
Improving Performance Analysis Using Resource
Management Information

�

Tiago C. Ferreto
Research Center in

High Performance Computing

CPAD-PUCRS/HP

Porto Alegre, Brazil

ferreto@cpad.pucrs.br

César A. F. De Rose
Catholic University of

Rio Grande do Sul

Computer Science Department

Porto Alegre, Brazil

derose@inf.pucrs.br

May 9, 2003

Abstract

In this paper we present Clane, an utilization and performance analysis environment for

clusters. It combines resource management and monitoring data to provide reliable information

for cluster users and administrators in application and system performance analysis. Clane

uses the XML standard to represent its internal information base, providing more flexibility

in data manipulation and simplicity to extend the environment with other analysis tools. The

environment is composed by an Information Server, which gathers and combines information

from the resource management and monitoring systems, and an Analysis Tool to present the

combined information using statistics, graphs and diagrams. The Analysis Tool also enables a

performance comparison among several executions of the same application in the cluster.
�
This research was done in cooperation with HP-Brazil

1



1 Introduction

Resource management and monitoring systems are among the basic services available in a cluster

environment. They are usually implemented as separated tools and for different purposes. Re-

source management is usually directly related to the cluster user allowing him to get access to a

group of cluster nodes, whereas the monitoring system is designed for the cluster administrator to

get an idea on how well the machine resources are being exploited by the end users. Some resource

management systems provide also a basic monitoring service, but the information is usually pre-

sented in real-time and without any details of the applications that are running on each node. This

view is well suited to the cluster administrator to evaluate the global performance of the machine,

but not to the end user to evaluate the performance of his application.

Believing that a stronger integration of resource management and monitoring tools could lead

to a better system and application analysis we developed Clane, an analysis environment for clus-

ters. Clane combines resource management and monitoring data to provide performance informa-

tion related to the applications that are executed in a cluster. The acquired information is formatted

to better suit the needs of system administrators as well as end users. This approach differs from

system monitoring that is provided by some resource management systems because the information

is stored for future analysis (post-mortem monitoring) enabling comparisons among several runs

of an user application, evaluation of the system performance impact of a change in the machine

configuration, and other useful performance analysis.

2 Resource Management and Monitoring

Resource management systems are responsible for distributing applications among computers to

maximize their throughput. It also enables the effective and efficient utilization of the available

resources [1].

2



Some of the main functionalities that should be provided by resource management systems for

clusters are: resources allocation and freeing, application execution using the allocated resources

through interactive or batch jobs, and allocation queue management using an allocation policy.

Other functionalities provided by the resource management system are load balancing, process

migration, support to many allocation policies, allocation queue management based on priorities,

suspension and restart of applications, etc.

There are several cluster resource management systems freely available. Some of the most

used resource management systems are OpenPBS [2], and CCS [3].

OpenPBS is a flexible batch queuing and workload management system originally developed

by Veridian Systems for NASA. It operates on networked, multi-platform Unix environments,

including heterogeneous clusters of workstations, supercomputers, and massively parallel systems.

The purpose of the PBS system is to provide additional controls over initiating or scheduling

execution of batch jobs; and to allow routing of those jobs between different hosts. The batch

system allows a site to define what types of resources and how many resources can be used by

different jobs. Some of the main features of OpenPBS are configurable job priority, transparent job

scheduling, easy integration with other applications through a comprehensive API, and automated

load-leveling based on HW configuration, resource availability and keyboard activity. OpenPBS

supports real time system monitoring at application level through an internal tool called xpbsmon.

CCS is a resource management system developed at the PC
�

(Paderborn Center for Parallel

Computing) at the University of Paderborn. It has been designed for the user-friendly access and

system administration of parallel high-performance computers and clusters. It supports a large

number of software and hardware platforms and provides a homogeneous, vendor independent

user interface. For system administrators, CCS provides mechanisms for specifying, organizing

and managing various high-performance systems that are operated in a computing service cen-

ter. Robustness, portability, extensibility, and the efficient support of space sharing systems, have

been among the most important design criteria. CCS provides system and application monitoring

3



integrated to its environment through the ccsMon and SPROF tools.

