Scheduling Divisible Workloads using the Adaptive
Time Factoring Algorithm *

Tiago Ferreto and César De Rose

Catholic University of Rio Grande do Sul (PUCRS),
Faculty of Informatics, Porto Alegre, Brazil
[ferreto, derose] @nf. pucrs. br

Abstract. Inthe past years a vast amount of work has been done in order to
prove the basic scheduling algorithms for master/slavepeoations. One of the
main results from this is that the workload of the tasks magidsgpted during the
execution, using either a fixed increment or decremegtiased on an arithmeti-
cal or geometrical ratio) or a more sophisticated functmadapt the workload.
Currently, the most efficient solutions are all based on skime of evaluation of
the slaves’ capacities done exclusively by the master. \bfgqze in this paper the
Adaptive Time Factoring scheduling algorithm, which uselff@erent approach
distributing the scheduling between slaves and masternidster computes, us-
ing the Factoring algorithm, a time slice to be used by eaavedior processing,
and the slave predicts the correct workload size it shouddive in order to ac-
complish this time slice. The prediction is based on a paréorce model located
on each slave which is refined during the execution of theiegbn in order to
provide better predictions. We evaluated the proposedithhgousing a synthetic
testbed and compared the obtained results with other stthgdilgorithms.

1 Introduction

Load balancing has been an ongoing issue for decades. tigarbased on list-scheduling
which manage a list of ready to execute tasks that are selat#®grocessors are mainly
used because of their suitability to dynamically evolvirmmputations, and also be-
cause they cope with heterogeneous resources, since wkgsracessor has finished
his work it simply gets more work from the list. This is a simplay to automatic
compensate for the differences in the performance of tivesla

A vast amount of work has been done in order to improve thechbagorithms
for master/slave computations. One of the main featuresaroing load balancing
that resulted from this is that the workload of the tasks mayatapted during the
execution, using either a fixed increment or decremegtlpased on an arithmetical or
geometrical ratio) or a more sophisticated function to attapworkload. We present a
briefly review of some of these techniques in Section 2.

Yet the solutions presented are all based on some evaluagitiee master of the
slaves’ capacities and of the tasks workload. This implisgaificant overhead since
the master has to maintain some kind of information abousldages. We present in

* This research was done in cooperation with HP-Brazil.

this paper the Adaptive Time Factoring scheduling algaritivhich uses a different
approach distributing the scheduling between slaves arstemd he master computes,
using the Factoring algorithm, a time slice to be used by skule for processing, and
the slave predicts the correct workload size it should xeciei order to accomplish this
time slice. The prediction is based on a performance modatéa on each slave which
is refined during the execution of the application in ordeprtavide better predictions.

In this paper we review in Section 2 some scheduling algestiused for mas-
ter/slave applications with a brief state of the art for eanh. Section 3 presents our
algorithm and the way each slave can evaluate its capaditiesder to validate our
algorithm we devised a synthetic small testbed and Sectisimovs the measurement
results that we have obtained using the algorithm propasedmparison to other al-
gorithms. At last we draw some conclusions about our camtiob.

2 Reated Work

We present below some classic self-scheduling algorithmggsed in the literature.
Self-scheduling [1] represents a large class of dynamitrakred loop scheduling
methods. These methods divide the total workload based pedifis distribution, pro-
viding a natural load balancing to the application durisgeikecution. We present also
some adaptive algorithms that add extensions to the claslischeduling algorithms
in order to support heterogeneity and adaptability. Theyser the load variation in
the system environment and adjust the size of the chunkgedet] to each processor
dynamically. This class of algorithms presents a good perémce on dynamic and
heterogeneous environments based on its ability to adsedf ib the changes in the
environment during the execution of an application.

The Pure Self-scheduling or Workqueue scheduling algoritivides equally the
workload in several chunks. A processor obtains a new chingnever it becomes idle.
Due to the scheduling overhead and communication latercyiied in each scheduling
operation, the overall finishing time may be greater thaimugdt

The Fixed-size Chunking scheduling algorithm [2] propodes each processor
receives chunks with siz€ each time it becomes idle. Although it is hard to determine
the besK value in realistic applications due to the high number ofhefable variables,
the authors give an approximation for an acceptable fixedlcisizeK (usingPth order
statistics to model the lagtchunks).

