Marcu-
lescu, proposing the Communication Dependence Model 
(CDM) and the Communication Dependence and Compu-
tation Model (CDCM). The CWM considers only the 
communication volume. CDM includes in the model the 
dependence between messages, being able to consider NoC 
congestion. The CDCM [10] capture the volume and the 
timing of application communication. 

Task migration algorithms, widely used in distributed 
systems and parallel computing domain, are been used in 
MPSoC to improve the overall system performance. Works 
[4], [5] and [11] discuss the cost to interrupt a given task, 
save its context, transmit all data to a new IP, and restart 
the task in the new IP. Nollet et al. [4] propose to migrate 
tasks from hardware (in reconfigurable areas) to software 
(in processors), and vice-versa, in function of the required 

application performance. The method proposed by Nollet 
uses task migration points to define when a given task can 
be migrated to other IP. Bertozzi et al [5] use checkpoints, 
similar to Nollet, to define when a given task may be mi-
grated. A middleware implemented on uClinux allows 
migration at specific migration points represented by 
checkpoints inserted manually by the system user on tasks 
code. Kalte et al. [11] propose two methods for context 
saving for reconfigurable systems shutdown process and 
readback operations to save task state. 

This paper discusses dynamic task mapping. A cost 
function, as communication volume or initial tasks, defines 
the initial task mapping. When a task sends a message, two 
situations may arise: the target task is already assigned to a 
given IP, or the task is not yet assigned. In the first case, 
the message is transmitted to the target task. In the second 
case, the task is mapped at run-time, considering the task 
nature (hardware or software) and the communication cost, 
and then the message is sent. Task migration is not yet 
considered, since tasks are mapped in such a way the 
workload is homogeneously distributed in the MPSoC. 

3 MPSoC Architecture 

Without loss of generality, heterogeneous MPSoC ar-
chitectures may be represented as a set of processing nodes 
which interact via a communication network. Routers (R) 
compose the network. Processing nodes may support either 
hardware or software task execution. Hardware tasks exe-
cute in reconfigurable logic (reconfigurable areas) or 
dedicated IPs. If reconfigurable logic is used, the hardware 
presents flexibility similar to software. It becomes possible 
to load hardware tasks on-the-fly using dynamic reconfigu-
ration. Software tasks execute in instruction set processor 
or ISPs. Fig. 1 illustrates the MPSoC architecture model 
used in this work. 
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Fig. 1 - MPSoC conceptual organization. 

The number of tasks may exceed MPSoC resources. 
One processor is reserved to manage the system resources 
(MP - Manager Processor). When the MPSoC starts its 
execution, only initially needed tasks are allocated into the 



system. New tasks are allocated when a given task tries to 
communicate with a task not yet present. The MP is re-
sponsible for resource control, task binding, task mapping, 
task relocation/migration and to control the reconfiguration 
process. 

All inter-task communications use messages transmitted 
through the network. There are four message types: re-
quest, release, notify and general. A request message to the 
MP contains the identification of a new task to be inserted 
into the system and the communication rates. This com-
munication request is equivalent to a “contract request” 
between a given task and the MP, in which the communi-
cation rates between the involved tasks are stipulated. The 
release message notifies the MP that a processing node has 
finished its current task, being possible to reuse the node to 
a new task. The notify message is sent by the MP to the 
master and the slave tasks, containing both tasks addresses. 
The general messages are used by tasks to send data to 
other tasks. 

4 Mapping Heuristics 

This Section presents a set of heuristics for dynamic 
task mapping into NoC-based MPSoC with dynamic work-
load. Before, task and applications definitions are pre-
sented for sake of clarity. 
Definition 1: A task is a 5-tuple t=(tid, pt, nt, ad, ls) 
where: tid is the task identifier; pt presents the task proc-
essing time; nt the type of the task (hardware or software 
task); ad is the initial task address in the task memory (Fig. 
1); and ls is a list of slave tasks. When a task tM requests a 
task tS from its list of slaves, tM is assumed as master and tS 
is assumed as slave. 
Definition 2: Elements of the list of slave tasks are triples 
ls=(sid, ms, mr), where sid is the slave task identifier; ms 
and mr are the message rates respectively sent and re-
ceived to/from this slave (the rate is expressed as a per-
centage of the available link bandwidth). Previous models 
[2][3] consider only the communication volume. As the 
path taken by messages is not the same when transmitting 
and receiving data (assuming XY routing algorithm), both 
rates are relevant in the model. 
Definition 3: An application is a acyclic directed graph 
AG=<T, C>, where the vertex set T is a set of tasks and 
the edge set C is composed by triples with the form (mid, 
sid, (ms, mr)), where mid is the master task identifier, sid is 
the slave task identifier and (ms, mr) are the message rates 
as described in Definition 2 above. Each element in C cor-
responds to a pair of communicating tasks. Only one of the 
tasks in T is the initial task. The initial task cannot be the 
end point of any C edge. This means that this task has no 
master. 
 