Monitoring systems are designed to collect system performance parameters such as node’s

CPU utilization, memory usage, I/O and interrupts rate, and present them in a form that can be

easily understood by the system administrator [4]. This service is important for the stable opera-

tion of large clusters because it allows the system administrator to spot potential problems earlier.

Moreover, other parts of the systems software can also benefit from the information provided. For

example, the information can be used to modify the task scheduling, in order to improve load

balancing. Some of the main characteristics that should be provided by the monitoring tools are:

Low intrusion One of the main issues considered in the project and implementation of moni-

toring systems is the intrusion generated by the monitoring system. To obtain the highest

possible performance in a cluster, the parallel application should be able to get all of the

available processing power. However, the monitoring system has some processing and com-

munication costs and it will compete with the running application. Therefore, to enable high

performance execution in the presence of monitoring, the monitoring tool should have low

intrusion, producing minimal interference.

High configurable Due to the diversity of cluster topologies, and the increase of heterogeneous

clusters, monitoring systems need to be high configurable. Some of the features that should

be provided by monitoring systems are: adjustable monitoring frequency, selection of mon-

itoring metrics, selection of resources to be monitored, online and offline monitoring, etc.

Extensibility Extensibility is a critical issue for any monitoring system survival. The extension

of the system to support new metrics is really necessary to enable information gathering of

new hardware technologies (e.g. Myrinet [5] and SCI [6] network boards). This feature is

also useful to provide interconnection between the monitoring system and other systems, in

which the last uses the information obtained by the monitoring system to execute some task

(e.g. a load balancing system), or just to present it (e.g. a graphical tool).

4



There are several cluster monitoring systems freely available. Some of the most used are

PCP [7], Ganglia [8].

Performance Co-Pilot (PCP) was developed by SGI as a commercial monitoring system for

IRIX. In February 2000, SGI released the PCP infrastructure as Open Source software. Their goal

was to provide a readily available, feature-rich and extensible framework for managing perfor-

mance in large Open Source systems. PCP is composed of a framework and services to support

system-level performance monitoring and performance management. It provides a range of ser-

vices that may be used to monitor and manage system performance. Some of the main features

provided by PCP include public interfaces and extensible frameworks at all levels, integrated log-

ging (real-time) and retrospective (historical) data analysis support, single API for all performance

data, and coverage of a large range of activity areas (e.g. CPU, memory, Cisco routers, Web

servers).

Ganglia is a monitoring environment initially developed at the University of California, Berke-

ley Computer Science Division as a way to link clusters across the Berkeley campus together in a

logical way. Since it was developed at a university, it is completely open-source and has no pro-

prietary components. All data is exchanged in well-defined XML and XDR to ensure maximum

extensibility and portability. Ganglia provides a complete real-time monitoring and execution

environment that is in use by hundreds of universities, private and government laboratories and

commercial cluster implementations around the world.

3 Clane: an analysis environment for clusters

Clane provides a complete analysis environment with generic interfaces and a graphical analysis

tool, which presents information based on cluster resources allocation, applications execution,

and performance information acquired through monitoring. The environment presents a novel

approach combining system monitoring with resource allocation and execution events, providing

5



a different analysis view of the information.

3.1 Motivation

Resource management and monitoring systems are most commonly used in clusters as two sepa-

rated systems. This fact is clear by the increasing number of specialized cluster monitoring sys-

tems, and the few number of resource management systems that provide also system monitoring.

Some resource management systems try to integrate a specialized monitoring system in its archi-

tecture to enable other functionalities (e.g. load balancing), but this integration is usually not easy

and just the basic functionalities of the monitoring system are used. In most of the cases only

online monitoring is used, the metrics monitored or the monitoring frequency can’t be changed,

and the information is gathered from all cluster nodes.

In the other hand specialized cluster monitoring systems provides online and offline informa-

tion with a collection of metrics and configurable capture frequencies. These systems are really

useful to provide a global view of the system during the time. However, the acquired information

is not related to the applications being executed in the cluster.

We believe that the correlation of monitoring information and allocation/execution events,

which are controlled by the resource management, are useful for cluster administrators and users.

The information resultant of this correlation can be divided for each user, and internally for each

application executed in the cluster, as presented in Figure 1. Figure 1(a) presents monitoring infor-

mation for a group of nodes. Each rectangle drawn represents an individual application execution.

