OptiSCI: aVisual Environment to Optimize the
Placement of Shared Memory Segments on a SCl
Cluster®

Rafael B. Avilal, César A. F. De Rose?, Tiago Ferreto?, Marcos E. Barreto®, Philippe O. A. Navaux,
Hans-Ulrich Hei*, Roberto A. Hexsel®

1 Institute of Informatics
Federal University of Rio Grande do Sul
PO Box 15064 — 90501-970 Porto Alegre
Phone: +55 51 316-6165 Fax: +55 51 319-1576
{avil a, barreto, navaux}@nf. ufrgs. br

2 Catholic University of Rio Grande do Sul

3 Federal University of Parana

4 University of Paderborn
Germany

Abstract—

The Scalable Coherent Interface (SCI) is an |EEE interconnection
standard which is becoming widely used for the construction of paral-
lel clusters of workstations. SCI provides a hardware-supported com-
mon address space shared by the computing nodes, enabling the use
of shared-memory as a distributed communication mechanism. Dueto
the strong NUMA characteristic of SCl-based clusters, the placement
of shared segments among the nodes has to be carefully planned, in or-
der to minimize the costs of network communication latencies. In this
paper we present a visual tool, OptiSCI, to help in the task of placing
shared memory segments onto a SCI cluster with respect to such com-
munication costs. OptiSCI is composed of a graphical modelling tool
and a hardware simulator which makes use of a detailed cost model of
SCI clustersin order to produce reliable results. At the end the tool is
validated against a real implementation of a parallel application on a
Linux SCI cluster.

Keywords—SCI, distributed shared memory, NUMA, placement
strategy.

I. INTRODUCTION

The widely-spread practice of cluster computing [9, 3]
has stimulated the development and implementation of
many high-performance communication technologies such
as Myrinet [1] and SCI (Scalable Coherent Interface) [8] for
standard personal computers. Though established in 1992,
the SCI standard has only recently been implemented in prac-
tice as PCI and SBus interface cards [4] by the Norwegian
company Dolphin Interconnects. As a result, SCI has been
gaining attention, in the last few years, as an interconnect
technology for the establishment of parallel clusters [5].

*Work supported by the PROBRAL Project No. 065/98, CAPES/DAAD
International Cooperation Programme

The main differential characteristic of SCI is the ability to
transform a distributed-memory cluster in a shared-memory
machine. SCI provides a hardware-supported common ad-
dress space which is shared by the nodes of a cluster, which
allows communication between nodes to be performed by
regular memory-access instructions, consequently transpar-
ent to the programmer.

Such a distributed shared-memory machine is referred to
as a NUMA (Non-Uniform Memory Access) [7] machine,
where accesses to remote memory are considerably more ex-
pensive than local accesses. For this reason, applications
based on shared-memory cannot simply be ported unmodi-
fied from SMP architectures to SCI-based clusters, what usu-
ally results in very poor performance [2]. In other words,
shared-memory applications for SCl-based clusters must be
carefully planned, in terms of placement of shared memory
segments, in order to minimize the cost of remote memory
access.

With the goal of minimizing the effort in this task, we have
developed OptiSCl, a visual tool designed for modelling and
evaluating the performance of DSM applications when run
on clusters connected by SCI. The idea is that OptiSCI be
used to obtain, by simulation, an overall placement strat-
egy to guide the actual implementation of the application.
The tool is the result of an international cooperation project
between the University of Paderborn, in Germany, and the
Brazilian universities UFRGS, PUCRS and UFPR, within the
CAPES/DAAD cooperation programme.

The paper is organised as follows: Section Il presents

64 bit total 48 bit node local node local CSR

address space address space register block
J—————F - mmmmmann
node 65519 CSR registers available
private \ register
\\ space
available ‘\
memory N
space \
node n N
\
A o als .
\ initial units
AN space
\
\
A ROM
AY
.
node 0 . Y| registers

Fig. 1. The SCI address map.

some background information on SCI; in Section Il we
present the OptiSCI tool and describe its functionalities; Sec-
tion 1V brings the validation of OptiSCI with the implemen-
tation of a distributed scheduling application; finally, Sec-
tion V brings the authors’ conclusions and future directions.

