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Consolidação dinâmica de servidores com atrasos de reconfiguração

controlados

RESUMO

A virtualização reapareceu nos últimos anos como solução para minimizar custos em data centers

decorrentes da subutilização de recursos. A possibilidade de dinamicamente alterar a capacidade de

máquinas virtuais e migrá-las de forma transparente entre servidores físicos resultou em maior flexi-

bilidade para atender mudanças repentinas em demanda computacional, minimizando a quantidade

de recursos físicos necessários. Este aumento em flexibilidade derivou novos modelos de computação

como utility computing e cloud computing. Um dos principais mecanismos nestes data centers vir-

tualizados é a consolidação dinâmica de servidores. Ele realiza periodicamente o mapeamento de

máquinas virtuais para servidores físicos de forma a atender mudanças de demanda, enquanto utiliza

um conjunto mínimo de recursos físicos para reduzir custos em consumo de energia. No entanto,

redefinir o mapeamento pode exigir migrar máquinas virtuais entre servidores físicos, o que pode

acabar atrasando a reconfiguração das máquinas virtuais para a nova capacidade. Este trabalho

apresenta algoritmos normalmente utilizados para consolidação dinâmica de servidores e avalia o

seu impacto na métrica de atraso de reconfiguração usando diferentes tipos de workloads reais e

sintéticos. Um algoritmo para consolidação dinâmica de servidores que controla o atraso máximo

de reconfiguração decorrente de um novo mapeamento é proposto. Os experimentos realizados com

esse algoritmo demonstram que ele provê maior controle sobre atrasos de reconfiguração e possui

baixo impacto na quantidade adicional de recursos necessários.

Palavras-chave: Virtualização; Consolidação Dinâmica de Servidores; Migração de Máquinas Vir-

tuais.





Dynamic server consolidation with controlled reconfiguration delays

ABSTRACT

Virtualization has reemerged in the last years as a solution to minimize costs in data centers due

to resources subutilization. The possibility of dynamically changing virtual machines capacities and

live-migrate them between physical servers resulted in a higher flexibility to attend sudden changes in

computing demand, minimizing the amount of physical resources required. This increase in flexibility

derived novel computing models such as utility computing and cloud computing. One of the key

mechanisms in these virtualized data centers is dynamic server consolidation. It performs periodically

the mapping of virtual machines to physical servers in order to attend changes in demand, while

using a minimal set of physical resources to restrain power consumption costs. However, redefining a

new mapping can require migrating virtual machines between physical servers, which eventually delay

the reconfiguration of virtual machines to a new capacity. This work presents traditional algorithms

used for dynamic server consolidation and evaluate their impact on the reconfiguration delay metric

using different types of real and synthetic workloads. An algorithm for dynamic server consolidation

which controls the maximum reconfiguration delay incurred by a new mapping is proposed. The

experiments performed using this algorithm show that it provides higher control over reconfiguration

delays and has a small impact in the additional amount of resources required.

Keywords: Virtualization; Dynamic Server Consolidation; Virtual Machines Migration.
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1. Introduction

In the last years, virtualization has returned to the computing mainstream, after a long period

of inactivity since its first appearance in the late 60’s, and it seems that it has definitely reappeared

to be included as an essential component in traditional computing architectures. Several software

and hardware enterprises are driving forces to optimize their products for virtualization, even in

areas where it was previously discredited by most experts1,2 [SOR07]. Virtualization is currently

present in different contexts, such as: enabling the portability of applications through different

platforms [LI98], making it feasible to execute concurrently different operating systems on the same

hardware [RAM99,BAR03], providing a controlled and secure environment to test and analyze risky

applications [HOO08,JIA06], promoting the efficient management of resources over computational

grids [KEA04,KEA05], among others. It is also the driving technology for new computing models

such as utility computing [RAP04] and cloud computing [BUY09].

One of the areas that virtualization presents considerable benefits is in data center management.

Data centers provide an adequate environment for hosting computing resources and critical applica-

tions, in order to guarantee higher security, fault tolerance and performance. Before the resurgence

of virtualization, data centers were directed towards guaranteeing these requirements using a physical

isolation model, where each application was deployed on a different physical server. This approach

was used to ensure that any issue happening with an application would not affect others. However,

this model also presented drawbacks. In order to guarantee good performance for applications,

physical servers were usually overprovisioned to attend application’s peak utilization. However, since

most applications do not present a stabilized peak utilization during all of its execution time, the

servers were most of the time underutilized. Each server represents a fixed cost, covering power

consumption, cooling and floor space, even when it is not being fully utilized. Studies show that the

average utilization of regular data centers are in the order of 10% to 15% [VOG08]. It meas that

a big slice of the resources are simply wasted, in order to guarantee the efficient isolation between

applications, and the proper performance when peak utilization is necessary.

The difference between traditional data centers and virtualized data centers is that applications

are deployed on virtual machines, instead of physical servers. The data center’s resource management

system defines the mapping of virtual machines to physical servers, being able to map more than one

virtual machine to each physical server. In each physical server, the virtualization software provides a

logic isolation between virtual machines, guaranteeing that security problems, faults or performance

variations in one virtual machine do not affect others located in the same physical server.

Another advantage provided by virtualization is regarding virtual machines configuration. Instead

of configuring each virtual machine to handle application’s peak demand, the dynamic configuration

feature of virtualization can be used to reconfigure the resources during execution whenever neces-

1Oracle and Virtualization at http://www.oracle.com/us/technologies/virtualization/index.htm.
2SQL Server 2008 Virtualization at http://www.microsoft.com/sqlserver/2008/en/us/virtualization.aspx.
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sary. Therefore, when an application demands more CPU or memory capacity, the virtual machine

can be transparently reconfigured to the required capacity. It avoids the overprovisioning of resources

that were common in traditional data centers.

In cases that the virtual machine can not have its capacity increased due to capacity limitations

in its current physical server, the virtual machine can be dynamically migrated to another physical

server with enough capacity using a technique called live-migration. This technique allows migrating

active virtual machines during application’s execution. This technique can also be used to aggregate

virtual machines placed in different physical servers to a fewer number of physical servers, in order

to reduce the number of active resources and minimize the corresponding costs.

In order to keep up with the dynamic behavior of the applications, the changes in virtual machines

capacities are periodically reevaluated and a new mapping of virtual machines to physical servers

is generated, aiming at minimizing the amount of physical servers required. This process is called

dynamic server consolidation, and it provides a direct reduction in data centers costs, maintaining

active only the required resources based on actual applications demands.

Despite the higher flexibility available in virtualized data centers, the dynamic server consolida-

tion process can have a direct impact on applications’ performance. In the previous model, with

overprovisioning, applications could use the additional required capacity whenever wanted. The ad-

ditional capacity was already available to the application in the physical server. In virtualized data

centers, changes in capacity require reconfiguring virtual machines capacities, and possibly migrating

them between physical servers to attend the new demands. This process can result in significant

delays to complete the reconfiguration, which can result in degradation of application’s performance

during this time. Therefore, guaranteeing minimal reconfiguration delay is important to assure that

applications will obtain the required additional capacity on time.

This work investigates how dynamic server consolidation algorithms affect the reconfiguration

delay of virtual machines, and proposes an algorithm that performs dynamic server consolidation

considering the impact on the reconfiguration delay. The objective of the algorithm is to provide

higher control over the reconfiguration delay, in order to guarantee that, for each new mapping

generated by the algorithm, the reconfiguration delay of all virtual machines stays below a given

threshold. When it is not possible to guarantee it, the algorithm should minimize the number of

virtual machines that have reconfiguration delays higher than the specified threshold. Current works

that deal with similar problems focus on the minimization of migrations, using only the individual

migration cost of each virtual machine, without considering the network behavior when performing

several migrations simultaneously. In this work, the max-min fairness model is used to simulate the

concurrent utilization of the network by several migrations and to generate a better approximation

on migration cost. The migration cost is used eventually to obtain the reconfiguration delay of each

virtual machine.

The text is divided as follows. Chapter 2 presents a background of the main topics addressed

in the work, such as: virtualized data centers, virtualization, and server consolidation, jointly with

a review of the main works related to dynamic server consolidation. Chapter 3 describes the work’s
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motivation, presents a detailed formalization of the problem, and proposes an algorithm that per-

forms dynamic server consolidation with controlled reconfiguration delays. Chapter 4 presents an

evaluation of the proposed algorithm and comparison with other algorithms used for dynamic server

consolidation. Finally, Chapter 5 presents the conclusions of the work.



20



21

2. Background

This chapter presents a review on virtualized data centers, describing its main benefits over

traditional data centers. It also describes its importance in new computing models such as utility

computing and cloud computing. Considering that virtualization is the driving technology in virtual-

ized data centers, an overview of the history of virtualization is presented, along with a description

of the main virtualization techniques. After that, two important features of virtualization are pre-

sented: dynamic configuration and live migration. These features correspond to the base techniques

used for server consolidation. An overview of server consolidation benefits, types and challenges is

presented. It is also described the relation of the server consolidation problem with bin packing,

and some common implementations using heuristics and linear programming are presented. Finally,

a set of related works that correspond to the state of the art in dynamic sever consolidation are

described, jointly with their main contributions.

2.1 Virtualized data centers

In the last years significant changes happened in data center infrastructure and provisioning

model. The data center infrastructure has changed from a model where each application was de-

ployed on a unique and specific physical server, to a model where applications are deployed on virtual

machines, vanishing the tight dependency that existed between software and hardware. This gives

the freedom for the resource manager to place each virtual machine in any available physical server.

Virtual machines can even be instantaneously migrated between physical servers when required with

insignificant downtime using migration techniques. Provisioning virtual machines can be performed

orders of magnitude faster than when dealing with physical servers. When necessary, the capacity of

a virtual machine can be dynamically changed, without requiring to shut it down, as required using

physical servers. Virtual machines can be aggregated in fewer physical servers, with guaranteed

isolation regarding performance, fault tolerance, and security.

All these changes resulted in opportunities to decrease internal costs, maintaining a cost-effective

infrastructure, and provide an agile provisioning mechanism, in which virtual machines can be dy-

namically provisioned on demand, and resource capacity can be modified during execution to attend

changes in application demands. The costs with a virtualized infrastructure scale in direct relation

to the effective utilization of its resources, i.e., the number of active physical servers is determined

by the current demand. All these changes enabled a much more cost-oriented and agile resource

management in data centers. Jointly with this changes, a new computing model has emerged, the

utility computing model [RAP04], which has virtualization technology as one of its key compo-

nents [BUN06].

In the same way that happened decades ago with water, gas and electricity, computing is also

being transformed in an utility service. Instead of using the “one-application-per-server” allocation
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model to increase reliability, and over-provisioning resources based on peak-load conditions to assure

quality of service, utility computing is based on a shared and flexible infrastructure, where utilization

of resources is improved and clients can increase or decrease the amount of resources based on

its applications demands [AND02]. Moreover, utility computing decreases operational costs with

power consumption and cooling, since the workload can be easily aggregated using only the necessary

resources, letting unused resources, for example, in a power saving mode.

In utility computing, clients use computing resources when, and as much as wanted, and pay

only for the amount consumed, using the “pay-as-you-go” model. The goal of utility computing is to

provide resources in a straightforward and fast way to clients, with low or even without initial costs,

and charge clients per resources utilization. This model is employed by the recent Cloud Computing

model, and virtualized data centers represent the infrastructure layer of this model. Currently

there are several enterprises that deliver infrastructure on demand, using the utility computing

model, to be used in Cloud Computing scenarios. Some examples include: Amazon EC2 (Elastic

Computing Cloud) 1 and Sun Grid Computing Utility [SUN07]. Virtualization is considered the

driving technology in all these novel approaches to provide, consume and manage computing.

2.2 Virtualization

Virtualization aims at extending, through an indirection layer, the functionalities of a hardware or

software resource. Some of these functionalities are: enable the interoperability between resources

that do not implement the same communication interface, provide the multiplicity of a resource

or unification of several resources, simulate resources that do not exist, provide a more efficient

utilization of resources in a transparent manner, among others [SMI05]. Considering this concept,

there are several types of virtual components, virtual devices, or even virtual machines.

A virtual machine is an abstract environment provided by a virtualization software called hy-

pervisor, or virtual machine monitor (VMM). The platform used by the hypervisor is named host

machine, and the module that uses the virtual machine is named guest. The hypervisor aims at

provisioning virtual machines and performing the connection between virtual machines and the host

machine. Besides, the hypervisor also abstracts host machine resources to be used by the guest

through the virtual machine. Another important function is to provide the isolation between virtual

machines in the same host machine, guaranteeing its independence from each other [NAN05].

The utilization of virtual machines started in the late 60’s. At that time, computers were rare

and very expensive. Besides, they could handle only one task at a time from a single user. Due

to the increase in demand to use computers, it was necessary to develop a mechanism to allow

concurrent utilization of the computer by several users and also guarantee the isolation between

users applications. At that time, IBM launched the first computer with virtualization support, the

mainframe 360/67. The machine had an abstraction layer in software called virtual machine monitor

(VMM), which partitioned the hardware in one or more virtual machines [GOL74]. This software

1http://aws.amazon.com/ec2
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was the VMM CP-67, which was implemented as a time-sharing system presenting to each virtual

machine a complete System/360 computer. It performed the multiplexing of computer resources

between virtual machines. Each user received a unique system by the VMM, sharing the same

hardware, and providing an illusion of exclusive access to the real hardware [CRE81]. Later on, the

VM/370 (Virtual Machine Facility/370) was developed including several optimizations. It executed

in the System/370 Extended Architecture (370-XA) [GUM83], which had specific instructions to

optimize the virtualization performance. In this system, each virtual machine was a System/370

replica.

