
A Hardware Counters Based Tool for System
Monitoring

Tiago C. Ferreto
���

, Luiz DeRose
�

, and César A. F. De Rose
�

�

Catholic University of Rio Grande do Sul (PUCRS),
Post-Graduate Program on Computer Science, Porto Alegre, Brazil

[tferreto,derose]@inf.pucrs.br
�

Advanced Computing Technology Center, IBM T.J. Watson Research Center,
Yorktown Heights, NY, USA
laderose@us.ibm.com

Abstract. In this paper we describe the extension to the RVision tool to sup-
port hardware performance counters monitoring at system level. This monitoring
tool is useful for system administrators to detect applications that need tuning.
We present a case study using a parallel version of the Swim benchmark from
the SPEC suite, running on an Intel Pentium III Linux cluster, where we show a
performance improvement of 25%. In addition we present some intrusion mea-
surements showing that our implementation has very low intrusion even with high
monitoring frequencies.

1 Introduction

As parallel architectures become more complex it is becoming much more difficult for
applications to run at a reasonable fraction of the peak performance of parallel systems.
In order to improve program performance, experienced program developers have been
using hardware performance counters for application tuning [1]. Likewise, in order to
help programmers tune their applications, a variety of utilities and libraries have been
created to provide access to the hardware performance counters at user level [2–8].

Unfortunately, for most users, it is not always clear when their programs need tun-
ing. Thus, system administrators would like to be able to monitor application perfor-
mance metrics, such as MFlops/sec and cache hit ratios, to identify programs that could
be candidates for optimization. However, there are practically no system-monitoring
tools available on cache-based systems that provide such information. An approach
being used today by system administrators is to apply “wrappers” to job submission
scripts that activate utilities to collect hardware performance information at the appli-
cation level, in order to generate summary files at the end of the execution. An example
of such an approach is the “hpmcollect” interface [9], developed at the Scientific Su-
percomputing Center at the University of Karlsruhe, which automatically starts an util-
ity [6] to collect hardware performance counters data for all applications submitted for
execution, and at the end of the execution, collects and combines the hardware counters
�

work supported by HP-Brazil



output from all parallel tasks, providing a short overview of the total performance and
the resource usage of the parallel application.

In order to provide a more complete solution for system administrators, we extended
the RVision tool for cluster monitoring [10] with a monitoring library to collect hard-
ware performance counters information during program execution, and a monitoring
client for presentation in the forms of graphs and tables of the hardware events and
derived metrics. In this paper we describe the implementation and the main features of
this monitoring system, which include the easy of use, the flexibility in selecting events
to be monitored, and its very low intrusion. In addition, we demonstrate the value of
this system with an example using the SPEC Swim benchmark [11].

The remainder of this paper is organized as follows. We begin in Section 2 describ-
ing the utilization of hardware counters for program optimization and explaining the
design and implementation of the modules for Hardware Performance Counters moni-
toring using RVision. In Section 3 we present intrusion measurements. In Section 4 we
present an utilization example of the RVision hardware monitoring module. Finally, we
summarize our conclusions and directions for future work in Section 5.

2 Hardware Counters Monitoring

Hardware performance counters are special purpose registers available in most mod-
ern microprocessors that keep track of programmable hardware events at every cycle.
These events represent hardware activities from all functional units of the processor,
allowing the low overhead access to hardware performance information, such as counts
of instructions, cache misses, and branch misprediction. These registers were originally
designed for hardware debugging, but, although the number of counters and type of
events available differs significantly between microprocessors, most of them provide
a common subset that allows programmers to use these counters to compute derived
metrics to correlate the behavior of the application to one or more of the hardware
components. With the availability of kernel level APIs to access the hardware coun-
ters at a user level, as well as performance tools and libraries that provide event counts
and derived metrics, hardware counters have become an invaluable asset for application
performance tuning.

