
Scheduling Divisible Workloads using the Adaptive
Time Factoring Algorithm

�

Tiago Ferreto and César De Rose

Catholic University of Rio Grande do Sul (PUCRS),
Faculty of Informatics, Porto Alegre, Brazil
[ferreto,derose]@inf.pucrs.br

Abstract. In the past years a vast amount of work has been done in order toim-
prove the basic scheduling algorithms for master/slave computations. One of the
main results from this is that the workload of the tasks may beadapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmeti-
cal or geometrical ratio) or a more sophisticated function to adapt the workload.
Currently, the most efficient solutions are all based on somekind of evaluation of
the slaves’ capacities done exclusively by the master. We propose in this paper the
Adaptive Time Factoring scheduling algorithm, which uses adifferent approach
distributing the scheduling between slaves and master. Themaster computes, us-
ing the Factoring algorithm, a time slice to be used by each slave for processing,
and the slave predicts the correct workload size it should receive in order to ac-
complish this time slice. The prediction is based on a performance model located
on each slave which is refined during the execution of the application in order to
provide better predictions. We evaluated the proposed algorithm using a synthetic
testbed and compared the obtained results with other scheduling algorithms.

1 Introduction

Load balancing has been an ongoing issue for decades. Algorithms based on list-scheduling
which manage a list of ready to execute tasks that are sent to slave processors are mainly
used because of their suitability to dynamically evolving computations, and also be-
cause they cope with heterogeneous resources, since when one processor has finished
his work it simply gets more work from the list. This is a simply way to automatic
compensate for the differences in the performance of the slaves.

A vast amount of work has been done in order to improve the basic algorithms
for master/slave computations. One of the main features concerning load balancing
that resulted from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmetical or
geometrical ratio) or a more sophisticated function to adapt the workload. We present a
briefly review of some of these techniques in Section 2.

Yet the solutions presented are all based on some evaluationby the master of the
slaves’ capacities and of the tasks workload. This implies asignificant overhead since
the master has to maintain some kind of information about itsslaves. We present in
�

This research was done in cooperation with HP-Brazil.



this paper the Adaptive Time Factoring scheduling algorithm, which uses a different
approach distributing the scheduling between slaves and master. The master computes,
using the Factoring algorithm, a time slice to be used by eachslave for processing, and
the slave predicts the correct workload size it should receive in order to accomplish this
time slice. The prediction is based on a performance model located on each slave which
is refined during the execution of the application in order toprovide better predictions.

In this paper we review in Section 2 some scheduling algorithms used for mas-
ter/slave applications with a brief state of the art for eachone. Section 3 presents our
algorithm and the way each slave can evaluate its capacities. In order to validate our
algorithm we devised a synthetic small testbed and Section 4shows the measurement
results that we have obtained using the algorithm proposed in comparison to other al-
gorithms. At last we draw some conclusions about our contribution.

2 Related Work

We present below some classic self-scheduling algorithms proposed in the literature.
Self-scheduling [1] represents a large class of dynamic centralized loop scheduling
methods. These methods divide the total workload based on a specific distribution, pro-
viding a natural load balancing to the application during its execution. We present also
some adaptive algorithms that add extensions to the classicself-scheduling algorithms
in order to support heterogeneity and adaptability. They consider the load variation in
the system environment and adjust the size of the chunks delivered to each processor
dynamically. This class of algorithms presents a good performance on dynamic and
heterogeneous environments based on its ability to adapt itself to the changes in the
environment during the execution of an application.

The Pure Self-scheduling or Workqueue scheduling algorithm divides equally the
workload in several chunks. A processor obtains a new chunk whenever it becomes idle.
Due to the scheduling overhead and communication latency incurred in each scheduling
operation, the overall finishing time may be greater than optimal.

The Fixed-size Chunking scheduling algorithm [2] proposesthat each processor
receives chunks with sizeK each time it becomes idle. Although it is hard to determine
the bestK value in realistic applications due to the high number of dependable variables,
the authors give an approximation for an acceptable fixed chunk-sizeK (usingPth order
statistics to model the lastP chunks).

