
Performance evaluation of DECK combining multithreading and communication
on Myrinet and SCI clusters�

César De Rosez Fábio Oliveira{y Fausto Blancoz Marcos Barreto{

Philippe Navaux{ RafaelÁvila{ Tiago Ferretoz

{ Institute of Informatics
Federal University of Rio Grande do Sul

PO Box 15064 — 91501-970 Porto Alegre, Brazil
http://www-gppd.inf.ufrgs.br/projects/mcluster

E-mail: ffabreu,barreto,navaux,avilag@inf.ufrgs.br

z High Performance Research Centre (CPAD)
Catholic University of Rio Grande do Sul

Av. Ipiranga, 6681 — 90619-900 Porto Alegre, Brazil
http://www.cpad.pucrs.br

E-mail: fderose,blanco,ferretog@cpad.pucrs.br

Abstract

Paper submitted to PDPTA’01
This paper presents a performance evaluation of DECK

(Distributed Execution and Communication Kernel), a mul-
tithreaded parallel programming environment for clusters
of SMPs, with the parallel implementation of the classical
Mandelbrot fractal generation and Laplace’s Equation al-
gorithms. The applications have been run on Myrinet and
SCI clusters and the results are compared to corresponding
MPI implementations. The comparison shows that DECK is
able to achieve very good performance when multithread-
ing is combined with communication, without the need of
multiple processes on a single machine.

Keywords: cluster computing, multithreading, parallel
programming environment, Myrinet, SCI.

1. Introduction and context

Current high-speed communication technologies such as
Myrinet and SCI are usually interfaced by low-level pro-
gramming libraries such as GM [4], BIP [10] and SISCI [3],
which have been introduced in order to efficiently exploit
the low latency and high throughput offered by those tech-
nologies. However, such libraries present a rather complex
API and are not targeted at the end user, but instead they
serve as a basis for the implementation of higher level envi-
ronments such as MPI [8]. Still, one of the most common
characteristics of clusters, which is the availability of SMP

�Results for Myrinet have been measured at the High Performance Re-
search Centre (CPAD), PUCRS/HP; results for SCI have been measured at
the Institute of Informatics, UFRGS

yPresenter

nodes, is usually not taken advantage of, and frequently not
even supported, given that many MPI implementations are
not even thread-safe.

Following this idea, we have designed and implemented
DECK (Distributed Execution and Communication Ker-
nel) [2], an environment for parallel programming on SMP
clusters. The main goal of DECK is to try to efficiently
integrate multithreading and communication in a single en-
vironment. In this paper we present a performance evalua-
tion of two flavours of DECK, running on Myrinet and SCI
clusters, with the parallel implementation of two algorithms
usually present in the HPC community, namely the Man-
delbrot fractal generation [7] and the solving of Laplace’s
Equation [9]. In addition, we compare the obtained results
to those of equivalent implementations executed with ver-
sions of MPI for both communication technologies.

The paper is structured as follows: in Section 2 we
present some background information with an overview of
DECK and its implementations for Myrinet and SCI; in
Section 3 we describe the applications, their implementa-
tion on DECK and MPI and analyse the obtained results;
finally, Section 4 brings the authors’ conclusions and future
directions.

2. The DECK environment

The API of DECK is conceptually object-oriented, pro-
viding basic abstractions for parallel applications, such as
threads and mail boxes, and more elaborate services like
naming and collective communication. Figure 1 shows
the internal structure of DECK. The bottom layer is
called�DECK, being responsible for the basic abstractions:
threads, semaphores, messages and mail boxes. The upper
layer of DECK is a service layer, whose services can be

1



thread semaph msg mbox shmem

uDECK
naming collective

comm.
sched

services

Figure 1. The internal structure of DECK.

chosen at compilation time.
Two implementations of DECK are currently available,

for both Myrinet and SCI communication technologies.
Multithreading is implemented on both by making use of
standard POSIX Threads [6] calls. The communication is-
sues are described next.