In the 70’s and 80’s the first operating systems with multitasking support started to appear.

Besides, the hardware costs started to decrease, facilitating the acquisition of new machines and re-

ducing the need to share resources. Therefore, the need of a virtualization layer started to disappear,

incurring in a simplification in the hardware regarding virtualization support.

In the 90’s, due to the appearance of the personal computer (PC), there was once again a

significant reduction in hardware costs, facilitating the acquisition of a huge amount of computers by

enterprises [ROS04] and the utilization of the “one-application-per-machine” model to ensure higher

fault tolerance, security, performance and availability. In the late 90’s, some of the virtualization ideas

reappeared, but with different goals. The development of the Java technology by Sun Microsystems,

aimed in developing a virtual machine that could be executed over different platforms. Besides

portability, the project also included security requirements, obtained through isolation between the

application and the host machine. In the University of Stanford, researchers analyzed the utilization

of virtual machines to facilitate the utilization of traditional operating systems in massively parallel

processing (MPP) machines, in order to facilitate the programming of these machines. The goal

using virtualization was to transform a MPP machine into a machine with traditional architecture.

This project originated the company VMware Inc..

Currently, the utilization of virtualization is becoming widespread again [ROS05]. Several com-

panies are emerging to develop virtualization technology (e.g., Citrix Systems, Inc. 2, VMware Inc.
3, Parallels 4), and the main hardware companies are modifying their products to enable the efficient

support of virtualization (e.g., Intel-VT [NEI06,UHL05], AMD Pacifica [AMD05]).

One of the main reasons for the reappearance of virtualization is due to the low utilization of re-

sources. The decrease in hardware costs leveraged the acquisition of several resources, enabling the

utilization of one application per machine. However, most of the time these resources are underuti-

lized. Studies indicate that data centers have an average utilization of 10% to 15%. The resulting

problems of this approach are the inefficient utilization of floor space, waste in power utilization

and high management cost. Virtualization aims at reducing this problem, consolidating servers in a

lower number of machines, reducing the required floor space and power costs, while guaranteeing

efficient isolation between the virtual machines in the same host. Other advantages include: facili-

2http://www.citrix.com
3http://www.vmware.com
4http://www.parallels.com
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ties in hardware maintenance, dynamically reconfiguration of virtual machines on demand, and high

availability support. It also provides higher flexibility to manage virtual machines (virtual machines

can be easily paused, resumed, reconfigured, cloned, migrated, etc).

There are different techniques available to implement virtualization. The technique considered

in this work is called platform or system virtualization, which is the same type of virtualization

provided in the 60’s by the first virtualization software. It aims at providing a complete environment

in which is possible to execute a complete operating system, as well as all processes executed on

the operating system. The Virtual Machine Monitor (VMM) or hypervisor enables the access to all

hardware resources by the guest operating system. The VMM stays right on top of the hardware

and is executed in privileged mode, while the guest operating system executes in lower priority.

It intercepts the interaction between the guest operating system and the hardware, and provides

controlled access to the resources provided by the hardware.

One of the main goals of this virtualization type is to provide platform replication, enabling the

concurrent execution of different operating systems in the same host. Virtual machines stay active

during the operating system execution and can be turned on or off without interfering in the physical

server functioning, or with the other virtual machines executing in the same host.

The VMM must be able to intercept all privileged instructions performed by the virtual machine

in order to give the appropriate treatment. Therefore it requires processor support in order to result

in efficient functioning [POP74]. There are basically 2 approaches to perform this interception: full

virtualization and paravirtualization.

In full virtualization [ROS04] all instructions performed in the virtual machine are analyzed by

the VMM to give the proper treatment when a privileged operation is executed. This type of

virtualization enables the utilization of unmodified operating systems. An example of software that

uses full virtualization is the VMware ESX Server 5.

In paravirtualization [ROS04], the guest operating system is modified in order to perform calls

directly to the VMM when a privileged instruction needs to be executed. This restriction prevents

the utilization of unmodified operating systems. Although the operating system is modified, the

libraries and applications running on top of the operating system do not need to be modified. An

example of software that uses paravirtualization is the Xen hypervisor [BAR03].

Paravirtualization was first developed in order to provide much better performance than full

virtualization, using the hardware available at that time. However, with the advances in proces-

sor development with virtualization support from Intel (Intel-VT [UHL05,NEI06]) and AMD (AMD

Virtualization [AMD05]), a hardware-assisted virtualization model is taking place, which aims at de-

creasing the performance lag between paravirtualization and full virtualization, enabling the efficient

execution of non-modified operating systems.

Another common type of virtualization is the operating system-level virtualization [NAN05].

It provides a replication of the operating system using the same kernel. Each virtual machine is

called a partition and has an isolated set of resources from the system. The kernel manages the

5http://www.vmware.com
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virtual isolation between partitions. The drawback of this approach is the restriction of each virtual

machine being a replica of the same kernel. However, it results in performance very similar to the non-

virtualized system, and also provides higher scalability due to the low cost of partitioning. Examples

of this virtualization type include Linux VServer [DL05], Parallels Virtuozzo Containers [PAR10],

FreeBSD Jails [NN05], OpenVZ [KOL06], and OpenSolaris Zones [TUC04].

2.2.1 Dynamic configuration

The possibility to dynamically change the capacity of a virtual machine is one of the great

benefits of virtualization. In the past, each machine had a fixed capacity. The only way to attend

changes in resources demands by an application located in a physical server, was to change the

physical server’s capacity including additional resources (e.g., memory, disk, network) or reinstalling

the application in a new physical server with higher capacity (usually when higher CPU capacity was

required). In both cases, it was necessary to shutdown the application, perform the change, and turn

it up again hoping that everything works as expected. Due to this low flexibility to attend changes

in computing demand, most physical servers were overprovisioned to applications, in order to attend

a estimated peak demand with acceptable performance. Since this estimated peak demand was only

achieved in rarely occasions, most of the time the machine was underutilized.

With virtualization, the capacity of a virtual machine can be dynamically changed to attend

increases in computing demand, and decreased again when low utilization is presented. If the

physical server hosting the virtual machine can not handle an increase in capacity, the virtual machine

can be easily migrated to another physical server with available capacity, with negligible downtime

using the live migration technique. The approach used by virtualization software to enable dynamic

configuration varies with each resource type. Some typical approaches used are:

Processor configuration The virtual machines are assigned Virtual CPUs, or VCPUs for short.

The VMM manages the creation, capacity configuration and mapping of VCPUs to physical

CPUs (or CPU cores). VCPUs can be created and configured dynamically. The dynamic

configuration affects the functioning of the VCPU scheduler (e.g., BVT [DUD99], SEDF or

Credit), inside the VMM, which provides the sharing of physical CPUs to the VCPUs according

to each VCPU current configuration. VCPUs can also be associated exclusively to use one or

more physical CPUs. This process is called pinning and provides higher performance to the

virtual machine, since it won’t be preempted by other virtual machines having VCPUs assigned

to the same CPU.

Memory configuration Memory configuration is usually performed using a technique called bal-

looning [WAL02]. This technique enables the dynamic increase or decrease of the memory

assigned to a virtual machine in order to attend new demands. When more memory is re-

quired, the “balloon driver” inside the virtual machine is instructed to “inflate” allocating more

physical pages to the virtual machine. In the same way, the “balloon driver” can deflate to

deallocate pages.
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Network configuration Since the configuration of virtual network interfaces in the virtual ma-

chine is performed using regular network tools, the configuration of network capacity is also

performed using regular tools for traffic shaping and packet filtering such as htb and iptables.

Storage configuration Configuring storage is usually performed using mechanisms such as the

Logical Volume Management (LVM). It permits the utilization of logic volumes as virtual

machine storage. This mechanism enables the dynamic increase or decrease of a volume’s

size, besides the support for snapshots and creation of copy-on-write volumes.

The configuration of a virtual machine directly affects its performance. There are several works that

use the dynamic configuration feature of virtual machines to attend a determined quality of service in

specific applications. These works are based on a feedback control model [LIU04,WAN05,ZHU06,

PAD07], which analyzes application performance metrics and change virtual machines capacities to

cope with application demands, or a prediction model [XU06], forecasting the future application

behavior and adjusting virtual machines capacity accordingly. However, they perform only local

configuration, and migration is not considered during dynamic configuration.

2.2.2 Live migration

There are basically two types of migration: stop and copy, and live migration. In the stop

and copy approach, the virtual machine is paused, a copy of its current state is saved to disk, the

current state is transferred to another physical server, and the virtual machine is resumed in the new

physical server using the transferred state. Live migration is a powerful feature provided by most

virtualization solutions [NEL05]. It enables moving a running virtual machine from one physical

server to another with negligible downtime.

The live migration technique also copies the virtual machine current state to the destination

physical server, but the virtual machine stays online during most of the time, resulting in a downtime

of tens of milliseconds (e.g., downtime using the Xen hypervisor is from 30 to 60 milliseconds). In

this case the unavailability of the virtual machine is not noticed by its users. The live-migration

procedure is described by the following steps [CLA05]:

1. A destination physical server, previously chosen to host the virtual machine, reserves space to

receive the virtual machine. In case any problem happens, the virtual machine is not migrated

and keeps its execution in the source physical server.

2. During each iteration, memory pages from the virtual machine are transferred from source to

destination physical server. In the first iteration all pages are transferred. In the subsequent

iterations only the modified pages since the last iteration are transferred. This process repeats

until there is only a small percentage of dirty pages to be transferred or the number of transfers

attempts for this migration have reached a specified limit. These parameters - percentage of

dirty pages and number of transfer attempts - are defined in the virtualization software.
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3. In this stage the downtime period starts. The virtual machine is suspended in the source

physical server and the network traffic is redirect to the destination physical server. The CPU

state and remaining dirty pages are transferred to the new physical server. At this point, both

physical servers can continue to execute the virtual machine, i.e., in case a fault happens, the

source physical server can still keep the virtual machine running.

4. The destination physical server acknowledges the complete virtual machine reception to the

source. The source accepts and releases its allocation of the virtual machine. From this point,

the destination physical server is the current host for the virtual machine.

5. The virtual machine is activated. The device drivers and network are reconfigured in the new

host.

When a virtual machine migrates, its MAC and IP addresses migrate with the virtual machine.

Therefore, it is only possible to migrate virtual machines using the same level 2 network and IP

subnet. Currently there is no support to provide automatic remote access to the file system stored

in the source physical server when a virtual machine is migrated. Hence, a centralized storage

solution (e.g., SAN - Storage Area Network, or NAS - Network Attached Storage) is currently

required to guarantee that the file system is available on all physical servers.

2.3 Server Consolidation

Server consolidation is a key feature in current virtualized data centers. It uses the dynamic

configuration and live migration features of virtualization to assign virtual machines to physical

servers minimizing the number of physical servers required. In order to reduce costs, unused resources

can be turned off, or stay in a low power consumption mode. Server consolidation improves resources

utilization and decreases operational costs. It is currently one of the main reasons for the widespread

utilization of virtualization, due to its directly relation to costs reduction in enterprises’ data centers.

Besides, current studies indicate that resources in data centers are usually underutilized [AND02],

favoring the utilization of consolidation. The dynamic configuration feature enables that virtual

machines be configured on demand to the required capacity. Live migration enables that virtual

machines be transferred between physical machines with negligible downtime. It can be used when

a physical server can not handle the increase in capacity of a virtual machine, or when emptying a

physical server, moving its virtual machines to other physical servers, in order to reduce the number

of physical servers required to handle all virtual machines. The main benefits of server consolidation

are: improvement in resource efficiency and utilization, reduction in data center footprint, reduction

in power consumption and environmental impact for an IT organization. Server consolidation can

be classified in two different types [BOB07]:

Static server consolidation Static server consolidation considers that each virtual machine has

a pre-defined fixed capacity, and aims to map the virtual machines to physical machines in
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order to not overload physical machines’ capacities and minimize the number of physical

servers used. Virtual machines capacities are usually defined through observations of historical

average resource utilization. After initial static server consolidation the mapping may not be

recomputed for long periods of time, such as several months. The mapping change process is

usually performed off-line, i.e., all virtual machines are suspended, reassigned to new physical

servers, and resumed.

Dynamic server consolidation In the dynamic server consolidation, the changes in virtual ma-

chines demands are used to periodically remap virtual machines to physical servers in order

to reduce the number of physical servers. Unused physical servers are turned off or put in

a low power consumption mode. Each consolidation event happens on shorter timescales,

preferably shorter than the periods of significant variability of the virtual machines demands.

The virtual machines are dynamically migrated between physical servers when required using

the live-migration technique, in order to avoid service interruption.