Il. BACKGROUND

The Scalable Coherent Interface (SCI) is an IEEE stan-
dard that provides computer-bus-like services to a set of
nodes via fast unidirectional links connected in a ring. SCI
uses a point-to-point interface between the network nodes,
which allows several topologies like rings, meshes, multi-
stage networks and crossbars to be chosen. The ring topol-
ogy, however, is especially suitable since it is very simple
and inexpensive to realize. The SCI standard specifies the
supported interface to run at 500MHz over 16 parallel sig-
nals yielding a raw point-to-point throughput of 1GB/s.

The standard implements a 64-bit address space which is
divided on 16-bit unique node 1Ds with each node having a
48-bit local address space, as shown in Fig. 1. The upper-
most 16 node addresses are reserved for special purposes,
thus leaving 65520 possible nodes in a SCI system.

A SCI cluster therefore does not only provide the facilities
for messsage passing communication, but also enables paral-
lel programs to use shared memory segments. Unfortunately,
the PCl-based implementation has, unlike the original IEEE
standard, a major drawback: the idea of the standard is to
have a cache coherent system which spreads over the whole
cluster onto many nodes. Every node has its private memory
and, in addition to the built-in Level 1 and Level 2 caches,
a SCI cache for caching remote memory. The caching of
remote memory is, however, not possible for PCl-based sys-
tems, since transactions on the main bus of a local node are
not visible on the PCI bus (Fig. 2). Thus, a PCl-based card
like the Dolphin SCI card used in this paper cannot take part
in the coherence protocol on the main bus. Caching of lo-
cal memory exported by an SCI card is nevertheless possible
when accesses from a PCI card into the main memory go

processor

‘ L1 cache

[L2 cache

processor bus

PCI bridge

L
il
1J

[Bypa ss|
Output t buffer -

PCl bus

Main memory PCI-SCl interface

el 1

Output Input
buffer buffer

- SClring
Decoderh

link

SCl ring direction

Fig. 2. A PCl-based SCI node.

through the same bus as CPU-memory traffic, which is the
case of standard PCl-based PCs.

I1l. THE VISUAL OPTIMIZATION ENVIRONMENT

Our proposal to minimize the effort in correctly placing
shared segments consists of a visual environment, called Op-
tiSCI, where DSM applications can be modelled and evalu-
ated in relation to performance. The idea is, however, not to
construct each detail of the application, but rather to build
a general model of its behaviour by giving an initial seg-
ment distribution and describing remote accesses to them.
After evaluating this first configuration, the user can eas-
ily move segments around and reevaluate the application as
many times as desired to obtain an optimal placement strat-
egy, which shall guide the final implementation.

The environment is divided in two graphical tools: DAMIT
(DSM Application Modelling Tool), with which the user in-
teracts directly during the modelling step, and SCIPos (SCI
Placement Optimization System), which simulates the hard-
ware and evaluates the application. These tools are presented
next.

A. The DAMIT Application

This tool, implemented in Java for its powerful GUI de-
velopment support, provides a graphical interface for con-
structing DSM applications. It has been implemented on the
Brazilian side of the cooperation by the groups at UFRGS
and PUCRS.

Figure 3 shows a screen-shot of the tool. As mentioned
before, DAMIT is used by the programmer to model and later
fine-tune the application.

Objects

#0

#1

H2

4

#5

HE

#7

w5

|

g

#14

#16 |

#17

#15

#13

#20

#21

#232

#23|

wae |

File

Fig. 3. Screen-shot of the DAMIT application.

=] po I I

rAccesses

Add access

write s, 300 bytes
rite =1, 200 bytes
write 52, 100 bytes

Delete access

Fig. 4. Definition of accesses to shared segments.

Fig. 5. The SCIPosapplication.

The main screen shows the available computational nodes
in a grid layout, where each node holds one single process,
represented by a dark box. Shared segments can be created
in the available space within a node, and can later be moved
from one node to another. The behaviour of the application is
modelled by double-clicking a process and adding accesses
to shared segments, as illustrated in Fig. 4. These accesses
are represented by lines drawn from a process to a node (see
Fig. 9). Different colors are used to separate read accesses
(more expensive) from write accesses.