To simplify the model, and due to the scarce resources in 
reconfigurable logic, hardware tasks are always leaf verti-
ces (they have no slaves). Processors may simultaneously 
run different tasks, if a multi-task kernel is employed, 
making software resources virtually abundant. 
Definition 4: A NoC is a undirected graph NG=<R,L>, 
where the vertex set is a set of ordered pairs, R={(ad, ty)}. 
The elements ad are taken from a set of routers and repre-
sent the unique router address, while the information ty 
concerns the type of IP connected to the router (e. g. hard-
ware or software IPs). L is the edge set, composed by pairs 
of addresses, representing the NoC communication links.  
In the above definition, each link may represent any num-
ber of channels connecting two given routers, allowing to 
model e.g. unidirectional or bidirectional NoCs, regular or 
irregular topologies, etc. 

4.1 Initial Task Mapping 
The method used to define the initial task mapping has 

a significant impact in the performance of the dynamic 
mapping. As an example consider Fig. 2, where AjTi repre-
sents task i from application j. Tasks with label T00 are 
initially mapped and subsequent identifiers (T01, T02) are 
tasks allocated later. Applications with different identifiers 
do not communicate. If mapping is done randomly, it is 
possible that at run-time no free resources exist near some 
master when it needs a slave to communicate with. For this 
reason, communication may take more channels than nec-
essary as in case (a). Case (b) shows the result of a more 
careful mapping. The method adopted here is to define 
clusters for each application, placing the initial task of each 
application inside one cluster. 
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Fig. 2 - Initial mapping strategies. 

4.2 Dynamic Mapping 
Once initial tasks start their execution, communication 

requests are transmitted to the MP. A dynamic mapping 
heuristic is required to map the new tasks. This Section 
presents five heuristics to map tasks at run-time. 

 



4.2.1 First Free 
The first free (FF) method is a mapping used as a refer-

ence for comparison purposes only. This approach starts at 
the NoC address (0,0) and selects the first free node able to 
execute the requested task (task binding) when walking the 
network in a column by column fashion. There is no cost 
evaluation. 

4.2.2 Nearest Neighbor 
Nearest Neighbor (NN) mapping is similar to FF strat-

egy, also with no cost evaluation. NN mapping starts 
searching for a free node able to execute the requested task 
(task binding) around the node making the request. The 
search tests all n-hop neighbors, n varying between 1 to the 
NoC limits. 

4.2.3 Minimum Maximum Channel Load 
Minimum Maximum Channel Load (MMC) congestion-

aware mapping heuristic tries to reduce the maximum oc-
cupation of the NoC links. The goal of this heuristic is to 
avoid congestion in the NoC, improving overall perform-
ance. MMC computes the cost of each mapping k accord-
ing to Equation 1, where ratel(i,j) denotes the total rate of 
each NoC link, and lx and ly denote NoC dimensions. The 
links with increased rates ms and mr are those used in the 
communication master slave (ms) and slave master 
(mr). The selected mapping is that with minimum cost. 

lyjlxiratecost jiljilk <≤<≤= 0;0),(max ),(),(
 (1) 

4.2.4 Minimum Average Channel Load 
Minimum Average Channel Load (MAC) congestion-

aware heuristic aims to reduce the average occupation of 
the NoC links. This heuristic is similar to the MMC, re-
placing the max function by the avg (average) function. 
While the MMC heuristic minimizes the peak link usage, 
the MAC heuristic homogenously distributes the commu-
nication load into the NoC. Equation 2 presents the MAC 
cost function. Links not used for communication 
(ratel(i,j)=0) are not considered in the heuristic. The selected 
mapping is the one that has the minimum cost. 

lyjlxirateratecost
jiljil

jil
k <≤<≤>∀= 0;0,0)(

),(),(
),(

avg   (2) 

The MMC and MAC heuristics consider all NoC links 
while mapping a new task. This approach may cause the 
choice of a bad mapping, as illustrated   in Figs. 3 and 4. 
Fig.3 assumes the use of MMC. When computing each 
possible mapping of B to an available place (nodes drawn 
as cubes in the Figure) the addition of channel rates does 
not change the maximum computed cost. This occurs be-
cause this addition does not change the computed maxi-
mum occupation (90%). Thus for both mappings of B the 

computed costk will be the same. Due to this any mapping 
may be chosen, but mapping (b) is better than (c) in the 
example. 
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Fig. 3 – Problems using MMC. Both (b) and (c) alterna-
tives present a 90% maximum value, but (b) is better. 