Figure 1(b) presents the allocation and execution table for the monitored period. The rectangles

drawn around the user names are correlated to the rectangles drawn in (a). This information can be

used in application and cluster utilization analysis. Some of the benefits achieved by this approach

are: it optimizes the utilization of cluster resources by the applications, detects possible bottlenecks

in the cluster that can be minimized, and compares several runs of an application executed in the

cluster.

6



Node A

Node B

Node C

Node D

Node E

Node F

20 2510 150 5
time

app_A1 app_B1 app_B2

app_C1

user_A

user_B

user_B

user_C

1 − 8

1 − 24

16 − 24

8 − 16

User Time Period Allocated Nodes Executed Application

A, B, C, D

A, B, C

A, B, C

E, F

app_A1

app_B1

app_B2

app_C1

Allocation and Execution Table

(a)

(b)

Figure 1: Correlation between resource management events and monitoring information. (a) Mon-
itoring information. (b) Allocation and execution table.

3.2 Architecture

The architecture of Clane is presented in Figure 2. The environment is highly connected to the

resource management and monitoring systems. This connection is established using functions

provided by the Information Storage Interface which gathers the information and forwards it to

be stored by the Information Server. The information is stored in XML providing simplicity and

flexibility in data manipulation. The Analysis Tool access this information using the functions

available in the Information Access Interface. These functions allow the selection of fragments

from the total amount of stored information. The result of this selection is stored in an XML file.

After the selection, the Analysis Tool is able to process the resulting XML file and present the

information. The analysis tool provides different formats to present the information, facilitating

7



the analysis process.

Monitoring
System

Resource
Management

System

CLUSTER

Server
Information

Analysis Tool

Information Storage Interface

Information Access Interface

Clane

Figure 2: Clane architecture

3.3 Implementation

3.3.1 Information Server

The Information Server is responsible for storing allocation, execution and monitoring information,

and to provide access to it. All information is stored in XML format due to its high flexibility for

storing and accessing the information and to provide extensibility and portability.

The information is obtained using the resource management and monitoring systems with the

functions available in the Information Storage Interface. These functions are divided in three

8



groups, one to store information related to the cluster allocation, another to store information about

the applications executed during the allocation, and the last one to store system status information.

Functions is initalloc() and is endalloc() records respectively information about the start and

end of an user allocation, such as: allocation identifier, username, nodes allocated, timestamp,

etc. Functions is initexec() and is endexec() stores respectively information about the start and end

of an application execution, such as: execution identifier, the allocation identifier related to this

execution, timestamp, application name and parameters, application returned status, etc. Func-

tion is monentry() records information about the each node of the cluster, such as percentage of

CPU, memory and swap utilized, percentage of L1 cache misses, etc. These functions are all

available in a shared library (written in C) and as individual programs, called clane addallocation,

clane addexecution, and clane addmonentry.

Each allocation or execution event started but not finished is mapped internally in the Informa-

tion Server data structure. Each event has a unique identifier which serves as an index for a specific

entry in this internal structure. The allocation or execution event is written to the appropriate XML

file just after being finalized, and after this, its entry in the structure is removed.

To store all received information, the Information Server generates at least two files, one for

information related to resource allocation and applications execution, and other one for monitoring

information. The location of these files can be configured in the environment. It is also possible to

create an allocation and execution file for each user, minimizing the overhead of multiple accesses

to the same file.

The Information Access Interface provides functions to extract a subset of the information

monitored, and store it in an XML file. This information selection is implemented by creating a

file using the XSLT [9] and XPath [10] languages specifying the chosen filters. This file is applied

to the allocation and monitoring XML files using an XSLT processor to generate the resultant XML

file, which contains the selected information.

The Information Access Interface provides a shared library, with specific functions to filter the

9



XML files, and also a program, called clane query which receives as parameters a group of filters

used to provide to the user the subset of information desired. The filters can select information

based on a specific user, application and period of time.

3.3.2 Analysis Tool

The Analysis Tool, presented in Figure 3 is written in Java due to its design and programming

simplicity, code portability, and XML support. Each time the Analysis Tool is executed, the user

needs to specify the filters that should be applied to the information stored by the Information

Server. The tool uses these filters to generate the resulting XML file with the information selected

using the functions of the shared library provided by the Information Access Interface. After this,

the tool parses the XML file, presents the collection of allocations selected, and keeps waiting

for user interaction. The main features of the Analysis Tool include statistics for one or more

allocations and application executions, graphs representing resource utilization for allocations and

executions, and textual or graphical comparison between a collection of allocations or application

executions.

