
GerpavGrid: using the Grid to maintain the city road system �

César A. F. De Rose Tiago C. Ferreto
PUCRS1

{derose,ferreto}@inf.pucrs.br

Marcelo B. de Farias Vladimir G. Dias
DBServer2

{marcelof,vladimird}@dbserver.com.br

Walfredo Cirne Milena P. M. Oliveira
UFCG3

walfredo@dsc.ufcg.edu.br, milena@lsd.ufcg.edu.br

Katia Saikoski
HP Brazil4

katia.saikoski@hp.com

Maria Luiza Danieleski
SMOV5

danieleski@smov.prefpoa.com.br

Abstract

This paper presents and evaluates a governmental appli-
cation that has been ported to run in a Grid. The Gerpav
application is used in the city of Porto Alegre, located in
the south of Brazil, to maintain and plan the investments in
the city road system, and Grid technology brought substan-
tial performance gains to its distributed version called Ger-
pavGrid. We describe several optimizations strategies used
in GerpavGrid to move the bottleneck of the sequential ap-
plication from database to memory to facilitate distribution
of tasks in the Grid. Results of its execution in a real Grid
are also presented, and show that a Grid can be also an
interesting execution platform for non-classical HPC appli-
cations that are database intensive.

1. Introduction

Grid computing is the coordination of large collections
of resources to provide a platform for the execution of
resource-intensive applications. Grid offers a solution to the
growing need of computational capacity and transparency.
Its goal is to provide an infrastructure that grants access to
geographically distributed resources in a reliable, consis-
tent and persistent way. The rationale is that congregating

∗This research was done in cooperation with HP-Brazil.
1Pontifı́cia Universidade Católica do Rio Grande do Sul, Faculdade de

Informática, Porto Alegre, Brazil
2DBServer Assessoria em Sistemas de Informação Ltda, Porto Alegre,

Brazil
3Universidade Federal de Campina Grande, Campina Grande, Brazil
4Hewlett Packard Computadores Ltda, Porto Alegre, Brazil
5Secretaria Municipal de Obras e Viação, Porto Alegre, Brazil

machines from different sites would provide computational
power similar to those offered by supercomputers.

An important feature of this technology is its low cost,
which makes grid computing an interesting choice when it
comes to choosing a platform to run parallel applications.
Nevertheless, there are some characteristics such as high
heterogeneity, complexity and wide distribution that create
many new technical challenges that must be considered [7].
Moreover, grid computing is a new technology and, as such,
has not yet achieved the level of maturity and dissemination
of more traditional technologies. As a result, there are yet
few examples of successful grid use, especially outside the
large and cutting-edge supercomputer centers.

This paper presents and evaluates a governmental appli-
cation that has been successfully ported to the grid. The ap-
plication is used by the city of Porto Alegre (located in south
Brazil) to plan road maintenance. Grid technology brought
substantial performance gains to the application, resulting
in an augmented capacity of the city to plan road mainte-
nance activities, finally leading to better results in road con-
servation spending less public money. Moreover, employ-
ing grid technology, such an advance was made possible re-
quiring minimal additional investment in IT infrastructure.

We consider such a result a milestone in the dissemina-
tion of grid technology. To the best of our knowledge, this
is the first application of grid technology running in pro-
duction at the city government. This shows the increasing
maturity of grid technology as (i) governments are not the
original users of grid technologies (except for their research
labs), and (ii) cities do not typically have the resources and
expertise of state and federal governments.

The remainder of this paper is organized as follows. We
begin in Section 2 describing some related work with focus

on e-government applications and grid computing. In Sec-
tion 3 we present OurGrid, Gerpav, and the motivation to
implement some of Gerpav modules in the Grid. In Sec-
tion 4 we present the details about GerpavGrid develop-
ment. In Section 5 we present a performance evaluation
of GerpavGrid using the grid of the OurGrid community.
Finally, we summarize our conclusions in Section 6.

2. Related Work

Grid computing is a very active area of research [5, 9].
Although it started within High Performance Computing,
people have realized that Grid technology could be used
to deliver computational services on demand. This ob-
servation has brought about convergence between Grid
and Web Services technologies, as seen in standards like
OGSA/OGSI [19] and its successor WSMF [8]. The vision
is that grid technology will eventually turn any computing
demand into the on-demand access of computation services.

