
Heuristics for Dynamic Task Mapping in NoC-based Heterogeneous MPSoCs

Ewerson Carvalho Ney Calazans Fernando Moraes
Faculty of Informatics (FACIN)

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Av. Ipiranga 6681- Porto Alegre - 90619-900 – Brazil

{ecarvalho, calazans, moraes}@inf.pucrs.br

Abstract

Multiprocessor Systems-on-Chip (MPSoCs) is a trend in
VLSI design, since they minimize the “design crisis” (gap
between silicon technology and actual SoC design capac-
ity) and reduce the time to market. Important issues in
MPSoC design are the communication infrastructure and
task mapping. MPSoCs may employ NoCs to integrate
multiple programmable processor cores, specialized
memories, and other IPs in a scalable way. Applications
running in MPSoCs execute a varying number of tasks
simultaneously, and their number may exceed the available
resources, requiring task mapping to be executed at run-
time to meet real-time constraints. Most works in the lit-
erature present static MPSoC mapping solutions. Static
mapping defines a fixed placement and scheduling, not
appropriate for dynamic workloads. Task migration has
also been proposed for use in MPSoCs, with the goal to
relocate tasks when performance bottlenecks are identi-
fied. This work investigates the performance of mapping
heuristics in NoC-based MPSoCs with dynamic workloads,
targeting NoC congestion minimization, a key cost function
to optimize the NoC performance. Here, tasks are mapped
on the fly, according to communication requests and the
load in the NoC links. Results show execution time and
congestion reduction when congestion-aware mapping
heuristics are employed.

1 Introduction

While single processor may be sufficient for low-
performance applications, that are typical of early micro-
controllers, an increasing number of applications require
multiprocessors to meet their performance goals [1]. Mul-
tiprocessor Systems-on-Chip (MPSoCs) are custom archi-
tectures that balance the constraints of VLSI technology
with application requirements.

An important issue in MPSoC design is the communica-
tion infrastructure implementation. Networks-on-Chip
(NoCs) are an alternative to busses, with several advan-
tages, including scalability and shorter wires, which mini-

mizes power consumption. MPSoCs may employ NoCs to
integrate multiple programmable processor cores, special-
ized memories, and other intellectual property (IP) compo-
nents on a single chip. MPSoC heterogeneity increases
with IP integration and component customization to opti-
mize performance and power consumption.

Applications running in heterogeneous MPSoCs, as
multimedia and networking, normally contain a dynamic
workload of tasks. This implies a varying number of tasks
simultaneously running, with their number possibly ex-
ceeding the available resources. This may require the exe-
cution of task mapping at run time, to meet real-time con-
straints.

Most works in the literature propose static mapping so-
lutions [2][3]. Static mapping tries to define the best place-
ment of tasks at design time, for a given application. Con-
sequently, such methods are not appropriate for dynamic
workloads. Task migration [4][5] has also been used in
heterogeneous MPSoCs to optimize the performance at
run-time. Task migration relocates tasks either when a per-
formance bottleneck is detected or to distribute the work-
load more homogeneously among the MPSoC processors.
Differently from task migration, dynamic mapping can
insert new tasks into the system at run time.

This work investigates the performance of different
mapping algorithms in NoC-based MPSoCs with dynamic
workload. The main cost function in mapping algorithms is
to optimize the occupation of the NoC links. It is possible
to achieve performance gains if the mapping algorithm is
able to minimize NoC congestion.

The paper is organized as follows. Section 2 presents
related works on task mapping. Section 3 presents the
MPSoC architecture. Section 4 presents task mapping al-
gorithms. Section 5 presents the experimental setup and
the results. Finally, Section 6 presents some conclusions
and directions for future work.

2 Related Works

Usually, task mapping is a two-step process. The first
step, task binding, selects the set of IPs able to execute a

given task. The task may be, for example, a software task
to be executed in an embedded processor, a hardware task
to be executed in an embedded FPGA or in a co-processor,
or an input/output operation. Next, task placement, the
feasible placements are evaluated according to a specific
cost function, as area fragmentation, power consumption
or link usage, in order to get the best performance.