The second situation illustrates possible problems when 
using the MAC heuristic for mapping. According to Fig. 4, 
there are cases when the minimum average does not repre-
sents the best mapping. This occurs because a mapping 
with a few channels heavily occupied can result in a smal-
ler average when compared to a mapping with many chan-
nels with little occupation. 
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Fig. 4 – Problems using MAC. Alternative (a) is chosen 
as best because it leads to the smaller average, but it 
may lead to congestion since the channel has 131% 
occupation. 

4.2.5 Path Load 
To overcome MMC and MAC problems, the Path Load 

(PL) congestion-aware heuristic considers only the links 
that will be used by the task being mapped. PL computes 
the cost of each mapping k according to Equation 3, where 
ratec(i,j) and ratec(j,i) are the rates in the individual channels 
from the master to the new slave and the rates of the chan-
nels in the opposite direction. This is due to the asymmet-
ric nature of the XY routing algorithm. The selected map-
ping is the one that has the minimum cost. 

∑∑ += ),(),( ijcjick rateratecost   (3) 



5 Results 

This Section presents the experimental setup, including 
the system, NoC and application modeling; followed by 
the results. 

5.1 Experimental Setup 

Fig. 5 presents two examples of applications. Each ap-
plication is modeled as a graph, being white vertices soft-
ware tasks and black vertices hardware tasks, with one 
initial task (represented with double lines). Communica-
tion between tasks is represented by rates from/to the mas-
ter node (see definition 3 – Section 4). 

All presented results use the applications of Fig. 5, each 
one composed by 10 tasks, including 1 initial, 6 software 
and 3 hardware tasks. The number of applications varies 
from 1 to 100. Half of applications are modeled with the 
left graph of the Fig. 5, and the other half with the right 
graph. The processing time (pt) is randomly chosen be-
tween 10 and 40 microseconds, and the ms and mr rates 
according to the rates of Fig. 5.  
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Fig. 5 - Examples of applications. 

It is important to mention that the MP does not know 
the application graphs, it knows only the initial tasks. The 
MP starts the initial tasks, and dynamically maps new 
slave tasks according to requests sent by the tasks. 

The system is modeled using SystemC. Two different 
threads model the system: MP (manager processor) and 
task. The MP thread is responsible for resource manage-
ment, task scheduling, task mapping, and task configura-
tion. This thread contains data structures to manage system 
use (i.e. links and resources) and scheduling queues. The 
task thread implements the tasks behavior. The number of 
task threads in the system is equal to the total number of 
the tasks in all applications. 

All tasks threads have the following behavior: 
1. The task thread waits to be started by the MP. 
2. If the task is not an initial task, it waits a NOTIFY mes-

sage, containing the master address and the communi-
cation rates (ms,mr), to start its execution. The NOTIFY 
message also implies successful task binding and task 

placement. 
3. If the task is not an initial task, it should receive all 

GENERAL messages from the master. The number of 
messages is computed from the communication rate. 

4. The task thread sends REQUEST messages to the MP, 
one for each slave task. 

5. The task thread starts the communication (GENERAL 
messages) with each slave task when a NOTIFY mes-
sage with the slave address arrives from the MP. The 
number of parallel executing tasks is a function of the 
available resources. 

6. When the task thread identifies that all messages with 
a given slave were transmitted, it sends a RELEASE 
message to the MP with the slave address to be re-
leased. 

7. When the task thread releases all slave tasks, the proc-
essing time (Definition 2) is added to the total execu-
tion time, and the task sends GENERAL messages to its 
master (if the task is not an initial task). 

5.1.1 NoC Model 
An 8x8 2D-mesh topology, modeled in SystemC, is re-

sponsible to transfer data between tasks. One node (the 
router with its IP) is used for the MP (Manager Processor), 
16 nodes are hardware tasks (25% for reconfigurable logic) 
and 47 nodes are software tasks (75% for processors). 

To avoid application deadlocks, due to the lack of re-
sources, the number of simultaneously applications run-
ning in parallel is limited. For the experiments, this num-
ber is fixed in nine simultaneously active applications. The 
justification for this number to avoid application deadlock 
is outside the scope of this paper. 

Fig. 6 presents the placement of the nodes, according to 
its type, as well as the positions reserved for initial place-
ment. The platform has been divided in nine clusters and 
each cluster is composed by nine nodes. Each cluster cor-
responds to an independent application. However, an ap-
plication can occupy resources of other clusters, if neces-
sary, because the presented clusters limits in the Figure are 
virtual, not real. Hardware resources are placed in the net-
work limits because hardware tasks are always leaf nodes. 

In the current state of the work, processors execute only 
one task. Multi-task processors are subject for future work. 

Each node has an input buffer to store messages. The 
message delay considers the number of hops to transmit a 
message according to the xy routing, and the link occupa-
tion. When a given link is saturated (occupation > 100%), 
the message delay is multiplied by a constant. 
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Fig. 6 - Type of nodes used in the NoC. Dashed lines 
denote the cluster limits. 