Some of the challenges in server consolidation include: defining the correct periodicity to remap

virtual machines, performing an accurate forecasting of virtual machine capacity during the period

till the next consolidation event, decrease the intrusiveness of remapping virtual machines, attend

specific constraints, such as: avoid mapping a group of virtual machines to the same physical server

due to security issues, or try to map together virtual machines that communicate with each other

in order to decrease network latency.

The server consolidation problem, which consists in mapping a set of virtual machines with

different capacities to a set of physical servers in order to minimize the number of physical servers

required, is directly related to the classic problem of bin packing. There are several approaches in the

literature to solve this problem, in which the most common use heuristics and linear programming.

In the next sections the bin packing problem is reviewed, and its relation to the server consolidation

problem is presented. Common heuristics used to solve the problem are described, along with a

linear programming formulation.

2.3.1 Bin packing problem

Given a sequence L = (a1, a2, . . . , an) of items, each with a size s(ai) ∈ (0, 1], and subsets

B1, B2, . . . , Bm of unit-capacity bins, the bin-packing problem aims at finding the best packing of

items into bins such that the number of required bins is minimal (guaranteeing that the sum of the

items sizes allocated to each bin is less than or equal the bins capacity, i.e.,
∑

ai∈Bj
s(ai) ≤ 1 for

1 ≤ j ≤ m) . The bin-packing problem is classified as an NP-hard problem [COF96].

The bin-packing problem is used in several areas, such as: determining the rectangular compo-

nents that will be cut from material sheets in wood and glass industries, placing goods on shelves in

warehousing contexts, arranging articles and advertisements into newspaper pages, among others.

The server consolidation problem can also be seem as an application of the bin-packing problem,

where the virtual machines represent the items and the physical servers, the bins.
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The bin-packing problem presents several variations. One of these variations is called the multi-

dimensional bin packing problem. This variation represents items and bins sizes as a tuple of values.

This variation fits into a common virtualized data center scenario since each physical server capacity

and virtual machine demand can be represented by a tuple of resources quantities, such as CPU,

memory, network, storage, etc.

The server consolidation problem can also be classified as an offline variation of the bin-packing

problem since all virtual machines demands are know before start packing into the physical servers.

On the contrary, the on-line variation of the bin-packing problem states that each item should be

sequentially packed, with no knowledge about the subsequent items.

Common implementations of the bin-packing problem use techniques such as heuristics and linear

programming.

Heuristics

Heuristics is one of the most common techniques used to solve the bin-packing problem, and

consequently can also be used to solve the server consolidation problem. The main goal of heuris-

tics is to find good solutions at a reasonable computational cost, however it does not guarantee

optimality.

There are several heuristics for the general bin packing problem. Some of the most commonly

used are: next-fit, first-fit, best-fit, worst-fit and almost worst-fit. Each heuristic receives a set

of bins and items with respective capacities and returns a feasible packing of items to bins. The

strategy used by each heuristic is presented as follows [COF96,KOU77]:

Next-fit The next-fit heuristic keeps only one bin opened each time. Each item is packed to the

open bin if it has enough spare capacity to hold the item, otherwise the bin is closed, and a

new empty bin is opened to pack the item.

First-fit The first-fit heuristic searches available space through all bins and packs each item to the

first bin with enough capacity to hold the item.

Best-fit In the best-fit heuristic, each item is packed to the bin that can hold the item leaving the

lowest remaining space in the bin.

Worst-fit In the worst-fit heuristic, each item is packed to the non-empty bin that can hold the

item leaving the highest remaining space in the bin. If there is no feasible bin, it allocates a

new bin and packs the item to this bin.

Almost worst-fit Each item is packed to the non-empty bin that can hold the item and is the

second bin that leaves the highest remaining space in the bin. If there is only one feasible bin,

it packs the item to this bin. If there is no feasible bin, it allocates a new bin and packs the

item to this bin.
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These heuristics process each item without knowing anything about the other items, therefore they

are usually used in the online bin packing problem. In the offline bin packing, when all items are

know in advance, it is possible to perform a slight optimization. Before applying the strategy, the

items are sorted according to its size in decreasing order before start packing. Considering that in

the server consolidation problem the item and bin sizes are represented by tuples, it is necessary

to define the ordering model that should be used. In this specific scenario, the sorting is based

on the lexicographic order [KOU77], which stands that, given two ordered sets A = {a1, a2} and

B = {b1, b2}, A < B if a1 < b1 or a1 = b1 and a2 < b2. The lexicographic order can be readily

extended to sets of arbitrary length by recursively applying the same definition. After sorting the

items, each heuristic applies its own strategy to pack the items to bins. This optimized version of the

heuristics are called: next-fit decreasing, first-fit decreasing, best-fit decreasing, worst-fit decreasing,

and almost worst-fit decreasing. They usually provide better results than their online versions.

Linear programming

Another common technique used to solve the bin-packing problem is linear programming. The

main benefit of linear programming over heuristics is that it results in an optimal solution. However,

it has much higher requirements in terms of computing power and time.

Linear programming is a technique used to solve optimization problems, which consists of min-

imizing or maximizing an objective function expressed in terms of a linear equation and a set of

linear and non-negativity constraints. It finds the optimal set of values to be used in the decision

variables (unknown values) which minimize or maximize the objective function.

Linear programming problems can be solved using different methods, such as the simplex, interior

point, and branch and bound methods. Linear programming problems usually rely on a linear

programming solver to be solved. Examples of academic and commercial solvers are: SCIP [ACH04]

and CPLEX [ILO07].

In linear programming, the decision variables are real numbers. When dealing with only integer

decision variables or a mix between real and integer decision variables, it is called integer linear

programming (or integer programming), and mixed integer linear programming (or mixed integer

programming) respectively. These variations usually present new obstacles and require different

methods to be efficiently solved.

The liner programming formulation of the server consolidation problem requires only integer

decision variables. Therefore it is classified as an integer linear programming problem. It has

as parameters the sets P , V , and R, representing respectively the set of physical servers, virtual

machines and resources; and arrays ck
j and uk

i , representing respectively the capacity of physical server

j over resource k, and the demand of virtual machine i over resource k. The decision variables of the

problem are: a binary array xij representing the mapping of virtual machines to physical servers (xij

is equal to 1 if virtual machine i is mapped to physical server j, and 0 otherwise), and a binary array

yj representing the utilization of physical server j in the mapping. Figure 2.1 shows the formulation

of the problem. The objective function aims at minimizing the total number of physical servers
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used. The first constraint guarantees that each virtual machine is mapped to only one physical

server. The second constraint deals with physical server capacities, guaranteeing that the sum of

the demands of each virtual machine mapped to a physical server for a given resource do not exceed

physical server’s capacity on this resource. The third constraint is used to set the variable yj to 1

if the physical server is used, and 0 otherwise.

minimize
∑

j∈P yj

s.t.∑
j∈P xij = 1 ∀i ∈ V∑
i∈V uk

i ∗ xij ≤ ck
j ∀j ∈ P, ∀k ∈ R∑

i∈V xij ≤ yj ∗ |V | ∀j ∈ P

xij ∈ {0, 1} ∀i ∈ V, ∀j ∈ P
yj ∈ {0, 1} ∀j ∈ P

Figure 2.1 – Dynamic server consolidation using integer programming.

2.4 Related Work

Server consolidation techniques have widespread adoption in virtualized data centers, however the

process of mapping virtual machines to physical servers is not trivial. Depending on the application

requirements and the resource provider goals, different strategies can be applied. A review of the

main works regarding server consolidation and its main contributions is presented next.

In [AND02], the authors propose static and dynamic server consolidation algorithms. The

algorithms are based on integer programming and genetic algorithms techniques. The algorithms

are evaluated using a production workload containing traces from enterprise applications. The results

present the benefits of using server consolidation, showing that the same workload could be allocated

in a much smaller number of physical servers. The genetic algorithm resulted in solutions as good

as with integer programming, with the benefit of reaching the solution much faster. In this work,

migrations are considered to happen instantaneously, i.e., there is no migration cost included in the

algorithms.

In [SPE07, BIC06], the authors present linear programming formulations for the static and dy-

namic server consolidation problems. Some extension constraints are also proposed, such as: limiting

the number of virtual machines in a physical server, guaranteeing that some virtual machines are

assigned to different physical servers, trying to aggregate a set of virtual machines in the same

physical server, mapping some virtual machines to a specific set of physical servers that contain

some unique attribute, and limiting the total number of migrations performed. Due to the high cost

of solving the linear programming formulations, an LP-relaxation based heuristic is proposed. The

heuristic works in two phases. In the first phase, the model is solved using a linear programming

relaxation, enabling virtual machines to be fractionally assigned to servers. In the second phase, a

branch and bound algorithm is used to assign the fractioned virtual machines in the first phase to
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physical servers. This approach reduces significantly the total time necessary to obtain solutions as

good as the ones obtained using linear programming.

In [BOB07], the authors propose a dynamic server consolidation algorithm which focus on mini-

mizing the cost of running the data center. The cost is measured using a penalty over underutilized

and overloaded physical servers, and over service level agreements (SLA) violations, defined as CPU

capacity guarantees. The algorithm is based on three phases: i) measuring historical data, ii)

forecasting the future demand, and iii) remapping virtual machines to physical servers. The first

phase is used to identify the workloads that can be most benefited from using the algorithm, i.e.,

workloads that can be efficiently predicted in order to provide a good forecasting of its behavior.

The algorithm is executed periodically in successive intervals, and minimizes the number of required

physical servers to support the virtual machines, guaranteeing that a defined percentage of physical

servers do not become overloaded during the interval. The algorithm is evaluated using production

workload traces.

In [KHA06], the authors propose a dynamic management algorithm, which is triggered when a

physical server becomes overloaded or underloaded. When a physical server becomes overloaded, the

algorithm migrates the virtual machine with lowest utilization to a physical server with least remaining

capacity, big enough to hold the virtual machine. If there is no feasible physical server, a new one

is allocated. This process repeats until the physical server is left in an average utilization rate.

When a physical server becomes underloaded, it selects a virtual machine with lowest utilization

across all physical servers, and tries to migrate it to a physical server with minimum remaining

capacity, enough to hold the virtual machine. This process repeats until there is no more benefits

in migrating virtual machines. The algorithm has the following objectives: i) guarantee that SLAs

are not violated, ii) minimize migration cost, iii) optimize the residual capacity of the system, and

iv) minimize the number of physical machines used. The SLAs are specified in a relation between

application metrics, such as response time and throughput, and resource utilization.

In [WOO07], the authors propose a management algorithm that monitors virtual machines

utilization and detect hotspots using time-series prediction techniques. When an overload situation

is discovered, it determines the required capacity of each virtual machine and generates a new

mapping of virtual machines to physical servers. The new mapping aims at minimizing the total

migration time, choosing to migrate virtual machines that reduce the amount of data copied over the

network from overloaded servers to underutilized servers. The work focus on overloaded situations,

but does not act when the system becomes underutilized.

In [VER07], the authors propose an architecture, called pMapper, with server consolidation

algorithms that takes into account power and migration costs in addition to the performance benefit

when placing applications to physical servers. The consolidation is performed on a heterogeneous

virtualized server cluster. Migration costs are defined according to virtual machine characteristics.

The results obtained from the related works show that dynamic server consolidation provides

several gains when used to consolidate virtual machines in data centers. Most of the related works

also deal with other constraints, such as: application SLAs, migration costs, and power consumption
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costs. These additional constraints aim at guaranteeing good performance to the applications

executing in the virtual machines, while also minimizing the overall costs required to maintain the

virtual machines running.
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3. Dynamic server consolidation with controlled reconfiguration delays

This chapter presents the proposed work of dynamic server consolidation with controlled re-

configuration delays. Initially the motivation of the work is presented. An overview of common

approaches used by related works is presented, together with a description of the different perspec-

tive analyzed by the proposed work, regarding controlling the costs due to reconfiguration delays in

dynamic server consolidation. After this, a detailed description of the dynamic server consolidation

with controlled reconfiguration delays problem is presented. Finally, a proposal of an algorithm that

solves the problem is described.

3.1 Motivation

Dynamic server consolidation is an essential procedure in efficient virtualized data centers. It

provides several benefits including: decrease in power consumption, efficient use of floor space,

higher resources utilization, and adaptability to variations in workloads demands. Current works

propose different alternatives to perform the best mapping of virtual machines to physical servers in

order to minimize the amount of physical servers required. However, other important goals are also

considered, such as: i) predicting workloads demand in order to pro-actively change virtual machines

configuration [KHA06,WOO07,BOB07]; ii) minimizing migration costs [KHA06,WOO07,VER07];

and iii) minimizing power consumption costs [VER07].

Despite the clear benefits of dynamic server consolidation in overall costs reduction, it also

presents a direct impact on applications performance. It is responsible for adequating virtual ma-

chines capacity, so applications can perform accordingly to the quality of service expected, without

underutilizing or overloading resources. However, in order to attend the changes in capacity demand,

migrating some virtual machines might be required.