Examples of generic task placement are presented in
[6], [7], and [8]. These authors represent the system area as
a two-dimensional matrix, developing methods to manage
the used and free spaces. Tabero et al. [8] presents two
placement heuristics: tasks exchanging messages are
placed as nearest as possible, and area fragmentation
minimization. These works are target to homogeneous
MPSoC (all IP are identical, not requiring task binding)
and the communication infrastructure are not considered.

A second group of works present static mapping algo-
rithms for bus-based ([9]) and NoC-based MPSoCs
([2][3][10]). Even if these procedures are inadequate for
MPSoC with dynamic workload, such methods may be
used to compute the initial task placement, or be optimized
to be employed at run-time.

Ruggiero et al. [9] employs a homogeneous platform,
composed by ARM processors interconnected by an
AMBA bus. Applications are modeled as pipelined task
graphs, targeting stream-oriented tasks (e.g. multimedia).
They solve the task mapping in a two-step process: task
allocation followed by task scheduling.

Hu and Marculescu [2] present a static mapping heuris-
tic. The system area is defined as a tile-based NoC archi-
tecture. The authors propose a mapping approach named
Communication Weighted Model (CWM), modeling ap-
plications as graphs, being the vertices the tasks and the
edges the communication between tasks. The weight of
each edge corresponds to the number of bits exchanged
between tasks. The main goal of the approach is to reduce
the overall power consumption by decreasing the con-
sumed energy on communication.

Marcon et al. [3] extend the work of Hu and Marcu-
lescu, proposing the Communication Dependence Model
(CDM) and the Communication Dependence and Compu-
tation Model (CDCM). The CWM considers only the
communication volume. CDM includes in the model the
dependence between messages, being able to consider NoC
congestion. The CDCM [10] capture the volume and the
timing of application communication.

Task migration algorithms, widely used in distributed
systems and parallel computing domain, are been used in
MPSoC to improve the overall system performance. Works
[4], [5] and [11] discuss the cost to interrupt a given task,
save its context, transmit all data to a new IP, and restart
the task in the new IP. Nollet et al. [4] propose to migrate
tasks from hardware (in reconfigurable areas) to software
(in processors), and vice-versa, in function of the required

application performance. The method proposed by Nollet
uses task migration points to define when a given task can
be migrated to other IP. Bertozzi et al [5] use checkpoints,
similar to Nollet, to define when a given task may be mi-
grated. A middleware implemented on uClinux allows
migration at specific migration points represented by
checkpoints inserted manually by the system user on tasks
code. Kalte et al. [11] propose two methods for context
saving for reconfigurable systems shutdown process and
readback operations to save task state.

This paper discusses dynamic task mapping. A cost
function, as communication volume or initial tasks, defines
the initial task mapping. When a task sends a message, two
situations may arise: the target task is already assigned to a
given IP, or the task is not yet assigned. In the first case,
the message is transmitted to the target task. In the second
case, the task is mapped at run-time, considering the task
nature (hardware or software) and the communication cost,
and then the message is sent. Task migration is not yet
considered, since tasks are mapped in such a way the
workload is homogeneously distributed in the MPSoC.

3 MPSoC Architecture

Without loss of generality, heterogeneous MPSoC ar-
chitectures may be represented as a set of processing nodes
which interact via a communication network. Routers (R)
compose the network. Processing nodes may support either
hardware or software task execution. Hardware tasks exe-
cute in reconfigurable logic (reconfigurable areas) or
dedicated IPs. If reconfigurable logic is used, the hardware
presents flexibility similar to software. It becomes possible
to load hardware tasks on-the-fly using dynamic reconfigu-
ration. Software tasks execute in instruction set processor
or ISPs. Fig. 1 illustrates the MPSoC architecture model
used in this work.

R R R

R R R

R R R

M
an

ag
er

 P
ro

ce
ss

or
 (

M
P)

IP

IP
Task

Binding

Task
Mapping

Configuration
Control

ISP

Task
Memory ICAP

M
AC

R
O

Task
Relocation

Task
Migration

Resource
Control

ISP Reconfigurable
Area 1

M
AC

R
O

Reconfigurable
Area 2

M
A

C
R

O

Reconfigurable
Area 3

ISP

Fig. 1 - MPSoC conceptual organization.