The DAaMIT tool generates as output a data file containing
incidence matrices which represent the communications in-
volved in the application. This file is then used as input for
the second tool.

The moving of shared segments from node to node is the
key point of the DAMIT tool. The idea is that many differ-
ent configurations can be tested in a short period of time, so
that the final implementation can use the placement strategy
obtained from this step. Section IV shall present a concrete
example in the use of the tool.

B. The SCIPos Program

The SCIPos program, developed jointly by the groups at
UFPR and Uni-Paderborn, is written in ANSI C and sim-
ulates the actual communication process. After importing
the matrices generated by DAMIT, the program calculates the
costs involved in the remote accesses between nodes and dis-
plays a graphical screen (Fig. 5), similar to that of DAMIT,
showing the nodes and the costs generated by each one in
terms of distributed shared memory and message passing?.
Both the total and the individual costs for remote reading and
writing are displayed (Fig. 6). Based on these information,
the user is able to estimate the performance of the application
and decide on additional reconfiguration.

1SCIPos has been designed to support this kind of communication as
well.

Fig. 6. Communication costs as informed by SCIPoOs.

B.1 Hardware Model

In order to present results as reliable as possible, the es-
timation of communication costs in this part of the environ-
ment has been given detailed attention, being based on a fur-
ther development of the measurements done by Hexsel [6] on
SClI-based architectures. This section discusses the hardware
modelling used in the environment.

Measurements represent communication costs. In some
cases, the original values have been combined or used to
construct average timings in order to simplify the model and
increase the performance of the implementation. Hardware
contention is not considered in the cost model. All values
depend on the size of data (in bytes) that is being processed
and on the clock frequencies of the individual hardware com-
ponents:

e M Cycle: one cycle of the memory bus (100MHz)

e P(Cycle: one cycle of the PCI bus (33MHz)

e B(Cycle: one cycle of the PCI-SCI bridge (internal

clock frequency: 1000MHz)
e SCycle: one cycle of the SCI ring (500MHz)
From these basic values, the other data are constructed as
follows:
L4 Tmemory_access =14% MCycle *
Accessing the local memory

b4 Tcrosszng pcr = 3% PCycle x S’L426
This time is needed to cross the PCI bus via processor-
PCI bridge and reach the PCI-SCI bridge

® Tpreparing_scr = 12 x BCycle x Séff
Time needed for wrapping up the data

® Tinsertion = 200ns * séie

Time for inserting the packet onto the SCI ring
® Thass_node = 4 SCycle + 25ns

The time used for passing through a node on the SCI

ring including the propagation delay in 5m cable to the

next node.
® Tihangering(size) = 12 % BCycle * Séie

Time needed for a SCI packet to change dimensions in

the SCI torus
¢ Treceive = 8 % BCycle x £¢

Removing the packet from the ring and unwrapping it

in the target node.

size
8

Remote Writing A write access to a remote segment in
the SCI-cluster consists of the following steps: the instruc-
tion to write certain data in a remote segment is given by the
CPU, the required data is fetched from the local memory via
the memory bus into the processor-SCI bridge, then onto the
PCI bus. In the PCI-SCI bridge, the data is wrapped in SCI
packets and sent via the linkbus onto the SCI ring. Routing

follows the SCI specifications, i.e. the packets travel along
the horizontal ring until the matching vertical ring is met;
then they change direction and move on until the target node
is reached. There the SCI card picks up the packages and
transfers them via linkbus to the PCI-SCI bridge, where the
original data format is restored. After passing PCI bus and
processor-PCI bridge, the data is stored in the remote seg-
ment via the memory bus.