Another very active area has been e-government, which
addresses how governments can make better use of IT tech-
nology to be more transparent, accessible, and efficient. We
believe that grids and e-government have great synergy, as
many e-government applications must deal with very large
volumes of data and/or evaluate a multitude of scenarios for
strategic planning. However, as both areas are relatively
new, most efforts still focus on infrastructure, e.g. [17, 11].
Examples of grid applications in the government area are
not yet common. We know of: The British project that aims
to leverage from grid technology to create a better and richer
learning experience for the country students [10]. Brazil’s
regional effort to enable meteorological and hydrological
researchers to combine data, processing power, and exper-
tise via grid technology as to create a tool for decision mak-
ers to explore the implications of the decisions over the wa-
ter supply of the Brazilian Northeast Region, a semi-arid
area [3]. None of these cases deal with the government at
the city level, what imposes stringent requirements on the
simplicity and maturity of the solutions employed.

3. Background

In this section, we present OurGrid, the grid solution
used in this work, as well as the original Gerpav system,
including the performance evaluation that guided its port to
the grid.

3.1. OurGrid

There are a number of solutions for creating Computa-
tional Grids nowadays. For simplicity sake, we choose to

use OurGrid [6]. OurGrid is an open, free-to-join, cooper-
ative grid in which sites donate their idle computational re-
sources in exchange for accessing other sites’ idle resources
when needed. For now, at least, OurGrid assumes applica-
tions to be Bag-of-Tasks (BoT), i.e. parallel applications
whose tasks are independent. Despite their simplicity, BoT
applications are used in a variety of scenarios, including
data mining, massive searches (such as key breaking), pa-
rameter sweeps, simulations, fractal calculations, computa-
tional biology, and computer imaging. Moreover, due to the
independence of their tasks, BoT applications can be suc-
cessfully executed over widely distributed computational
grids.

OurGrid strives to be non-intrusive, in the sense that a
local user always has priority access to local resources. In
fact, the submission of a local job kills any foreign jobs that
are running locally. This rule assures that OurGrid cannot
worsen local performance, a property that has long been
identified as key for the success of resource-harvesting sys-
tems [18]. OurGrid is designed to be scalable, both in the
sense that it can support thousands of sites, and that joining
the system is straightforward. For scalability, OurGrid is
based on a peer-to-peer network, with each site correspond-
ing to a peer in the system. However, peer-to-peer sys-
tems may have their performance compromised by freerid-
ing peers [13, 16]. A freerider is a peer that only consumes
resources, never contributing back to the community. This
behavior can be expected to have a very negative impact on
OurGrid, because many users reportedly have an insatiable
demand for computer resources, and thus we do not antici-
pate having a resource surplus to give to freeriders. We have
dealt with this problem by creating the Network of Favors, a
totally decentralized and autonomous allocation mechanism
that marginalizes freeriders [1, 2].

A given site in OurGrid will commonly run tasks from
other unknown sites that are also part of the community.
This creates a very obvious security threat, especially in
these days of so many software vulnerabilities. Therefore,
we must provide a way to protect local resources from for-
eign unknown code. That is the job of SWAN (Sandboxing
Without A Name), a solution based on the Xen virtual ma-
chine [4], which isolates the foreign code into a sandbox,
where it can neither access local data nor use the network.

Users interact with OurGrid via MyGrid, a personal bro-
ker that performs application scheduling and provides a set
of abstractions that hide the grid heterogeneity from the
user. The great challenge in scheduling is how to assure
good performance for the application in a system as large
and loose-coupled as OurGrid. In particular, the scale of
the system makes it hard to obtain reliable forecasts about
the execution time of a given task on a given processor. To
deal with this problem, we have devised schedulers that use
task replication to achieve good performance in the absence

of performance forecasts [12, 15]. As for the abstractions,
the goal is to balance between ease-of-use and performance,
while considering the limitations of the current lack of gen-
eral connectivity in the Internet [14].

In summary, OurGrid has three main components: the
OurGrid peer, the MyGrid broker, and the SWAN security
service. Figure 1 shows them all, depicting the OurGrid
architecture.