The number of tasks may exceed MPSoC resources.
One processor is reserved to manage the system resources
(MP - Manager Processor). When the MPSoC starts its
execution, only initially needed tasks are allocated into the

system. New tasks are allocated when a given task tries to
communicate with a task not yet present. The MP is re-
sponsible for resource control, task binding, task mapping,
task relocation/migration and to control the reconfiguration
process.

All inter-task communications use messages transmitted
through the network. There are four message types: re-
quest, release, notify and general. A request message to the
MP contains the identification of a new task to be inserted
into the system and the communication rates. This com-
munication request is equivalent to a “contract request”
between a given task and the MP, in which the communi-
cation rates between the involved tasks are stipulated. The
release message notifies the MP that a processing node has
finished its current task, being possible to reuse the node to
a new task. The notify message is sent by the MP to the
master and the slave tasks, containing both tasks addresses.
The general messages are used by tasks to send data to
other tasks.

4 Mapping Heuristics

This Section presents a set of heuristics for dynamic
task mapping into NoC-based MPSoC with dynamic work-
load. Before, task and applications definitions are pre-
sented for sake of clarity.
Definition 1: A task is a 5-tuple t=(tid, pt, nt, ad, ls)
where: tid is the task identifier; pt presents the task proc-
essing time; nt the type of the task (hardware or software
task); ad is the initial task address in the task memory (Fig.
1); and ls is a list of slave tasks. When a task tM requests a
task tS from its list of slaves, tM is assumed as master and tS
is assumed as slave.
Definition 2: Elements of the list of slave tasks are triples
ls=(sid, ms, mr), where sid is the slave task identifier; ms
and mr are the message rates respectively sent and re-
ceived to/from this slave (the rate is expressed as a per-
centage of the available link bandwidth). Previous models
[2][3] consider only the communication volume. As the
path taken by messages is not the same when transmitting
and receiving data (assuming XY routing algorithm), both
rates are relevant in the model.
Definition 3: An application is a acyclic directed graph
AG=<T, C>, where the vertex set T is a set of tasks and
the edge set C is composed by triples with the form (mid,
sid, (ms, mr)), where mid is the master task identifier, sid is
the slave task identifier and (ms, mr) are the message rates
as described in Definition 2 above. Each element in C cor-
responds to a pair of communicating tasks. Only one of the
tasks in T is the initial task. The initial task cannot be the
end point of any C edge. This means that this task has no
master.

To simplify the model, and due to the scarce resources in
reconfigurable logic, hardware tasks are always leaf verti-
ces (they have no slaves). Processors may simultaneously
run different tasks, if a multi-task kernel is employed,
making software resources virtually abundant.
Definition 4: A NoC is a undirected graph NG=<R,L>,
where the vertex set is a set of ordered pairs, R={(ad, ty)}.
The elements ad are taken from a set of routers and repre-
sent the unique router address, while the information ty
concerns the type of IP connected to the router (e. g. hard-
ware or software IPs). L is the edge set, composed by pairs
of addresses, representing the NoC communication links.
In the above definition, each link may represent any num-
ber of channels connecting two given routers, allowing to
model e.g. unidirectional or bidirectional NoCs, regular or
irregular topologies, etc.

4.1 Initial Task Mapping
The method used to define the initial task mapping has

a significant impact in the performance of the dynamic
mapping. As an example consider Fig. 2, where AjTi repre-
sents task i from application j. Tasks with label T00 are
initially mapped and subsequent identifiers (T01, T02) are
tasks allocated later. Applications with different identifiers
do not communicate. If mapping is done randomly, it is
possible that at run-time no free resources exist near some
master when it needs a slave to communicate with. For this
reason, communication may take more channels than nec-
essary as in case (a). Case (b) shows the result of a more
careful mapping. The method adopted here is to define
clusters for each application, placing the initial task of each
application inside one cluster.