Live-migration provides an efficient and transparent method to relocate virtual machines, since

the virtual machine remains available all the time. However, the amount of time required for mi-

gration completion can not be ignored. It has a direct influence on the time it takes to reconfigure

virtual machines capacity, and, consequently, attend changes in application demands. A large migra-

tion delay can represent a significant penalty in application’s performance. For instance, considering

the example in Figure 3.1 which represents a graph with an application’s demand over time, and

its corresponding virtual machine’s requested and provided capacities. It shows that an increase

in virtual machines capacity is requested in order to attend an increase in demand at t1, which

corresponds to the beginning of a consolidation event. However the change occurs only at time

t2. This time is defined as reconfiguration delay. During this time the virtual machine stays in an

overload mode, resulting in application performance degradation. The gray area in the graph show

the amount of resource demanded but not available to the virtual machine.
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Figure 3.1 – Impact of reconfiguration delay.

Despite of being directly related to the migration cost, the reconfiguration delay also applies for

virtual machines that are changing their capacities in their local physical server. For example, in order

to increase the capacity of a virtual machine locally, the physical server might need to dump some

of its virtual machines, in order to release some space for the increase of virtual machine’s capacity.

Therefore, the reconfiguration delay consists in the time it takes to migrate the virtual machines out.

As observed, in either way the reconfiguration delay depends directly on the migration cost. The

migration cost represents the time to complete a migration, and depends on several parameters, such

as: network characteristics and capacity, amount of data required to migrate the virtual machine,

and other transfers occurring at the same time.

Consequently, the reconfiguration delay has a direct impact on applications’ performance, since

it represents the duration of time that it will need to wait in order to have the requested capacity

attended. The reconfiguration delay depends directly on the amount of time required to perform

migrations in the virtualized data center, which depends, besides virtual machines capacities, on

the local network infrastructure and the available capacity. Therefore, controlling the maximum

reconfiguration delay in dynamic server consolidation can result in better applications performance

and a more efficient virtualized data center.

Related works that address similar problems, focus only on the migration costs, minimizing the

amount of memory transferred or the amount of migrations [KHA06,WOO07,VER07], but without

any analysis regarding migrations completion time. Based on the studies analyzed, there is currently

no work that considers network costs and aim at providing guarantees over the reconfiguration time

for virtual machines. Therefore, this work aims to investigate how current approaches behave in

relation to the reconfiguration delay, and propose a dynamic server consolidation algorithm which

provides guarantees regarding maximum reconfiguration delays in a virtualized data center scenario.
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3.2 Problem formalization

The scenario proposed is a virtualized data center composed by a set of virtual machines, which

are mapped to a set of physical servers. Periodically a new consolidation event is performed. Changes

in virtual machines demands are analyzed and a new mapping of virtual machines to physical servers

is derived. Based on this new mapping, virtual machines are migrated between physical servers. The

network topology used to connect the physical servers is a star. Each physical server is connected

to a crossbar switch using bidirectional links.

In each consolidation event, the goal is to generate a new mapping which attends virtual machines

demands, minimizes the number of required physical servers, and guarantees that the reconfiguration

delay for each virtual machine is below a given threshold. When the last constraint is not possible,

the new mapping should minimize the number of virtual machines which have their reconfiguration

delays above the given threshold. Table 3.1 presents a description of each term used in the problem

formalization.

Let P be the set of physical servers in the virtualized data center. The capacity of each physical

server j is given by ck
j , where k ∈ R. Set R represents the resources used to identify physical

servers’ capacity and virtual machines’ demand. In this scenario R = {cpu, mem}, i.e., CPU and

memory resources are used to characterize physical servers and virtual machines. Let V represent

the set of virtual machines, and uk
i be the new demand of resource k ∈ R for virtual machine i ∈ V .

Each consolidation event might use different values of uk
i for the virtual machines representing the

variations in virtual machines demand.

The current mapping of virtual machines to physical servers is given by a binary matrix x′

ij

which is equal to 1 if virtual machine i is mapped to physical server j, and 0 otherwise. The

new mapping that should be generated for the actual consolidation event, and which considers the

changes in virtual machines demands, is represented by the binary matrix xij , being equal to 1 if

virtual machine i is mapped to physical server j, and 0 otherwise. The mapping xij should respect

the following constraints: i) each virtual machine i is mapped to a single physical server j, i.e.,
∑

j∈P xij = 1 for all i ∈ V , and ii) the sum of the demands uk
i of virtual machines i mapped to a

physical server j do not overload its capacity ck
j , i.e.,

∑
i∈V xij ∗ uk

i ≤ ck
j for all j ∈ P , and for all

k ∈ R.

When the physical server mapped to a virtual machine in the new mapping is different from the

physical server defined in previous mapping, the virtual machine should be migrated from the source

physical server to the destination physical server. Let M = {i | xij %= x′

ij and i ∈ V and j ∈ P } be

the set of virtual machines that should be migrated. For each virtual machine i ∈ M , source and

destination physical servers are represented by srci and dsti respectively.

The network is represented by a directed graph G = (N, A), where set N is a set of nodes

composed by the set P of physical servers and the crossbar switch, represented by sw, which is

connected to all machines to form the star topology, i.e., N = P ∪ {sw}. Set A contains tuples

(s, d, bw), in which each tuple represents a unidirectional link between a source s and a destination
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Term Description
P set of physical servers
V set of virtual machines
R set of resources (e.g., CPU, memory, network)
ck

j capacity of resource k ∈ R for physical server j ∈ P
uk

i demand of resource k ∈ R by virtual machine i ∈ V
x′

ij current mapping, equal to 1 if virtual machine i ∈ V is mapped to
physical server j ∈ P , and 0 otherwise

xij mapping to be defined for the current consolidation event, equal to 1 if
virtual machine i ∈ V is mapped to physical server j ∈ P , and 0 otherwise

M set of virtual machines that should be migrated according to the mapping
defined by xij

srci, dsti source and destination physical servers for virtual machine i ∈ M
G = (N, A) graph representing the network composed by N nodes and A arcs

sw represents a switch that interconnects all physical servers and is one of
the elements of N

(s, d, bw) represents of a directed link ∈ A, from physical server s ∈ P to physical
server d ∈ P with bandwidth bw

migbwi available bandwidth to migrate virtual machine i ∈ V from srci to dsti

based on the max-min fairness model
u′ mem

i current amount of memory allocated for virtual machine i ∈ V
migdelayi migration delay of virtual machine i ∈ V
recdelayi reconfiguration delay of virtual machine i ∈ V

yj indicates the utilization of physical server j ∈ P in the new mapping,
equal to 1 if j is used, and 0 otherwise

σ threshold defined as the maximum reconfiguration delay
rdbreaki indicates a reconfiguration delay break for i ∈ V , equal to 1 if

recdelayi > σ, and 0 otherwise
α penalty included for each reconfiguration delay break

Table 3.1 – Terms used in the problem formalization.

d with bandwidth capacity bw. Since the network topology proposed considers bidirectional links,

for each physical server there are two tuples, one from the physical server to the crossbar switch

and other in the opposite direction, i.e., A = {(j, sw, bw) | j ∈ P and bw ∈ R} ∪ {(sw, j, bw) | j ∈

P and bw ∈ R}.

The flow control used to model the transfers (migrations) in the network is the max-min fairness

model [IOA05,NAC08]. This model is often considered in the context of IP networks carrying elastic

traffic. It presents the following properties: i) all transfers have the same priority over the available

bandwidth, ii) link bandwidths are fairly shared among transfers being allocated in order of increasing

demand, iii) no transfer gets a capacity larger than its demand, and iv) transfers with unsatisfied

demands get an equal share of the link bandwidth.

Given a set of network links with respective bandwidths and the links used by each migration, it

is possible to obtain the available bandwidth for each migration using a progressive filling algorithm
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which respects the MMF model properties. The algorithm used is the one presented by [BER92].

The algorithm initializes the bandwidth available for each transfer with 0. It increases the bandwidth

for all transfers equally, until one link becomes saturated. The saturated links serve as a bottleneck

for all transfers using them. The bandwidth for all transfers not using these saturated links are

incremented equally until one or more new links become saturated. The algorithm continues, always

equally incrementing all transfer bandwidths not passing through any saturated link. When all

transfers pass through at least one saturated link, the algorithm stops. Figure 3.2 presents an

example of the MMF model. The example presents a scenario with five nodes (A, B, C, D and SW).

Each node is connected to SW using two links, each one with unitary bandwidth capacity. There

are 5 transfers that are taking place: V1 from A to B, V2 from A to C, V3 and V4 from D to C, and

V5 from B to D. In this example, transfers V2, V3 and V4 will use each one 1/3 of the available

capacity, all having link l8 as bottleneck. Transfer V1 will use 2/3 of the available capacity, since it

shares link l1 with V2 which is using 1/3 of the capacity. Finally, transfer V5 uses the full capacity

since it does not share links l3 and l6 with any other transfer.
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Figure 3.2 – Example of MMF flow model

The migration of a virtual machine i ∈ M is performed using a single-path routing, which is

composed by two links, one from the source physical server to the switch, (srci, sw, bw) ∈ A, and

other from the switch to the destination physical server (sw, dsti, bw) ∈ A. Applying the available

links with bandwidths A and the used links for each migration in the MMF model, it is obtained for

each migrating virtual machine i the available bandwidth to perform the migration which is defined

as migbwi.
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The migration delay is measured as the time it takes to transfer the current memory allocation

of virtual machine i, which is given by u′ mem
i

1 using the available bandwidth migbwi. However, it is

not possible to simply divide one by the other. Considering that some migrations finish before others,

the available bandwidth for each migration can change, and the remaining amount of memory to be

transferred should take into account the new available bandwidth. Therefore, the migration delay

is measured in incremental steps.

Algorithm 1 presents the measurement of migration delays. After each migration finishes, the

amount of time passed is added to the migration delay of all virtual machines, and the amount of

memory transferred during this time is decreased from the total amount of memory to transfer. If

there is no more memory to transfer, the migration is removed from the set of running migrations.

The algorithm continues until there are no more running migrations.

Algorithm 1 Migration delay measurement
migdelayi ← 0 for all i ∈ M {initialize the migration delay}
memi ← u′ mem

i for all i ∈ M {initialize the amount of memory to be transfered}
RM ← M {initialize the set of active running migrations}
while RM %= ∅ {while there are running migrations} do

{mbi | i ∈ RM} ← MMF (RM, A) {obtain the available bandwidth to transfer each migration
according to the MMF model}
minmigdelay ← min({memi/migbwi | i ∈ RM}) {get the minimum migration delay}
memi ← memi − (minmigdelay ∗ migbwi) for all i ∈ RM {update memory transfered
according to minimum migration time}
migdelayi ← migdelayi + minmigdelay for all i ∈ RM {update migration time}
RM ← {i | i ∈ RM and memi %= 0} {remove completed migrations}

end while

In the end, for each migrating virtual machine i ∈ M there is a corresponding migration delay

defined as migdelayi using the current mapping xij .

Given the migration delay migdelayi for each virtual machine i ∈ M, it is possible to measure

the reconfiguration delay for each i ∈ V which depends if the virtual machine is migrating or not.

If virtual machine i ∈ V is migrating (i ∈ M), then the reconfiguration delay, defined as

recdelayi, is measured as the maximum of {migdelayi} ∪ {migdelayj | j ∈ M and srcj = dsti}.

The reconfiguration is only complete when the virtual machine has been migrated and the destination

physical server dsti already finished migrating its virtual machines, if dsti had virtual machines to

be migrated. The migration delays of the virtual machines leaving the destination physical server

are considered since the virtual machine i may require the capacity that will be released by these

virtual machines before completing the reconfiguration process.

If virtual machine i ∈ V is not migrating (i /∈ M), then the reconfiguration delay recdelayi is

measured as the maximum of {migdelayj | j ∈ M and srci = srcj}. The reconfiguration is only

complete when all migrations from the local physical server have already finished.

1
u

′ mem
i shouldn’t be confused with u

mem
i which represents the current demand of memory, i.e., how much of

memory will be allocated to virtual machine after the consolidation event
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In the cases that there is no migration, the reconfiguration delay is admitted to be zero.

The goal of the dynamic server consolidation with controlled reconfiguration delays problem is

to generate a mapping of virtual machines to physical servers xij that minimizes the number of

physical servers used and also, given a maximum reconfiguration delay threshold σ, decreases the

number of occurrences where recdelayi > σ for all i ∈ V . The objective function can be defined as

minimize
∑

j∈P

yj + α ∗
∑

i∈V

rdbreaki

where yj is a binary array equal to 1 if physical server j ∈ P is used, and 0 otherwise; rdbreaki

is a binary array equal to 1 if reconfiguration delay recdelayi of virtual machine i is greater than

the threshold σ, and 0 otherwise; and α is a penalty included for each event where the maximum

reconfiguration delay threshold is broken. The value of α should be greater than |P | in order to

ensure that the solution focus on reducing the number of breaks in the reconfiguration delay.

3.3 Proposed algorithm

The dynamic server consolidation with controlled reconfiguration delays problem includes addi-

tional constraints to the dynamic server consolidation problem. The goal is to minimize the number

of physical servers required to map a list of virtual machines, but it also should guarantee that the

cost of changing from the previous mapping to a new one is below a given threshold. This cost is the

reconfiguration delay, which depends highly on how the migration of virtual machines is performed in

the system. On the other hand, the migration depends on the cost to migrate each virtual machine,

which depends on its size (more specifically memory allocation), and the network infrastructure that

interconnects all physical servers.

