
Parallel Processing Letters
fc World Scientific Publishing Company

Electronic version of an article published as Parallel Processing Letters,
Volume 19, Issue 1, 2009, 3–18 DOI 10.1142/S012962640900002X

c©World Scientific Publishing Company http://ejournals.wspc.com.sg/ppl/ppl.shtml

SCHEDULING AND MANAGEMENT OF VIRTUAL RESOURCES IN GRID SITES:

THE SITE RESOURCE SCHEDULER∗

RODRIGO N. CALHEIROS

Faculty of Informatics, Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre, Rio Grande do Sul 90619-900, Brazil

TIAGO FERRETO

Faculty of Informatics, Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre, Rio Grande do Sul 90619-900, Brazil

and

CÉSAR A. F. DE ROSE†

Faculty of Informatics, Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre, Rio Grande do Sul 90619-900, Brazil

Received December 2006
Revised March 2008

Communicated by A. Bode

ABSTRACT
This paper presents a new approach to resource management and scheduling in

computational grids, in order to simplify the vision users have from grid resources and
their management. Scheduling decisions are moved to the site where resources are hosted,
allowing quick response to changes in load and resource availability. Users do not need
to be aware of the resources they use and are instead supplied with “virtual resources”
representing the amount of computational power available to them in the site. This
approach results in new challenges, like the management of two-level scheduling schema
and the need to define a site capacity measure, but simplifies and optimizes scheduling in
grids. In this paper we present details of this approach – called Site Resource Scheduler
(SRS) – as well as some issues regarding its simulated performance and its deployment
in a site. We show that the main advantage of this approach is an overall reduction in
the execution time of tasks in most scenarios.

Keywords: Grid Computing, Resource Management, Resource Scheduling

1. Introduction

Grid computing has become an important tool for both science and business. The
main goal of grid computing is to provide easy access to resources spread around
the world, under control of several organizations [14]. Despite the constant increase

∗This work was developed in collaboration with HP Brazil R&D.
†Corresponding author. E-mail address: cesar.derose@pucrs.br

Parallel Processing Letters

of worldwide grid usage, some areas, such as resource management and resource
scheduling still need major advances. Resource manager responsibilities are dis-
covering, dealing and monitoring grid resources [9], while the resource scheduler is
responsible for mapping user tasks to resources that are not under direct control of
the user [19]. Nowadays, users are responsible, by themselves or through grid bro-
kers, to discover, allocate and manage grid resources. When a user needs to access
hundreds of resources spread around the world, management can be inefficient since
users usually do not know accurate details of resources. Scalability issues can also
emerge. Such problems are more critical when the resources available to users are
non-dedicated, i.e., resources can leave or join the grid at any time. In this case,
monitoring of resource activity and rescheduling is necessary.

Clusters of workstations were once the resource preferred by scientists to execute
their experiments with high processing power demands. However, with the advent
of more complex problems, using a single cluster was not affordable. In order to
handle these problems, the utilization of several clusters together was the most
reasonable step to take, letting to the realization of the first grids (e.g. I-WAY
[11]).

One key issue in using clusters in computational grids is that, in general, grid
users must provide the amount of time and nodes they want to allocate to the Clus-
ter Resource Manager (CRM). Nevertheless, grid users would rather allocate the
maximum computer resources and time they can in order to complete their tasks
as soon as possible, which means they usually do not desire to specify allocation
constraints. Moreover, if the grid is planetary-scale, users do not know the charac-
teristics of all clusters in the grid, making it impossible for them to estimate task
duration.

In order to overcome such limitation, in [18] an alternative approach to use
clusters in grids is presented. This strategy is based on opportunistic computing
techniques and does not make use of a formal allocation request to cluster resource
managers. It facilitates the utilization of resources in grids. Nevertheless, as cluster
resources supplied in that way are non-dedicated to the grid, at any moment they
can be removed from the grid, aborting any task being executed in these resources.

This approach increases considerably the number of resource faults, since for
the user each resource removed from the grid is a faulty resource. However, it can
be enhanced with the inclusion of another scheduling level in the site, reducing the
number of faults that must be handled by the user and, therefore, minimizing the
impact of faults in the performance of grid applications.

In this paper we present the Site Resource Scheduler (SRS). The goal of the SRS
is to simplify the vision users have of grid resources and their management, moving
scheduling decisions from the grid scheduler to the site where resources are hosted,
allowing quick response to changes in both load and resource availability. This
vision is reached through an extra resource management layer in grid computing
(two-layer scheduling), that hides resources specific issues (resource virtualization)
and enables system administrators to have a better control over resource utilization.
With SRS, users see a site as a “powerful” virtual resource instead of a set of real
machines.

