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Abstract. MapReduce (MR) has become a de facto standard for large-
scale data analysis. Moreover, it has also attracted the attention of the
HPC community due to its simplicity, efficiency and highly scalable par-
allel model. However, MR implementations present some issues that may
complicate its execution in existing HPC clusters, specially concerning
the job submission. While on MR there are no strict parameters required
to submit a job, in a typical HPC cluster, users must specify the number
of nodes and amount of time required to complete the job execution.
This paper presents the MR Job Adaptor, a component to optimize the
scheduling of MR jobs along with HPC jobs in an HPC cluster. Ex-
periments performed using real-world HPC and MapReduce workloads
have show that MR Job Adaptor can properly transform MR jobs to be
scheduled in an HPC Cluster, minimizing the job turnaround time, and
exploiting unused resources in the cluster.

1 Introduction

The MapReduce (MR) model is in increasing adoption by several researchers,
including the ones that used to rely on HPC solutions [19, 18]. Much of this
enthusiasm is due to the highly visible cases where MR has been successfully used
by companies like Google, Yahoo, and Facebook. Besides, MR provides a simpler
approach to address the parallelization problem over traditional approaches, such
as MPI [10].

MR implementations, such as Hadoop [20], provide a complete execution
platform for MR applications, normally using a dedicated cluster in combination
with an optimized distributed file system. As consequence, in order to enable the
execution of regular HPC and MR jobs in a computing laboratory, two distinct
clusters are required. It leads to a split in the laboratory investments, in terms
of hardware and staff, to support the two models, instead of focusing in a single,
large scale and powerful computing infrastructure.

We believe that users and computing laboratory administrators may benefit
from using already existing HPC clusters to execute MR jobs. In order to enable
it, one of the first issues that must be addressed is regarding the job submission
process. While MR implementations provide a straightforward job submission
process which involves the whole cluster, HPC users submit their jobs to a
Resource Management System (RMS) and need to specify the number of nodes
and amount of time that should be allocated for complete the job execution.
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Fig. 1. Architecture of the HPC cluster with the MR Job Adaptor

Current solutions, such as Hadoop on Demand (HOD) [1] and myHadoop [13]
allow one to create a virtual Hadoop cluster as a partition of a large physical clus-
ter. However, the user must explicitly specify the number of nodes and time to
be allocated as a regular HPC job. This approach may confuse typical MR users
that are not used to do it, and they may, in return, always try to allocate the
whole cluster for the longest time as possible. As a consequence, the turnaround
time of the MR job will probably increase, since the job will be scheduled to the
end of the RMS queue, which will frustrate the user again. Other solutions, such
as MESOS [11] and Hamster [21], use a different approach where the respon-
sibility for resource management is taken away from the cluster’s RMS, which
may conflict with the policy of use of most HPC clusters.

In order to overcome these problems, we present in this paper the MR Job
adaptor, a component that converts MR jobs in order to enable their execution
in HPC clusters. Figure 1 presents the MR Job adaptor and its connection with
MR users and the RMS of the HPC Cluster. It receives the MR job from the
user and interacts with the RMS in order to find a suitable slot to schedule the
job that minimizes the resulting turnaround time of the job. We evaluated the
algorithm implemented inside the MR Job Adaptor using real HPC and MR
workloads and observed that it effectively decreases the turnaround time while
also exploits unused resources in the cluster.

The paper is organized as follows: Section 2 provides an overview of HPC
clusters and the Map Reduce model; Section 3 describes the functioning of the
MR Job Adaptor for HPC Clusters; Section 4 presents the experiments per-
formed to evaluate the MR Job Adaptor using real workloads. The conclusion
and future work are presented in Section 5.

2 HPC clusters and MapReduce

Clusters of computers, which have transformed HPC in the last decade, are still
the dominant architecture in this area [22]. HPC clusters consist of a number



of stand-alone computers connected by a high performance network, working
together as a single computing resource, and sharing a common storage volume
exported through a distributed file system.

Traditional HPC clusters typically have their resources controlled by a Re-
source Management System (RMS), such as PBS/TORQUE [23] or SGE [16],
which enable the submission, tracking and management of jobs in the cluster. Al-
though this approach maximizes the overall utilization of the system and enables
sharing of the resources among multiple users [13], it also requires all applications
to be submitted as batch jobs. The user must submit the job accompanied by
the number of nodes that the parallel application should use and the maximum
time that it will take to complete the job execution.