Due to the considerable increase of complexity in the problem, in relation to the dynamic server

consolidation problem, the utilization of optimization techniques that result in an optimal solution,

such as linear programming, becomes prohibitive. The number of additional constraints and variables

increases considerably. Therefore, the utilization of other methods is required.

The proposed algorithm is divided in two distinct phases. The first phase aims at finding a feasible

mapping of virtual machines to physical machines that minimizes the maximum reconfiguration delay

of all virtual machines. In the second phase, the feasible mapping is iteratively modified in order

to produce solutions using a smaller number of physical servers, but also respecting the maximum

reconfiguration delay threshold. In cases where it is not possible to guarantee delays smaller than the

maximum reconfiguration delay threshold, the algorithm finds a solution that minimizes the number

of virtual machines that have their reconfiguration delays higher than the specified threshold.
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3.3.1 First phase

The first phase is based on the traditional descent method for local neighborhood search. Based

on an initial solution, a set of small modifications to this solution is derived. The result obtained

with each modification is analyzed and the best one is chosen. If this modification optimizes the

current solution, then it is applied and the process repeats, otherwise the algorithm stops.

The algorithm starts repeating the last mapping as the current solution. This operation results

in zero migrations, however the physical servers can become overloaded, i.e., the physical server

capacity can not be able to handle the changes of the virtual machines demands mapped to it. The

strategy is to remove each overloaded physical server from this overload state, migrating some of its

virtual machines to other physical servers, choosing every time the alternative that results in minimal

reconfiguration delays. In each step, migration alternatives are generated for each overloaded physical

server. The physical server that performs the migrations which results in minimal reconfiguration

delay is chosen. The migrations are included in the current solution, and the process repeats, until

there are no more overloaded physical servers.

The generation of the migration alternatives is executed as follows. For each overloaded physical

server, combinations of its virtual machines that remove the physical server from the overload state

are generated. The generation of the alternatives ensures that each alternative contains only the

required migrations that remove the physical server from the overload state. For example, given a

physical server with capacity 100, packing virtual machines: v1 with demand 50, v2 with demand

40, v3 with demand 30, and v4 with demand 20, the combinations of virtual machines generated

are: (v1), (v2), and (v3, v4).

Each combination of virtual machines is mapped to the current solution using the best-fit de-

creasing heuristic and its cost is evaluated. The best-fit decreasing heuristic used has a slight

modification in order to reduce the number of migrations using the same network links, and conse-

quently the reconfiguration delay. The eligible physical servers to receive a virtual machine are only

the ones that didn’t receive any virtual machines yet, i.e., each physical server receives only one

virtual machine migration. The cost function is defined as:

1000 * number of overloaded physical servers +
100 * maximum reconfiguration delay +

sum of reconfiguration delays

The first term gives a big penalty (1000) when there are overloaded physical servers. The heuristic

is directed to reduce the number of overloaded physical servers to zero, canceling this term. The

second term is based on the maximum reconfiguration delay between all virtual machines. The goal

is to select the alternative that minimizes the reconfiguration delay. When there is more than one

alternative that gives the same maximum reconfiguration delay, the last term is used to choose the

one that has minimum aggregate reconfiguration delay.
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The process repeats until there are no more overloaded physical servers. In the end, the result

generated will contain the same, or probably, more physical servers than the previous mapping.

Algorithm 2 presents the algorithm for the first phase. The second phase is eventually used to

decrease the number of physical servers, while guaranteeing that the reconfiguration delay stays

under a given threshold.

Algorithm 2 First phase of the dynamic server consolidation with controlled reconfiguration delays
algorithm

current_solution ← get-current-mapping()
while there are overloaded physical servers in current_solution do

for all p in overloaded physical servers do
alternatives ← generate-migration-alternatives(p)
for all alt in alternatives do

sol ← best-fit-decreasing( alt ) {each virtual machine receives at most one virtual machine
migration}
cost ← cost-function( sol )

end for
end for
apply alternative with lowest cost to current_solution {the physical server is automatically
removed from the overload state}

end while

3.3.2 Second phase

In the second phase, it is used an implementation of the server consolidation problem using

a method called tabu search. Tabu search is a common metaheuristic used to solve optimization

problems. The main advantage of using metaheuristics is that it overcomes the problem of being

trapped in a local optima, common to local search approaches as the ones used by heuristics. Besides,

it presents lower computational costs than linear programming methods. Although it usually results

in better solutions than heuristics, it can not guarantee the optimality of the result. Other examples

of metaheuristics include: genetic algorithms and simulated annealing [FLO06].

The main idea of tabu search is to maintain a memory about previous local searches, in order to

avoid performing repeatedly the same moves, returning to the same solution and staying confined

into a local optima. The tabu search method is based on a repetition of steps that explores the

possible solutions for the problem. At first, a feasible initial solution is generated for the problem

and set as the current solution. This initial solution is usually far from optimal, but is simple to be

generated. The current solution is initially set as the best solution found so far.

With the current solution set, it starts evaluating possible changes in the current solution and

evaluating each alternative. In order to do that, it generates a set of moves given the current

solution using simple transformations in its local neighborhood. Some of the moves are forbidden

since they are in the tabu list. The tabu list represents the memory of the algorithm and contains

a list of moves used in the previous iterations. All feasible moves are evaluated and their costs
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obtained using a cost function. The cost function is used to differentiate between good and bad

solutions. The move which results in the solution with best cost is chosen to be applied, and the

move is included in the tabu list. The tabu list is usually implemented as a fixed length list, dropping

the oldest element when its size is exceeded. If the current solution has better cost than the best

solution found so far, the current solution is set as the best solution. This process repeats until a

termination condition is met. The termination condition can be a timeout, a specific number of

repetitions, or a number of repetitions without any improvement in the best solution.

Given the tabu search general framework, the implementation of the second phase of the algo-

rithm starts by using as initial solution, the resulting mapping from the first phase. The strategy is to

select in each iteration one physical server to empty, reassigning its virtual machines to other physical

servers. The selection of the physical server is based on a filling function, proposed by [LOD04],

which gives a measure of easiness to empty the physical server. The filling function for physical

server j is defined as:

ϕ(Sj) = α

∑
i∈Sj

ui

cj

−
|Sj |
|V |

where Sj is a set containing the virtual machines assigned to physical server j; ui is the demand

of virtual machine i ∈ V ; cj is the capacity of physical server j; α is a pre-specified positive value.

The function gives higher priority to physical servers with low occupied capacity and more virtual

machines packed on it. The physical server with the lowest filling index, according to the filling

function, and that is not in the tabu list is chosen. The tabu list stores a list of previous physical

servers chosen to get empty, and the goal of the tabu list is to avoid choosing repeatedly the same

physical servers to empty.

After choosing the physical server using the filling function, the virtual machines mapped to it

are retrieved and the physical server is set as unavailable during this iteration, in order to avoid

remapping all virtual machines to it again. The list of virtual machines is used as input to a

permutation function, which returns lists with these virtual machines in all possible orderings. Since

the number of lists can be extremely large (it generates n! lists, where n is the number of virtual

machines), a smaller number of alternatives is randomly chosen. Each alternative is evaluated,

applying the worst-fit heuristic to map the virtual machines to the physical servers. The alternative

that provides a solution with best cost, according to the cost function, is selected and its solution

is defined as the current solution. The cost function that should be minimized is defined as:

number of physical servers +

1000 * number of reconfiguration delay breaks

It includes the number of physical servers and a penalty for each virtual machine that has a

reconfiguration delay greater than the maximum reconfiguration delay threshold, which indicates a

reconfiguration delay break. The physical server chosen at first is included in the tabu list and set as

available again to pack virtual machines in the next iterations. The tabu list size has a fixed capacity,
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and when this capacity is exceeded, the oldest entry is removed. The tabu list size should be smaller

than the number of physical servers. If the cost of the current solution is smaller than the cost of

the best solution, then the current solution is defined as the best solution. This process repeats

until the best solution does not present any enhancements in a pre-specified number of iterations.

The final solution can result in a situation that guaranteeing the maximum reconfiguration delay

threshold is not possible, however it will minimize the number of occurrences of this situation. The

algorithm is presented in Algorithm 3.

Algorithm 3 Tabu search algorithm for the dynamic server consolidation problem.
current_solution ← mapping from first phase {initial solution}
best_solution ← current_solution
repeat

p ← physical server with lowest index according to filling function and not in tabu_list
vms ← get virtual machines mapped to physical server p and set p as unavailable
moves ← get vms permutations
for all m in moves do

sol ← worst-fit(m)
cost ← cost-function(sol)

end for
current_solution ← solution with smallest cost
insert p into tabu_list and set it as available again
if cost-function(current_solution) < cost-function(best_solution) then

best_solution ← current_solution
end if

until termination condition
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4. Evaluation

This chapter presents an evaluation of the dynamic server consolidation algorithms and the

proposed extension considering guarantees over the maximum reconfiguration delay. Initially, the

workloads used for the experiments are described. The experiments performed are divided in three

groups. Each group focus on evaluating the algorithms under different workload characteristics,

which are based on workload variability, workload patterns, and workload utilization. All algorithms

are analysed considering the average number of physical servers required, the number of migrations

performed, the maximum reconfiguration delay, and the number of reconfiguration delay breaks, i.e.,

number of instances in which the reconfiguration delay is higher than a given threshold. Results

indicate that the dynamic server consolidation algorithm proposed for controlled reconfiguration

delays attends, in most cases, the maximum reconfiguration delay threshold required. When the

threshold is not reached, the algorithm minimizes the number of reconfiguration delay breaks.

4.1 Workloads

In order to investigate the functioning of the dynamic server consolidation algorithms and evaluate

the proposed algorithm for the dynamic server consolidation with controlled reconfiguration delays,

it is required a workload composed by server traces with periodic samples of resources utilization

(e.g., CPU, memory, etc). Each sample indicates the demand required in the next consolidation

event. Several attempts were made in order to obtain workloads from real production data centers,

however all attempts failed. This information is usually defined internally as classified by enterprises,

since it provides hints about the data center efficiency. Therefore, it was generated a workload

from available servers at TU-Berlin. The servers were monitored during a period of approximately

six months. These servers are usually used by students and researchers to execute experiments

and simple applications. Nonetheless, the generated workload enabled the identification of common

utilization patterns, which are also present in production data centers. This analysis guided the

implementation of a synthetic workload generator. This generator creates workloads that reproduce

common utilization patterns found in data centers.

4.1.1 Real workload from TU-Berlin servers

The Technical University of Berlin provides to its students and researchers several servers that

can be used to execute long-running experiments and perform tests that require more computing

resources. In order to generate the workload, nine of these servers were monitored during a period of

approximately 6 months. In each server, CPU and memory percentages of utilization were sampled

each minute and this information was stored in a trace file. The group of servers is composed by

different families of UltraSPARC servers running SunOS 5.10 and varying configurations, ranging

from 1 to 20 CPUs and 16 to 48 GBytes of RAM.
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Figure 4.1 presents CPU (black line) and memory (gray line) utilization for each server. The sam-

ples in which CPU and memory utilization are equal to 0 represent moments of server unavailability.

The main difference between this workload and the ones found in production data centers is that

these servers usually execute at the same time several users’ applications. In a regular data center,

each server would be usually assigned to execute a single application, and it would present more

visible patterns. Nevertheless, it is still possible to identify some common application utilization

patterns.

The utilization patterns identified were divided in three groups. The goal of establishing such

classification is to serve as a model to implement a synthetic workload generator. The patterns are:

Steady The steady utilization pattern represents workloads that present low variation in its utiliza-

tion in a medium to long term period. Server bonito in Figure 4.1 present several periods of

steady utilization, with very little variation in resources utilization.

Periodic The periodic utilization pattern represents workloads that repeatedly present the same

variations, and is relatively common in production data centers [BOB07]. This utilization

pattern can be observed in the trace of servers bolero, bueno and fiesta in Figure 4.1.

Random The random utilization pattern represents workloads that do not fit in the other groups,

and do not present any accurate pattern that can be used to predict its future behavior. The

traces from servers pepino and pepita in Figure 4.1 represent a typical random pattern.

4.1.2 Synthetic workload generator

In order to be able to evaluate different workload types and due to the difficulty in obtaining

these workloads, a synthetic workload generator was implemented. The generator was implemented

using the R statistical computing environment and uses the utilization patterns defined, based on

the analysis of the real workload.

The implementation details of each utilization pattern is described below. Figure 4.2 presents an

example of traces generated using the synthetic workload generator with each pattern.

Steady The steady pattern represents an utilization with a clear mean value and low variation, and

is implemented using a random number generator for the normal distribution (function rnorm

from R). The implementation receives as parameters a mean and standard deviation, used as

input to the number generator, and the limits in which the numbers should be encountered.

Each number generated out of limits is substituted by the lower or upper limit accordingly.

Figure 4.2(a) presents an example of a trace using the steady utilization pattern.