In contrast, system administrators have not been able to exploit effectively the avail-
ability of hardware counters, mainly due to the lack of monitoring systems capable of
accessing the counters. The access to derived hardware metrics during program execu-
tion would be helpful to system administrators to detect applications that need tuning.
For example, the value of a particular metric falling constantly below a pre-defined
threshold would be an indication that the program is a candidate for optimization.

For our hardware performance counters monitoring approach, we extended RVi-
sion, a multi-user monitoring system for GNU/Linux based clusters [10] developed at
the Research Center in High Performance Computing (CPAD - PUCRS/HP).It requires
the availability of a kernel interface to access the hardware performance counters at a
system level, and we consider that programs will have dedicated use of the nodes during
execution, which is normally the case on the majority of supercomputing sites.



The RVision monitor was originally developed to acquire information such as pro-
cessor and memory usage, through kernel system calls. Due to RVision’s open architec-
ture, only a new Monitoring Library and a new Monitoring Client, which are described
next, were needed to obtain the hardware counters values. The “Monitoring Library” is
responsible for the capture of selected hardware events, while the “Monitoring Client”
is responsible for presenting this new information, which also includes derived perfor-
mance metrics. We implemented and tested these components on the “Tropical” Linux
Cluster at CPAD, which has 8 dual-processor (Pentium III-1GHz) nodes, switched via
a Fast-Ethernet network. Each node has 256 MBytes of main memory. Each processor
has two levels of cache: 32 KBytes of Level 1 (with 4-way set associativity) and 256
KBytes of Level 2 (with 8-way set associativity). In both cases the cache line size is 32
bytes.

2.1 Monitoring Library

Currently, Linux does not provide an interface to access the hardware performance
counters. Hence, we patched the Linux kernel using the “perfctr” patch and driver,
developed by Mikael Petterson [2]. This patch provides a user and a system level in-
terface to access the performance monitoring counters on Intel X86 processors. Since
the number of counters and type of events available differs significantly between mi-
croprocessors, the RVision Monitoring Library to capture information provided by the
hardware counters is architecture dependent. However, our monitoring library can be
easily ported to any other platform that provides a kernel level application program-
ming interface to access the hardware counters at system level.

The selection of events to be monitored were restricted to the hardware counter
events available on the Pentium III processor, which provides two performance mon-
itoring counters capable of counting a total of 77 different events (at most two at a
time). In addition, the architecture provides a time stamp counter (TSC), which counts
the elapsed machine cycles, as well as the CPU frequency. The complete specification
of the performance monitoring counters and the description of all of its events are pre-
sented in [12].

From the events provided by the Pentium III architecture, we selected the following
set of pair of events (in addition to the TSC) to be used for monitoring:

– P6 INST RETIRED and P6 CPU CLK UNHALTED, to count the number of instruc-
tions completed and the number of machine cycles used by the program.

– P6 FLOPS and P6 CPU CLK UNHALTED, to count the number of floating point in-
structions and the number of machine cycles used by the program.

– P6 DATA MEM REFS and P6 DCU LINES IN, to count the number of level 1 ac-
cesses and the number of level 1 cache misses, respectively.

– P6 L2 RQSTS and P6 L2 LINES IN, to count the number of level 2 accesses and
the number of level 2 cache misses, respectively.

– P6 INST DECODED and P6 INST RETIRED, to count the number of instructions
dispatched and the number of instructions decoded.

Depending on the set of counters used, we compute the following derived metrics:



MIPS: the average number of instructions per second (in millions), computed as:
P6 INST RETIRED

�����������������
	
TSC

�
CPU frequency �

Utilization Rate: the ratio of CPU time to wall clock time, computed as:
P6 CPU CLK UNHALTED

�
TSC

IpC: Instructions per Cycle, computed as:
P6 INST RETIRED

�
P6 CPU CLK UNHALTED

MFlops/sec: Millions of floating point operations per second, computed as:
P6 FLOPS