Figure 3 presents a typical view of the analysis tool in use. The window in the back, the Alloca-

tions Window, shows the allocations selected initially. The user selects one of these allocations and

requests for the executions realized during this allocation, which appear in the Executions Window.

After this, one of these executions is selected, and the monitoring information is displayed based

on the monitored metrics, in this case, percentage of CPU, memory and swap utilization. Clane

also provides some useful statistics to the user based on the information monitored. These statistics

are divided in allocation statistics and execution statistics. The main allocation statistics provided

include average allocation time and standard deviation for a group of selected allocations, average

number of applications executed for a group of selected allocations, average number of nodes used

for a group of selected allocations, allocation time for one allocation, number of nodes used in one

allocation, and number of applications executed in one allocation. The main execution statistics

10



Figure 3: Clane Analysis Tool

provided include average execution time and standard deviation for a group of selected execu-

tions, average and standard deviation of a metric monitored for a group of selected executions, and

average and standard deviation of a metric monitored for one execution.

The comparison between allocations or executions is based on the information and statistics

generated for these events. The comparison can be presented textually or graphically. The Analysis

Tool can be used by the cluster administrator or user. The only difference between the functionality

of the tool for each one is based on the amount of information that is available for analysis. The

administrator can view information of all users, whereas the user can just see information of its

own allocations and executions.

11



4 Configuration

Clane was configured at our lab, the Research Center of High Performance Computing (CPAD-

PUCRS/HP) [11]. The environment was connected to Crono [12] and RVision [13], a resource

management system and a monitoring system respectively. These systems where developed in

our lab and are in production in all CPAD clusters. The inclusion of the functions and programs

provided by the Information Storage Interface to Crono and RVision was relatively simple, due to

the high configurability and flexibility presented in these systems.

Crono executes a script for each started allocation (mpreps) and another one for each finished

allocation (mpostps). These scripts are used to set necessary configurations before user interaction.

The program to log allocation events, clane addallocation, was inserted in these scripts to log

information related to resources allocation.

To simplify the utilization of the system, Crono provides an unique application dispatcher,

called crrun, which encapsulates all execution environments available to the users. This script re-

ceives the execution parameters and forwards it to the real execution environment which is respon-

sible for the application execution. The program clane addexecution was included in this script

before and after calling the execution environment to log the information related to the application

execution.

The connection between RVision and Clane was implemented with a special RVision moni-

toring client. This client calls the function is monentry(), provided by the Information Storage

Interface. This monitoring client was implemented as a daemon, due to its unique functionality of

gathering information and sending it to the Information Server, instead of showing it.

The monitoring client was implemented with an internal area of memory, which is used to

buffer the information received from the core of the monitoring system (RVCore module). This

method was used to decrease the number of file openings and writings, therefore, the information

is written periodically (each 30 seconds) in larger blocks.

12



RVision divides the information gathering in monitoring sessions. Each monitoring session is

responsible for capturing a defined set of information from a group of nodes in a given periodicity.

Therefore, each allocation starts a new monitoring session for the group of nodes allocated. The

same approach used to log the allocation starting and ending events was used to start a new moni-

toring session and finishing it. The calls to start the monitoring client and to finish it were included

respectively in the mpreps and mpostps scripts provided by Crono.

The metrics defined to be monitored are percentage of CPU utilization, percentage of memory

utilization, and percentage of swap utilization. These metrics are monitored each 2 seconds on each

node and sent to the RVCore module based on a threshold of 2%, i.e. if the information gathered

is 2% higher or smaller than the last one captured, then it is sent to the RVCore module, otherwise,

the information is rejected. This method decreases the amount of data transmitted through the

network (reducing the intrusion), and decreasing also the total amount of data stored.

The Clane environment was configured to generate an allocation and execution record file for

each user, instead of a general one. This approach was chosen based on its better division of the

data, simplifying the storing and parsing process. Since all information is date and time based,

the network time protocol (NTP) [14] was configured to realize the clock synchronization in all

machines, to allow a correct interpretation of the captured information.