The Guided Self-scheduling algorithm [3], schedules latgenks initially, imply-
ing reduced communication/scheduling overheads in thmbig, but at the last steps
too many small chunks are assigned generating more ovefhe&@ch time a proces-
sor requests for more work, the algorithm assigns to it a klofisize equal to the size
of the remaining workload divided by the total number of mssors being used for the
computation.

Factoring [4] was specifically designed to handle iteratiarith execution-time
variance. With factoring, iterations are scheduled in bascofP equal-sized chunks.
The total size of the chunk per batch is a fixed ratip ¢f the remaining workload,e.
Remaining-Workload / o x Number _Of_Processors.

Weighted Factoring Self Scheduling [5] is an improved loopesiuling algorithm
addressing load imbalance in a heterogeneous environinghis algorithm, proces-
sors are dynamically assigned decreasing size chunkgatidtes in proportion to their
processing speeds.

Adaptive Weighted Factoring [6, 7] is an adaptive algorithased on probabilistic
analysis, being able to accommodate load imbalances chygeédictable and unpre-
dictable phenomena. In the Adaptive Weighted Factorirgwight values are adapted
after each iteration in the computation. The newly computeidhts are not only based
on the performance of particular processors during theipuevteration step, but also
on their cumulative performance during all the previoussitiens.

Adaptive Factoring [8, 9] allows a relaxation of some of thedretical assumptions
imposed by models used in earlier methods, therefore makindechnique more ro-
bust to any load variations present in the environment apdaring the performance of
applications characterized by highly irregular behaviotthis algorithm, the weights
are dynamically assigned to processors at run time by glds#ibwing the rate of
change in processor speed. The model used for this methavdsathe dynamic com-
putation of new weights for each processor, when a new claiakdcated.

In all algorithms shown above, the information needed tduata the best processor
to run the remaining workload is centralized at the mastecgss, which is responsi-
ble for the decision regarding increasing or decreasingthak that is executed by
each slave process. We propose in the following Sectiorhanatpproach, where the
evaluation of the chunk size to be assigned to each slavenslopthe slave itself.

3 Adaptive Time Factoring Scheduling Algorithm

The Adaptive Time Factoring (ATF) scheduling algorithmlikge others algorithms
(e.g. Weighted Factoring [5], Adaptive Weighted Factorifig7]), based on the de-
creasing scheme proposed by Factoring [4]. However, idstéaecreasing, for each
round, the number of tasks to be processed by each slaverdates the time slice that
each slave should use. Each slave predicts the best chunit strould process based
on the time slice given using a performance model.

The main features of the algorithm are the utilization ofgimstead of chunk sizes
as a scheduling metric, and the distribution of the perfarteanodel structure between
the slaves. The utilization of time instead of chunk sizedlifates handling hetero-
geneous slaves due to better scheduling abstradt@nhe scheduler can assure that
scheduling the same amount of time for different slaves refult in approximately
the same completion time benefiting overall performance.adoption of a distributed
performance model managed by the slaves instead of a deattahe at the serevr pro-
vides better scalability support avoiding a centralizettlboeck and faster adaptation of
the model due to performance variable fluctuations. Basdtlisnlata distribution, the
algorithm scheduling decision is also distributed betwaester and slaves. In contrast
to other algorithms, the slave also participates at thedidhrgy decision calculating the
chunk size to be processed using its local performance model

The main goal of the algorithm is to minimize execution tinfeapplications in
heterogeneous and dynamic environments. It addressésupenty applications using

the master/slave model containing divisible workloadsthe total amount of work to
be processed can be divided in equal-size chunks.

During the execution of the algorithm, each slave buildsrdarnal performance
model which contains the slave’s execution and commurmindime demands to pro-
cess chunks of the application workload. It enables theigtied of the chunk size to
be processed by the slave in order to fully use the time siieengoy the master. De-
tailed information related to the performance model andottegliction method used in
the algorithm is presented in Section 3.1.