The actual power of this virtual resource varies according to site load and user

Scheduling and management of virtual resources in grid sites

access rights. Experiments performed with a SRS prototype using the OurGrid
middleware [7] show that SRS can reduce the execution time of grid applications,
especially when large tasks have to be scheduled in non-dedicated resources. In
general, by virtualizing all site resources in one machine, the number of resources
to be managed is reduced to the number of sites an application knows, simplifying
the scheduling operation considerably.

The remaining of this paper is organized as follows: Section 2 presents some
works related to our proposal, and shows how our approach differs from the existing
ones. Section 3 presents the Site Resource Scheduler, its architecture, challenges
emerging from the approach and how it might be overcome. Section 4 presents
some preliminary results obtained in simulation of the system. Section 5 presents a
case study, a deployment of SRS using the OurGrid middleware. This section also
presents some experiments performed with the prototype, their results and some
issues about SRS deployment in Globus grids. Concluding remarks and further
work are discussed in Section 6.

2. Related Work

GRAM (Grid Resource and Allocation Management) is currently a well-known so-

lution for resource management in grids, due to the widespread utilization of Globus

Toolkit [12] to build grids. The operation of GRAM is quite simple: each resource,

which can be a single machine or a collection of machines already managed by an-

other resource manager (e.g. OpenPBS [6] or Condor pool [16]), located in a site

executes a GRAM module instance. The GRAM module converts requests from the

grid to the appropriate resource manager. Our proposal differentiates itself from

GRAM since we use a single module to manage all resources of a site (e.g., a cluster,

a set of desktop machines), while using GRAM, a different instance of GRAM needs

to be present for each resource available to the grid in the same site.

Condor [21] is a system originally proposed as a solution for exploitation of

idle resources in local area networks. However, it has evolved into a system to

manage resources in cluster and grids. It implements a idleness detector and have

mechanisms to provide application checkpointing, among other functionalities. In

spite of being a system to exploit idle computing resources, deploying Condor in a

complex environment, composed by desktop machines (to be used when idle) and

clusters, requires replacement of the CRM of each cluster by Condor. In such case,

clusters will be also managed by Condor. We believe this approach is not acceptable

in most cases, as administrators want to keep their systems as is to agree in donate

them to the grid. Our strategy, on the other hand, allows deployment of any type of

local resources without changes in any software of the system. It is only necessary

to install SRS in the machine that acts as entry to the grid in order to allow usage

of not only desktops, but also resources managed by different clusters schedulers in

the grid.

Virtual Grid [15,24] is an approach to deliver virtual resources to grid users. It

provides a resource description language and a resource discoverer. However, in this

Parallel Processing Letters

User scheduler

Internet

Resource

Resource

Resource

Resource

Resource

Site A

Site B

Grid

(a)

scheduler

Internet Site A

Site B

SRS

SRS

Resource

Resource

Resource

Resource

Resource

GridUser

(b)

Fig. 1. Grid resources access (a) without SRS (b) with SRS.

approach the virtualization happens in the user side, below user application. Our

strategy, on the other hand, virtualizes resources at the provider side, delivering to

the user system virtualized resources.

OurGrid middleware‡[7] is a complete infrastructure for deploying computational

grids focusing in BoT (Bag-of-Tasks) applications and is used in the Brazilian grid

[10]. OurGrid provides, as its main components for resource access and scheduling,

two modules called Peer and MyGrid. Peer is responsible for connecting to other

Peers and discovering resources to users (through the MyGrid broker and scheduler).

Each user can be connected to only one Peer. The Peer basically controls resource

distribution among other Peers and local users. MyGrid is used by each user to

schedule tasks using all available resources provided by its Peer. The difference

between OurGrid and SRS is that the former delegate real resources to grid users,

and the users must manage and schedule their tasks. If the resource becomes

unavailable to the user, the task must be rescheduled, which requires resubmission

of input files. Our approach hides resources unavailabilities from the grid users.

Thus, the resubmission of files and the rescheduling are not necessary.

Depending on the grid middleware to be supported by the site, SRS will be

deployed as a add-on on the grid software (e.g., GRAM, OurGrid’s Peer). However,

SRS could be implemented as an independent middleware. In such case, no other

software would be necessary to support grid computing.

3. Site Resource Scheduler

On current grid middleware [13,7], regular tasks such as resource discovering, allo-

cation and management are delegated to users, directly or through grid schedulers

(Figure 1 (a)). When a user has access to thousands or even hundreds of machines

spread around the world, these tasks can be hardly accomplished in an efficient

manner.