Periodic The periodic pattern represents a repeatable shape of variations in utilization. It is imple-

mented using a simplified stationary time series model. Time series models can be decomposed

in three parts, a trend part which identifies the time series progression in the long term, a

cyclic part which identifies a shape that repeats periodically in the time series, and a noise
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Figure 4.1 – CPU and memory utilization of TU-Berlin servers

part which identifies the irregular variations that can appear in the data. Considering that

the time series is stationary, the trend part is not used. The shape used by the cyclic part is

generated using a uniform distribution with minimum and maximum limits, and a δ parameter

which identifies the maximum variation between two adjacent points in the shape. The idea of

using the δ parameter is to force the existence of a continuity in the data. It is also defined a

number of points to be generated for the shape, which identifies the periodicity of the cyclical

part. After generating the time series using the cyclic part, a noise is included in each point

based on a normal distribution (normal white noise), in which the mean is the point value

itself, and the standard deviation is a given input. Figure 4.2(b) presents an example of a trace

using the periodic utilization pattern.

Random The random pattern represents an utilization with unpredictable form. It is implemented

using a random number generator for the uniform distribution (function runif from R). The

implementation receives as parameters the minimal and maximal values, used as input to the

number generator. Figure 4.2(c) presents an example of a trace using the random utilization

pattern.

The synthetic workloads used for the experiments were composed by different groupings of

the traces, obtained using the synthetic workload generator. The traces were generated using the

parameters presented in Table 4.1. For each utilization pattern, 40 traces were generated. Each
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(c) Example of random utilization pattern

Figure 4.2 – Workloads generated using the synthetic workload generator

trace has 336 samples, corresponding to one consolidation event each 30 minutes during 1 week.

For each sample generated, the same value is used for CPU and memory.

4.2 General description

The scenario used in all experiments is a virtualized data center infrastructure composed by

100 homogeneous physical servers with CPU and memory capacities equal to 100. Each server is

connected to a single crossbar switch using bidirectional links forming a star network topology. Each

link has a capacity of 100. It means that it takes 1 unit of time to transfer all memory from one

physical server to another using full link capacity. The CPU, memory and network capacities can be

considered as a percentage capacity, and the objective is to simplify the conversion of the relative
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Utilization
pattern

Number of
traces

Parameters used

Steady

40
(2 traces per
pair of mean
and standard

deviation)

limits=[10;90]
(mean, standard deviation) = (15,1), (15,2), (15,3)

(15,4), (15,5),
(30,1), (30,2), (30,3), (30,4), (30,5),
(45,1), (45,2), (45,3), (45,4), (45,5),
(60,1), (60,2), (60,3), (60,4), (60,5)

Periodic

40
(10 traces for
each number

of points)

limits=[10;90]
δ = 5

number of points = (12, 96, 144, 288)
standard deviation=1

Random
40

(2 traces per
limits interval)

limits=[10;20], [10;30], [10;40], [10;50], [10;60],
[20;30], [20;40], [20;50], [20;60], [20;70],
[30;40], [30;50], [30;60], [30;70], [30;80],
[40;50], [40;60], [40;70], [40;80], [40;90]

Table 4.1 – Parameters used to generate traces using the synthetic workload generator

measure of time to real scenarios. For example, given a scenario where each physical server contains

16 GBytes of memory and is connected to a 1 GbEthernet network, the relative measure of time

of 1.0 would represent approximately 128 seconds, corresponding to the time to transfer 16 GBytes

using 1Gbit/s. A relative time of 0.5 would represent half of the time, or 64 seconds, and so on.

The experiments present the values according to the relative time. However, in order to facilitate

the interpretation of the results, the converted time according to this hypothetical scenario will be

presented when appropriate.

All solutions presented for the dynamic server consolidation problem were implemented for the

evaluation. The implementation details of each algorithm are:

Heuristics The heuristics implemented were: next-fit (NF), first-fit (FF), best-fit (BF), worst-fit

(WF), almost worst-fit (AWF), next-fit decreasing (NFD), first-fit decreasing (FFD), best-fit

decreasing (BFD), worst-fit decreasing (WFD) and almost worst-fit decreasing (AWFD). They

were implemented using the Python language.

Linear programming The linear programming (LP) solution was implemented using Zimpl [KOC04]

and solved using the SCIP [ACH04] solver. The solver was configured with a timeout of 5

minutes, i.e., if the solver can not find the optimal result in 5 minutes, it returns the best

result found so far. This approach is usually used since linear programming problems can take

a long time to find an optimal solution.

Tabu search The tabu search (TS) algorithm corresponds to the second phase of the algorithm

proposed to control reconfiguration delays. This version only considers in its cost function

the number of physical servers used, excluding the reconfiguration delays. The initial solution

is obtained using the first-fit algorithm. It was implemented using the Python language and
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configured with tabu list size equal to 5 and to terminate when the solution does not change

during 10 iterations (termination condition).

The algorithm proposed for the dynamic server consolidation with controlled reconfiguration delays

(DSCCRD) was implemented using the Python language. The second phase (using Tabu Search) is

configured with tabu list size equal to 5 and to terminate when the solution does not present any

changes in the last 10 iterations (termination condition). The first mapping is performed using the

first-fit heuristic.

The goal of all experiments is to show how each algorithm behaves regarding the number of

physical servers required to handle each workload, the required number of migrations, and the

corresponding maximum reconfiguration delay. It is also desired to verify if the proposed algorithm

(DSCCRD) attends the requirement of limiting the reconfiguration delay based on a defined threshold

or minimizes the number of times when it can not attend the requirement (reconfiguration delay

breaks), and the corresponding impact on the additional number of physical servers required. The

values 1.0, 0.8, 0.6, 0.4 and 0.2 were used as input threshold for the DSCCRD algorithm. They

represent the time of transferring 100%, 80%, 60,%, 40% and 20% of the physical server’s memory

to another server using full bandwidth. Considering the hypothetical scenario presented before,

using physical servers with 16GBytes of memory and a 1 GbEthernet network, it would represent

delays of 128, 102.4, 76.8, 51.2, and 25.6 seconds respectively. The number of reconfiguration delay

breaks presented for the dynamic server consolidation algorithm implemented using heuristics, linear

programming and tabu search considers 1.0 as the threshold for maximum reconfiguration delay.

The experiments were divided in three groups, each one focusing on analyzing the algorithms

using workloads with different characteristics. The groups were divided based on workload variability,

workload patterns and workload utilization. The real workload obtained from TU-Berlin servers and

the workload generated using the synthetic workload generator were used in the experiments.

4.3 Analysis on workload variability

The goal of this analysis is to investigate the behavior of the algorithms when workloads with

different variability are used. Workload variability is defined as the ratio of demand changes in each

one of the traces that compose the workload. The workload obtained from TU-Berlin was used to

perform this analysis.

One of the main problems of the workload is the low number of available traces (only 9). It is

necessary to have more data in order to analyze the benefits and drawbacks of each consolidation

algorithm. Therefore, each trace was divided in week periods, and considered each week period as

belonging to a different trace. It resulted in a total of 140 traces, each one relative to a single virtual

machine. The frequency of the measurements was also modified from one sample per minute to

one per hour (using the peak demand in the corresponding period), resulting in 168 samples of CPU

and memory demand per trace. Each sample is used in a different consolidation event. The CPU

and memory values vary from 0 to 100, since the percentage was originally measured. Despite the



53

Number of traces Variability rate Average CPU
utilization

Average memory
utilization

Group 1 43 0 - 30 25.2% 28.36%
Group 2 61 30 - 50 32.37% 39.39%
Group 3 36 50 - 100 47.28% 48.67%

Table 4.2 – Characteristics of each group for workload variability analysis.

differences in CPU and memory capacity in each original server monitored, the data is considered

to belong to a homogeneous environment.

In order to evaluate the problem with workloads with different variability, the 140 traces were

divided in 3 groups, forming the workloads, according to the variability of each trace in terms of

CPU and memory demand. Trace variability rate was measured as the number of demand changes

by the total number of samples, in this case 168. Table 4.2 presents details about each group

regarding the number of traces, variability range used to select the traces, and average CPU and

memory utilization in percentage. Group 1 presents lower variability, between 0% (samples are the

same during all time steps) and 30% consisting of a total of 43 traces. Group 2 is the larger group,

containing 61 traces and variability between 30% and 50%. Group 3 is the smallest group with 36

traces, presenting variability between 50% and 100% (resource capacity requires changes in all time

steps). Figure 4.3 shows the traces of each group. In each graph, the black line represents the CPU

utilization and the gray line represents the memory utilization.

The results obtained executing each algorithm for each workload group are presented in Ta-

bles 4.3, 4.4 and 4.5. For each algorithm, it is presented the average number of physical servers used

in all consolidation events, the total number of migrations performed, the maximum reconfiguration

delay, and the number of reconfiguration delay breaks.

The workload used in group 1 is the one that has lower variability in its traces. The results

presented in Table 4.3 show that LP presents the best consolidation, being able to pack all 43 traces

in average to 15 physical servers. It results in a reduction of approximately 75%, when compared

to having each trace in a single physical server. However, LP also presents the highest number of

migrations, migrating approximately 38 virtual machines each consolidation event, which represents

88% of the virtual machines. It also presents the highest reconfiguration delay of 1.6 (204.8 seconds

according to the hypothetical scenario), and highest number of reconfiguration delay breaks given

threshold 1.0. Some of the heuristics - FFD, BFD, WFD, and AWFD - also presented good results

regarding consolidation, with a still high number of migrations and high number of reconfiguration

delay breaks. The results with TS shown in average good results for consolidation and reconfiguration

delay, similar to the best heuristics. DSCCRD attended the maximum reconfiguration delay for

thresholds 1.0, 0.8 and 0.6 with 0 breaks. Using thresholds 0.4 and 0.2, DSCCRD resulted in

6 and 46 reconfiguration delay breaks, increasing the maximum reconfiguration delay to 0.5 and

1.0. This situation happens when a threshold can not be attended, since the algorithm tries to

decrease the number of reconfiguration delay breaks, even if it requires increasing the maximum
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Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 18.6 1739 1.3 65 (1.0)
FF 16 1940 1.3 120 (1.0)
BF 16.1 1888 1.3 84 (1.0)
WF 16.3 1909 1.3 98 (1.0)
AWF 16.1 1984 1.3 92 (1.0)
NFD 18 3916 1.5 400 (1.0)
FFD 15.5 3815 1.3 763 (1.0)
BFD 15.5 3847 1.3 778 (1.0)
WFD 15.5 4136 1.3 970 (1.0)
AWFD 15.5 3916 1.3 812 (1.0)

LP 15 6464 1.6 2904 (1.0)
Tabu search 15.8 2833 1.4 69 (1.0)

DSCCRD (1.0) 16 474 1 0 (1.0)
DSCCRD (0.8) 16.5 293 0.8 0 (0.8)
DSCCRD (0.6) 17.2 217 0.6 0 (0.6)
DSCCRD (0.4) 19 154 0.5 6 (0.4)
DSCCRD (0.2) 20.5 82 1 46 (0.2)

Table 4.3 – Workload variability analysis - results for group 1.

reconfiguration delay of some virtual machines. It is possible to observe that as the threshold

becomes tighter, DSCCRD uses less migrations and more physical servers. In comparison to LP,

DSCCRD uses between 6% to 15% more physical servers in order to attend maximum reconfiguration

delays between 1.0 and 0.6. For thresholds 0.4 and 0.2, it uses 27% and 37% more physical servers

in order to minimize the number of reconfiguration delay breaks.

In the results obtained for group 2, shown in Table 4.4, LP also presented the best consolidation,

enabling a reduction in average of 55% of physical servers to pack all traces, in comparison to

mapping one trace per physical server. It presented once more the highest number of migrations,

requiring to migrate approximately 97% of the virtual machines in every consolidation event, and

highest number of breaks. However, the highest reconfiguration delay was generated using heuristic

WFD, with a value of 1.8 (230.4 seconds according to the hypothetical scenario). The BFD heuristic

presented the best consolidation among heuristics. An interesting fact is that despite of the high

number of migrations presented by NFD, which is similar to the other decreasing heuristics (FFD,

BFD, WFD and AWFD), it shows considerably lower number of reconfiguration delay breaks than

these other heuristics. TS presented again average results, showing good results regarding consoli-

dation, migrations, maximum reconfiguration delay, and number of reconfiguration delay breaks, in

comparison to the heuristics. DSCCRD attended the maximum reconfiguration delay for thresholds

1.0, 0.8 and 0.6 with 0 breaks. Using threshold 0.4 and 0.2, DSCCRD resulted in 34 and 135

reconfiguration delay breaks, increasing the maximum reconfiguration delay to 1.0 in both cases.

The same behavior using less migrations and more physical servers when the threshold gets tighter
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Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 36.6 5250 1.6 171 (1.0)
FF 28.6 5646 1.7 795 (1.0)
BF 28.6 5833 1.5 799 (1.0)
WF 29.6 5750 1.6 701 (1.0)
AWF 29 5897 1.5 738 (1.0)
NFD 34.4 8446 1.6 854 (1.0)
FFD 28 8346 1.6 3030 (1.0)
BFD 27.9 8361 1.6 3041 (1.0)
WFD 28.3 8442 1.8 2517 (1.0)
AWFD 28 8370 1.6 2819 (1.0)

LP 27.3 9908 1.6 4562 (1.0)
Tabu search 28.6 5375 1.4 135 (1.0)

DSCCRD (1.0) 30.2 856 1 0 (1.0)
DSCCRD (0.8) 31.2 652 0.8 0 (0.8)
DSCCRD (0.6) 33.2 475 0.6 0 (0.6)
DSCCRD (0.4) 37.9 245 1 34 (0.4)
DSCCRD (0.2) 41.1 137 1 135 (0.2)

Table 4.4 – Workload variability analysis - results for group 2.

was repeated. In comparison to LP, DSCCRD uses between 10% to 22% more physical servers in

order to attend maximum reconfiguration delays between 1.0 and 0.6. For thresholds 0.4 and 0.2 it

uses 39% and 51% more physical servers in order to minimize the number of reconfiguration delay

breaks.