�����������������	
TSC

�
CPU frequency �

Level 1 cache hit ratio: Computed as:������	�������
P6 DCU LINES IN

�
P6 DATA MEM REFS ��

Level 2 cache hit ratio: Computed as:������	�������
P6 L2 LINES IN

�
P6 L2 RQSTS ��

Percentage of instructions dispatched that completed: Computed as:������	��
P6 INST RETIRED

�
P6 INST DECODED �

2.2 Monitoring Client

The monitoring client is responsible for the presentation of tables and graphics with
the performance monitoring counters information and the derived metrics. The com-
munication routines of the monitoring client were implemented in C, and the GUI was
implemented in Java, with JNI being used to provide the connection between the lan-
guages. A snapshot of the monitoring client is presented in Figure 3. It provides a table
presenting the hardware counters values and the derived metric values for each node of
the cluster, as well as a histogram containing the average of the derived metric for all
processors. The histogram scrolls to the left, presenting the most recent information at
the rightmost side.

3 Intrusion Measurement

The main concern when a tool is used to monitor some resource is how much the read-
ings are being affected by the tool. Being a parallel application itself, the monitoring
tool, when active, is consuming cluster resources such as CPU and network bandwidth.
This intrusion should be minimal to guarantee that the monitored data is accurate and
that the behavior of the other application running on the cluster is not considerably
affected.

We measured RVision’s intrusion by defining a monitoring session capturing hard-
ware counters values for all cluster nodes and requesting this data using online monitor-
ing with a regular time interval. Different applications are executed in the cluster with
and without monitoring and we compared the execution times. We varied the monitor-
ing time interval from 2 seconds to 200 milliseconds to simulate a worst-case scenario.

To evaluate RVision under different workloads we used the following programs
from the NAS Parallel Benchmarks [13, 14]: Embarassingly Parallel (EP), Integer Sort
(IS), LU Decomposition (LU), Conjugate Gradient (CG), and Multigrid (MG). All
benchmarks were compiled using class A, defined internally in the NPB, and executed



Table 1. Intrusion measurements

Time Interval (sec) EP IS LU CG MG
2.0 0.22% 0.12% 0.09% 0.15% 0.03%
1.8 0.22% 0.15% 0.17% 0.33% 0.10%
1.6 0.23% 0.72% 0.10% 0.44% 0.12%
1.4 0.39% 0.85% 0.11% 0.49% 0.12%
1.2 0.50% 0.86% 0.24% 0.53% 0.17%
1.0 0.54% 0.86% 0.34% 0.53% 0.17%
0.8 0.55% 1.21% 0.38% 0.59% 0.21%
0.6 0.56% 1.61% 0.39% 0.63% 0.29%
0.4 0.66% 1.91% 0.54% 0.64% 0.33%
0.2 0.72% 2.13% 0.71% 0.67% 0.51%

on the 8 nodes of the Tropical Linux Cluster at CPAD [15]. Table 1 presents the intru-
sion results for all test cases. In each case the test application was executed 10 times for
each time interval with monitoring turned on.

All benchmarks used in the measurement generated low intrusivity. The worst-case
scenario, using 200 milliseconds as time interval, presented intrusion values of less
than 1% for all programs with the exception of the IS benchmark. The Integer Sort
benchmark has a high network utilization. Hence, it was more affected by the traffic
generated by the on-line monitoring.

4 Example of Use

In order to demonstrate the usefulness of the hardware counters monitoring feature
of RVision, we ran a parallel version of the SPEC Swim benchmark with problem
size defined by N1=N2=2048, on the Tropical Linux cluster, and monitored both the
MFlops/sec rate and the level 1 cache hit ratio during the execution of the program,
using 1 second as monitoring interval. Figure 1 presents the system’s average L1 hit ra-
tio when the program started its execution, we observe that the cache hit ratio dropped
considerable (most recent information is presented at the rightmost side). Looking at
Figure 2, which presents a table with a snapshot with the monitoring values for all pro-
cessors, we observe that the level 1 hit ratio was in the order of 54% in all processors,
indicating that the application needed some sort of program restructuring, due to its
poor utilization of the memory subsystem. This poor cache utilization reflects in the
MFlops/sec rate, shown in Figure 3, which indicates a sustained performance of around
67 MFlops/sec.