A00
T02

A00
T00

A01
T01

A03
T00

A02
T00

A01
T00

A00
T01

A01
T00

A00
T01

A02
T00

A03
T00

A00
T00

A00
T02

A01
T01

(a) (b)

Fig. 2 - Initial mapping strategies.

4.2 Dynamic Mapping
Once initial tasks start their execution, communication

requests are transmitted to the MP. A dynamic mapping
heuristic is required to map the new tasks. This Section
presents five heuristics to map tasks at run-time.

4.2.1 First Free
The first free (FF) method is a mapping used as a refer-

ence for comparison purposes only. This approach starts at
the NoC address (0,0) and selects the first free node able to
execute the requested task (task binding) when walking the
network in a column by column fashion. There is no cost
evaluation.

4.2.2 Nearest Neighbor
Nearest Neighbor (NN) mapping is similar to FF strat-

egy, also with no cost evaluation. NN mapping starts
searching for a free node able to execute the requested task
(task binding) around the node making the request. The
search tests all n-hop neighbors, n varying between 1 to the
NoC limits.

4.2.3 Minimum Maximum Channel Load
Minimum Maximum Channel Load (MMC) congestion-

aware mapping heuristic tries to reduce the maximum oc-
cupation of the NoC links. The goal of this heuristic is to
avoid congestion in the NoC, improving overall perform-
ance. MMC computes the cost of each mapping k accord-
ing to Equation 1, where ratel(i,j) denotes the total rate of
each NoC link, and lx and ly denote NoC dimensions. The
links with increased rates ms and mr are those used in the
communication master slave (ms) and slave master
(mr). The selected mapping is that with minimum cost.

lyjlxiratecost jiljilk <≤<≤= 0;0),(max),(),(
 (1)

4.2.4 Minimum Average Channel Load
Minimum Average Channel Load (MAC) congestion-

aware heuristic aims to reduce the average occupation of
the NoC links. This heuristic is similar to the MMC, re-
placing the max function by the avg (average) function.
While the MMC heuristic minimizes the peak link usage,
the MAC heuristic homogenously distributes the commu-
nication load into the NoC. Equation 2 presents the MAC
cost function. Links not used for communication
(ratel(i,j)=0) are not considered in the heuristic. The selected
mapping is the one that has the minimum cost.

lyjlxirateratecost
jiljil

jil
k <≤<≤>∀= 0;0,0)(

),(),(
),(

avg (2)

The MMC and MAC heuristics consider all NoC links
while mapping a new task. This approach may cause the
choice of a bad mapping, as illustrated in Figs. 3 and 4.
Fig.3 assumes the use of MMC. When computing each
possible mapping of B to an available place (nodes drawn
as cubes in the Figure) the addition of channel rates does
not change the maximum computed cost. This occurs be-
cause this addition does not change the computed maxi-
mum occupation (90%). Thus for both mappings of B the

computed costk will be the same. Due to this any mapping
may be chosen, but mapping (b) is better than (c) in the
example.

A

32

46

43

17

31

67

20

88

56

63

5

10

32 19 90 32 29 63

32 67 26 57 29 56

M C D
E

Y MP

J

A

(b) (c)

(a)

B (30,33)

B

A

32

46

43

17

31

67

20

88

56

63

38

40

32 19 90 32 29 63

32 67 26 57 29 56

MCD

Y MP

J

B

A

32

46

43

17

31

67

20

88

56

63

5

10

32 19 90 32 29 63

32 67 26 57 59 89

MCD
E

Y MP

J

MAX = 90MAX = 90
Fig. 3 – Problems using MMC. Both (b) and (c) alterna-
tives present a 90% maximum value, but (b) is better.

The second situation illustrates possible problems when
using the MAC heuristic for mapping. According to Fig. 4,
there are cases when the minimum average does not repre-
sents the best mapping. This occurs because a mapping
with a few channels heavily occupied can result in a smal-
ler average when compared to a mapping with many chan-
nels with little occupation.

