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Abstract. Server consolidation is a vital mechanism in modern data
centers in order to minimize expenses with infrastructure. In most cases,
server consolidation may require migrating virtual machines between
different physical servers. Although the downtime of live-migration is
negligible, the amount of time to migrate all virtual machines can be
substantial, delaying the completion of the consolidation process. This
paper proposes a new server consolidation algorithm, which guarantees
that migrations are completed in a given maximum time. The migration
time is estimated using the max-min fairness model, in order to consider
the competition of migration flows for the network infrastructure. The
algorithm was simulated using a real workload and shows a good consol-
idation ratio in comparison to other algorithms, while also guaranteeing
a maximum migration time.

1 Introduction

Server consolidation is a key feature in current virtualized data centers. It fo-
cuses on minimizing the amount of resources required to handle the data center
workload, and therefore, it has a direct impact on the costs of the data center
infrastructure. Due to the variations in demand of the applications executed in
the data center, virtual machines capacities should be periodically revisited in
order to provide good performance to the applications and minimize overprovi-
sioning. A server consolidation algorithm evaluates these capacity changes and
derives a new mapping of virtual machines to the available resources. The new
mapping may require migrating virtual machines among physical servers, which
can be performed using live-migration techniques with negligible downtime.

Although the migration of virtual machines is imperceptible for the users, mi-
grating several virtual machines concurrently can require a considerable amount
of time, which results in a larger delay in the server consolidation process. There-
fore, estimating the total migration time is essential when planning the server
consolidation of virtual machines. Even so, current server consolidation algo-
rithms disregard this matter.

This paper proposes a new server consolidation algorithm which minimizes
the number of required physical servers to handle a set of virtual machines,



while also guaranteeing that the migrations performed in the transition to the
new mapping be completed in a specified maximum time. The algorithm was
evaluated using real workloads from TU-Berlin and compared with common im-
plementations of the server consolidation problem, such as heuristics and linear
programming. The results obtained show that the algorithm is able to guarantee
a maximum migration time in most cases and also minimizes considerably the
number of migrations performed, while requiring a small amount of additional
physical servers.

2 Related work

The server consolidation problem consists in mapping a set of virtual machines
with different capacities to a set of physical servers in order to minimize the
number of physical servers required. This problem is analogous to the classic
bin-packing problem, which is classified as an NP-hard problem [6], and aims
at mapping a set of items with different capacities into a minimal set of bins.
There are several approaches in the literature to solve this problem, in which
the most common use heuristics and linear programming. Some of the most
common heuristics for the bin-packing problem are [6, 11]: first-fit, best-fit, worst-
fit and almost worst-fit. Each heuristic uses a different policy to select which
bin should receive an item. A common optimization is to order the items in
decreasing order before starting the mapping process, resulting in the algorithms:
first-fit decreasing, best-fit decreasing, worst-fit decreasing and almost worst-fit
decreasing. The main goal of heuristics is to find good solutions at a reasonable
computational cost, however it does not guarantee optimality. Another common
approach is to use linear programming to find an optimal solution. The drawback
of this approach is that it usually has higher requirements in terms of computing
power and time.

Applications running in data centers usually present periods of high and
low utilization. In order to minimize the amount of active resources, the ca-
pacity required in each virtual machine is periodically evaluated, and a new
mapping is produced using server consolidation. Server consolidation techniques
have widespread adoption in virtualized data centers. However, the process of
mapping virtual machines to physical servers is not trivial. Depending on the
application requirements and the resource provider goals, different strategies
can be applied. Several works have been published in the last years proposing
different approaches in the server consolidation process.

Andrzejak et al. [2] proposed static and dynamic server consolidation algo-
rithms based on integer programming and genetic algorithm techniques. The
algorithms were evaluated using a production workload containing traces from
enterprise applications. The results present the benefits of using server consol-
idation, showing that the same workload could be allocated in a much smaller
number of physical servers. The genetic algorithm resulted in solutions as good
as with integer programming, with the benefit of reaching the solution much



faster. In this work, migrations are considered to happen instantaneously, i.e.,
there is no migration cost included in the algorithms.