Looking at the source code, we observe that the basic data structure of the applica-
tion is defined in the “Common block” shown if Figure 4, and used in loops such as the
one presented in Figure 5. The use of high powers of 2 as array dimensions (2048 in this
case) would result in an excessive cache miss ratio for this application, due to the low
associativity of the level 1 cache (4-way). This problem occurs because 9 different ar-
rays are being used in the loop, and since the size of each array is multiple of the cache
size, array elements with the same indices will map to the same cache set. Since each



Fig. 1. System’s average L1 hit ratio running the SPEC Swim benchmark

Fig. 2. System’s L1 hit ratio running the SPEC Swim benchmark

set can accommodate only 4 different entries, this loop generates an excessive number
of conflict misses. This could be a well-known fact for application tuning specialists
and experienced programmers, but not necessarily well understood by scientists with
no background in computer architecture. Hence, the availability of monitoring tools
that could indicate to system administrators when an application may need tuning is an
invaluable asset.

In this case, the simple solution would be to “pad” the common block in Figure 4
with declaration of dummy vectors between the array declarations, as shown in Figure 6.
The use of dummy vectors of 8 elements each will separate the mapping of the elements
of the arrays with the same indices by one cache line, which will reduce the conflicts.
When executing the modified program, we observe an increase in the Level 1 cache hit
ratio to about 78%, as shown in Figure 7 and a sustained performance in the order of
84 MFlops/sec, as shown in Figure 8, which corresponds to an improvement of 25% in
performance.

Other examples of performance problems that can be detected with this monitoring
approach, which are not presented here due to space limitations are:



Fig. 3. System’s MFlops/sec rate running the SPEC Swim benchmark

PARAMETER (N1=2048, N2=2048)
COMMON U(N1,N2), V(N1,N2), P(N1,N2),

* UNEW(N1,N2), VNEW(N1,N2), PNEW(N1,N2), UOLD(N1,N2),
* VOLD(N1,N2), POLD(N1,N2), CU(N1,N2), CV(N1,N2),
* Z(N1,N2), H(N1,N2), PSI(N1,N2)

Fig. 4. Definition of the main data structure in the SPEC Swim benchmark

Utilization Rate: For a task on a dedicated compute node, this ratio should be close
to 1. Lower values would indicate large system activity, which could require some
application performance tuning.

IpC: Given that the processor has multiple functional units, a well tuned program
should have IpC larger than 1.

Percentage of instructions dispatched that completed: This metric gives an indica-
tion of how well the speculation is working for the program. A low percentage
could indicate that the program has loops with few iteration counts that could ben-
efit from loop unrolling.

MIPS: This metric can be used for non-floating point intensive codes for monitoring
of the sustained performance of the application.

L1 and L2 cache hit ratios: Are also useful to detect problems in the memory subsys-
tem caused by capacity misses. These problems might be solved with loop trans-
formations, such as blocking, to increase data locality.



DO 300 J=js,je
DO 300 I=1,M

UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(I,J) = PNEW(I,J)

300 CONTINUE

Fig. 5. Utilization of the arrays in one of loops in the SPEC Swim benchmark

PARAMETER (N1=2048, N2=2048)
COMMON U(N1,N2), D1(8), V(N1,N2), D2(8), P(N1,N2),

* UNEW(N1,N2), D3(8), VNEW(N1,N2), D4(8), PNEW(N1,N2),
* D5(8), UOLD(N1,N2), D6(8), VOLD(N1,N2), D7(8),
* POLD(N1,N2), D8(8), CU(N1,N2), D9(8), CV(N1,N2), D10(8),
* Z(N1,N2), D11(8), H(N1,N2), D12(8), PSI(N1,N2)