3.2. Gerpav

Good roads are essential for the movement of people
and goods, but there are substantial costs in construction
and maintenance practices. The city of Porto Alegre, lo-
cated in south Brazil, has been facing a swelling of its road
traffic due to city growth, requiring rapid actions in order
to improve and maintain its road system. Porto Alegre is
considered in Brazil a middle-size city with approximately
500 km2 and a population of 1 million and 400 thousand
habitants (census of 2005). The city’s department of trans-
portation (SMOV), which is responsible for dealing with
issues about pavement conservation and condition assess-
ment, have been challenged in the last years to deal with
limited budget, requiring even more efficiency in applying
public resources.

In that context, SMOV decided to develop a Pavement
Management System (PMS), which included the creation
of an information system to aid in decision making about
pavement assessment and maintenance. This system was
named Gerpav and its first version was concluded at the end
of 2004.

Gerpav helps SMOV maintain detailed information
about the city road system, such as pavement, defect, track,
lane and repair types. It has a report module where a user
can simulate the degradation of pavements according to a
set of parameters.

Gerpav divides internally the city road system in a num-
ber of segments, where a segment is a section of a road.
Each segment can have up to four tracks. Each track is
divided into a number of lanes, the lane has information
about its type of pavement (cement, asphalt, stone, etc.)
and field investigations count the defects by lane. Based
on the data from field investigations, the system calculates
the PCI value (Pavement Condition Index) for each lane and
a global PCI for the track. The value for PCI ranges from
0 to 100, where 100 mean a perfect condition. Each type
of pavement has different behavior and performance. Ger-
pav simulates pavement degradation of the pavements tak-
ing into account its type, according to Figure 2.

Gerpav manages all information using a database com-
posed by 26 tables, which takes up around 200 Mb of disk
space. The main tables used to represent the city road sys-
tem are: Segment (31252 rows), Track (32408 rows), and

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
C

I

Number of years

Pavement Degradation Curves

asphalt
concrete

stone

Figure 2. Pavement Degradation Curves

Lane (217141 rows). Functionality-wise, Gerpav is divided
in 6 subsystems explained below:

Generic Tables Maintenance Subsystem: responsible
for maintenance in generic system data tables, like
pavement types, defect types, traffic.

Road System Maintenance Subsystem: responsible for
maintenance of tables related to the road system, like
roads, lanes and tracks.

Road System Report Subsystem: responsible for reports
related to the road system tables.

PCI Calculation Subsystem: responsible for PCI calcula-
tion among different pavement types.

Data Importing Subsystem: responsible for importing
data from external files generated by external applica-
tions.

Simulation Subsystem: responsible for simulations re-
lated to pavement assessment and maintenance plan-
ning.

In order to take advantage of the computing grid, we ana-
lyzed all subsystems to identify the one that has higher com-
putation demands and could be decomposed in indepen-
dent tasks to be executed by the resources provided by the
grid. Gerpav Simulation Subsystem was identified as the
best candidate for grid computing. Despite the algorithms
in this subsystem are very memory and data intensive, it can
be easily divided in several independent and coarse-grained
tasks.

In Gerpav Simulation Subsystem there are several re-
ports that can be generated. One of these is the ”Pavement
Behavior Report” that simulates pavement degradation over

Figure 1. OurGrid Architecture

time. In order to create a grid version, the ”Pavement Be-
havior Report” was the first selected for a closer analysis.

In the Pavement Behavior Report, the pavement behav-
ior is calculated for each track, according to its predomi-
nant pavement type, following the degradation curve. Algo-
rithm 1 shows how the simulation works. Note that there are
three nested loops; the main loop computes the segments,
tracks are retrieved for each segment and lanes are retrieved
for each track. The algorithm computes predominant pave-
ment based on lanes information and then calculates degra-
dation for the track.

We performed some experiments generating the Pave-
ment Behavior Report and measured the execution time of
the main routines of Gerpav. Results showed that Gerpav
performance is very tied to DBMS. This happens because
of the way the application was designed with high coupling
with database tables. Thus, application execution time is
directly related to DBMS throughput.

The overall execution time to simulate pavement behav-
ior for a neighborhood with 704 segments (almost 39 min-
utes), showed that it would be practically impossible to run
a simulation for the entire city (31252 segments) using the
original, non-grid application. Because of such limitation,
Gerpav users were required to limit data for their simula-
tions, and consequently they were not able to use Gerpav’s
report module in its utmost capacity.