Speitkamp and Bichler [4, 15] described linear programming formulations for
the static and dynamic server consolidation problems. They also designed ex-
tension constraints for limiting the number of virtual machines in a physical
server, guaranteeing that some virtual machines are assigned to different physical
servers, mapping virtual machines to a specific set of physical servers that contain
some unique attribute, and limiting the total number of migrations for dynamic
consolidation. In addition, they proposed an LP-relaxation based heuristic for
minimizing the cost of solving the linear programming formulations.

Bobroff et al. [5] proposed a dynamic server consolidation algorithm, which
focus on minimizing the cost of running the data center. The cost is measured
using a penalty over underutilized and overloaded physical servers, and over ser-
vice level agreements (SLA) violations, defined as CPU capacity guarantees. The
algorithm uses historical data to forecast future demand and relies on periodic
executions to minimize the number of physical servers to support the virtual
machines.

Khanna et al. [9] proposed a dynamic management algorithm, which is trig-
gered when a physical server becomes overloaded or underloaded. The main
goals of their algorithm are to: i) guarantee that SLAs are not violated (SLAs
are specified considering mainly response time and throughput); ii) minimize mi-
gration cost; iii) optimize the residual capacity of the system; and iv) minimize
the number of physical servers used. Migration cost is defined as the amount of
resources used by each virtual machine.

Wood et al. [17] developed the Sandpiper system for monitoring and detecting
hotspots, and remapping/reconfiguring virtual machines whenever necessary. In
order to choose which virtual machines to migrate, Sandpiper sorts them using
a volume-to-size ratio (VSR), which is a metric based on CPU, network, and
memory loads. Sandpiper tries to migrate the most loaded virtual machine from
an overloaded physical server to one with sufficient spare capacity.

Mehta and Neogi [13] introduced the ReCon tool, which aims at recommend-
ing dynamic server consolidation in multi-cluster data centers. ReCon consid-
ers static and dynamic costs of physical servers, the costs of virtual machine
migration, and the historical resource consumption data from the existing en-
vironment in order to provide an optimal dynamic plan of virtual machines to
physical server mapping over time. Virtual machine migration costs are defined
as directly related to amount of resources used by the VM, such as CPU and
memory. Similarly, Verma et al. [16] developed the pMapper architecture and
a set of server consolidation algorithms for heterogeneous virtualized resources.
The algorithms take into account power and migration costs and the performance
benefit when consolidating applications into physical servers. In the pMapper ar-
chitecture, the migration cost is analyzed as the impact of the migration during
the application execution. However, the migration cost model only considers the
impact when migrating a single virtual machine, i.e. the migration cost does not
change when several migrations occur concurrently.



Despite the several approaches investigated in server consolidation, none of
them have already studied the real impact of virtual machines migration in the
server consolidation process. Most of the works that deal with virtual machine
migration only take into account the number of migrations, or the amount of
memory transferred (related to the amount of resources used by the VM), but
the impact of these transfers in the completion of the consolidation process
have never been explored. It is necessary to estimate how long does it take to
migrate each virtual machine considering that they compete for the network
infrastructure.

3 Server consolidation algorithm

The server consolidation problem focus on minimizing the number of physical
servers required to map a list of virtual machines, respecting the capacity of
physical servers and demands of virtual machines. In the algorithm proposed
here, besides minimizing the number of physical servers, it also aims at estab-
lishing a maximum migration time during the server consolidation process. The
migration time directly reflects the amount of time required to complete the
consolidation.

One of the main challenges is to accurately estimate migration time, taking
into consideration that migrations are performed in a shared network infras-
tructure, and it may affect the available bandwidth for each migration. In the
proposed algorithm, the evaluation of the available bandwidth for each migra-
tion is performed using the max-min fairness (MMF) model [8, 14]. This model is
often considered in the context of IP networks carrying elastic traffic. It presents
the following properties: i) all transfers have the same priority over the available
bandwidth, ii) link bandwidths are fairly shared among transfers being allocated
in order of increasing demand, iii) no transfer gets a capacity larger than its de-
mand, and iv) transfers with unsatisfied demands get an equal share of the link
bandwidth.

Given a set of network links with respective bandwidths and the links used
by each migration, it is possible to obtain the available bandwidth for each
migration using a progressive filling algorithm which respects the MMF model
properties [3]. The algorithm initializes the bandwidth available for each transfer
with 0. It increases the bandwidth for all transfers equally, until one link becomes
saturated. The saturated links serve as a bottleneck for all transfers using them.
The bandwidths for all transfers not using these saturated links are incremented
equally until one or more new links become saturated. The algorithm continues,
always equally incrementing all transfer bandwidths not passing through any
saturated link. When all transfers pass through at least one saturated link, the
algorithm stops.