The Adaptive Time Factoring scheduling algorithm is based distributed schedul-
ing method. Each slave computes a chunk sent by the mastehbaset! on its internal
performance model, predicts the best chunk size to be cadmitthe next iteration
considering the time slice given by the master. The mastrillites time slices in
decreasing chunks between the slaves. The decreasingdanaslked is based on the
Factoring [4] algorithm with a fixed value = 2.

In order to obtain efficient slave predictions for schedyliit's necessary to build
and refine the performance model in each slave before usegrédictions. Due to
this requirement, the Adaptive Time Factoring scheduligg@thm is divided in two
distinct phases: setup phase and adaptive phase.

The setup phase is used to build the local performance modehoh slave and to
refine it in order to produce predictions with minimum erids like an initial bench-
marking of each slave using the application workload. At Ibleginning, the master
sends to each slave a chunk with minimum size and waits forethdts. After receiv-
ing the results from a slave, it sends another chunk to the slaplicating its size by
a factor of two. It continues this process until it receivesignal from the slave indi-
cating to start with the adaptive phase. This signal is sémnathe slave already has
an efficient performance model capable of producing goodigtiens,i.e. the model
provides minimum error comparing predicted and measuredwgion times.

The adaptive phase turns over an increasing size mechaoiandécreasing one.
However, instead of decreasing the chunk size, it decrehsdbsne slice used by each
slave to predict the more appropriate chunk size to be psedesSince the beginning
of the algorithm, each time the master sends a chunk to eaeh, st includes in the
message a time slice for the next round. This time slice id byethe slave to predict
the chunk size that it can be execute at the next round. The stturns a message with
the results of the chunk processing, the execution timeatthadk to process the chunk
and the chunk size predicted. This chunk size is only consitlat the algorithm after
the slave sends the signal to the master in order to startdéyetigse phase. The time
slice for the round is computed as:

timeSlice[?y = (workload;11 * avgEzecTime) /a * nSlaves

wheretimeSlice[9% is the time slice computed for the next round {), workload; .1
is an estimation of the remaining workload at the next roung 1), avgExzecTime is
the average execution time for a chunk with minimum siZgha is a parameter of the
Factoring algorithm which is fixed andnSlaves is the total number of slaves. The
average execution time is computed each time the mastevesce new result from
some slave using chunk size and execution time values. 8ied@me slice sent is re-

lated to the next round, it's necessary to use an estimafitreademaining workload at
the next round. It is compute as:

nSlaves * timeSlice;

workload; 1 = workload; — avgEzecTime

The estimation is based on the subtraction, on the currerklead, of the average
chunk size that can be processed by all slaves during therduime slice. In order to
minimize the gap between slaves completion times, thevidtig rule is used: the first
slave in a round computes its time slice as presented aboottime slice), and all the
others compute their time slices as:

timeSlice;11 = timeSlicef_‘i‘it -

wheretimeSlice}?$ is the first time slice computed at the beginning of the round,
andé’ is the time taken to set this new time slice since the first sfiwe of this round
has been computed.

The master algorithm for the adaptive phase is presentejimd=1. It keeps in a
loop sending chunks and receiving the results to availdhlees until the workload is
empty. Before sending the chunk to a slave, it computes e $lice, which depends
if the slave is the first to compute this value or not, as dbscrbefore. It assigns the
new chunk size with the slave’s prediction size previoustymed with the last result,
and sends to the slave the chunk and time slice.

At reception, the master receives the result of chunk psiegsexecution time
took to process the chunk and the predicted chunk size fargkeround. The average
execution time is computed using chunk size and executioa fiarameters.

Algorithm 1 Adaptive Time Factoring algorithm
1: whileworkload is not emptylo
2. for each available slawéo

3 if beginning of round then
4 ComputefimeSlicefi‘it
5: ese
6
7
8

: computetimeSlice;+1
: end if
: chunk<= predictedSize
9: sendchunk andtimeSlice;+1
10: endfor

11: receiveresult, execTime andpredictedSize
12: computesvgEzxecTime
13: end while

Due to the existence of a performance model on each slaveshemge in the ma-
chines é.g. machine turned down, start of a concurrent application)lteén an adap-
tation of the best chunk size to be processed by the slawirtgortant to emphasize
that different slaves can be in distinct phases of the algorat the same timége. some

of the machines can be executing at the setup phase and athtbesadaptive phase.
This condition happens when more slaves are included dthisngxecution.