2.1. DECK/BIP

For the implementation of DECK on Myrinet [1] we
have used the BIP library, mainly because of its perfor-
mance and simple API. BIP provides basic point-to-point
communication primitives (asynchronoussend()andrecv())
on Myrinet, with the constraint that the exchange of large
messages (in BIP terms) must follow arendez-vousseman-
tics, which means that a givenrecv()must always be posted
before the correspondingsend(). In order to accomplish that
in DECK, we have used a handshaking protocol where the
sender makes use of small request messages before sending
a large message. Such requests are handled, on the receiver
side, by a dedicated thread, therv-daemon, created at ini-
tialisation time.

This additional thread may have a significant impact on
communication performance depending on the communica-
tion pattern. Figure 2 shows a raw performance evaluation
of DECK and MPI-BIP [12], an MPI implementation on top
of BIP. The graph shows the influence of the rv-daemon for
messages larger than 1K, where the performance of DECK
is around only 80% of that of MPI.

2.2. DECK/SCI

The SCI version of DECK makes use of the SISCI API.
SISCI—Software Infrastructure for SCI—is a specification
of standard primitives for SCI programming, based on the
shared segment notion, proposed by a group of partners
from both the academia and the industry. One implemen-
tation of SISCI is available in the SSP (Scali Software Plat-
form), a software package distributed with Scali Wulfk-
its [11], upon which our SCI cluster is based.

Three communication protocols were developed for the
implementation of DECK on SCI, in order to guarantee low
latency and minimal overhead for small messages, as well

0

10

20

30

40

50

60

70

80

90

100

110

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

ba
nd

w
id

th
 (

by
te

s/
s)

message size (bytes)

DECK−BIP
MPI−BIP

Figure 2. Bandwidth of DECK and MPI-BIP on
Myrinet.

as high bandwidth for large ones. A protocol specialised
in exchanging small messages achieves low latency by in-
tegrating communication and signalling into the same SCI
packet, whereas high bandwidth is accomplished through a
carefully designed zero-copy communication mechanism.

Figure 3 shows the raw performance evaluation of
DECK/SCI and ScaMPI, the Scali implementation of
MPI [5]. The graph reveals that the performance of
DECK/SCI is clearly better than that of ScaMPI. It is pos-
sible, with DECK/SCI, to achieve a minimal latency of
4.66 �s and a maximum bandwidth above 84 Mbytes/s.
These results are really near the raw performance of the SCI
network.

In contrast to DECK/BIP, DECK/SCI is more efficient
than MPI for all message sizes. This is, in part, due to the
fact that DECK/SCI does not use any additional thread to
manage communication.

3. The implemented applications

3.1. Execution environment

In order to investigate the potential and the feasibility of
the proposed parallel programming environment for the tar-
get system, we have implemented two parallel algorithms
that make heavy use of both computation and communica-
tion on the target system. These applications have been run
on two SMP clusters available at our universities:

� a Myrinet cluster at the High Performance Research
Centre (CPAD — PUCRS/HP); the cluster is com-
posed of 16 nodes, each one being a HP E60 NetServer
with two Intel Pentium III 550MHz processors and
128M DRAM, resulting in a 32 processor system; the

2



10

20

30

40

50

60

70

80

90

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

ba
nd

w
id

th
 (

by
te

s/
s)

message size (bytes)

DECK−SCI
ScaMPI

Figure 3. Bandwidth of DECK and ScaMPI on
SCI.

nodes are connected by a 1.28 + 1.28Gbit/s Myrinet
network based on Lanai7 32-bit cards; the operating
system is Slackware Linux 7.1 and BIP is used to drive
the Myrinet boards. The MPI implementation used in
the tests is MPI-BIP

� an off-the-shelf SCI cluster available at the Institute of
Informatics of UFRGS1, composed of 4 bi-processed
Pentium III 500MHz nodes, each with 256M of RAM
(totalising 8 processors); the nodes run Conectiva
Linux2 version 5.0 and Scali Software Platform ver-
sion 2.0.2, which includes ScaMPI and SISCI.