The Guided Self-scheduling algorithm [3], schedules largechunks initially, imply-
ing reduced communication/scheduling overheads in the beginning, but at the last steps
too many small chunks are assigned generating more overhead[1]. Each time a proces-
sor requests for more work, the algorithm assigns to it a chunk of size equal to the size
of the remaining workload divided by the total number of processors being used for the
computation.

Factoring [4] was specifically designed to handle iterations with execution-time
variance. With factoring, iterations are scheduled in batches ofP equal-sized chunks.
The total size of the chunk per batch is a fixed ratio (�) of the remaining workload,i.e.
Remaining Workload / � � Number Of Processors.



Weighted Factoring Self Scheduling [5] is an improved loop scheduling algorithm
addressing load imbalance in a heterogeneous environment.In this algorithm, proces-
sors are dynamically assigned decreasing size chunks of iterations in proportion to their
processing speeds.

Adaptive Weighted Factoring [6, 7] is an adaptive algorithmbased on probabilistic
analysis, being able to accommodate load imbalances causedby predictable and unpre-
dictable phenomena. In the Adaptive Weighted Factoring, the weight values are adapted
after each iteration in the computation. The newly computedweights are not only based
on the performance of particular processors during the previous iteration step, but also
on their cumulative performance during all the previous iterations.

Adaptive Factoring [8, 9] allows a relaxation of some of the theoretical assumptions
imposed by models used in earlier methods, therefore makingthis technique more ro-
bust to any load variations present in the environment and improving the performance of
applications characterized by highly irregular behavior.In this algorithm, the weights
are dynamically assigned to processors at run time by closely following the rate of
change in processor speed. The model used for this method allows the dynamic com-
putation of new weights for each processor, when a new chunk is allocated.

In all algorithms shown above, the information needed to evaluate the best processor
to run the remaining workload is centralized at the master process, which is responsi-
ble for the decision regarding increasing or decreasing thechunk that is executed by
each slave process. We propose in the following Section another approach, where the
evaluation of the chunk size to be assigned to each slave is done by the slave itself.

3 Adaptive Time Factoring Scheduling Algorithm

The Adaptive Time Factoring (ATF) scheduling algorithm is,like others algorithms
(e.g. Weighted Factoring [5], Adaptive Weighted Factoring[6, 7]), based on the de-
creasing scheme proposed by Factoring [4]. However, instead of decreasing, for each
round, the number of tasks to be processed by each slave, it decreases the time slice that
each slave should use. Each slave predicts the best chunk size it should process based
on the time slice given using a performance model.

The main features of the algorithm are the utilization of time instead of chunk sizes
as a scheduling metric, and the distribution of the performance model structure between
the slaves. The utilization of time instead of chunk sizes facilitates handling hetero-
geneous slaves due to better scheduling abstraction,i.e. the scheduler can assure that
scheduling the same amount of time for different slaves willresult in approximately
the same completion time benefiting overall performance. The adoption of a distributed
performance model managed by the slaves instead of a centralized one at the serevr pro-
vides better scalability support avoiding a centralized bottleneck and faster adaptation of
the model due to performance variable fluctuations. Based onthis data distribution, the
algorithm scheduling decision is also distributed betweenmaster and slaves. In contrast
to other algorithms, the slave also participates at the scheduling decision calculating the
chunk size to be processed using its local performance model.

The main goal of the algorithm is to minimize execution time of applications in
heterogeneous and dynamic environments. It addresses particularly applications using



the master/slave model containing divisible workloads,i.e. the total amount of work to
be processed can be divided in equal-size chunks.

During the execution of the algorithm, each slave builds an internal performance
model which contains the slave’s execution and communication time demands to pro-
cess chunks of the application workload. It enables the prediction of the chunk size to
be processed by the slave in order to fully use the time slice given by the master. De-
tailed information related to the performance model and theprediction method used in
the algorithm is presented in Section 3.1.