The de-facto standard for parallel programming in HPC clusters is MPI (Mes-
sage Passing Interface [10]), which follows the message-passing paradigm. A par-
allel program using MPI consists of different processes running on the cluster and
explicitly exchanging data via messages. Despite the higher complexity in the
development of parallel applications using this approach, it also enables one to
fine-tune the application, resulting in better performance than other high-level
approaches.

In the past few years, the increase in data generation has reached rates never
seen before, making it necessary to develop new technologies for storing and
analyzing such a large amount of data. The processing of such large data sets,
also known as big data, is normally referred as data-intensive computing [15].
Several works have already been proposed in the data-intensive computing area
to address the needs of big data [17, 6, 9]. In this model, the data set may not
fit in the main memory nor in a single disk and, therefore, a distributed storage
solution is necessary.

The execution platform for data-intensive computing is typically a dedicated
large-scale cluster, with the data set distributed between the cluster nodes, i.e.,
each node has a slice of the data set. Thus, each node is both a data and compute
node, which provides scalable storage and efficient data processing (by exploiting
data locality). This architecture differs from traditional HPC clusters in some
ways. HPC clusters are usually shared by several users to execute different ap-
plications, through the mediation of a RMS, while in data-intensive computing
the cluster is usually dedicated to process large data sets of an unique organi-
zation. HPC clusters use a shared-disk file system to share data between nodes,
while in data-intensive computing each cluster node uses its own local storage
(shared-nothing). Consequently, users of data-intensive computing usually adopt
a dedicated cluster for their applications.

There are several frameworks for the development of data-intensive applica-
tions [6, 7, 12], most of them based on the MapReduce (MR) model. Hadoop [20]
is currently one of the most popular open-source MapReduce implementations.
Unlike typical HPC parallel programming libraries, such as MPI, MR frameworks
hide much of the complexity of parallel programming from the programmer (for
example, not requiring explicit data communications or application-specific logic
to avoid communications). Current MR implementations allow automatic paral-



lelization and distribution of computations on large clusters of commodity PCs,
hiding the details of parallelization, fault tolerance, data distribution and load
balancing [6].

The availability of several programming frameworks and the facilities to de-
velop a parallel program has contributed to the adoption of MR by traditional
HPC users. Instead of explicitly specifying the communication between pro-
cesses and guaranteeing their coordination, the definition of simple map and
reduce tasks seemed to be simpler in some cases. As a result, typical CPU-
intensive HPC applications started being reimplemented using the MapReduce
model (e.g. scientific application [19]) and, consequently, using a dedicated MR
cluster.

Instead of using two clusters, one for HPC applications and another for MR
applications, the RMS of the HPC cluster should also be able to schedule MR
jobs. However, in order to do that, the MR job must include the number of
nodes and amount of time to execute the job, which is not common in MR
implementations. There are some initiatives in order to execute MR jobs in an
HPC cluster. Systems such as Hadoop on Demand (HOD) [1] and myHadoop [13]
allow one to create a virtual Hadoop cluster as a partition of a large physical
cluster. Both systems use the TORQUE Resource Management System [23] to
perform the allocation of nodes. However, the user has to specify the number of
nodes and time to be allocated.

A straightforward solution would be to request the whole cluster for as long
as possible to execute the job. Despite the simplicity of this approach, it can
lead to longer turnaround times, since the request will probably go to the end
of the RMS queue, which increases the time before the request is attended.
Due to the high flexibility of MR jobs (they can be executed with a variable
number of nodes), the RMS could use a more intelligent approach, trying to fit
the MR job in the free slots available in the RMS queue. Therefore, we propose
a component called MR Job Adaptor, used to adjust the request to an HPC
Cluster RMS, including number of nodes and amount of time, while ensuring
that the turnaround time is minimized.

3 MapReduce Job Adaptor

This section presents the algorithm implemented inside the MapReduce Job
Adaptor. The adaptor has three main goals: (i) to facilitate the execution of MR
jobs in HPC clusters, (ii) to minimize the average turnaround time of MR jobs
executed in an HPC cluster, and (iii) to exploit unused resources in the cluster
resulted from the various shapes of HPC job requests.