Algorithm 1 Pavement Behavior Report Algorithm
1: retrieve segments
2: while there are segments to process do
3: retrieve tracks
4: while there are tracks to process do
5: retrieve ICP
6: retrieve lanes
7: while there are lanes to process do
8: identify predominant pavement
9: end while

10: calculate track degradation
11: end while
12: end while
13: generate report

4. Gerpav in the Grid

The main motivation of GerpavGrid was to use the grid
to solve the limitations in the generation of Pavement Be-
havior report. Our first goal was to port the generation of
this report to the grid in order to get it for the whole city in
much less time. We decided to use OurGrid to implement
GerpavGrid due to it’s simplicity to deploy grids.

GerpavGrid enabled to achieve not only performance en-

hancement, but also to aggregate new features that were
not possible in the original design. GerpavGrid was imple-
mented to be an extension of Gerpav, adding new function-
alities and redesigning some of the simulations in the report
module to use OurGrid infrastructure, in order to attain per-
formance improvement.

While Gerpav is highly coupled with the Database
Management System (DBMS), and designed to access an
always-available database, GerpavGrid, in order to attain
the advantages of parallel processing, cannot rely on DBMS
availability as it was in Gerpav. In addition, additional ef-
fort is needed to adapt the application to the Bag of Tasks
approach used by OurGrid.

Consequently, some parts of Gerpav were rewritten and
several optimization strategies were tested to enable the ap-
plication to take full advantage of the grid infrastructure.

In order to parallelize the generation of the Pavement Be-
havior Report, the generation algorithm was refactored and
divided in three distinct phases: data preparation, process-
ing and results consolidation. The processing phase was the
one divided in several tasks to execute in the grid, while the
other two phases are performed locally.

In order to facilitate the utilization of OurGrid and better
adapt its utilization in the current web based implementa-
tion of Gerpav, we developed an utility framework to sched-
ule tasks to grid resources. This framework is called Our-
Grid Job Abstraction Layer (OJAL) and is presented below.

4.1. OurGrid Job Abstraction Layer

Since we use the OurGrid infrastructure, we need to cre-
ate a Job Description File (JDF) to submit a job for execu-
tion. This JDF contains details of each task that will ex-
ecute a portion of a job. If a given job has hundreds of
tasks, writing a JDF can be very tedious and time consum-
ing. Therefore, some users prefer writing a Java program or
customized script that submits a job for execution, bypass-
ing the manual creation of the file.

MyGrid provides an API that facilitates this process,
however its capabilities are not easy-to-use in a web based
system as Gerpav. Therefore, to use MyGrid API in Ger-
pavGrid, an extra abstraction layer was created. This
layer was named OurGrid Job Abstraction Layer (OJAL)
and it supports the automatic creation of OurGrid scripts
to abstract details related to data serialization and de-
serialization, data slicing, job dispatching, and waiting.

Figure 3 shows the class diagram of OJAL. Classes with
prefix Concrete must be provided by the application. A
ConcreteClient can instantiate a JobDispatcher object, set-
ting some parameters, such as slice size, jar files and remote
class and call a dispatch method passing a collection with
data to be processed by the grid. On the other hand, a Con-
creteTask must extend RemoteTask and provide main and

Figure 3. OJAL Class Diagram

process methods.
The OJAL dispatch method will slice the collection and

create the JDF (Job Description File) for MyGrid to transfer
the ConcreteTask and related files to the Grid infrastructure.
After job execution, application will get the return collec-
tion and continue its processing. Figure 4 presents the se-
quence diagram reproducing this process.

4.2. Optimization Strategies

One of the main issues in Gerpav is the highly depen-
dency between the system and the DBMS. Besides storage,
the DBMS is also used to perform filtering and basic calcu-
lation specified directly in the queries. In order to minimize
the DBMS dependency and optimize the application using
the Grid, we implemented and tested several versions using
the optimization strategies explained below.