A

32

46

43

17

3

8

20

88

98

63

5

4

32 19 32 29 63

8 3 26 57 29 98

M C D
E

Y MP

J

12

A

(b)
(c)

(a)

B (9,33)

JB

A

32

46

43

17

36

13

20

88

98

63

38

13

32 19 32 29 63

8 3 26 57 29 98

MCD
E

Y MP

12

B

A

32

46

43

17

3

8

20

88

98

63

5

4

32 19 32 29 63

8 3 26 57 38 131

MCD
E

Y MP

J

12

AVG = 36 AVG = 38
Fig. 4 – Problems using MAC. Alternative (a) is chosen
as best because it leads to the smaller average, but it
may lead to congestion since the channel has 131%
occupation.

4.2.5 Path Load
To overcome MMC and MAC problems, the Path Load

(PL) congestion-aware heuristic considers only the links
that will be used by the task being mapped. PL computes
the cost of each mapping k according to Equation 3, where
ratec(i,j) and ratec(j,i) are the rates in the individual channels
from the master to the new slave and the rates of the chan-
nels in the opposite direction. This is due to the asymmet-
ric nature of the XY routing algorithm. The selected map-
ping is the one that has the minimum cost.

∑∑ +=),(),(ijcjick rateratecost (3)

5 Results

This Section presents the experimental setup, including
the system, NoC and application modeling; followed by
the results.

5.1 Experimental Setup

Fig. 5 presents two examples of applications. Each ap-
plication is modeled as a graph, being white vertices soft-
ware tasks and black vertices hardware tasks, with one
initial task (represented with double lines). Communica-
tion between tasks is represented by rates from/to the mas-
ter node (see definition 3 – Section 4).

All presented results use the applications of Fig. 5, each
one composed by 10 tasks, including 1 initial, 6 software
and 3 hardware tasks. The number of applications varies
from 1 to 100. Half of applications are modeled with the
left graph of the Fig. 5, and the other half with the right
graph. The processing time (pt) is randomly chosen be-
tween 10 and 40 microseconds, and the ms and mr rates
according to the rates of Fig. 5.

(34,45) (46,17)

(47,49) (30,48) (38,50) (24,45)

(12,46) (49,34) (21,48)

(33,17) (15,45)

(23,12) (12,33) (37,35) (24,49)

(31,39)

(35,38) (43,28)

Fig. 5 - Examples of applications.

It is important to mention that the MP does not know
the application graphs, it knows only the initial tasks. The
MP starts the initial tasks, and dynamically maps new
slave tasks according to requests sent by the tasks.

The system is modeled using SystemC. Two different
threads model the system: MP (manager processor) and
task. The MP thread is responsible for resource manage-
ment, task scheduling, task mapping, and task configura-
tion. This thread contains data structures to manage system
use (i.e. links and resources) and scheduling queues. The
task thread implements the tasks behavior. The number of
task threads in the system is equal to the total number of
the tasks in all applications.

All tasks threads have the following behavior:
1. The task thread waits to be started by the MP.
2. If the task is not an initial task, it waits a NOTIFY mes-

sage, containing the master address and the communi-
cation rates (ms,mr), to start its execution. The NOTIFY
message also implies successful task binding and task

placement.
3. If the task is not an initial task, it should receive all

GENERAL messages from the master. The number of
messages is computed from the communication rate.

4. The task thread sends REQUEST messages to the MP,
one for each slave task.

5. The task thread starts the communication (GENERAL
messages) with each slave task when a NOTIFY mes-
sage with the slave address arrives from the MP. The
number of parallel executing tasks is a function of the
available resources.

6. When the task thread identifies that all messages with
a given slave were transmitted, it sends a RELEASE
message to the MP with the slave address to be re-
leased.

7. When the task thread releases all slave tasks, the proc-
essing time (Definition 2) is added to the total execu-
tion time, and the task sends GENERAL messages to its
master (if the task is not an initial task).

5.1.1 NoC Model
An 8x8 2D-mesh topology, modeled in SystemC, is re-

sponsible to transfer data between tasks. One node (the
router with its IP) is used for the MP (Manager Processor),
16 nodes are hardware tasks (25% for reconfigurable logic)
and 47 nodes are software tasks (75% for processors).

To avoid application deadlocks, due to the lack of re-
sources, the number of simultaneously applications run-
ning in parallel is limited. For the experiments, this num-
ber is fixed in nine simultaneously active applications. The
justification for this number to avoid application deadlock
is outside the scope of this paper.