‡www.ourgrid.org

Scheduling and management of virtual resources in grid sites

This issue is even more critical using non-dedicated resources. In this case there

is an extended overhead due to the need to monitor resource’s activity, and to

reschedule tasks to other machines if needed. Rescheduling usually accompanies a

resubmission of input files, which delays task execution even more.

In this paper, we refer to the process of losing resources as a situation where

a non-dedicated resource is requested to be used again by its regular local user.

By local users, we mean users that have an account in the site to directly access

the cluster management system (e.g., PBS). In opposite, we also consider in this

paper the existence of grid users that are users that access resources from several

sites (being possible that some of these resources were cluster resources) around the

world, directly or through some grid scheduler, and want to run grid applications

on them.

The lost of resources can happen in different scenarios. It can happen because

the grid is stealing cycles from a machine that is not being fully used (e.g. public

computing [4] projects) or because the site configuration, in order to prioritize local

users, allows preemption of grid tasks being executed when a local demand arises,

ensuring that the grid will not delay local users’ applications. Yet, if the resource is

part of a cluster, it can be delivered to the grid when idle, due to scheduler queue

fragmentation, using the technique presented in [18], and returns to the cluster

when a regular cluster request is performed by a local user.

The motivation behind the Site Resource Scheduler (SRS) is to simplify and

optimize the utilization of site resources by grid users, and also enhance the man-

agement of these resources regulated by site policies. SRS provides a virtual rep-

resentation of available site resources (resource virtualization) to the grid, which

are used by grid users as real resources (Figure 1 (b)). Another goal of SRS is

to minimize scheduling and resource management overheads performing site-level

scheduling, i.e., tasks submitted to virtual resources are internally scheduled to real

machines, and internal site faults, due to resources lost, are handled transparently

by SRS whenever suitable (e.g. BoT job, parameter sweep job).

Resource virtualization is achieved using an abstraction of all computational

resources presented in the site. Users requesting resources do not receive real ma-

chines from the site. Instead, an amount of “virtual resources” is supplied to users.

The goal of such approach is to hide resources unavailabilities, avoiding both re-

submissions and rescheduling of tasks. This approach introduces a new way of

representing the site capacity in the interaction with regular grid schedulers.

3.1. Resource Virtualization

In order to provide the virtualization level proposed, real machines should not be

directly delegated to users. Instead, an abstract measure, describing the current

site capacity available to that, should be given. The same approach is used by

users: their requirements must be described as an abstract measure, being the site

responsible to translate it to a real amount of resources. Another important issue

Parallel Processing Letters

related to resource usage is that resources should not be monopolized by a single

user: in order to improve overall grid performance, the site must serve as many

users as possible, without harming local users.

Using SRS, the exposure of site resources to the grid shifts from a set of real

resources to a metric describing site’s capacity. Such capacity varies in function of

a site’s current load, i.e., the amount of resources that is in use in a given moment,

and based on the access rights of the grid user requesting sites’ capacity.

The usefulness of deploying an abstract measure of a site’s capacity, as well

what kind of abstraction representation should be used depends on how the grid

scheduler maps tasks to resources.

One possible measure of site’s capacity delivered to grid users is the amount of

virtual resources available to them. Using this approach, a user receives a number

of virtual resources and deals with them as if they were real resources. However,

each virtual resource can represent zero, one or multiple actual resources: it will

depend on SRS internal decisions and will not be informed to the user an may vary

in time. A virtual resource mapped to zero resources means that tasks submitted

by the user to that resource will be queued in the scheduler’s queue and will be

executed when possible.

A virtual resource mapped to one resource will sequentially forward tasks di-

rectly to the resource on where this virtual resource is mapped. If more than one

task were submitted at once, the first one will be executed and the other will be

queued. A mapping from a virtual resource to multiple resources means that if more

than one task were submitted through that virtual resource, each task will simul-

taneously be submitted to a different physical resource (up to the limit of mapped

machines) and the tasks exceeding the amount of virtual machines will be queued

to a lately execution. It is worth noting that, using this approach, users are not

aware on the actual mapping in a given time between virtual and actual resources.

From the grid user perspective the (virtual) resources allocated to them are

always available: changes in the internal mapping between virtual and actual re-

sources are kept hidden from the users. Using this strategy, it is possible to avoid

a new data transfer and application submission, since the data is already stored

in the site and the task execution will be restarted when a new resource becomes

available to the user.

This approach is not useful if the grid scheduler is able only to sequentially

assign tasks to resources (e.g. due to application characteristics), i.e., a second task

will be assigned to a resource only after the first one finishes. In such a case, a

mapping from a virtual resource to multiple actual resources is not efficient: if the

virtual resource is mapped to two real resources, the second one will be idle, waiting

for another task from the user, and this task will not arrive until the completion

of the first. Thus, it is important that grid schedulers could send more tasks than

the number of virtual resources available in order to efficiently use the resource

virtualization feature provided by SRS.