MR job requests are quite different from HPC ones. They do not require any
specific infrastructure parameter for submission, only straightforward applica-
tion parameters such as number of map and reduce tasks. On the other hand,
HPC job requests require the number of nodes and amount of time to allocate
a cluster partition. The approach used by systems such as Hadoop on Demand
and myHadoop to run MR jobs in HPC clusters is to ask the user how many



nodes and time should be allocated for a job. However, this approach is quite
cumbersome since, in general, users do not have this kind of knowledge about
their MR applications for different numbers of nodes and combinations of map
and reduces tasks. In practice, this causes the user to allocate the maximum
allowed amount of time and resources in the cluster, which may cause longer
turnaround times and waste of resources.

The proposed adaptor aims to enable the transparent execution of MR jobs
in the HPC cluster, i.e., the user specifies the MR job request as he would do in
a typical MR cluster and the adaptor converts it to an HPC-compatible request,
which is forwarded to the Resource Management System (RMS) of the HPC
cluster. Instead of always using the maximum amount of nodes and time to
execute the MR job, the adaptor allocates a cluster partition which minimizes
the turnaround time of the job. It does that by interacting with the RMS to
get free areas (slots) in the job requests queue. Using a profile of the MR job,
it estimates the job completion time for each free slot and selects the one that
yields the minimum turnaround time.

This approach relies on the fact that MR jobs do not have strict requirements
regarding the number of resources for execution as HPC jobs. Thus, we use
the MapReduce performance model proposed by Verma et al. [24] to estimate
job completion times for different number of resources. It creates a job profile
comprising performance invariants from past executions and uses it as input for
the time estimation. This model can be used to estimate the lower (T low

J ) and
upper (T up

J ) bounds of the overall completion time of a given job J . The lower
bound can be obtained as follows:
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MapReduce phase, extracted from the job profile. The equation for T up
J can be

written in a similar form and is detailed in Verma et al. [24]. It was reported that
the average of lower and upper bounds (T avg

J ) is a good approximation of the
job completion time, so we chose the upper bound as a conservative approach,
avoiding the underestimation cases.

The algorithm implemented for the MapReduce Job Adaptor is presented
in Algorithm 1. It starts by receiving the number of map and reduce tasks
(Nm,Nr), and a profile p of the MR job to be executed in the cluster. It also
gets information from the RMS, such as the list of free slots in the queue and
maximum number of nodes and time that can be allocated in the queue. These
limits in the number of nodes and time are usually imposed by HPC cluster
administrators in order to enforce a fair sharing of resources between users.

Figure 2 presents an example of RMS queue of an HPC cluster with six jobs
(A to F) scheduled in the queue. In this example, function getFreeSlots() would
return four free slots that could be used to execute the MR job. Slot 1 starts at



Algorithm 1 MapReduce Job Adaptor internal functioning

(Nm, Nr) ← Number of map and reduce tasks of MR job
p ← Job profile of MR job
freeSlotsList ← getFreeSlots()
maxNodes ← Maximum number of nodes allowed for allocation in the cluster
maxT ime ← Maximum time allowed for allocation in the cluster
turnaround ← BigNumber

for all freeSlot in freeSlotsList do

startT ime ← getStartTime(freeSlot)
slotDuration ← getSlotDuration(freeSlot)
slotDuration ← MIN(slotDuration,maxT ime)
numNodes ← getNumberOfNodes(freeSlot)
numNodes ← MIN(numNodes,maxNodes)
execT ime ← estimateJobExecutionTime(p, Nm, Nr, numNodes)
newTurnaround ← startT ime+ execT ime−NOW

if execT ime <= slotDuration and newTurnaround < turnaround then

nodes ← numNodes

time ← execT ime

turnaround ← newTurnaround

end if

end for

return (nodes, time)

time 10 with 25 nodes and maximum duration of 2. Slot 2 starts at time 13 with
50 nodes and maximum duration of 2. Slot 3 starts at time 16 with 25 nodes
with no maximum duration, and slot 4 starts at time 17 with all cluster nodes
and has also no maximum duration.

Variables maxNodes and maxT ime receive the maximum number of nodes
and amount of time that can be requested to the RMS. The turnaround variable,
which stores the turnaround time of the best solution found by the algorithm, is
initialized with a big number. After that, the algorithm starts testing each free
slot in the RMS queue to verify if the MR job would fit on it while minimizing
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the turnaround time. Since the number of nodes can change for each slot, the
execution time of the MR job needs to be estimated again. The execution time
of the MR job is estimated using its parameters (number of map and reduce
tasks, and job profile) and numNodes. The algorithm finishes with parameters
nodes and time to be used in the job submission to the RMS which minimizes
the turnaround time of the MR job. The turnaround time is calculated using
the slot start time and the estimated execution time of the MR job subtracted
by the current time (indicated by NOW in the algorithm).