4.1 Utilization

The Analysis Tool is used by the users mostly to compare the performance obtained for a specific

application with different parameters. Since the tool generates graphs showing the performance

and also statistics for each metric measured, it is possible to optimize the application based on

this information. The tool is used by the administrator to visualize the percentage of resources

utilization by each user. It is also used to determine the periods of the highest and lowest utilization.

In addition to the features provided by the Analysis Tool, a Report Generator was implemented.

This tool uses the functions of the Information Access Interface to obtain information about users

13



allocation, executions and obtained performance. It was configured at CPAD to execute the fol-

lowing tasks: generate a weekly report based on users utilization (hours of utilization, number

of machines); send weekly to each user an email containing the amount of hours allocated, the

number of nodes, and the 10 best and worst executions based on the performance obtained through

monitoring; and send monthly to the administrator (via mail) the periods of highest and lowest

utilization of the clusters, and the name of the users that have most used the cluster.

5 Conclusions and Future Work

In this paper we presented a new approach to enhance system and application monitoring in cluster

architectures based on the utilization of resource management information. Traditional monitoring

data like processor and memory usage is combined with information about executed jobs like start

and finishing times and number of allocated resources allowing the analysis among several runs of

the same application. This is especially useful to generate statistics about resource use and also for

application tuning.

The proposed architecture, called Clane, has defined interfaces in both ends to allow the adap-

tation to other monitoring and resource management system that rely on XML for data storage

allowing a broader utilization of the system.

To investigate this new concept we implemented a prototype of the proposed architecture and

linked together two tools that are already in production in our lab, the resource manager Crono

and the monitoring system RVision. The initial results are promising and we are now studying the

implementation of data compression and the support for more resource management systems and

monitoring systems through the utilization of patches.

We believe that the correlation of monitoring and resource management information will allow

administrators and users to better analyze the behavior of their systems and the executed parallel

applications opening a new range of opportunities for the enhancement of monitoring tools.

14



References

[1] Rajkumar Buyya. High Performance Cluster Computing: Architectures and Systems, vol-
ume 1. Prentice-Hall, 1999.

[2] R. L. Henderson et al. Portable batch system: Requirement specification. Technical report,
NASA Ames Research Center, April 1995.

[3] Axel Keller and Alexander Reinefeld. Anatomy of a Resource Management System for HPC
Clusters. Annual Review of Scalable Computing, 3, 2001.

[4] M. Baker. Cluster computing white paper, 2000.

[5] C. L. Seitz et al. Myrinet - a gigabit-per-second local-area network. IEEE Micro, vol. 15(1),
1995.

[6] IEEE standart 1596-1992, New York. IEEE: IEEE Standart for Scalable Coherent Interface
(SCI), 1993.

[7] Mark Goodwin et al. Performance Co-Pilot User’s and Administrator’s Guide. Silicon
Graphics, Inc., July 1999.

[8] Ganglia Development Team. Ganglia Toolkit. University of California, Berkeley, 2002.
http://ganglia.sourceforge.net/docs/.

[9] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version 1.0 (W3C Rec-
ommendation). Technical report, W3C, November 1999.

[10] World Wide Web Consortium (W3C). XML Path Language (XPath) Version 1.0 (W3C Rec-
ommendation). Technical report, W3C, November 1999.

[11] CPAD Research Center. CPAD-PUCRS/HP. http://www.cpad.pucrs.br, 2003.

[12] Marco Aurélio Netto and César De Rose. Crono: A configurable management system for
linux clusters. In Proceedings of the 3rd LCI International Conference on Linux Clusters:
The HPC Revolution 2002 (LCI’2002), St. Petersburg, Florida ,USA, 2002.

[13] Tiago Ferreto, César De Rose, and Luiz DeRose. Rvision: An open and high configurable
tool for cluster monitoring. In Proceedings of the 2nd IEEE/ACM International Symposium
on Cluter Computing and the Grid (CCGrid’2002), pages 75–82, Berlin, Germany, 2002.

[14] D. L. Mills. Internet time synchronization: the network time protocol. IEEE Trans. Commu-
nications, (39):1482–1493, October 1991.

15