The nodes shall be referred to as A = «;; resp. B =
ay, 1, the summations are provided without possible modulo
operations for better reading. So, in total, the time needed
for a remote write can be formalized as follows:

Tremote_write(AsB) = Tmemory_access(i,j)
+Terossing_Per(,;)
+Tpreparing_scr(i ;)
+Tinsertz’on(ai, i)

E pass_node am l)

+Tchangerz’ng
l

+ Z Tpass_node (ai,m)

m=j
+Treceive (k1)
+Terossing PC1(Ok 1)
+ T memory_access (Qk,1)

Remote Reading A little more effort is needed to read
from a remote segment since there is no possibility of a read-
ahead or buffering data requests. Actually, the read access
on a shared memory segment can be compared to a kind of
send_data instruction which follows a remote write from tar-
get to source node:

TTemote_read(A: B) = Tremote_write (A; B)

+Tcrossing_PC’I(ak,l)
+Tp7'eparing_SC’I (ak,l)

+Tinsertion (ak,l)
l

+ z Tpass_node (ai,m)

m=j

+Tchangering

+ Z Tpass_node (am,l)

m=i
+Treceive (ai,j)
+Tcrossz'ng_PCI (Oéz',j)

+Tmemory_access (az’,j)

On the following lines, the number of processes to be
mapped shall be denoted with k&, the number of available seg-
ments with m. The number of nodes on which the processes
and segments are to be placed is given by the letter n. Thus,
the actual event of allocating the processes onto the nodes
can be described as a function

m:{l...k} > {1...n}
and also the placing of the segments is a function
¢:{l...m} > {1l...n}

so that the time needed for the communication of process i
can be formalized as

Tom(i) = ZTTemote_md(w(i),cﬁ(j))

=1

<

+ Z Tremote_'wTite (’/T(l)a ¢(J))

This is the value presented by SCIPos as the global shared
memory cost, which must be observed by the programmer
when fine-tuning the application.

IV. TooL VALIDATION

In this section we will use the OptiSCI tool to model a
distributed application and validate the simulated results with
a distributed implementation of the same application in a SCI
cluster.

As target machine we used the SCI cluster from the Re-
search Center for High Performance Computing (CPAD-
PUCRS/HP). The cluster is composed of 4 nodes connected
by a 500MHz unidirectional SCI ring. Each node is a HP
Vectra VE8 with a Pentium 11l running at 550MHz and
128MB main memory. The operating system used in these
nodes is RedHat Linux R6.2, with kernel 2.2.14.

The application has been developed with Yasmin (Yet An-
other Shared Memory Interface) [10], a shared-memory API
from the University of Paderborn. The base of Yasmin pro-
gramming is the creation and sharing of memory segments,
with synchronisation by means of distributed mutexes and
conditional variables, among others.

The chosen example application is a distributed sched-
uler using three ready queues for tasks of different priori-
ties, two master and two slave processes. It is a classical

(b)

Fig. 7. Representation of the modelled application.

® o o o o o

node 3D node 4 node3 node 4 node3 node 4
O uf ‘
o' O

@ (b) ©

Fig. 8. Three possible mappings for the application.

consumer/producer model with slaves writing to the queues
according to the priority of the incoming tasks (producers)
and masters reading from the queues to execute the tasks
(consumers). The queues are processed in FIFO order, with
slaves writing at the tail and masters reading from the head.
Each master scheduler is associated to one processor and
will read from the queues in a round robin fashion giving
more attention to higher priority queues. In a round a master
read three tasks from queue #0, two tasks from queue #1 and
only one task from queue #2, resulting in more CPU time
to higher priority queues. There is no explicit communica-
tion between processes and synchronization is implicit in the
access to the shared memory segments (queues). Figure 7
presents a graphical representation of the distributed applica-
tion (a) and a data access graph (b).

The problem now is to suitably map the graph in Fig. 7b
to the 4 nodes of the target machine. Figure 8 presents three
possible solutions to this problem. Processes are represented
by circles and the queues by squares. Grey circles represent
the slaves and black circles the masters.

It is reasonable to map each process of the distributed ap-
plication to one node of the target machine but the place-
ment of the queues is less obvious. To help deciding each
of the three placements should be used we apply the visual
tools. The three mappings have been built and the corre-
sponding costs calculated. Figure 9 shows a view of mapping
a modelled with DAMIT. For clearness, only the accesses to

= DSM Application Modelling Tool v1.0 ENE |
File Objects

H B E:a

Fig. 9. Partial representation of mapping a.