Fig. 6. Padded common block for the SPEC Swim benchmark

Fig. 7. System’s L1 hit ratio running the padded version of the SPEC Swim benchmark



Fig. 8. System’s MFlops/sec rate running the padded version of the Swim benchmark

5 Conclusions and Future Work

In this paper we presented a new approach to system monitoring for cluster architectures
based on hardware counters. Our main goal is to provide an efficient tool for system
administrators to detect programs that cause bottlenecks in cluster architectures so that
throughput can be increased. As expected hardware counters monitoring has a very
low intrusion resulting in more precise results. In dedicated systems it is also possible
to detect applications that could need tuning, without the instrumentation needed by
traditional hardware counters monitoring at application level.

To investigate this new concept we expanded our resource monitor RVision to access
hardware counters on Intel Pentium III processors and to calculate derived performance
metrics for Linux clusters. With this tool we analyzed the results obtained in a case
study where we optimized the execution of a parallel version of the Swim benchmark
from the SPEC suite, obtaining a performance increase in the order of 25%, on a Linux
cluster with 16 processors. We also presented intrusion results for the expanded version
of RVision running the NAS benchmark suite. We observed that in most cases intrusion
is less than 1% even with high monitoring frequencies like 200 milliseconds.

We believe that systems oriented hardware monitoring tools are a very interesting
alternative for system and application tuning. Our next steps is to support additional
processor architectures like the Intel Pentium IV and the IBM Power4, where it will be
possible to work with more derived metrics due to the increased number of hardware
counters. More information about RVision and the package for download are available
at http://rvision.sourceforge.net.



References

1. Zagha, M., Larson, B., Turner, S., Itzkowitz, M.: Performance Analysis Using the MIPS
R10000 Performance Counters. In: Proceedings of Supercomputing’96. (November 1996)

2. Pettersson, M.: Linux X86 Performance-Monitoring Counters Driver. Computing Science
Department; Uppsala University - Sweden. (2002)

3. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A Scalable Cross-Platform In-
frastructure for Application Performance Tuning Using Hardware Counters. In: Proceedings
of Supercomputing’00. (November 2000)

4. Research Centre Juelich GmbH: PCL - The Performance Counter Library: A Common
Interface to Access Hardware Performance Counters on Microprocessors. (2002)

5. May, J.M.: MPX: Software for multiplexing hardware performance counters in multi-
threaded programs. In: Proceedings of 2001 International Parallel and Distributed Processing
Symposium. (April 2001)

6. DeRose, L.: The Hardware Performance Monitor Toolkit. In: Proceedings of Euro-Par.
(August 2001) 122–131

7. Janssen, C.: The visual Profiler. Sandia National Laboratories. (2002)
8. Buck, B., Hollingsworth, J.K.: Using Hardware Performance Monitors to Isolate Memory

Bottlenecks. In: Proceedings of Supercomputing’02. (November 2002)
9. Geers, N.: Automatic Collection of HPM Data in Parallel Applications. Scientific Super-

computing Center at University of Karlsruhe. (2002)
10. Ferreto, T., De Rose, C.A., DeRose, L.: Rvision: An open and high configurable tool for

cluster monitoring. In: Proceedings of the Second IEEE/ACM International Symposium on
Cluster Computing and the Grid, Berlin, Germany (2002) 75–82

11. Sadourny, R.: The Dynamics of Finite-Difference Model of the Shallow-Water Equations.
Journal of Atmospheric Sciences 32 (1975)

12. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. (2002)

13. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R., Woo, A., Yarrow, M.: The nas par-
allel benchmarks 2.0. Technical Report NAS-95-929, NASA Ames Research Center (1995)

14. Saphir, W., Wijngaart, R.V.D., Woo, A., Yarrow”, M.: New implementations and results for
the nas parallel benchmarks 2. In: Proceedings of the 8th SIAM Conference on Parallel
Processing for Scientific Computing. (1997)

15. Research Center in High Performance Computing (CPAD-PUCRS/HP):
http://www.cpad.pucrs.br (2002)