The Adaptive Time Factoring scheduling algorithm is based on a distributed schedul-
ing method. Each slave computes a chunk sent by the master and, based on its internal
performance model, predicts the best chunk size to be computed at the next iteration
considering the time slice given by the master. The master distributes time slices in
decreasing chunks between the slaves. The decreasing method used is based on the
Factoring [4] algorithm with a fixed value� � �

.
In order to obtain efficient slave predictions for scheduling, it’s necessary to build

and refine the performance model in each slave before using the predictions. Due to
this requirement, the Adaptive Time Factoring scheduling algorithm is divided in two
distinct phases: setup phase and adaptive phase.

The setup phase is used to build the local performance model on each slave and to
refine it in order to produce predictions with minimum error.It’s like an initial bench-
marking of each slave using the application workload. At thebeginning, the master
sends to each slave a chunk with minimum size and waits for theresults. After receiv-
ing the results from a slave, it sends another chunk to the slave duplicating its size by
a factor of two. It continues this process until it receives asignal from the slave indi-
cating to start with the adaptive phase. This signal is sent when the slave already has
an efficient performance model capable of producing good predictions,i.e. the model
provides minimum error comparing predicted and measured execution times.

The adaptive phase turns over an increasing size mechanism to a decreasing one.
However, instead of decreasing the chunk size, it decreasesthe time slice used by each
slave to predict the more appropriate chunk size to be processed. Since the beginning
of the algorithm, each time the master sends a chunk to each slave, it includes in the
message a time slice for the next round. This time slice is used by the slave to predict
the chunk size that it can be execute at the next round. The slave returns a message with
the results of the chunk processing, the execution time thatit took to process the chunk
and the chunk size predicted. This chunk size is only considered at the algorithm after
the slave sends the signal to the master in order to start the adaptive phase. The time
slice for the round is computed as:

��� �� ����	

�� � � �� ��� ����� � � ���� ���� �� ���
� � �� ��� ��

where
��� �� ����	

�� � is the time slice computed for the next round (

��  
),� ��� ����� �

is an estimation of the remaining workload at the next round (
� �  

), ���� ���� �� �
is

the average execution time for a chunk with minimum size,��! "� is a parameter of the
Factoring algorithm which is fixed to

�
and�� ��� �� is the total number of slaves. The

average execution time is computed each time the master receives a new result from
some slave using chunk size and execution time values. Sincethe time slice sent is re-



lated to the next round, it’s necessary to use an estimation of the remaining workload at
the next round. It is compute as:

� ��� ����� � � � ��� ����� � �� ��� �� � ��� �� �����
���� ���� �� �

The estimation is based on the subtraction, on the current workload, of the average
chunk size that can be processed by all slaves during the current time slice. In order to
minimize the gap between slaves completion times, the following rule is used: the first
slave in a round computes its time slice as presented above (root time slice), and all the
others compute their time slices as:

��� �� ����� � � ��� �� ����	

�� � � ��

where
��� �� ����	

�� � is the first time slice computed at the beginning of the round,

and
��

is the time taken to set this new time slice since the first timeslice of this round
has been computed.

The master algorithm for the adaptive phase is presented in Figure 1. It keeps in a
loop sending chunks and receiving the results to available slaves until the workload is
empty. Before sending the chunk to a slave, it computes the time slice, which depends
if the slave is the first to compute this value or not, as described before. It assigns the
new chunk size with the slave’s prediction size previously returned with the last result,
and sends to the slave the chunk and time slice.

At reception, the master receives the result of chunk processing, execution time
took to process the chunk and the predicted chunk size for thenext round. The average
execution time is computed using chunk size and execution time parameters.