When the grid scheduler is able to distribute tasks proportionally to the capac-

Scheduling and management of virtual resources in grid sites

ity of each available resource, a more abstract measure can be used. For example,

the method proposed in [23] uses benchmarks to determine resources capacity. We

suggest a site’s capacity measurement that also uses relative performance, but us-

ing several benchmarks, each one evaluating some aspect from the machine: per-

formance on floating point operations (e.g. CFP2000, from the benchmark suite

SPEC CPU2000 [1]), performance on integer operations (e.g. CINT2000 from the

same suite) and performance on I/O.

It is worth noting that there are other requirements to be considered by users

when describing job requirements. It is necessary not only to specify the capacity

required but also all specific requirements of the job. Job requirements include:

specific operating system or architecture, minimum amount of RAM, or specific

software running in the site (e.g. a Data Base Management System). Before re-

turning site’s capacity to users, these specific requirements should be considered,

with other site specific requirements, such as user access rights, current site load,

advanced reservation, and future load expectation.

3.2. Architecture

The SRS architecture is presented in Figure 2 and is composed by the following

modules:

• The Information module stores information about site resources and users.

This information is useful to improve scheduling performance and to enforce

local policies. Information about resources includes resource state (available or

not available to the grid), operating system, architecture, CPU rate and RAM

memory. Information about users includes user access rights and historic

information about usage of resources of a site;

• The User Interface module receives user requests and forwards it to the ap-

propriate module. Services available to grid users include those related to

resource management (e.g., determination of site availability, dedicated and

non-dedicated allocation and resources reservation), job management (e.g., job

execution, monitoring and cancellation), file management (e.g., temporary file

storage, persistent file storage, files listing and exclusion, file download), se-

curity and access control (e.g., user identification), and user accounting and

balance;

• The Resource Management module controls all site resources, assigning those

available to the grid to the Scheduling module and feeding the Information

module with information about resources utilization;

• The Scheduling module receives information about tasks submitted through

the User Interface module, information received from Resource Management

module about available resources and performs task mapping and execution.

Parallel Processing Letters

Accounting
module

interface
module

User

module
Security

Information
module

File
management

module

module
Scheduling

management
module

Resource

resources
Local

Internet

SRS

User

Fig. 2. SRS architecture.

This module also interacts with local resource managers in order to get access

to space-shared resources;

• The File Management module manages staged files. When files are requested

by user tasks, they are transferred to the local resource executing the task. It

also retrieves tasks results from the resources and stores them;

• The Security module is responsible to apply security protocols, defined by the

site administrators;

• The Accounting module accounts resource utilization and applies accounting

policies, if necessary, to resources.

Because of the high flexibility of the SRS architecture, the utilization of all

modules is not required. SRS can be used in combination with other grid middle-

ware, where middleware and SRS modules can be mixed in order to include extra

functionalities desired by the site administrator.

3.3. Job Execution

In this section we describe the steps to execute jobs in a site using SRS. The first

step is to query SRS to obtain current site’s capacity available to the grid user.

The query includes client’s identification (e.g. credential) and a description of user

job requirements. This information is necessary in order to return the correct site’s

capacity according to user access rights and job requirements.

After receiving information about site’s capacity, a user can make a request for

an amount of the overall site’s capacity. After the reception of requests confirmation,

jobs are submitted to SRS. Each job submission is executed using a job specification

which contains information such as: files being staged, storage method (temporary

or persistent), application name, procedure to handle output files, etc. For each job

submission, SRS returns a job identifier (job ID), which is used to interact with the

job through SRS (e.g., start execution, monitor activity, stop execution, retrieve

output files, etc).

Scheduling and management of virtual resources in grid sites

Internally, SRS aggregates resources obtained from different places, for example,

a cluster managed by PBS [6], a cluster managed by Crono [17], or a set of machines

managed by a Condor [16] pool. Grid tasks are sent to these resources and executed

until the resource be requested by a local user. A grid task canceled due a local

request returns to the SRS execution queue to be mapped to another available

resource, and this action are not communicated to the grid user: queries from the

grid user about the execution status will return “running” even if the tasks were in

the scheduler queue. If the job failure are not caused by preemption nor by physical

resource failure, the task will be returned to the user as “failed”.

The steps required by SRS to job submission and management are somehow

provided by existing protocols (e.g. OurGrid’s protocol for resource description

and job management, GRAM’s JDF and JSDL [5] to resource description, and

WSRF [8] to job management). Thus, applying SRS with existing grid middleware

will not require changes in the applications. Instead, only a new module on each

site is enough to provide SRS functionalities, as presented in the Section 2.