Group 3 presents the higher variability. The results presented in Table 4.5 show that LP resulted

in the best consolidation, with a reduction of approximately 45% in the number of required physical

servers to handle the workload. It does that requiring a huge number of migrations. Approximately

94% of the virtual machines are migrated in each consolidation event. It also presented the highest

number of reconfiguration delay breaks. In relation to the maximum reconfiguration delay, the

values obtained by LP, heuristics and TS were very similar. Once again, DSCCRD attended the

maximum reconfiguration delay for thresholds 1.0, 0.8 and 0.6 with 0 breaks. With threshold

0.4 and 0.2, DSCCRD resulted in 4 and 42 reconfiguration delay breaks, increasing the maximum

reconfiguration delay to 0.5 and 1.0 respectively. In comparison to LP, DSCCRD used between 7%

to 13% more physical servers in order to attend maximum reconfiguration delays between 1.0 and

0.6. For thresholds 0.4 and 0.2 it uses 19% and 29% more physical servers in order to minimize the

number of reconfiguration delay breaks.

As expected, LP presented the best consolidation in all groups. However, the high number of

migrations required is considerably high. Almost all virtual machines are migrated in all consolidation

events. The best consolidation results obtained with heuristics were quite similar to LP, being

obtained in considerably less time. The average execution time using each algorithm was: 10 seconds
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Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 24.1 2547 1.3 40 (1.0)
FF 20.8 3190 1.4 275 (1.0)
BF 20.7 3248 1.5 341 (1.0)
WF 21.4 3160 1.4 203 (1.0)
AWF 20.9 3164 1.5 236 (1.0)
NFD 23.6 5040 1.4 227 (1.0)
FFD 19.9 5167 1.4 1000 (1.0)
BFD 20 5189 1.4 1025 (1.0)
WFD 20.2 5174 1.4 869 (1.0)
AWFD 20 5226 1.4 1068 (1.0)

LP 19.4 5758 1.4 1479 (1.0)
Tabu search 20.3 2944 1.5 89 (1.0)

DSCCRD (1.0) 20.9 814 1 0 (1.0)
DSCCRD (0.8) 21.4 597 0.8 0 (0.8)
DSCCRD (0.6) 22 445 0.6 0 (0.6)
DSCCRD (0.4) 23.1 298 0.5 4 (0.4)
DSCCRD (0.2) 25.1 138 1 42 (0.2)

Table 4.5 – Workload variability analysis - results for group 3.

for each heuristic, 12 hours for LP, 5 minutes for TS and 15 minutes for DSCCRD. TS resulted

in average good results, providing good consolidation with relatively low number of migrations and

maximum reconfiguration delay. In all groups, DSCCRD was able to avoid reconfiguration delays

higher than 0.6 (76.8 seconds according to the hypothetical scenario). In all cases, decreasing the

threshold used for maximum reconfiguration delay, resulted in a decrease in the number of migrations

and increase in the average number of physical servers required. In group 2, it was possible to

observe that having a huge number of migrations (LP) does not necessarily corresponds to a high

maximum reconfiguration delay (heuristic WFD). Figure 4.4 presents the additional percentage of

physical servers required by DSCCRD with different thresholds for groups 1, 2 and 3 in comparison

to LP. Considering the variation in workload variability, it is possible to observe that, the number of

migrations tend to change accordingly. As the variability gets higher, the algorithms tend to migrate

more virtual machines and the difference of results obtained using LP and heuristics decreases.

Nevertheless, the DSCCRD algorithm was still able to attend maximum reconfiguration delays down

to 0.6 in all variability scenarios.

4.4 Analysis on workload patterns

The goal of this analysis is to evaluate the algorithms when using workloads with different

utilization patterns. The traces generated using the synthetic workload generator were used in this
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Figure 4.4 – Workload variability analysis - Percentage of additional physical servers required by
DSCCRD

Number of traces Utilization pattern
Average CPU and
memory utilization

Group 1 40 Steady 37.5%
Group 2 40 Periodic 32.7%
Group 3 40 Random 40.0%

Table 4.6 – Characteristics of each group for workload patterns analysis.

analysis. The traces were divided in three groups, based on its utilization pattern: steady, periodic,

and random. The details of each group are presented in Table 4.6.

The results obtained executing each algorithm for each workload group are presented in Ta-

bles 4.7, 4.8 and 4.9. For each algorithm, it is presented the average number of physical servers used

in all consolidation events, the total number of migrations performed, the maximum reconfiguration

delay, and the number of reconfiguration delay breaks.

Group 1 represents a workload with steady utilization pattern. According to the results presented

in Table 4.7, LP and some heuristics - FFD, BFD and AWFD - presented similar results for consoli-

dation, being able to reduce in 57% the number of required physical servers in average, in relation

to mapping each trace to a single physical server. They also presented similar results for maximum

reconfiguration delay, of 1.4 (179.2 seconds according to the hypothetical scenario). LP required the

highest number of migrations, migrating approximately 95% of the virtual machines each consolida-

tion event, and presented the highest number of reconfiguration delay breaks. DSCCRD attended

the maximum reconfiguration delay for thresholds 1.0, 0.8 and 0.6 with 0 breaks. It even got bet-

ter consolidation results in comparison to other heuristics - FF, BF, WF and AWF - guaranteeing a
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Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 21.6 4665 1.3 108 (1.0)
FF 21.2 4016 1.3 76 (1.0)
BF 21.2 4007 1.3 74 (1.0)
WF 21.3 4248 1.3 97 (1.0)
AWF 21.2 3987 1.3 74 (1.0)
NFD 21.6 9476 1.4 1168 (1.0)
FFD 17.3 9746 1.4 2974 (1.0)
BFD 17.3 9748 1.4 2958 (1.0)
WFD 17.4 9875 1.4 2582 (1.0)
AWFD 17.3 9847 1.4 2808 (1.0)

LP 17.2 12743 1.4 5335 (1.0)
Tabu search 18.6 7030 1.4 182 (1.0)

DSCCRD (1.0) 18.8 1030 1 0 (1.0)
DSCCRD (0.8) 19.7 430 0.8 0 (1.0)
DSCCRD (0.6) 20.8 90 0.6 0 (1.0)
DSCCRD (0.4) 22.9 36 1 20 (1.0)
DSCCRD (0.2) 23 21 1 33 (1.0)

Table 4.7 – Workload pattern analysis - results for group 1.

Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 18.7 4995 1.7 490 (1.0)
FF 16.1 5325 1.7 385 (1.0)
BF 16.1 5314 2.1 349 (1.0)
WF 16.7 4934 2 365 (1.0)
AWF 16.2 5159 2.2 312 (1.0)
NFD 18.3 8943 2.9 1139 (1.0)
FFD 15.5 8590 2.8 2173 (1.0)
BFD 15.5 8589 2.8 2161 (1.0)
WFD 15.5 8810 2.8 2376 (1.0)
AWFD 15.5 8687 2.8 2154 (1.0)

LP 15.3 12436 2.2 5394 (1.0)
Tabu search 16.8 7487 2.3 304 (1.0)

DSCCRD (1.0) 16.2 1253 1 0 (1.0)
DSCCRD (0.8) 16.7 713 0.8 0 (0.8)
DSCCRD (0.6) 17.8 324 0.6 0 (0.6)
DSCCRD (0.4) 19.1 146 1 28 (0.4)
DSCCRD (0.2) 20.2 81 1 71 (0.2)

Table 4.8 – Workload pattern analysis - results for group 2.
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Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 23 7288 1.6 875 (1.0)
FF 21.4 7125 1.6 1271 (1.0)
BF 21.4 7128 1.6 1271 (1.0)
WF 21.6 7176 1.7 1211 (1.0)
AWF 21.4 7124 1.6 1288 (1.0)
NFD 22.4 11988 2.5 3736 (1.0)
FFD 18.4 12144 2.5 7202 (1.0)
BFD 18.4 12143 2.5 7202 (1.0)
WFD 18.5 12282 2.5 6942 (1.0)
AWFD 18.5 12249 2.5 7251 (1.0)

LP 18.4 12890 1.9 6297 (1.0)
Tabu search 19.9 8168 2 346 (1.0)

DSCCRD (1.0) 20.1 2128 1 0 (1.0)
DSCCRD (0.8) 21.4 1229 0.8 0 (0.8)
DSCCRD (0.6) 22.5 665 0.6 0 (0.6)
DSCCRD (0.4) 24 377 1 66 (0.4)
DSCCRD (0.2) 26 146 1 223 (0.2)

Table 4.9 – Workload pattern analysis - results for group 3.

Group 2 represents a workload with periodic behavior and the results obtained are presented

in Table 4.8. LP got slightly better consolidation results than some heuristics - FFD, BFD, WFD,

being able to reduce in 62% the number of required physical servers in average, and presented

higher number of required migrations and reconfiguration delay breaks. In each consolidation event,

LP requires migrating approximately 93% of the virtual machines. Despite of that, it presents

considerably lower maximum reconfiguration delay in comparison to the heuristics that presented

similar consolidation results (FFD, BFD, WFD, AWFD). TS did not present good results considering

consolidation, but provides relatively low maximum reconfiguration delay and a reduced number of

reconfiguration delay breaks. DSCCRD attended the maximum reconfiguration delay for thresholds

1.0, 0.8 and 0.6 with 0 breaks. With threshold 0.4 and 0.2, DSCCRD resulted in 28 and 71

reconfiguration delay breaks, increasing the maximum reconfiguration delay to 1.0 in both cases.

In comparison to LP, DSCCRD used between 6% to 16% more physical servers in order to attend

maximum reconfiguration delays between 1.0 and 0.6. For thresholds 0.4 and 0.2 it uses 24%

and 32% more physical servers in order to minimize the number of reconfiguration delay breaks.

Despite of using TS in its second phase, DSCCRD was able to provide better consolidation results

with thresholds 1.0 and 0.8. Therefore, TS results does not indicate a lower bound on DSCCRD

consolidation efficiency.

Group 3 represents workloads with random utilization pattern. The results are presented in

Table 4.9. The best consolidation was obtained both using LP and most decreasing heuristics -

FFD, BFD, WFD and AWFD, resulting in a reduction of 54% in the required number of physical
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servers. They also presented similar results for the number of migrations and reconfiguration breaks.

LP requires migrating approximately 95% of the virtual machines each consolidation event. Despite

of that, LP presented considerably lower maximum reconfiguration delay in comparison to the other

heuristics with similar consolidation results, 1.9 against 2.5 (243.2 and 320 seconds according to the

hypothetical scenario respectively). TS does not present good results considering consolidation, but

provides relatively low maximum reconfiguration delay and reduced number of reconfiguration delay

breaks. DSCCRD attended the maximum reconfiguration delay for thresholds 1.0, 0.8 and 0.6 with

0 breaks. With threshold 0.4 and 0.2, DSCCRD resulted in 66 and 223 reconfiguration delay breaks,

increasing the maximum reconfiguration delay to 1.0 in both cases. In comparison to LP, DSCCRD

used between 9% to 22% more physical servers in order to attend maximum reconfiguration delays

between 1.0 and 0.6. For thresholds 0.4 and 0.2, it uses 30% and 41% more physical servers in

order to minimize the number of reconfiguration delay breaks.

In general, the consolidation results obtained by LP and some heuristics (decreasing versions)

were quite similar in all groups, but LP still requires the highest amount of migrations, migrating

approximately all virtual machines every consolidation event. The approximate execution time for

each implementation was: 20 seconds for each heuristic, between 12 and 24 hours for LP, 10

minutes for TS and between 15 to 30 minutes for DSCCRD. The results with TS considering

consolidation were not satisfactory, but it usually resulted in a lower number of reconfiguration

breaks and maximum reconfiguration time. In group 2 was possible to observe that TS does not

necessarily represents a lower bound for DSCCRD, even using it in its second phase. In all groups,

DSCCRD attended thresholds 1.0, 0.8 and 0.6, and when the threshold couldn’t be attended, the

number of breaks was minimized as the threshold gets smaller. The DSCCRD behavior of using

more physical servers and decreasing the number of required migrations when the threshold gets

lower was maintained in all groups. In order to counterpoint the idea that a huge number of

migrations reflects in a high maximum reconfiguration delay, in groups 2 and 3, the LP maximum

reconfiguration delay was considerably lower than other heuristics, even having higher number of

migrations. DSCCRD presented lower number of migrations required and number of reconfiguration

delay breaks when using a steady workload, and higher values with a random workload. Figure 4.6

presents the additional percentage of physical servers required by DSCCRD with different thresholds

for groups 1, 2 and 3 in comparison to LP.