The migration time is measured as the time it takes to transfer the current
memory allocation of each virtual machine, with the available bandwidth ob-
tained using the MMF model. However, it is not possible to simply divide one
by the other. Considering that some migrations finish before others, the available



bandwidth for each migration can change, and the remaining amount of mem-
ory to be transferred should take into account the new available bandwidth.
Therefore, migration time is measured in incremental steps.

After each migration finishes, the amount of time passed is added to the
migration time of all virtual machines, and the amount of memory transferred
during this time is decreased from the total amount of memory to transfer. If
there is no more memory to transfer, the migration is removed from the set of
running migrations. The algorithm continues until there are no more running
migrations. In the end, we have an estimation of the migration time of each
migration.

The proposed algorithm is divided in two distinct phases. The first phase
aims at finding a feasible mapping of virtual machines to physical servers that
minimizes the maximum migration time of all virtual machines. In the second
phase, the feasible mapping is iteratively modified in order to produce solutions
using a smaller number of physical servers, but also respecting a maximum mi-
gration time threshold. In cases where it is not possible to guarantee migration
times smaller than a specified threshold, the algorithm finds a solution that min-
imizes the number of virtual machines that have their migration times higher
than the specified threshold.

3.1 First phase: minimizing migration time

The first phase is based on the traditional descent method for local neighborhood
search. Based on an initial solution, a set of small modifications to this solution is
derived. The result obtained with each modification is analyzed and the best one
is chosen. If this modification optimizes the current solution, then it is applied
and the process repeats, otherwise the algorithm stops.

Algorithm1 presents the algorithm for the first phase. It starts using a copy of
the current mapping as the current solution. The repetition of the current map-
ping results in zero migrations, however the physical servers can become over-
loaded, i.e., the physical server capacity can not be able to handle the changes
of the virtual machines demands mapped to it. The strategy is to remove each
overloaded physical server from this overload state, migrating some of its vir-
tual machines to other physical servers, choosing every time the alternative that
results in minimal migration times. The algorithm generates migration alter-
natives for each overloaded physical server. The physical server that performs
migrations which results in minimal migration time is chosen. The migrations
are included in the current solution, and the process repeats, until there are no
more overloaded physical servers.

The migration alternatives for each overloaded physical server are generated
as the combinations of virtual machines that remove the physical server from
the overload state. For example, given an overloaded physical server with capac-
ity 100, packing virtual machines: v1 with demand 50, v2 with demand 40, v3
with demand 30, and v4 with demand 20, the algorithm generates the following
combinations of virtual machines: (v1), (v2), and (v3, v4). Each combination of
virtual machines is applied in the current solution using the best-fit decreasing



heuristic and its cost is evaluated. The cost function considers the maximum mi-
gration time and also the sum of the migration times of all migrations. The goal
is to find a feasible mapping, respecting physical servers capacities and virtual
machines demands, which minimizes this cost function, i.e., results in the lowest
maximum migration time.

The algorithm repeats until there are no more overloaded physical servers. In
the end, the result generated will contain at least the same amount of physical
servers as the present mapping. The second phase is used to decrease the number
of physical servers, while guaranteeing that the maximum migration time stays
under a given threshold.

Algorithm 1 First phase of the server consolidation algorithm

current solution← getCurrentMapping()
while there are overloaded physical servers in current solution do

for all p in overloaded physical servers do
alternatives← generateMigrationAlternatives(p)
for all alt in alternatives do

sol ← bestFitDecreasing(alt)
cost← calculateCost(sol)

end for

end for

current solution← getAlternativeWithLowestCost()
end while

3.2 Second phase: minimizing the number of physical servers

The second phase is implemented using the tabu search metaheuristic [7]. The
main idea of tabu search is to maintain a memory about previous local searches,
in order to avoid performing repeatedly the same moves, returning to the same
solution and staying confined into a local optima. The tabu search method is
based on a repetition of steps that explores the possible solutions for the problem.