It is worth noting that resources used by SRS can be non-dedicated (like Con-

dor resources and cluster resources with a transparent allocation approach [18]) or

dedicated. In the later case, SRS itself allocates resources from cluster managers

and use them to execute grid tasks. The decision of which approach to use is dele-

gated to the site administrator. We believe that allowing administrators to donate

dedicated resources in a non-dedicated way can incentive them to donate resources

to the grid due to the minimal interference caused to local users.

4. Simulation Experiments

In order to evaluate SRS in a large scale grid environment, a set of simulations was

performed with GridSim Toolkit v. 3.3 [20]. The goal of these experiments is to

show how SRS impacts on application’s execution time. To reach such goal, the

environment built for the simulation is based in a subset of the World Wide Grid

(WWG) [2] environment. WWG is a grid testbed encompassing 63 sites representing

21 countries from Europe, South and North America, Asia, and Oceania. By August

2006, there were over than 3000 resources in WWG.

Ten WWG sites compose the simulation environment, and are presented in Table

1. Each site contains a cluster of workstations composed by Pentium machines.

The table also presents for each site: name, location, processor type, and amount of

available machines. In the simulation all sites use SRS to manage their resources.

The simulation environment has a total of 325 machines.

GridSim requires the specification of resources capacity in Million Instructions

Per Second (MIPS). However, such information about WWG resources is not avail-

able. Thus, we defined two values for MIPS of resources, depending on the CPU

type: 344 MIPS and 684 MIPS, typical values for a Pentium 3 running at 800MHz

and a Pentium 4 at 2GHz, respectively, according the SPEC benchmark [1].

The load is simulated as follows. Each machine has a probability equal to the

Parallel Processing Letters

Table 1. Subset of the WWG used in the simulations.

Site name Location Processor type Machines
amata1.cpe.ku.ac.th Thailand Pentium 3 16
aurora.cs.usm.my Malaysia Pentium 3 18
carcara.lncc.br Brazil Pentium 3 32
galley.doshisha.ac.jp Japan Pentium 3 16
gideon.csis.hku.hk China Pentium 3 32
hathor.csse.manash.edu.au Australia Pentium 3 64
leo.cs.wcu.edu USA Pentium 3 16
mercury.sao.nrc.ca Canada Pentium 4 50
pacifica.iridis.soton.ac.uk UK Pentium 4 16
venus.gridcenter.or.kr Korea Pentium 4 65

site’s load (a simulation parameter) of being occupied at simulation start. In the

tests presented in this paper, the load was 80%. Thus, each machine will have a

probability of 80% of starting occupied. Afterwards, a periodic test is performed in

order to decide if more resources will be removed from the grid. In order to prevent

unavailability of machines in a site, even under high load, each resource returns

after 5 minutes to the grid.

The grid workload is composed by grid tasks from 5 different users. Each user

submitted 50 tasks to the grid. Each task requires the transfer of input files and

sends back output results. The file size applied for these files are 100kB, 1MB

e 10MB (typical values from real applications submitted in the OurGrid grid).

Execution time of each task has been set to 600 seconds in the first experiment and

to 900 seconds in the second experiment (in both cases, with a random variation

of 10% for each task). These times are related to the execution in the Pentium 3

machines.

In the simulation one virtual resource is created for each machine available to

the grid in the site. Two ways of deciding the amount of virtual resources supplied

to a user were tested. In the first one, virtual resources are supplied without virtual

resources redistribution. Thus, a user requesting all the machines will get them,

and further request from other users will not be attended. In the second approach,

virtual resources are redistributed among grid users when new requests arrive, in

such way that each user receives approximately the same amount of machines.

Complementary to the two ways of distribution of virtual resources, scheduling

is done either by FCFS or by an adaptive approach. The former is a simple first-

come-first-served (FCFS) approach: tasks wait in the queue and requests are served

in the same order they arrive in the queue. In the later, it was adopted a priority

policy where tasks from the user with the bigger difference between number of

virtual resources requested by him and number of tasks running in actual resources

have preference in the scheduling.

The combination of the two schemes of virtual resource distribution and two

schemes of mapping generated four SRS simulation scenarios, as showed in Table 2.

Scheduling and management of virtual resources in grid sites

Table 2: SRS simulation scenarios.
Mapping policy

FCFS priority-based
Resource
redistribution

no SRS1 SRS2
yes SRS3 SRS4

The simulation includes a simple non-dedicated scheme without SRS, where

tasks not completed due to the removal of the resource from the grid (in behalf of

a local user) are rescheduled by the grid user (through the grid scheduler). Each

scenario was executed 30 times, and the average completion time of all tasks from

all users was measured. The values obtained were normalized in function of values

obtained for the non-dedicated policy. This way, each value obtained represents

the relative performance of the policy in relation of the performance of the non-

dedicated policy.