3.1 Local Prediction of the Computational L oad

In order to estimate the most suited workload, a slave negasfarmance model for
the execution of chunks of sizéunkSize;. The model may include various data such
as the execution time, memory utilization, etc, used to @s@ given chunk. In this
preliminary version of our prototype we only take into acettlne execution time.

Given someV valueschunkSizer, chunkSizes, . .. chunkSize, and the slaves’s
datat (eg. the execution time) the slave has to estimdtéunkSize). In a multi-
parameter model we could use algorithms such as the Sinyalae Decomposi-
tion [10], one of the most robust for data modeling. It wouldtfie functiont as a
linear combination of standard base functioag.(z — e?, Vo polynomials, .. .).

Nevertheless in the case whérenly depends on the processor’s speed, an affine
model of the time requireds. the chunk size to run is most realistic and used by other
algorithms [11]. The modeling problem is therefore a basigdr interpolation problem
of the measured running tintg, j = 1...n vs. the chunk sizehunkSize;. Besides
the estimated coefficients b of the affine approximation= a + b x chunkSize, the
correlation coefficient is used to determine the correabibtihe interpolation and thus
decide if a larger chunk should be sent in the initial phase.

The interpolation algorithm is very fast and thus does nejuglice the execution of
the application. Moreover, it is trivial for a slave to deténe the adapted chunk size,
given the execution time it has to run and the affine modét, b). Note that in the
case of a more complex, non-linear model, it would have tcausere time-consuming
algorithm such as a gradient or dichotomic search to soleg ts f(chunkSize)
equation.

4 Evaluation

In order to evaluate the performance of the Adaptive Timedtaty scheduling algo-
rithm (ATF) we devised a simple master/slave applicatioth @xecuted it in a hetero-
geneous cluster. This application consistaimultiplications of two matrices of size
n x n. The minimum chunk size is the multiplication of two matsde = 1). With this
application we are able to easily vary the size and the nupftirunks to be processed,
generating different conditions to evaluate the behavi@uo algorithm.

We executed the application in a cluster with 16 machinesiected through a
Fast-Ethernet network. The testbed consists of four diffetypes of nodes divided in
classes, from A to D (4 nodes per machine class). To give andflehe performance
of each machine class Table 1 presents their execution fonélse computation of a
chunk for three different matrix sizes.

We compared our Adaptive Time Factoring scheduling algoriATF) to the clas-
sical Workqueue algorithm (WQ), and to two factoring al¢fums, the non-adaptive
Factoring Algorithm (FAC), and the Adaptive Weighted Faittg (AWF) with o = 2.

Table 1. Execution time for one chunk (one matrix multiplicatiow = 1)

execution time (seconds)

" |Class A|Class B|Class C|Class D
300 0.80 | 1.00 | 1.34 | 1.44
500 5.18 | 6.89 | 9.35 | 9.52
700 14.82 | 19.74| 27.03 | 27.22

We used three different matrix sizes)(300, 500 and 700, and five number of multi-
plications for the workloads: 1000, 1500, 2000, 2500 and 3000. The obtained results

are presented in Table 2.

Table 2. Comparison of the execution times of the algorithms (in adsd

n
t 300 500 700

WQ | FAC | AWF | ATF || WQ | FAC | AWF | ATF WQ | FAC | AWF | ATF
1000 61.74| 62.86| 61.7 | 62.15|| 486.22| 483.98| 483.94| 483.04||1391.571385.121378.6(1380.34
1500 94.45| 93.79| 91.38| 92.80|| 727.03| 726.86| 724.55| 725.84/[2081.262080.942068.9712072.44
2000122.69124.63121.54124.77| 964.97| 965.68| 963.32| 964.99||2767.572769.482754.712756.48
2500152.76155.70158.16155.05|1208.221207.801205.1%1206.89|3456.943452.833438.003444.37
3000190.14 187.5(183.98 181.9|(1449.341448.311442.631445.86/4151.014144.194126.224134.71

In most cases ATF outperforms WQ and FAC, particularly irgleigmatrices. This
is expected because of the heterogeneity of the testbegbtidalgorithms can adapt
the number of chunks scheduled to a node depending on thié&rpance thus making
better use of the resources.