4 Evaluation

In order to evaluate the proposed algorithm, we used a simulator based on the
SimGrid toolkit [4], which provides abstractions and functionalities for the sim-
ulation of parallel and distributed systems, such as HPC clusters. We simulated
a cluster of 128 nodes with 2 cores each (for the MapReduce experiments, we
defined 1 map and 1 reduce task slot per node). Cluster’s resources were man-
aged by a RMS that allows users to submit jobs. We also simulated a stream of
job submissions, where each job requires a number of nodes to be allocated for
a particular amount of time.

The simulated RMS implements the Conservative Backfilling (CBF) [8] al-
gorithm. The CBF algorithm enables backfilling and is a representative of the
algorithms running in deployed RMS schedulers today. The main idea of CBF
is that an arriving job is always inserted in the first free slot available in the
schedulers queue, which offers an upper-bound to the job start time. Every time
a new free slot appears, the scheduler sweeps the entire queue looking for jobs
that can be brought forward without delaying the start of any other job in the
queue. This means that at any time it is possible to obtain the list of available
free slots in the scheduler’s queue. We use this feature to provide input for the
algorithm described in the previous section.

We used a naive algorithm as a baseline for comparison purposes. It consists
of allocating a number of nodes, based on the number of map and reduce tasks,
during a fixed amount of time, defined as the maximum allowed amount of time
per request. This is the case when there is no information about the MapReduce
application and the scheduler’s queue state. A similar approach is used by sys-
tems such as Hadoop On Demand [1] and myHadoop [13], yet in those systems
the user has to specify the required number of nodes. The algorithms were com-
pared in terms of average job turnaround time (interval between the submission
of a job and its completion) and average system utilization. The number of sim-
ulations was defined in order to provide a confidence level of 95% with an error
less than 5%.

To simulate a stream of job submissions for the users of an HPC cluster, we
used two different approaches. The first was to simulate a synthetic workload
based on a widely used model by Lublin et al. [14], which is one of the most
comprehensive and validated batch workload models in the literature. Basically,
it uses two gamma distributions to model the job inter-arrival time (depending



Table 1. Distribution of job sizes in Facebook workload (based on Zaharia et al. [26]).

Bin # Map Tasks # Reduce Tasks % Jobs at Facebook

1 1 0 39%

2 2 0 16%

3 10 3 14%

4 50 0 9%

5 100 0 6%

6 200 50 6%

7 400 0 4%

8 800 180 4%

9 2400 0 3%

on the time of day), a two-stage uniform distribution to model the job sizes and
a two-stage hyper-gamma distribution to model the runtime of jobs.

We also used real-world workload traces from the ParallelWorkloads Archive [2]
as input to our simulation. This archive contains log information regarding the
workloads on parallel machines, such as HPC clusters. We chose traces from the
San Diego Supercomputer Center SP2 (SDSC SP2), which is a well-known and
widely studied workload. SDSC SP2 workload has 128 nodes and 73,496 jobs,
spanning 2 years from July 1998 to December 2000.

Unfortunately, there is not yet any such workload archive publicly available
for MapReduce jobs. However, recent publications [25, 26, 5] have reported work-
load characteristics for MapReduce clusters in production at Google, Facebook
and Yahoo!. We used the detailed description of a Facebook workload, provided
by Zaharia et al. [26], to create a synthetic MapReduce workload. This workload
comes from a Hadoop cluster, in production at Facebook in October 2009, with
600 nodes running about 7,500 jobs per day.

The Facebook workload used in our experiments is distributed in 9 bins as
summarized in Table 1. As can be observed, most jobs in Facebook’s workload
are small. However, in the original workload, jobs in the last bin range from
1,501 to 25,000 maps. We chose 2,400 maps as our representative for this bin to
make it fit in the HPC cluster simulated in our experiments. The job inter-arrival
times is roughly exponential with a mean of 14 seconds. We defined map and
reduce tasks duration as N(60,20) and N(120,30) respectively, where N(µ, σ) is
the normal distribution with a mean µ and standard deviation σ.