Results presented in this section do not represent a comparison between WWG

performance with and without SRS at all: it only represents performance of SRS

against a non-dedicated policy of scheduling resources to grid users. The non-

dedication scenario, which is used as the reference time to evaluate SRS, is not the

default policy applied in the WWG’s sites. We have took advantage only of the

description of physical resources of WWG, and not of the policy used on each site.

Figures 3 and 4 show, respectively, results from the experiments composed by

tasks with 600 and 900 seconds. The unit used in the figures is the average execution

time of each approach, normalized with the time obtained to the non-dedicated

policy. From the analysis of results from Figure 3 (600 seconds), we see that both

SRS1 and SRS2 introduced performance degradation for all file sizes. This overhead

varied from 1% (SRS2 for 1MB) up to 23% (SRS1, 1MB). On the other side, SRS3

and SRS4 presented a performance increase, reducing the overall execution time up

by 27% (SRS4, 1kB), due to the resource redistribution policy, which benefits all the

users, helping to reduce execution time of their jobs. Without redistribution, users

that request resources earlier than the others will get more resources and improve

their single performance, but the other users will have their performance harmed,

increasing the overall execution time.

Increasing tasks size to 900 minutes, as presented in Figure 4, makes the per-

formance of SRS1 only decrease when transferring 1 kB files. In the other 2 cases,

a small enhance in the performance was noticed. Simulations showed increase in

performance for most of the cases, in which the best result was 67% (SRS4 with

1kB file transfer).

However, in the case where 10MB of data are transferred, all the scenarios pre-

sented similar performance, with a performance loss in SRS4 of 4% (this is the only

case where SRS4 presents loss of performance). SRS3 is the only policy that pre-

sented a performance increase for all cases, while SRS2 only enhanced performance

transferring 10MB files in tasks of 900 seconds.

Parallel Processing Letters

File size:1kB File size: 1MB File size: 10MB

0

1

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

��

1

1.18 1.17

0.74

H
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HHH

H
H
HH

0.73

.

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

��

1
.

1.23

1.01
0.95

H
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH

H

H
H
HH

0.8

.

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

��

1
.

1.19

1.03
0.95

H
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HHH

H
H
HH

0.83
.

Policy: �
���
�� Non-dedicated SRS1 SRS2 SRS3

H
HHH
HH

SRS4

Figure 3: Normalized average execution time of 600-seconds tasks.

File size:1kB File size: 1MB File size: 10MB

0

1

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

��

1

1.16

1.33

0.67

H
HH
HH
HH
HH
HH
HH
HHH

H
H
HH

0.43

.

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

��

1
.

0.81

1.13

.

0.55 H
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HHH

H
H
HH

0.69

.

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

��

1
. 0.9 0.93. 0.93. H

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HHH

H
H
HH

1.04

.

Policy: �
���
�� Non-dedicated SRS1 SRS2 SRS3

H
HHH
HH

SRS4

Figure 4: Normalized average execution time of 900-seconds tasks.

Based on the results presented we can conclude that a policy with resources

redistribution may enhance overall grid performance. Regarding the scheduling

scheme, both FCFS and priority-based scheduling can increase system performance

depending on the workload.

5. Case Study

In order to validate our proposal, we developed a SRS prototype for the OurGrid

middleware used in a Brazilian grid composed by 15 sites with more than 300 ma-

chines. Because of the open architecture of OurGrid and its ability to link additional

modules, we implemented the SRS module using the same communication protocol

used in OurGrid to maintain its compatibility with the original implementation,

and were able to perform tests with an already deployed infrastructure.

In OurGrid, a resource, called GuM, is defined according to correspondent ma-

Scheduling and management of virtual resources in grid sites

chine properties, because there is a 1:1 relation between a GuM and the resource

it represents. Although OurGrid’s high configurability, using its original protocol

reduced the possibilities to represent a site’s capacity, as MyGrid (OurGrid’s grid

scheduler and resource broker) can only manage, monitor, and submit tasks to

GuMs.

To keep compatibility between OurGrid and SRS, we adopted the utilization

of a metric representing the number of virtual resources available to grid users,

called SRSGuMs. The number of SRSGuMs in a given time is the same number of

processors (in opposite of the number of computers) available in the site. SRSGuMs

receive properties of a machine that has originated it. For instance, if a machine is

a dual processor Itanium 2 with 1024MB of RAM, SRS will generate 2 SRSGuMs,

each one described as a single processor Itanium 2 with 1024MB and having all the

other properties from the real machine.