#7 |

TABLE |
EXECUTION TIMES AND SIMULATION RESULTS FOR THE 3 MAPPING
STRATEGIES.
Mapping | time(s) | simulation
a 7 7
b 7 ”
c ” ”

queue #0 are shown. Moreover, since the available cluster
is composed of 4 nodes, only the upper ring of the modelled
hardware is used. Due to the routing mechanism of SCI, the
additional nodes simply do not get involved in the applica-
tion, and the simulation results are not affected.

To validate the results obtained with the visual tool we im-
plemented three versions of the distributed scheduler, one for
each mapping of Fig. 8. Each slave scheduler has to handle
600 tasks, 300 with priority #0, 200 with priority #1 and 100
with priority #2. No arrival times are modelled for these tasks
(the slave input buffer is full by program start). The program
ends when the masters finish processing the 1200 tasks out
of the three queues. The task representation to be inserted
and removed in the queues is 2KB long.

Table | presents a comparison between the execution times
and the simulated results for each mapping. It is possible to
observe that the variations in values from one mapping to
another are proportionally kept the same for both columns,
which leads us to conclude that the tool is effective in simu-
lating the SCI hardware.

V. CONCLUSIONS AND PERSPECTIVES

The design of shared-memory applications on SCl-based
clusters is still a task that demands careful planning. The
OptiSCI environment presented in this paper is an attempt to
minimize the effort in this task. By means of a quick mod-
elling/evaluation process, the programmer of SCI is able to
obtain a quasi-optimal segment placement strategy to be fol-
lowed at the time of the actual implementation.

We have shown an example of OptiSCI use in the mod-
elling of a distributed scheduling application, validated
against a real implementation of the same algorithm with the
Yasmin API. The obtained results show the effectiveness of

the tool, having presented performance variations which cor-
respond to the measures done in practice, within a 10% error
margin.

This version of OptiSCI does not find the best mapping
solution, but only calculates the involved costs for the solu-
tion proposed by the user. This forces the user to be involved
in the mapping process and helps him to better understand
the cost model. For the future we consider the addition of
mechanisms to suggest better mapping alternatives.

Being NUMA machines, SCI clusters represent a new
challenge for parallel and distributed applications program-
mers. The resulting applications will run efficiently only if
programmers master the mapping cost model. Our tool aims
to help the better understanding of the involved costs in this
procedure and is a step in this direction.

ACKNOWLEDGEMENTS

The authors would like to thank CAPES and DAAD for the
financial support of this project. The work is also partially
supported by studentship grants from CNPq and CAPES.

REFERENCES

[1] N. Boden et al. Myrinet: A gigabit-per-second local-area network.
IEEE Micro, 15(1):29-36, February 1995.

[2] Roger Butenuth and Hans-Ulrich Heiss. Shared memory program-
ming on PC-based SCI clusters. In Hermann Hellwagner and Alexan-
der Reinefeld, editors, Proc. of SCI-Europe’98, Bordeaux, France,
September 1998.

[3] Rajkumar Buyya, editor. High Performance Cluster Computing: Ar-
chitectures and Systems. Prentice Hall PTR, Upper Saddle River,
1999.

[4] The Dolphin SCI interconnect. Available at http://www.dolphinics.no,
1996.

[5] Hermann Hellwagner and Alexander Reinefeld, editors. SCI: Scalable
Coherent Interface: Architecture and Software for High-Performance
Compute Clusters, volume 1734 of Lecture Notes in Computer Sci-
ence. Springer, Berlin, 1999.

[6] Roberto A. Hexsel. A Quantitative Performance Evaluation of SCI
Memory Hierarchies. PhD thesis, University of Edinburgh, October
1994.

[7] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing: Technology,
Architecture, Programming. McGraw-Hill, Boston, 1998.

[8] IEEE. IEEE standard for scalable coherent interface (SCI).
IEEE 1596-1992, 1992.

[9] Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F.
Savarese. How to Build a Beowulf: a Guide to the Implementation
and Application of PC Clusters. MIT, Cambridge, 1999.

[10] Huseyin Tagkin. Synchronisationsoperationen fiir gemeinsamen spe-
icher in SCl-clustern. Diplomarbeit, Universitdt GH Paderborn, Pader-
born, 1998.