4.5 Analysis on workload utilization

The goal of this analysis is to evaluate the algorithms using workloads with variable average

utilization ratios. The traces created using the synthetic workload generator were used for this

analysis. They were divided in three workload groups according to its average utilization ratio. The

details about each group regarding average CPU and memory utilization are presented in Table 4.10.

The results obtained executing each algorithm for each workload group are presented in Ta-

bles 4.11, 4.12 and 4.13. For each algorithm, it is presented the average number of physical servers
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Figure 4.6 – Workload pattern analysis - Percentage of additional physical servers required by DSC-
CRD

Number of traces Average CPU and memory utilization
Group 1 40 21.4%
Group 2 40 36.3%
Group 3 40 52.6%

Table 4.10 – Characteristics of each group for workload utilization analysis.

used in all consolidation events, the total number of migrations performed, the maximum reconfig-

uration delay, and the number of reconfiguration delay breaks.

Group 1 represents a workload with low average utilization. Considering the results in Table 4.11,

LP presented the best consolidation ratio, followed close by some heuristics - FFD, BFD, WFD and

AWFD, resulting in a reduction of approximately 73% of physical servers, when compared with

mapping each trace to a single physical server. It also presented the highest number of migrations,

migrating approximately 90% of the virtual machines each consolidation event, and highest number

of reconfiguration delay breaks. The highest maximum reconfiguration delay was presented by

heuristic NFD, with a value of 1.7 (217.6 seconds according to the hypothetical scenario), but close

to other heuristics such as FFD, BFD and WFD. TS resulted in good consolidation, but requiring a

number of migrations higher than the heuristics. DSCCRD attended the maximum reconfiguration

delay for thresholds 1.0, 0.8, 0.6 and 0.4 with 0 breaks. With threshold 0.2, DSCCRD resulted in 5

reconfiguration delay breaks, increasing the maximum reconfiguration delay to 0.5. In comparison

to LP, DSCCRD uses between 3% to 17% more physical servers in order to attend maximum

reconfiguration delays between 1.0 and 0.4. For threshold 0.2 it uses 31% more physical servers in

order to minimize the number of reconfiguration delay breaks.
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Algorithm

Average of
number of

physical servers
used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 11.8 3548 1.3 143 (1.0)
FF 11.1 3811 1.4 48 (1.0)
BF 11.1 3827 1.4 66 (1.0)
WF 11.3 3700 1.3 100 (1.0)
AWF 11.1 3769 1.4 61 (1.0)
NFD 11.6 8822 1.7 1396 (1.0)
FFD 11 8585 1.5 1867 (1.0)
BFD 11 8585 1.5 1867 (1.0)
WFD 11 8900 1.6 1642 (1.0)
AWFD 11 8718 1.4 1885 (1.0)

LP 10.8 12083 1.5 4729 (1.0)
Tabu search 11.1 9376 1.4 697 (1.0)

DSCCRD (1.0) 11.1 1313 1 0 (1.0)
DSCCRD (0.8) 11.4 669 0.8 0 (0.8)
DSCCRD (0.6) 12 303 0.6 0 (0.6)
DSCCRD (0.4) 12.6 121 0.4 0 (0.4)
DSCCRD (0.2) 14.1 5 0.5 5 (0.2)

Table 4.11 – Workload utilization analysis - results for group 1.

Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 19,.7 6483 2.3 736 (1.0)
FF 17.8 6450 1.9 792 (1.0)
BF 17.7 6366 1.9 766 (1.0)
WF 18.3 6468 2.3 813 (1.0)
AWF 17.8 6374 1.9 816 (1.0)
NFD 19.8 11244 2.8 3362 (1.0)
FFD 17.5 11170 2.1 4494 (1.0)
BFD 17.5 11177 1.8 4503 (1.0)
WFD 17.5 11241 2 4326 (1.0)
AWFD 17.5 11228 1.8 4547 (1.0)

LP 17 12930 2.3 5819 (1.0)
Tabu search 19.3 8427 1.8 385 (1.0)

DSCCRD (1.0) 18.2 1850 1 0 (1.0)
DSCCRD (0.8) 19 1060 0.8 0 (0.8)
DSCCRD (0.6) 20.1 481 0.6 0 (0.6)
DSCCRD (0.4) 20.9 219 1 30 (0.4)
DSCCRD (0.2) 21.8 122 1 144 (0.2)

Table 4.12 – Workload utilization analysis - results for group 2.
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Algorithm
Average number

of physical
servers used

Number of
migrations

Maximum
reconfiguration

delay

Number of
reconfiguration

delay breaks
(threshold)

NF 31.4 5980 1.6 611 (1.0)
FF 29.1 6681 1.7 1330 (1.0)
BF 29.1 6810 1.7 1363 (1.0)
WF 29.7 6529 1.7 1236 (1.0)
AWF 29.1 6843 1.7 1395 (1.0)
NFD 30.7 12055 1.7 2146 (1.0)
FFD 28.8 12132 1.7 3519 (1.0)
BFD 28.8 12132 1.7 3519 (1.0)
WFD 28.8 12168 1.7 3481 (1.0)
AWFD 28.8 12165 1.7 3567 (1.0)

LP 28.8 13206 1.7 2515 (1.0)
Tabu search 28.8 3875 1.5 117 (1.0)

DSCCRD (1.0) 30.2 1343 1 0 (1.0)
DSCCRD (0.8) 30.5 1262 0.8 0 (0.8)
DSCCRD (0.6) 31.5 926 0.6 0 (0.6)
DSCCRD (0.4) 34.3 312 1 102 (0.4)
DSCCRD (0.2) 36.4 56 1 96 (0.2)

Table 4.13 – Workload utilization analysis - results for group 3.

reconfiguration delay breaks. DSCCRD attended the maximum reconfiguration delay for thresholds

1.0, 0.8, and 0.6 with 0 breaks. With thresholds 0.4 and 0.2, DSCCRD resulted in 30 and 144

reconfiguration delay breaks, increasing the maximum reconfiguration delay to 1.0 in both cases.

In comparison to LP, DSCCRD uses between 7% to 18% more physical servers in order to attend

maximum reconfiguration delays between 1.0 and 0.6. For thresholds 0.4 and 0.2, it uses 23% and

28% more physical servers in order to minimize the number of reconfiguration delay breaks.

Group 3 represents a workload with high average utilization. The results are presented in Ta-

ble 4.13. In this experiment, LP, some heuristics - FFD, BFD, WFD and AWFD - and TS presented

the best consolidation ratio, reducing the number of physical server required in 28%. LP presented

the highest number of migrations, migrating approximately 98% of virtual machines each consoli-

dation event. The maximum reconfiguration delay was the same for LP, with a value of 1.7 (217.6

seconds according to the hypothetical scenario), and almost all heuristics, and a little bit smaller

for TS, which also presented lowest number of reconfiguration delay breaks. DSCCRD attended the

maximum reconfiguration delay for thresholds 1.0, 0.8, and 0.6 with 0 breaks. With thresholds 0.4

and 0.2, DSCCRD resulted in 102 and 96 reconfiguration delay breaks, increasing the maximum

reconfiguration delay to 1.0 in both cases. In comparison to LP, DSCCRD uses between 5% to 9%

more physical servers in order to attend maximum reconfiguration delays between 1.0 and 0.6. For

thresholds 0.4 and 0.2 it uses 19% and 26% more physical servers in order to minimize the number

of reconfiguration delay breaks.
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In general, the results obtained using LP, TS, and some heuristics (decreasing versions) were

quite similar, specially in the workloads with low and high utilization, but LP still requires the highest

amount of migrations, migrating approximately all virtual machines in every consolidation event.

When the average utilization of the workload increases, the heuristics tend to increase the number

of required migrations, approximating to LP. Besides, it seems that the higher the average utilization

of the workload, the results become more similar between each other. Nevertheless, despite of

having always the highest number of migrations, LP did not get always the highest maximum

reconfiguration delay or number of reconfiguration delay breaks. The approximate execution time

for each implementation was: 20 seconds for each heuristic, between 12 and 24 hours for LP, 10

minutes for TS and between 15 to 30 minutes for DSCCRD. TS presented best results regarding

maximum reconfiguration delay and number of reconfiguration delay breaks in comparison to LP,

and the heuristics with best consolidation results. In the group with smallest utilization (group 1),

DSCCRD attended thresholds from 1.0 to 0.4, which indicates that the minimum threshold depends

on the average utilization of the workload. In the other groups, DSCCRD attended thresholds

from 1.0 to 0.6. In the cases that the threshold couldn’t be attended, the number of breaks was

minimized, with exception of group 3, which presented less breaks with 0.2 than 0.4. However, the

decrease in number of migrations and increase in number of physical servers was maintained as the

threshold gets smaller. Figure 4.8 presents the additional percentage of physical servers required by

DSCCRD with different thresholds for groups 1, 2 and 3 in comparison to LP.
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4.6 Closing remarks

Considering all experiments performed, it is possible to verify that LP provides very good re-

sults regarding consolidation, however the resulting mapping requires migrating almost every virtual

machine in each consolidation event, which can result in a considerable degradation in all virtual

machines performance. In most cases, heuristics provided consolidation ratios comparable with LP,

requiring less migrations. However, it does not direct reflect in a decrease in reconfiguration delays.

The TS implementation presented interesting results. It usually does not provide the best results in

consolidation, but usually achieves low reconfiguration delays.

The DSCCRD algorithm achieved the proposed requisites defined in the beginning of the work

of providing higher control over reconfiguration delays. The algorithm was able to attend thresholds

down to 0.6 in all cases, and 0.4 in a particular case which presented lower utilization. Possibly, using

workloads with lower average utilization ratio, DSCCRD could attend even lower thresholds. When

the threshold couldn’t be achieved, the number of reconfiguration breaks was minimized, incurring

in an increase in the maximum reconfiguration delay. The algorithm focus on harming some virtual

machines with higher reconfiguration delays, in order to have a higher rate of reconfiguration delays

below the given threshold. The DSCCRD algorithm presents a stable behavior, reducing the number

of migrations and increasing the amount of physical servers required, when the threshold is decreased.

The maximum percentage of additional physical servers required by DSCCRD on average was 20%

in the experiments performed using 0.6 as threshold (76.8 seconds according to the hypothetical

scenario).
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5. Conclusion

Dynamic server consolidation presents high gains in virtualized data centers, with a significant

reduction in the amount of required resources, and consequently a reduction on the average cost

to maintain the data center. However, it can also have an impact on applications’ performance.

In order to attend changes in applications’ demand, the mapping of virtual machines to physical

servers might be modified, requiring migrating virtual machines between physical servers. The

concurrent migration of virtual machines can result in an increase in the delay to complete the

reconfiguration of each virtual machines to its new capacity. A high value of reconfiguration delay

might harm applications’ performance, since the application can require the additional capacity

before the reconfiguration process is complete.

Related works tackle this problem focusing on minimizing the number of migrations performed,

or the individual cost of each migration. However, they do not consider the underlying network

connecting all physical servers, or the corresponding delay incurred to applications to complete the

reconfiguration of virtual machines. Besides, it can be observed by the experiments performed that

minimizing the number of migrations does not represent directly a reduction in the reconfiguration

delay. Therefore, another approach should be considered.

This work analyzed algorithms for dynamic server consolidation, obtaining results regarding the

number of physical servers used, the number of migrations required, and the corresponding maximum

reconfiguration delay for each algorithm. The results indicate that the algorithms provide good

consolidation ratio, minimizing considerably the number of required resources to attend the workload.

However, in order to accomplish it, a significant amount of migrations is required, and there is no

guarantees regarding the maximum delay to complete the reconfiguration of virtual machines. This

elevated number of migrations indicate higher reconfiguration delays, but some results identified

that solely minimizing the number of migrations does not guarantee a low reconfiguration delay.

An algorithm was proposed to enable higher control over the maximum reconfiguration delay,

while also using the minimum amount of resources as possible. The algorithm was evaluated and

presented results that attended the maximum reconfiguration delay threshold defined as input. When

the threshold could not be attended, the algorithm minimizes the number of virtual machines that

have a reconfiguration delay above the given threshold. The results indicate that the algorithm min-

imizes the number of migrations and uses more physical servers as the threshold gets smaller. The

approximate percentage of additional machines required by the algorithm in comparison to LP (al-

gorithm that presented best consolidation results), ranged between 3% and 22% in the experiments

performed, when the algorithm was able to attend the specified threshold.

The contributions of this work are:

• modeling of the migration costs resulted from dynamic server consolidation using the max-min

fairness model, simulating the behavior of concurrent migrations in the network;
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• proposal of an algorithm for dynamic server consolidation using the tabu search metaheuristic;

• proposal of an algorithm for dynamic server consolidation that limits the maximum reconfig-

uration delay in virtual machines, and reduces the number of reconfiguration breaks;

• proposal of a generator of synthetic workloads, based on common data center utilization

patterns;

• evaluation of typical dynamic server consolidation algorithms and the proposed algorithm

for controlled reconfiguration delays regarding the average amount of physical servers used,

number of required migrations, and reconfiguration delay of virtual machines.

The algorithm proposed provides higher guarantees in applications’ performance, ensuring that

changes in virtual machines capacity will be attended in a maximum delay. The definition of a max-

imum reconfiguration delay enables managers to more efficiently identify when to perform changes

in virtual machines, in order to avoid applications’ starvation for resources.
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