These virtual resources are generated to give an estimate of computing capacity

of the site. It is possible that in a moment there will not be any machine available to

be mapped to a SRSGuM. In this situation, a task submitted to the SRSGuM keeps

waiting in the scheduler queue until one machine becomes available, as previously

described.

SRSGuMs are made available to clients as they request resources. Although

OurGrid maps a GuM directly to a physical resource and every request is forwarded

to that machine, using SRS those requests are forwarded to a virtual resource in the

machine running SRS, and this resource forwards the request to the module able to

execute the job. If the service is related to task execution, the request is forwarded

to the Scheduling module. If the service is related to file management, the request

is forward to the File Management module. Users are not aware that they are not

accessing a real resource. From their point of view, all requests are forwarded to

real machines.

5.1. Evaluation

To analyze the impact of management performed by SRS using OurGrid, some

experiments have been performed using two OurGrid sites located 4000 Km apart.

One site has been used as a resource consumer (LSD/Campina Grande), and the

other as a supplier (CPPH/Porto Alegre), hosting a cluster whose machines have

been delivered opportunistically to the grid. The cluster is composed of 48 machines

and 67 processors: 11 Pentium 3 1GHz with 256MB of memory, 10 Pentium 4

1.6GHz with 256MB of memory, 9 Dual Pentium 3 550MHz with 256MB of memory,

4 Dual Pentium 3 1GHz with 256MB of memory, 8 Pentium 4 2.8GHz with 2.5GB

of memory, and 6 Dual Xeon 3.6GHz with 2GB of memory.

The test comprised the execution of 12 tasks, each one with execution duration

of 5 minutes (controlled by a sleep call). Each task was assigned to a machine, and

at any moment a machine can run only one task. The experiment was executed

using the same file sizes used in the simulation: 100kB, 1MB, and 10MB (this is

Parallel Processing Letters

Table 3. Results for 12 tasks of 5 minutes.

File size OurGrid OurGrid + SRS SRS Overhead
0 312s 313s 0.32%
100kB 396s 398s 0.51%
1MB 1267s 1283s 1.26%
10MB 18530s 10100s (performance increase of 45.5%)

GRAMClient SRS Cluster Manager2

Cluster Manager3

Cluster Manager1

Internet

Fig. 5. SRS as a module between GRAM and site resources.

the amount of information to be transferred for each execution). To simulate a

non-dedicated execution, resources were randomly removed from the grid every 10

minutes. Table 3 compares the results obtained in the OurGrid middleware with

and without SRS. Each line presents results for a specific amount of file size.

As expected, we can see that using SRS significantly reduces the execution

time of jobs that perform larger file transfers. This is usually the case in sites that

provide non-dedicated access to its resources, were tasks are more often rescheduled.

In other types of sites, we observe that SRS can be used with low performance

impact to grid users. When a job requires a large amount of data, staging files in

SRS before transferring to the real resource provides an efficient reduction of job

execution time. When tasks do not require file transfers, both approaches present

an equivalent performance, as showed in the first line of Table 3.

Observing the results obtained we can conclude that the utilization of SRS

caused a little overhead for small files. Application execution time increased when

machines do not fail or files are too small to cause an impact in resubmission. This

happens due to the inclusion of the additional scheduling layer. We consider this a

tolerable overhead since in most cases grid tasks will need to be rescheduled due to

the dynamicity of resources in the grid, resulting in a higher potential performance

gain using SRS.

5.2. SRS on Globus grids

Deployment of SRS in a Globus grid is another issue being considered in our re-

search. In the proposed approach, SRS would be deployed as a layer between GRAM

and all site resources, as presented in Figure 5. This approach allows using a single

GRAM to manage all site resources, instead of a GRAM for each site resource. It

Scheduling and management of virtual resources in grid sites

happens due to GRAM’s point of view, there is only one resource to be accessed,

the one managed by SRS. Resources delivered to users are virtual ones, in the same

way it has been done in the OurGrid case study.

It is necessary, however, to supply a GRAM Adapter able to interact with SRS,

which should be able to interact with all site resources. With this model, there is

no change in the GRAM Front end, thus there is no need to change grid schedulers.

File management and information services do not need to be implemented because

it is possible to use GridFTP [3] and MDS [22] to perform these tasks. It is worth

noting that Globus multijobs are the most appropriate kind of application to be

used, as this kind of job can be easily fractionated and distributed among real

resources, after being submitted to a virtual resource by the user.