The first experiment performed aims to evaluated the impact of the proposed
algorithm in the job performance, in terms of average turnaround time and
system utilization, for an HPC cluster running a mixed workload of HPC and
MR jobs. We simulated one hour of HPC job submissions (around 400 jobs,
since the mean inter-arrival time in the so-called ”peak hour” of the Lublin et
al. model is roughly 5 seconds) mixed with one hour of MR job submissions
(around 300 jobs).

Table 2 compares the results of the proposed algorithm (Adaptor) against the
naive algorithm for each workload (HPC-only, MR-only and mixed HPC+MR).



The proposed algorithm obtained shorter average turnaround time and improved
utilization in all cases. For the MR-only workload, the use of the adaptor algo-
rithm reduced the average turnaround time in 40%. For the mixed workload
(HPC + MR), the overall average turnaround time was reduced in approxi-
mately 15%. However, the average turnaround time of the MR jobs in the mixed
workload changed from 31776 (using naive algorithm) to 8616 seconds, which
represent a reduction of 73%.

Table 2. Average job turnaround time and system load for each algorithm using Lublin
et al. model (HPC) and Facebook (MR) workloads.

Workload (job type) HPC MR HPC + MR

Algorithm Naive Adaptor Naive Adaptor

Avg Utilization (%) 88.9 68.5 93.7 87.5 93.3

Avg Turnaround (s) 9126 6151 3709 13680 11512

To evaluate the influence of MR job sizes in our algorithm, we conducted
experiments for each bin in Facebook’s workload. Figure 3 shows the obtained
results in terms of average job turnaround time. The adaptor algorithm outper-
formed the naive approach regardless the job bin. However, the adaptor algo-
rithm performed better for bins with smaller job sizes. This happens because
small job length cause more opportunity for backfilling. We believe that it is a
positive characteristic, since the first 4 bins represent approximately 80% of the
jobs in Facebook workload. Moreover, similar job size distribution can be seen
in workloads from Google [25] and Yahoo! [5].

In order to evaluate the adaptor algorithm with different system loads, we
conducted experiments varying the inter-arrival time of job submissions. The
peak hour model by Lublin et al. produces mean inter-arrival time of 5.01 sec-
onds, which is the mean of a Gamma distribution with α = 10.23 and β = 0.49.
Thus, different HPC load characteristics were simulated varying the value of α
from 4 to 60, giving inter-arrival times between approximately 2 and 30 seconds.
Similarly, different inter-arrival times for MR jobs were obtained by varying the
mean in the exponential distribution described earlier. The results are shown in
Figure 4. In both cases, the adaptor algorithm performed better regardless of
the inter-arrival time.

Finally, to evaluate the performance of the adaptor algorithm using a real-
world HPC workload, we chose a day-long trace from SDSC SP2 and used it
along with 1,000 MR jobs as input for our simulation. Table 3 shows the results.
The adaptor algorithm performed better in all cases. In this experiment, we also
observed that HPC and MR workloads are quite different. The HPC traces used
to have few jobs with long running times, while MR have many jobs with short
running times. This reinforces our argument that one should able to use an HPC
cluster to run both HPC and MR jobs and that it can exploit unused resources.
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Table 3. Average job turnaround time and system load for each algorithm using a
trace from SDSC SP2 and Facebook workload.

Workload (job type) HPC MR HPC + MR

Algorithm Naive Adaptor Naive Adaptor

Avg Utilization (%) 52.5 83.4 89.4 56.3 68.4

Avg Turnaround (s) 16198 22602 10269 99629 19288

5 Conclusion and Future Work

MapReduce has gained attention by the HPC community, but it is still not trivial
how HPC clusters can be exploited to execute such kind of job along with HPC
applications. HPC clusters present some characteristics that conflict with the
MapReduce model, such as the process used to submit jobs. This paper presented
the MR Job Adaptor, a module that customizes regular MR jobs for submission
in HPC clusters. MR Job Adaptor estimates the execution time of the job using
an MR Job Profile and tests the available slots in the Resource Management
System queue in order to allocate one that results in minimal turnaround time.
The experiments performed to evaluate the module demonstrated that, besides
minimizing the job turnaround time, it also exploits unused resources in the
cluster.

As future work, we intend to evaluate other characteristics of the MR to
enhance the algorithm used by the MR Job Adaptor. We believe that using a
single cluster for HPC and MR jobs can be beneficial for both users and cluster
administrators.
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