Algorithm 1 Adaptive Time Factoring algorithm
1: while workload is not emptydo
2: for each available slavedo
3: if beginning of round� then
4: compute��� �� ��	�
���� �
5: else
6: compute��� �� ��	�� �
7: end if
8: chunk� � ����	���� ���
9: send	���� and��� �� ��	�� �

10: end for
11: receive� ��� ��, ���	� �� � and� � ���	���� �� �
12: compute���� ��	� �� �
13: end while

Due to the existence of a performance model on each slave, anychange in the ma-
chines (e.g. machine turned down, start of a concurrent application) results in an adap-
tation of the best chunk size to be processed by the slave. It is important to emphasize
that different slaves can be in distinct phases of the algorithm at the same time,i.e. some



of the machines can be executing at the setup phase and othersat the adaptive phase.
This condition happens when more slaves are included duringthe execution.

3.1 Local Prediction of the Computational Load

In order to estimate the most suited workload, a slave needs aperformance model for
the execution of chunks of size

�"���� �� ��. The model may include various data such
as the execution time, memory utilization, etc, used to process a given chunk. In this
preliminary version of our prototype we only take into account the execution time.

Given some
�

values
�"���� �� �� � �"���� �� �� � � � � �"���� �� ��

and the slaves’s
data

�
(e.g. the execution time) the slave has to estimate

� ��"���� �� ��
. In a multi-

parameter model we could use algorithms such as the SingularValue Decomposi-
tion [10], one of the most robust for data modeling. It would fit the function

�
as a

linear combination of standard base functions (e.g. � � �� � 	 , polynomials, . . . ).
Nevertheless in the case where

�
only depends on the processor’s speed, an affine

model of the time requiredvs. the chunk size to run is most realistic and used by other
algorithms [11]. The modeling problem is therefore a basic linear interpolation problem
of the measured running time

�� � 
 �  � � �� vs. the chunk size
�"���� �� �� . Besides

the estimated coefficients� � � of the affine approximation
� � � � � � �"���� �� �

, the
correlation coefficient is used to determine the correctionof the interpolation and thus
decide if a larger chunk should be sent in the initial phase.

The interpolation algorithm is very fast and thus does not prejudice the execution of
the application. Moreover, it is trivial for a slave to determine the adapted chunk size,
given the execution time

�
it has to run and the affine model�� � ��. Note that in the

case of a more complex, non-linear model, it would have to usea more time-consuming
algorithm such as a gradient or dichotomic search to solve the

� �  ��"���� �� ��
equation.

4 Evaluation

In order to evaluate the performance of the Adaptive Time Factoring scheduling algo-
rithm (ATF) we devised a simple master/slave application and executed it in a hetero-
geneous cluster. This application consists in� multiplications of two matrices of size
� �� . The minimum chunk size is the multiplication of two matrices (� �  

). With this
application we are able to easily vary the size and the numberof chunks to be processed,
generating different conditions to evaluate the behavior of our algorithm.

We executed the application in a cluster with 16 machines connected through a
Fast-Ethernet network. The testbed consists of four different types of nodes divided in
classes, from A to D (4 nodes per machine class). To give an idea of the performance
of each machine class Table 1 presents their execution timesfor the computation of a
chunk for three different matrix sizes.

We compared our Adaptive Time Factoring scheduling algorithm (ATF) to the clas-
sical Workqueue algorithm (WQ), and to two factoring algorithms, the non-adaptive
Factoring Algorithm (FAC), and the Adaptive Weighted Factoring (AWF) with � � �

.



Table 1. Execution time for one chunk (one matrix multiplication -� �
�
)

execution time (seconds)
� Class A Class B Class C Class D

300 0.80 1.00 1.34 1.44
500 5.18 6.89 9.35 9.52
700 14.82 19.74 27.03 27.22

We used three different matrix sizes (�): 300, 500 and 700, and five number of multi-
plications for the workloads� : 1000, 1500, 2000, 2500 and 3000. The obtained results
are presented in Table 2.