6. Conclusion and Further Work

As the number of resources available in grids increases, scalability of grid sched-

ulers becomes a relevant issue to grid computing. The management of hundreds

(even thousands) of heterogeneous resources spread around the world may have

a huge impact on the performance of task scheduling. In this context, we pre-

sented in this paper an approach to manage and schedule grid resources called Site

Resource Scheduler (SRS). It virtualizes not only all heterogeneous and possibly

non-dedicated resources but also clusters running different schedulers of a site into

a powerful machine, simplifying management and scheduling in grids.

We showed through empirical experiments on a real grid and also with sim-

ulation that the main advantage of this approach is an overall reduction in the

execution time of tasks (up to 57%) in most scenarios. This improvement is a di-

rect consequence of the proposed two-level scheduling that is able to better react to

non-dedicated resources. This scheduling scheme is also more scalable and increases

the fairness when accessing site resources. There are still some issues that need to

be addressed. Since the utilization of SRS does not imply a specific scheduling

heuristic, new scheduling heuristics could be developed to profit from the result-

ing two-level scheduling schema. We are also simulating SRS performance in other

environments in order to best evaluate its effectiveness.

References

[1] Standard performance evaluation corporation (spec). http://www.spec.org.
[2] World wide grid. http://www.gridbus.org/ecogrid/wwg/.
[3] W. Allcock. Gridftp: Protocol extensions to ftp for the grid. Global Grid Forum

Recommendation GFD.20. Available at http://www.ggf.org/documents/GFD.20.pdf.
[4] D. P. Anderson. BOINC: A system for public-resource computing and storage. In

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
2004.

[5] A. Anjomshoaa et al. Job submission description language (jsdl) specification v1.0.
Available at http://www.gridforum.org/documents/GFD.56.pdf.

[6] A. Bayucan. Portable batch system administration guide, 2000.

Parallel Processing Letters

[7] W. Cirne et al. Labs of the world, unite!!! Journal of Grid Computing, 4(3):225–246,
2006.

[8] K. Czajkowski et al. The WS-resource framework version 1.0. Available at
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

[9] K. Czajkowski, I. Foster, and C. Kesselman. Agreement-based resource management.
Proceedings of the IEEE, 93(3):631–643, 2005.

[10] C. A. F. De Rose et al. GerpavGrid: using the grid to maintain the city road system. In
18th International Symposium on Computer Architecture and High Performance
Computing, 2006.

[11] T. A. DeFanti et al. Overview of the I-WAY: Wide-area visual supercomputing. In-
ternational Journal of Supercomputer Applications and High Performance Com-
puting, 10(2/3):123–131, 1996.

[12] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In IFIP In-
ternational Conference on Network & Parallel Computing, volume 3779 of Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[13] I. Foster and C. Kesselman. The Globus toolkit. In The Grid: Blueprint for a New
Computing Infrastructure, chapter 11, pages 259–278. Morgan Kaufmann Publishers,
1999.

[14] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organizations. The International Journal of High Performance Computing
Applications, 15(3):200–222, 2001.

[15] Y. Kee et al. Efficient resource description and high quality selection for virtual grids.
In IEEE International Symposium on Cluster Computing and the Grid, 2005.

[16] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor – a hunter of idle workstations.
In 8th International Conference on Distributed Computing Systems, 1988.

[17] M. A. S. Netto and C. A. De Rose. CRONO: A configurable and easy to maintain
resource manager optimized for small and mid-size GNU/Linux cluster. In Proceedings
of the 2003 International Conference on Parallel Processing, 2003.

[18] M. A. S. Netto et al. Transparent resource allocation to exploit idle cluster nodes
for execution of independent grid tasks. In Proceedings of the 1st International
Conference on e-Science and Grid Computing, 2005.

[19] J. M. Schopf. Ten actions when grid scheduling. In J. Nabrzyski, J. M. Schopf,
and J. Wȩglarz, editors, Grid Resource Management: State of the Art and Fu-
ture Trends, chapter 2, pages 15–23. Kluwer Academic Publishers, Norwell, 2003.

[20] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. Constructing a grid simulation
with differentiated network service using GridSim. In Proceedings of the 6th Inter-
national Conference on Internet Computing, 2005.

[21] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In Grid Computing:
Making the Global Infrastructure a Reality, chapter 11, pages 299–336. John Wiley
and Sons, West Sussex, 2003.

[22] G. von Laszewski et al. A directory service for configuring high-performance distributed
computations. In Proceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, 1997.

[23] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. GridIS: an incentive-based grid scheduling.
In Proceedings of the 19th IEEE International Parallel & Distributed Processing
Symposium, 2005.

[24] Y. Zhang et al. Scalable grid application scheduling via decoupled resource selection
and scheduling. In Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid, 2006.