Database Filter versus Memory Filter: In the Database
Filter strategy, the system retrieves tracks data from
the database, using a complex SQL query to filter rows
by the selection criteria and get only the needed tracks
with attributes used for processing. The goal in this
strategy is to reduce the size of data sent with each
task to the grid. On the other hand, in the Memory Fil-
ter strategy, the system retrieves tracks data from the
database, using a raw SQL query with very simple se-
lection criteria, returning also an amount of tracks and
attributes not used for processing. This data is sent
with each task and the filtering of right tracks and at-
tributes is performed by each task in the grid. The goal
in this strategy is to reduce the amount of computation
performed by the DBMS, resulting in faster queries.

Simple Slicing: In this strategy the system retrieves all
necessary tracks data from the database using the
Database Filter strategy. The tracks retrieved are di-
vided in slices with a fixed number of elements. Each

Figure 4. OJAL Sequence Diagram

slice is serialized and processed by a grid task. A sim-
ulation subsystem run is converted into the submission
of a job (containing the grid tasks) to OurGrid. After
job execution, the result collection is consolidated and
sent to output.

Pipeline Dispatching: In this strategy the system retrieves
tracks data from the database using the Database Fil-
ter or Memory Filter strategies. The tracks retrieved
from the neighborhood are divided in slices with a
fixed number of elements. Each slice is serialized and
attached to a remote task; a job is dispatched to be exe-
cuted by MyGrid containing the remote task. The sys-
tem continues retrieving tracks data for the next neigh-
borhood, without waiting for previous job completion.
After the submission of the last neighborhood data,
system waits for all jobs to complete, then the result
collections (one for each neighborhood) are joined and
the result is consolidated and sent to output.

Distributed Database: The data from segments, tracks
and lanes is sent previously to databases hosted by
OurGrid peers. The system creates a task for each
neighborhood; a job is dispatched to remote execution
of the tasks by OurGrid. The remote task retrieves data
from the tracks accessing its peer database and filter
data by selection criteria using Memory Filter Strat-
egy. The system waits for job completion. After, it gets
the result collection to consolidate results and send to
output.

4.3. Additional Functionalities

Besides the implementation of the Pavement Behavior
Report generation in the grid, we discussed with the Engi-
neering group at SMOV that uses Gerpav in order to de-
velop more simulation scenarios that could be useful to im-
prove their workflow. This interaction resulted in two more
simulations executed in the grid that couldn’t be performed
in the original version due to limitation in resources capac-
ity. The new simulation scenarios are:

Budget Distribution: In this scenario the roads mainte-
nance budget is distributed in a repairing schedule for a
specified number of years using as parameters a prior-
ity model applied to roads characteristics, and a mini-
mal PCI desired for each pavement type and road prior-
ity. It uses an intervention decision table which defines
for each pavement type the available interventions to
be made in relation to current PCI and its respective
cost.

Initially, all possible intervention schedules for each
road are generated for the time frame given (number
of years). Schedules that don’t satisfy the minimal PCI
desired are excluded. This process is performed in the
grid by each task for a set of roads, which returns a
set of possible intervention schedules with their cor-
responding costs. After that, the budget is distributed
using only the required interventions to obtain the min-
imal desired road system condition, and the remaining
budget is distributed according to roads priority.

Intervention Optimization: This simulation is used to re-
turn an optimal schedule for a time period (in years)
that provides the lowest cost given and average PCI
for each pavement type and road priority. The priority
model and intervention decision table used in the Bud-
get Distribution simulation are also used in this simu-
lation.

As performed in the Budget Distribution simulation,
all possible intervention schedules for each road are
generated for the time frame given (number of years),
and schedules that don’t satisfy the minimal PCI de-
sired are excluded. After that, the average PCI for
each pavement type in each schedule is calculated and
schedules with an average PCI below the average PCI
defined as input are discarded. The remaining sched-
ules are sorted in relation to their costs and the cheap-
est one is selected. This process is performed in the
grid by each task for a set of roads, which returns the
cheapest schedule for each road. In the end, the system
ends up with a schedule with minimal cost in order to
have all roads in a condition equal or greater than the
average PCI during all the time frame specified.

5. Evaluation

In this section we present the performance evaluation of
GerpavGrid to show the benefits of porting the Gerpav ap-
plication to a grid infrastructure. All tests were performed
using the Pavement Behavior Report generation module to
calculate pavement degradation for the next 15 years in
three different scenarios: one middle-size neighborhood
(Aberta dos Morros), 50 neighborhoods of different sizes,
and for the complete road system of Porto Alegre. Details
about each scenario considering the amount of segments,
tracks and lanes are presented in Table 1.