Table 2. Comparison of the execution times of the algorithms (in seconds)

�
�

300 500 700
WQ FAC AWF ATF WQ FAC AWF ATF WQ FAC AWF ATF

1000 61.74 62.86 61.7 62.15 486.22 483.98 483.94 483.04 1391.571385.121378.601380.34
1500 94.45 93.79 91.38 92.80 727.03 726.86 724.55 725.84 2081.262080.942068.972072.44
2000122.69124.63121.54124.77 964.97 965.68 963.32 964.99 2767.572769.482754.772756.48
2500152.76155.70158.16155.05 1208.221207.801205.151206.89 3456.943452.833438.003444.37
3000190.16 187.5 183.98 181.9 1449.341448.311442.631445.86 4151.014144.194126.224134.71

In most cases ATF outperforms WQ and FAC, particularly in bigger matrices. This
is expected because of the heterogeneity of the testbed. Adaptive algorithms can adapt
the number of chunks scheduled to a node depending on their performance thus making
better use of the resources.

ATF has similar results to AWF in all cases (difference around 1% in execution
times). We think this is a very promising result consideringthat AWF is one of the
latest algorithms introduced and is also known for having the best results for the kind
of measurements we are performing ([6, 7]). Besides, we believe that the benefits of
adaptability and distributed scheduling presented in ATF,in order to improve scalability
and performance, couldn’t be explored in our experiments, since the measurements have
been done in a small heterogeneous cluster. We believe that using more machines, ATF
will eventually overcome AWF.

5 Conclusions

In this paper we presented the Adaptive Time Factoring (ATF)scheduling algorithm. It
is based on a distributed scheduling method, in which each slave computes a chunk sent
by the master and, based on its internal performance model, predicts the best chunk size
to be computed at the next iteration considering the time slice given by the master. The



master distributes time slices between the slaves using a decreasing method based on
the Factoring algorithm.

We presented experimental measurements with ATF in a heterogeneous platform
and compared it to other algorithms. The results show that ATF outperforms Workqueue
and Factoring in most cases, particularly in bigger matrices. ATF showed also similar
results to Adaptive Weighted Factoring in all cases (difference around 1% in execution
times). We think this is a very promising result consideringthat AWF is known for
having the best results for the kind of measurements we performed. We also believe
that ATF, due to its distributed scheduling mechanism, willeventually overcome AWF
in a testbed with more machines.

References

1. Chronopoulos, A.T., Andoine, R., Benche, M., Grosu, D.: Aclass of loop self-scheduling
for heterogeneous clusters. In: Proceedings of CLUSTER’2001. (2001)

2. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors. IEEE
Transactions on Software Engineering11 (1985) 1001 – 1016

3. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers. IEEE Transactions on Computers 36 (1987) 1425–1439

4. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: A method for scheduling parallel
loops. Communications of the ACM35 (1992) 90–101

5. Hummel, S.F., Schmidt, J.P., Uma, R.N., Wein, J.: Load-sharing in heterogeneous systems
via weighted factoring. In: Proceedings of the 8th Symposium on Parallel Algorithms and
Architectures. (1997)

6. Banicescu, I., Velusamy, V.: Performance of scheduling scientific applications with adaptive
weighted factoring. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS 2001) - Heterogeneous Computing Workshop, San Francisco (2001)

7. Banicescu, I., amd Johnny Devaprasad, V.V.: On the scalability of dynamic scheduling sci-
entific applications with adaptive weighted factoring. Cluster Computing: The Journal of
Networks, Software Tools and Applications6 (2003) 213–226

8. Banicescu, I., Liu, Z.: Adaptive factoring: A dynamic scheduling method tuned to the rate
of weight changes. In: Proceedings of the High Performance Computing Symposium (HPC
2000)ac, Washington (2000) 122–129

9. Banicescu, I., Velusamy, V.: Load balancing highly irregular computations with the adaptive
factoring. In: Proceedings of the IEEE - International Parallel and Distributed Processing
Symposium (IPDPS 2002) - Heterogeneous Computing Workshop, Fort Lauderdale (2002)

10. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The
Art of Scientific Computing. 2nd edn. Cambridge University Press (1993)

11. Beaumont, O., Legrand, A., Robert, Y.: Scheduling divisible workloads on heterogeneous
platforms. Parallel Computing29 (2003) 1121–1152