Fig. 6 presents the placement of the nodes, according to
its type, as well as the positions reserved for initial place-
ment. The platform has been divided in nine clusters and
each cluster is composed by nine nodes. Each cluster cor-
responds to an independent application. However, an ap-
plication can occupy resources of other clusters, if neces-
sary, because the presented clusters limits in the Figure are
virtual, not real. Hardware resources are placed in the net-
work limits because hardware tasks are always leaf nodes.

In the current state of the work, processors execute only
one task. Multi-task processors are subject for future work.

Each node has an input buffer to store messages. The
message delay considers the number of hops to transmit a
message according to the xy routing, and the link occupa-
tion. When a given link is saturated (occupation > 100%),
the message delay is multiplied by a constant.

‘

MP

‘

Software Resources
Manager Processor

Hardware Resources
Placement for Initial Tasks

Fig. 6 - Type of nodes used in the NoC. Dashed lines
denote the cluster limits.

5.2 Experimental Results
This Section evaluates the NoC occupation and execu-

tion time, using the heuristics presented in Section 4.
When internal links of the NoC do not present conges-

tion, data is transmitted without interruptions. When con-
gestion arrives in the internal links, task execution time
and power consumption increase. The congestion minimi-
zation is a key cost function to optimize the NoC perform-
ance.

Graphs in Fig. 7 present the execution time and link oc-
cupation (average, maximum and minimum values) for the
different mapping heuristics. These graphs are plotted for
13 applications.

The average NoC occupation is higher (± 80%) for the
FF mapping, since no congestion-aware heuristic is used.
The heuristics MAC and MMC have similar average NoC
occupation. The NN mapping, a very simple heuristic, and
the PL mapping present the lower NoC occupation. Note
that the execution time of the applications running in the
system, for NN and PL mappings, is smaller, corroborating
the fact that reducing congestion the execution time is also
reduced.

Even if two mapping heuristics present similar average
occupation, it is important to analyze the maximum NoC
occupation. The worst case is the FF mapping, used as
reference (occupation peaks of 280%). The simple NN
mapping, which leads to a small value of average occupa-
tion, has occupation peaks of 200%.

The MAC mapping is not effective in terms of conges-
tion. The reason was advanced before: when a new map-
ping does not reduce the average link load, the algorithm
selects the first mapping option available. The MMC has
the same deficiency of the MAC, but with smaller values
of maximum NoC occupation. The PL mapping presents
the smallest values for the maximum NoC occupation.
This arrives because this heuristic minimizes, for each
mapping, the load added by the new task, in an opposite
way to MAC and MMC which try to minimize globally the
system.

First Free (FF) Nearest

Neighbor (NN)
Minimum Average
Channel Load (MAC)

Minimum Maximum
Channel Load (MMC)

Path Load (PL) Maximum Channel
Load Comparison

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

FF−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

NN−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

MA−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

MM−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

PL−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

FF
NN
MM
MA
PL

Fig. 7 - Execution time versus link load (occupation) for the dynamic mapping strategies (initial mapping: clustering),
for 13 applications. The continuous line in the graphs denotes the average link load.

Fig. 8 shows the results for five applications running si-
multaneously, for NN and PL mapping heuristics. Both
heuristics present similar average link occupation, with an
important congestion reduction for the PL mapping heuris-
tic.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

O
cc

up
at

io
n

Time (ms)

PL−I

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

O
cc

up
at

io
n

Time (ms)

NN−INearest
Neighbor (NN)

Path Load (PL)

Fig. 8 - Execution time vs. link load for 5 applications.

Tab. 1 presents the execution time to complete the appli-
cations, using the mapping strategies. The execution time
considers for each task the processing time and the commu-
nication time. The allocation time is indirectly considered,
since it is a function of the delay to receive the NOTIFY
message. In fact, the only variable in the execution time is
the communication time. The Path Load mapping, com-
pared to the FF, reduces in average 19.3 % the total execu-
tion time. Note that the simple NN mapping also reduces
the execution time (18.7%). The advantage of the Path
Load mapping is the congestion reduction.