5.2 Experimental Results 
This Section evaluates the NoC occupation and execu-

tion time, using the heuristics presented in Section 4. 
When internal links of the NoC do not present conges-

tion, data is transmitted without interruptions. When con-
gestion arrives in the internal links, task execution time 
and power consumption increase. The congestion minimi-
zation is a key cost function to optimize the NoC perform-
ance. 

Graphs in Fig. 7 present the execution time and link oc-
cupation (average, maximum and minimum values) for the 
different mapping heuristics. These graphs are plotted for 
13 applications. 

The average NoC occupation is higher (± 80%) for the 
FF mapping, since no congestion-aware heuristic is used. 
The heuristics MAC and MMC have similar average NoC 
occupation. The NN mapping, a very simple heuristic, and 
the PL mapping present the lower NoC occupation. Note 
that the execution time of the applications running in the 
system, for NN and PL mappings, is smaller, corroborating 
the fact that reducing congestion the execution time is also 
reduced. 

Even if two mapping heuristics present similar average 
occupation, it is important to analyze the maximum NoC 
occupation. The worst case is the FF mapping, used as 
reference (occupation peaks of 280%). The simple NN 
mapping, which leads to a small value of average occupa-
tion, has occupation peaks of 200%.  

The MAC mapping is not effective in terms of conges-
tion. The reason was advanced before: when a new map-
ping does not reduce the average link load, the algorithm 
selects the first mapping option available. The MMC has 
the same deficiency of the MAC, but with smaller values 
of maximum NoC occupation. The PL mapping presents 
the smallest values for the maximum NoC occupation. 
This arrives because this heuristic minimizes, for each 
mapping, the load added by the new task, in an opposite 
way to MAC and MMC which try to minimize globally the 
system. 
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Fig. 7 - Execution time versus link load (occupation) for the dynamic mapping strategies (initial mapping: clustering), 
for 13 applications. The continuous line in the graphs denotes the average link load. 



Fig. 8 shows the results for five applications running si-
multaneously, for NN and PL mapping heuristics. Both 
heuristics present similar average link occupation, with an 
important congestion reduction for the PL mapping heuris-
tic. 
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Fig. 8 - Execution time vs. link load for 5 applications. 

Tab. 1 presents the execution time to complete the appli-
cations, using the mapping strategies. The execution time 
considers for each task the processing time and the commu-
nication time. The allocation time is indirectly considered, 
since it is a function of the delay to receive the NOTIFY 
message. In fact, the only variable in the execution time is 
the communication time. The Path Load mapping, com-
pared to the FF, reduces in average 19.3 % the total execu-
tion time. Note that the simple NN mapping also reduces 
the execution time (18.7%). The advantage of the Path 
Load mapping is the congestion reduction. 

Tab. 1 - Total Execution Time in seconds. 

 Number of Simulated Applications 
 1 5 9 13 19 50 99 
FF 0.58 4.67 8.04 11.53 16.60 44.50 89.61 
NN 0.46 3.00 6.77 9.90 14.50 37.55 74.95 
MAC 0.55 3.76 7.50 10.61 15.59 40.04 80.77 
MMC 0.52 3.96 8.01 11.43 16.56 44.10 88.40 
PL 0.46 2.80 6.90 9.59 14.30 37.61 76.81 

 

6 Conclusions 

The nearest neighbor heurist mapping, adopted in ge-
neric task placement, effectively reduces the average link 
occupation, as showed in the results Section. However, in 
NoC infrastructures, to reduce execution time and power 
consumption, congestion in links should be avoid. To reach 
congestion reduction, the mapping heuristic must include 
some structural parameters of the NoC. The structural pa-
rameters modeled in this work are the NoC topology, the 
routing algorithm, and the communication delay (as a func-
tion of the number of hops between nodes and the satura-
tion in links). The proposed mapping algorithm, named 
Path Load, minimizes the occupation of the internal links of 
the NoC, for each new task inserted in the system. The pre-
sented graphs, for 5 and 13 applications, demonstrate the 

effective congestion reduction. Varying the number of si-
multaneous applications results in the same result profile. 

As mentioned before, multi-task processors increase the 
number of the software tasks available in the system. Future 
works includes extending the mapping heuristics to multi-
task processors. Since multi-task processors have a mi-
crokernel to manage tasks execution, such processors may 
send their load, as well the links loads, to the manager 
processor. In such a way, the mapping heurist could take 
decisions based in the actual system load, instead the load 
furnished by applications and link load estimations. Finally, 
if the manager processor knows the actual load of proces-
sors and links, task migration algorithms can be imple-
mented to ensure QoS to applications. 
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