The second phase is presented in Algorithm2, and it starts by using as initial
solution the mapping resulted from the first phase. The strategy is to select in
each iteration one physical server to empty, reassigning its virtual machines to
other physical servers. The selection of the physical server is based on a filling
function, proposed by [12], which gives a measure of easiness to empty a physical
server. The function gives higher priority to physical servers with low occupied
capacity and more virtual machines packed on it. The physical server with the
lowest filling index, according to the filling function, and that is not in the tabu
list is chosen. The tabu list stores a list of previously chosen physical servers,
and the goal of the tabu list is to avoid choosing repeatedly the same physical
servers to empty.



After choosing the physical server using the filling function, the virtual ma-
chines mapped to it are retrieved and the physical server is set as unavailable
during this iteration, in order to avoid remapping all virtual machines to it again.
The list of virtual machines is used as input to a permutation function, which
returns lists with these virtual machines in all possible orderings. Each alterna-
tive is evaluated, applying the worst-fit heuristic to map the virtual machines
to the physical servers. The alternative that provides a solution with best cost,
according to the cost function, is selected and its solution is defined as the cur-
rent solution. The cost function that should be minimized combines the number
of physical servers and the number of breaks of maximum migration time. This
last term refers to the number of migrations with migration time higher than
the specified threshold.

The physical server chosen at first is included in the tabu list and set as
available again to pack virtual machines in the next iterations. The tabu list
size has a fixed capacity, and when this capacity is exceeded, the oldest entry is
removed. The tabu list size should be smaller than the number of physical servers.
If the cost of the current solution is smaller than the cost of the best solution,
then the current solution is defined as the best solution. This process repeats until
the best solution does not present any enhancements in a pre-specified number
of iterations. The final solution can result in a situation that guaranteeing the
maximum migration time is not possible, however it will minimize the number
of breaks of maximum migration time.

4 Evaluation

The evaluation of the server consolidation algorithm was performed using work-
loads composed of traces from servers of the Technical University of Berlin (TU-
Berlin), which are normally used by researchers and students to execute com-
putational experiments. Each workload contains samples of CPU and memory
utilization per hour during a week, totalizing 168 samples per trace. The work-
loads present different characteristics, such as: number of traces, average CPU
utilization, average memory utilization, and average variability. The variability
in a trace indicates the percentage of consecutive samples that present a vari-
ation in CPU or memory values. A variability of 0% indicates that the trace
keeps with same CPU and memory utilization during the whole trace duration,
whereas 100% indicates that each consecutive sample presents a different CPU
or memory utilization. The higher the variability, higher also is the probability
of changes in the mapping of virtual machines to physical machines, and hence a
higher number of migrations can be performed. Table 1 presents the workloads
and its characteristics.

The physical infrastructure simulated in the experiments is a data center
composed of 100 homogeneous physical servers with CPU and memory capac-
ities equal to 100. Each server is connected to a single crossbar switch using
bidirectional links forming a star network topology. Each link has a capacity of



Algorithm 2 Second phase of the server consolidation algorithm

current solution← getFirstPhaseMapping()
best solution← current solution

repeat

for all p in physical servers not in tabu list do
pindex← getFillingIndex()

end for

p← getPhysicalServerWithLowestIndex()
vms← getVirtualMachinesFrom(p)
set p as unavailable
moves← getPermutations(vms)
for all m in moves do

sol ← worstFit(m)
cost← calculateCost(sol)

end for

current solution← getAlternativeWithLowestCost()
insertIntoTabuList(p)
set p as available
if calculateCost(current solution) < calculateCost(best solution) then
best solution← current solution

end if

until termination condition

Table 1: Details of TU-Berlin workload groups
Number of Avg. CPU Avg. memory Avg. variability

traces utilization (%) utilization (%) (%)

Workload 1 43 25.2 28.36 17

Workload 2 61 32.37 39.39 41

Workload 3 36 47.28 48.67 63

100 per unit of time. It means that it takes 1 unit of time to transfer all memory
from one physical server to another one using full link capacity.