Scenario Segments Tracks Lanes

Aberta dos Morros 897 929 2094
50 neighborhoods 15070 15816 49195
Porto Alegre road system 31252 32408 98223

Table 1. Scenarios

GerpavGrid was deployed at the CPAD Research Center
(http://www.cpad.pucrs.br). CPAD hosts one of the peers
that compose the OurGrid Community grid, which is cur-
rently composed by approximately 20 peers with more than
350 machines (http://status.ourgrid.org/). For these mea-
surements, GerpavGrid was installed in a local web server
- Dual Xeon 3.0 GHz with 2 GBytes of RAM using SuSE
Linux 9.2. This machine was also used to execute the My-
Grid Scheduler to dispatch tasks in resources obtained from
the OurGrid Community grid. In order to execute Ger-
pavGrid, the following software packages were previously
installed and configured in the server: Sun J2SE 1.4.2 08,
IBM DB2 UDB 8.2, and Jakarta Tomcat 5.0.28.

In each measurement, some of the optimization strate-
gies presented in the previous section were combined in
different implementations and tested to analyze its perfor-
mance (Table 2).

Version Optimization Strategies Type

I1 none Sequential
I2 Database Filter and Simple Slicing Parallel
I3 Database Filter and Pipeline Dispatching Parallel
I4 Memory Filter and Pipeline Dispatching Parallel
I5 Distributed Database and Memory Filter Parallel

Table 2. Implementations

Figure 5 and Table 3 show the execution time in seconds
of each implementation in each scenario.

We can observe that implementations using the Mem-
ory Filter (I4 and I5) provided much better results than the
Database Filter strategy (I2 and I3) in all cases. This oc-
curred due to the high penalty introduced by the complex
query executed in the DBMS. We can also observe that in

Aberta dos Porto Alegre
Morros 50 neighborhoods road system

I1 200.287 3551.650 7266.923
I2 207.818 3370.382 7430.041
I3 210.408 3489.814 7113.705
I4 32.060 275.864 506.271
I5 12.312 50.327 89.877

Table 3. Execution time measurements

all the cases using the Database Filter, the results were very
similar to the sequential version, being even worst in some
cases. The best results were obtained using the Distributed
Database optimization strategy, which reduces considerably
the overhead imposed on a centralized DBMS enabling the
trivial parallelization of queries in each peer. We can ob-
serve that using the grid, the necessary time to generate the
Pavement Behavior Report reduced considerably, approxi-
mately 80 times faster than the sequential version for the
larger scenario (Porto Alegre road system).

We already started experiments with the two new simu-
lation scenarios: Budget Distribution and Intervention Op-
timization. In our first experiments we execute both sim-
ulations for a time frame of 7 years. The time to execute
the simulations in the grid are approximately 56 minutes
with the Budget Distribution simulation, and approximately
40 minutes with the Intervention Optimization simulation.
Since these scenarios were not implemented in the sequen-
tial version, we couldn’t perform the direct comparison be-
tween sequential versus grid version. However, analyzing
the problem and based on some performance tests executed
in Gerpav’s server, we could optimistically predict that both
simulations would take at least 15 hours to execute in a se-
quential version resulting in a speed up of at least 15 times.

6. Conclusions

This paper presents GerpavGrid, a distributed version of
an application to maintain and plan the investments in the
road system of the city of Porto Alegre. Since the sequential
application was database intensive, we applied several op-
timizations strategies to move the bottleneck from database
to memory to facilitate distribution of tasks in the Grid.

Grid technology brought substantial performance gains
to the application, resulting in an augmented capacity of the
city to plan road maintenance, dramatically reducing the
workflow of the traffic engineer and leading to better re-
sults in road conservation with the available public money.
Moreover, using a grid of idle resources the city adminis-
tration had access to a high performance execution environ-
ment with a minimal additional investment in IT infrastruc-
ture.