All the results have been obtained using the maximum
number of nodes on each cluster, each figure being a mean
of 10 executions.

3.2. Mandelbrot fractal

This application calculates the Mandelbrot set and draws
a two-dimensional picture of it. It iterates the Mandelbrot
function for every pixel on the picture, and sets the colour
of the pixel according to the iteration where the orbit “es-
capes”, with a maximum iteration value of 17500. There are
no dependencies between the calculations done in different
regions of the picture but different regions may be easier to
calculate than others.

Our parallel version of the application uses a mas-
ter/slave model where the master is responsible for dis-
tributing parts of the picture to be calculated and for draw-
ing the already calculated parts. The picture is partitioned
in horizontal slices and slaves keep requesting new slices to

1Partially financed by FAPERGS, FINEP and CNPq
2A Brazilian derivative of Red Hat Linux.

num. of slices

0

5

10

15

20

ti
m

e 
(s

)

MPI
DECK

16 32 64 128 256 512

Figure 4. Results for the Mandelbrot algorithm
on Myrinet.

calculate until all slices are ready. Slaves communicate only
with the master in a 1:n pattern.

Figures 4 and 5 present the results for a 600�600 fractal
calculated with different number of slices, varying from 16
to 512. A higher number of slices results in smaller mes-
sages and better load balancing but increases the number of
messages.

On MPI we have run 2 processes on each node, and on
DECK the implementation uses two threads for the calcula-
tions and one dedicated to communication.

The results obtained with DECK are practically equiva-
lent to those of MPI, with differences lying mostly on the
tenths of seconds. On Myrinet the best results are obtained
for a number of slices between 128 and 256. Notice that
in this application the influence of the rv-daemon does not
affect the final results due to the more irregular commu-
nication pattern, confirming that the use of threads can be
suitable for applications involving high-performance com-
munication.

One can notice a slight increase in the execution time
when 512 slices are used; we believe this is a tendency from
this point on, since slices become too small to compensate
the time spent to send them between nodes. In other words,
the grain of parallelism in this case is too small.

On SCI the behaviour is the same, with execution times
also starting to increase at 512 slices (the absolute values
are higher since the SCI cluster has only 4 nodes). DECK
is slightly better than MPI for 64 and 128 slices.

3



num. of slices

0

5

10

15

20

ti
m

e 
(s

)

MPI
DECK

16 32 64 128 256 512

Figure 5. Results for the Mandelbrot algorithm
on SCI.

3.3. Laplace equation

This application calculates the temperature distribution
in a slab of a hypothetical homogeneous material com-
pletely insulated on the edges. Initially, the slab is at one
uniform temperature throughout and a heat source is ap-
plied to one of the borders. The Laplace equation is used
to solve this problem, being applied by means of an itera-
tive method. The surface of the slab is divided in square
sections, where each intersection is a point in a grid. The
finer the grid, the more accurate the approximation, and the
larger the problem.

From the adaption of the Laplace equation to a compu-
tational method, in this case the Gauss-Seidel approach [9],
the temperature of a given grid point at a given iteration
is taken to be the average of the temperatures of the four
surrounding grid points at the previous iteration. Border
temperatures are always kept constant.

Our parallel version of the application partitions the im-
age in rectangular regions, assigning each region to a node.
Figure 6 presents the results for DECK and MPI for a slab
of size 600�600.

Execution times are shown for both Myrinet and SCI
distributing the regions equally among the available nodes.
The same approach for achieving multiprocessing has been
used, i.e., on MPI each machine executes two MPI pro-
cesses, and on DECK two calculating threads are created.