ATF has similar results to AWF in all cases (difference adfs in execution
times). We think this is a very promising result considerihgt AWF is one of the
latest algorithms introduced and is also known for havirglibst results for the kind
of measurements we are performing ([6, 7]). Besides, weetelihat the benefits of
adaptability and distributed scheduling presented in ATBrder to improve scalability
and performance, couldn’t be explored in our experimeiriseghe measurements have
been done in a small heterogeneous cluster. We believesheg mnore machines, ATF
will eventually overcome AWF.

5 Conclusions

In this paper we presented the Adaptive Time Factoring (AdReduling algorithm. It

is based on a distributed scheduling method, in which easle slomputes a chunk sent
by the master and, based on its internal performance maeeligs the best chunk size
to be computed at the next iteration considering the tinoe gliven by the master. The

master distributes time slices between the slaves usingr@akking method based on
the Factoring algorithm.

We presented experimental measurements with ATF in a hggaemus platform

and compared it to other algorithms. The results show th&t&itperforms Workqueue
and Factoring in most cases, particularly in bigger masgtied F showed also similar
results to Adaptive Weighted Factoring in all cases (déffexe around 1% in execution
times). We think this is a very promising result considerihgt AWF is known for

having the best results for the kind of measurements we peef. We also believe
that ATF, due to its distributed scheduling mechanism, gintually overcome AWF

in

a testbed with more machines.

References

(I

10.

11.

. Chronopoulos, A.T., Andoine, R., Benche, M., Grosu, D.cléss of loop self-scheduling
for heterogeneous clusters. In: Proceedings of CLUSTER'2(2001)

. Kruskal, C.P., Weiss, A.: Allocating independent suksasn parallel processors. |IEEE
Transactions on Software Engineeritig(1985) 1001 — 1016

. Polychronopoulos, C.D., Kuck, D.J.: Guided self-schieduA practical scheduling scheme
for parallel supercomputers. IEEE Transactions on CompG6(1987) 1425-1439

. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: Athod for scheduling parallel
loops. Communications of the ACBb (1992) 90-101

. Hummel, S.F.,, Schmidt, J.P., Uma, R.N., Wein, J.: Loaatigly in heterogeneous systems
via weighted factoring. In: Proceedings of the 8th Sympmsan Parallel Algorithms and
Architectures. (1997)

. Banicescu, I., Velusamy, V.: Performance of schedulaigrgific applications with adaptive
weighted factoring. In: Proceedings of the Internatioredaftel and Distributed Processing
Symposium (IPDPS 2001) - Heterogeneous Computing Works®ap Francisco (2001)

. Banicescu, I., amd Johnny Devaprasad, V.V.: On the siiyatif dynamic scheduling sci-
entific applications with adaptive weighted factoring. €&r Computing: The Journal of
Networks, Software Tools and Applicatiofg2003) 213-226

. Banicescu, I., Liu, Z.: Adaptive factoring: A dynamic sduling method tuned to the rate
of weight changes. In: Proceedings of the High Performararaptiting Symposium (HPC
2000)ac, Washington (2000) 122—-129

. Banicescu, I., Velusamy, V.: Load balancing highly iukg computations with the adaptive

factoring. In: Proceedings of the IEEE - International Rafr@and Distributed Processing

Symposium (IPDPS 2002) - Heterogeneous Computing WorkdFanp Lauderdale (2002)

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetbeyl\W.T.: Numerical Recipes in C: The

Art of Scientific Computing. 2nd edn. Cambridge Universitg$s (1993)

Beaumont, O., Legrand, A., Robert, Y.: Scheduling diésworkloads on heterogeneous

platforms. Parallel Computingd (2003) 1121-1152