The server consolidation algorithm proposed was compared with typical im-
plementations of the server consolidation problem using heuristics and linear pro-
gramming. The heuristics implemented were: first-fit decreasing (FFD), best-fit
decreasing (BFD), worst-fit decreasing (WFD) and almost worst-fit decreasing
(AWFD). They were all implemented using the Python language. The linear
programming (LP) solution was implemented using Zimpl [10] and solved using
the SCIP [1] solver. The solver was configured with a timeout of 5 minutes, i.e., if
the solver can not find the optimal result in 5 minutes, it returns the best result
found so far. This approach is usually used since linear programming problems
can take a long time to find an optimal solution. All experiments were performed
on a Intel Core 2 Duo processor with 2.4 GHz and 4 GBytes of memory. The



server consolidation algorithm proposed was implemented using the Python lan-
guage. The second phase (using Tabu Search) was configured with tabu list size
equal to 5 and to terminate when the solution does not present any changes in
the last 10 iterations (termination condition). The first mapping is performed
using the first-fit heuristic since there is no previous mapping to be used by the
algorithm. The server consolidation algorithm was executed using five different
thresholds of maximum migration time. The thresholds are: 1.0, 0.8, 0.6, 0.4 and
0.2 units of time.

For each experiment combining algorithm and workload, the metrics mea-
sured are: the average number of physical servers required to process the work-
load, the average number of migrations required, and the maximum migration
time. Figures 1a, 1b and 1c present the results obtained with the algorithms for
each workload. The heuristics bar only presents the heuristic that presented the
best solution.

LP presented the lowest average number of physical servers in all workloads,
but it was closely followed by the best heuristic. However, LP also presented
the highest average number of migrations, requiring migrating almost all virtual
machines each consolidation step in all workloads. The average percentage of vir-
tual machines migrated each consolidation step using LP are: 90% for workload
1, 97.2% for workload 2 and 95.8% for workload 3 using LP. These high values
are due to the aggressive methods applied by linear programming in order to
find an optimal solution. Despite the lowest number of physical servers, the high
number of migrations is a huge obstacle for its utilization in a real environment.
The heuristics required a lower number of migrations, but with a considerable
increase when using workloads with higher variability. Heuristics tend to keep
the mapping of virtual machines in the same physical servers when there is a low
variation in the virtual machines capacities. Besides presenting a high number of
migrations, LP and heuristics also presented, as expected, a high maximum mi-
gration time, considering that these algorithms only try to optimize the number
of physical servers used by the workload.

The proposed server consolidation algorithm (named as SCAlgo in the charts)
was able to maintain the maximum migration time for the first three thresholds:
1.0, 0.8 and 0.6. The reduction in the number of required migrations is con-
siderable, requiring only a small increase in the number of physical servers. In
workload 1, with the time threshold of 1.0, the algorithm migrates an aver-
age of 6.5% of the virtual machines against 90% using LP, requiring only an
increase of a single machine in average. Workloads 2 and 3 migrate an aver-
age of 8.3% (against 97.2% in LP) and 13.6% (against 95.8% in LP) of virtual
machines, while requiring an increase of approximate 2.9 and 1.5 machines in
average in comparison to the results obtained using LP. In the cases where the
proposed server consolidation could not guarantee the maximum migration time
(thresholds of 0.4 and 0.2), the algorithm minimized the number of migration
breaks, i.e., the number of migrations that presented migration times higher
than the specified threshold. In the charts, the number of migration breaks is
presented in parentheses besides the maximum migration time for thresholds



(a) Results for Workload 1

(b) Results for Workload 2

(c) Results for Workload 3



0.4 and 0.2. This limitation is directly related to the characteristics of the work-
load, specially regarding the amount of memory utilization. Even when using
full network capacity, virtual machines with high memory demands cannot be
transferred during the maximum migration time specified.

5 Conclusion and future work

This paper presented a new server consolidation algorithm to be used in virtual-
ized data centers that, besides minimizing the number of physical servers used,
also guarantees that all necessary migrations occur during a specified maximum
migration time. The maximum migration time has direct relation to the com-
pletion of the consolidation process and, therefore, should be taken into account
in the server consolidation algorithm. Several algorithms have been proposed for
the server consolidation problem, but none of them have focused on ensuring
a maximum migration time in order to minimize the delay in the consolida-
tion process. The server consolidation algorithm proposed has been evaluated
using real workloads and typical solutions for server consolidation using linear
programming and heuristics. The results obtained indicate that the proposed
algorithm can efficiently provide guarantees using common thresholds of time,
with a huge decrease in the number of migrations performed and a slight in-
crease in the number of additional physical servers required. As future work,
we intend to perform more experiments using different workloads and optimize
the algorithm in order to provide guarantees of maximum migration time in
more complex scenarios. We also intend to analyze how resource providers can
use the maximum migration time in SLAs in order to offer a more controlled
environment for its users.
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