In this application DECK has shown more encouraging

0

50

100

150

200

ti
m

e 
(s

)

MPI
DECK

Myrinet SCI

Figure 6. Results for Laplace’s Equation.

results, presenting the same results as MPI on Myrinet and
significantly better results on SCI. To our understanding,
this behaviour is caused by different synchronisation se-
mantics which depend on the message sizes. DECK mes-
sages are always asynchronous up to 8Kbytes, and the zero-
copy protocol is used from this point on. As can be observed
in Figure 3, ScaMPI keeps a rather constant evolution in
performance throughout the curve, while DECK boosts
bandwidth starting at 8Kbytes. Besides, to our knowledge,
ScaMPI does not make use of a zero-copy mechanism, em-
ploying arendez-vous(synchronous) protocol instead.

4. Conclusions and future directions

The experiments described in this paper have shown
a performance evaluation of two implementations of the
DECK environment when compared to equivalent MPI ver-
sions. In general, the performance presented by DECK with
multiple threads is at least as good as that presented by the
analysed MPI implementations, which represents an inter-
esting alternative for the exploitation of SMPs in parallel
applications.

In addition, in some cases, depending on the communi-
cation pattern presented by the application, DECK is able to
outperform MPI running with multiple processes per node,
as shown in Laplace’s Equation. On the other hand, the
raw performance evaluation of DECK on both technologies
does not correspond to the results measured for the Mandel-
brot algorithm.

Our next directions are the fine-tuning of DECK/BIP,
with the goal of achieving better performance, and the im-

4



plementation of additional applications to make a more
complete validation of our programming environment. The
group has the intention, in the future, of allowing the user
to join both Myrinet and SCI technologies in a single appli-
cation.

5. Acknowledgements

This work has been partially supported by grants from
CAPES and CNPq.

References

[1] M. Barreto, R. Ávila, R. Cassali, A. Carissimi, and
P. Navaux. Implementation of the DECK environment
with BIP. In Proc. of the First Myrinet User Group
Conference, pages 82–88, Lyon, France, 2000. Lyon,
INRIA Rocquencourt.

[2] Marcos Ennes Barreto. DECK: Um ambiente para
programac¸ão paralela em agregados de multiproces-
sadores. Master’s thesis, PPGC da UFRGS, Porto Ale-
gre, 2000.

[3] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser,
B. D. Johnsen, H. Kohmann, R. Nordstrøm, and
P. Werner. Low-level SCI software requirements, anal-
ysis and predesign. Technical report, ESPRIT Project
23174 — Software Infrastructure for SCI (SISCI),
May 1998.

[4] GM. Available at http://www.myri.com/GM, Decem-
ber 1999.

[5] L. P. Huse, K. Omang, H. Bugge, H. Ry, A. T. Haugs-
dal, and E. Rustad. ScaMPI—design and implemen-
tation. In Hermann Hellwagner and Alexander Reine-
feld, editors,SCI: Scalable Coherent Interface: Archi-
tecture and Software for High-Performance Compute
Clusters, volume 1734 ofLecture Notes in Computer
Science, pages 249–261. Springer, Berlin, 1999.

[6] IEEE. Information technology—portable operating
system interface (POSIX), threads extension [C lan-
guage]. IEEE 1003.1c-1995, 1995.

[7] Benoit B. Mandelbrot.The Fractal Geometry of Na-
ture. W. E. Freeman and Company, New York, 1982.

[8] MPI Forum. The MPI message passing interface
standard. Technical report, University of Tennessee,
Knoxville, April 1994.

[9] W. H. Press et al.Numerical Recipes in C: The Art
of Scientific Computing. Cambridge University, Mel-
bourne, second edition, 1994.

[10] Loı̈c Prylli and Bernard Tourancheau. BIP: A new pro-
tocol designed for high performance networking on
Myrinet. In José Rolim, editor,Proc. of PC-NOW’98,
volume 1388 ofLecture Notes in Computer Science,
pages 472–485. Berlin, Springer, 1998.

[11] Scali homepage—scalable Linux systems—affordable
supercomputing. Available at http://www.scali.com,
April 2000.

[12] Roland Westrelin. Une impl´ementation de MPI pour
réseaux locaux `a très haut d´ebit: MPI-BIP. InProc. of
the 11th RENPAR (Rencontres Francophones du Par-
allélisme), Rennes, 1999.

5