 10

 100

 1000

 10000

Porto Alegre50 NeighboursAberta dos Morros

tim
e

(s
ec

on
ds

)

Scenarios

Execution Time

I1
I2
I3
I4
I5

Figure 5. Execution time measurements

We believe that the results achieved with the GerpavGrid
application could be reproduced in other similar applica-
tions and that a Grid can be also an interesting execu-
tion platform for non-classical HPC applications that are
database intensive.

References

[1] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray.
Discouraging free-riding in a peer-to-peer cpu-sharing grid.
In Proceedings of 13th IEEE International Symposium on
High-Performance Distributed Computing (HPDC13), Hon-
olulu, Hawaii, June 2004.

[2] N. Andrade, M. Mowbray, W. Cirne, and F. Brasileiro.
When can an autonomous reputation scheme discourage
free-riding in a peer-to-peer system? In Proceedings of 4th
Workshop on Global and Peer-to-Peer Computing (GP2PC),
Chicago, USA, April 2004.

[3] E. Araújo, W. Cirne, G. Wagner, N. Abı́lio, E. Souza,
C. Galvão, and E. Martins. The seghidro experience: Us-
ing the grid to empower a hydro-meteorological scientific
network. In Proceedings of the eScience 2005: 1st IEEE
International Conference on eScience and Grid Computing,
December 2005.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In Proceedings of SOSP 2003, 2003.

[5] F. Berman, G. Fox, and T. Hey, editors. Grid Computing:
Making The Global Infrastructure a Reality. John Wiley &
Sons, 2003.

[6] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade,
R. Novaes, and M. Mowbray. Labs of the world, unite!!! Ac-
cepted for publication in Journal of Grid Computing, 2006.

[7] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, D. Paran-
hos, E. Santos-Neto, C. D. Rose, T. Ferreto, M. Mowbray,
R. Scheer, and J. Jornada. Scheduling in bag-of-task grids:
The pauÁ case. In SBAC-PAD 2004 16th Symposium on
Computer Architecture and High Performance Computing,
2004.

[8] K. Czajkowski et al. From open grid services infrastructure
to ws-resource framework: Refactoring & evolution.

http://www.globus.org/wsrf/specs/ogsi to wsrf 1.0.pdf,
Version 1.1, 3/05/2004. Cited 14 March 2006 (2006).

[9] I. Foster and C. Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure, 2nd Edition. Morgan
Kaufmann, 2004.

[10] J. Furlong, R. Furlong, K. Facer, and R. Sutherland. The na-
tional grid for learning: a curriculum without walls? Cam-
bridge Journal of Education, 30(1):91–110, March 1, 2000.

[11] Y. Li, M. Li, and Y. Chen. Towards building e-government
on the grid. In E-Government International Conference,
LNCS 3416, 2005.

[12] D. Paranhos, W. Cirne, and F. Brasileiro. Trading cycles
for information: Using replication to schedule bag-of-tasks
applications on computational grids. In Proceedings of Eu-
ropar 2003, Austria, 2003.

[13] M. Ripeanu and I. Foster. Mapping the gnutella network:
Macroscopic properties of large-scale peer-to-peer systems.
In Proceedings of First International Workshop on Peer-to-
Peer Systems (IPTPS), 2002.

[14] S. S. and M. Livny. Recovering internet symmetry in dis-
tributed computing. In Proceedings of GAN 03 Workshop
on Grids and Advanced Networks, Tokyo, Japan, May 2003.

[15] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima. Ex-
ploiting replication and data reuse to efficiently schedule
data-intensive applications on grids. In Proceedings of 10th
Workshop on Job Scheduling Strategies for Parallel Process-
ing, 2004.

[16] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings of
Multimedia Computing and Networking (MMCN), San Jose,
CA, USA, Jan 2002.

[17] F. Silva and H. Senger. The grid: An enabling infrastructure
for future e-business, e-commerce and e-government appli-
cations. In The Third IFIP Conference on E-Commerce, E-
Business, E-Government (I3E 2003), pages 253–265, 2003.

[18] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The condor experience. Concurrency
and Computation: Practice and Experience, 17(2-4):23–
356, 2005.

[19] S. Tuecke et al. Open grid services infrastruc-
ture (ogsi) version 1.0. global grid forum draft recom-
mendation. http://www.globus.org/toolkit/draft-ggf-ogsi-
gridservice-33 2003-06-27.pdf, 6/27/2003.