Tab. 1 - Total Execution Time in seconds.

 Number of Simulated Applications
 1 5 9 13 19 50 99
FF 0.58 4.67 8.04 11.53 16.60 44.50 89.61
NN 0.46 3.00 6.77 9.90 14.50 37.55 74.95
MAC 0.55 3.76 7.50 10.61 15.59 40.04 80.77
MMC 0.52 3.96 8.01 11.43 16.56 44.10 88.40
PL 0.46 2.80 6.90 9.59 14.30 37.61 76.81

6 Conclusions

The nearest neighbor heurist mapping, adopted in ge-
neric task placement, effectively reduces the average link
occupation, as showed in the results Section. However, in
NoC infrastructures, to reduce execution time and power
consumption, congestion in links should be avoid. To reach
congestion reduction, the mapping heuristic must include
some structural parameters of the NoC. The structural pa-
rameters modeled in this work are the NoC topology, the
routing algorithm, and the communication delay (as a func-
tion of the number of hops between nodes and the satura-
tion in links). The proposed mapping algorithm, named
Path Load, minimizes the occupation of the internal links of
the NoC, for each new task inserted in the system. The pre-
sented graphs, for 5 and 13 applications, demonstrate the

effective congestion reduction. Varying the number of si-
multaneous applications results in the same result profile.

As mentioned before, multi-task processors increase the
number of the software tasks available in the system. Future
works includes extending the mapping heuristics to multi-
task processors. Since multi-task processors have a mi-
crokernel to manage tasks execution, such processors may
send their load, as well the links loads, to the manager
processor. In such a way, the mapping heurist could take
decisions based in the actual system load, instead the load
furnished by applications and link load estimations. Finally,
if the manager processor knows the actual load of proces-
sors and links, task migration algorithms can be imple-
mented to ensure QoS to applications.

References
[1] Jerraya, A.; Tenhunen, H.; Wolf, W. Guest Editors' Introduc-

tion: Multiprocessor Systems-on-Chips. IEEE Computer,
v.38(7), 2005.

[2] Hu, J.; Marculescu, R. Energy- and Performance-Aware
Mapping for Regular NoC Architectures. IEEE Transaction
on Computer-Aided Design of Integrated Circuits and Sys-
tems, v.24(4), 2005.

[3] Marcon, C.; Borin, A.; Susin, A.; Carro, L.; Wagner, F. Time
and Energy Efficient Mapping of Embedded Applications
onto NoCs. ASP-DAC, 2005.

[4] Nollet, V.; Marescaux, T.; Avasare, P.; Mignolet, J-Y. Cen-
tralized Run-Time Resource Management in a Network-on-
Chip Containing Reconfigurable Hardware Tiles. DATE,
2005.

[5] Bertozzi, S.; Acquaviva, A.; Bertozzi, D.; Poggiali, A. Sup-
porting task migration in multi-processor systems-on-chip: a
feasibility study. DATE, 2006.

[6] Ahmadinia, A.; Teich, J. Speeding up Online Placement for
XILINX FPGAs by Reducing Configuration Overhead.
VLSI-SoC, 2003.

[7] Handa, M.; Vemuri, R. An Integrated Online Scheduling and
Placement Methodology. FPL, 2004.

[8] Tabero, J.; Septién, J.; Mecha, H.; Mozos, D. A Low Frag-
mentation Heuristic for Task Placement in 2D RTR HW
Management. FPL, 2004.

[9] Ruggiero, M.; Guerri, A.; Bertozzi, D.; Poletti, F.; Mi-
lano, M. Communication-aware allocation and scheduling
framework for stream-oriented multi-processor systems-on-
chip. DATE, 2006.

[10] Marcon, C.; Calazans, N.; Moraes, F.; Susin, A.; Reis, I.;
Hessel, F. Exploring NoC mapping strategies: an energy and
timing aware technique. DATE, 2005.

[11] Kalte, H.; Lee, G.; Porrmann, M. Context Saving and Restor-
ing for Multitasking in Reconfigurable Systems. FPL, 2005.

