
EduCloud : a private cloud tool for academic
environments

Paolo Cemim, Luis Carlos Jersak, Giuseppe Alves Lopes, Jair De Mello Junior and Tiago Ferreto
PPGCC-PUCRS

Email: {paolo.cemim, luis.jersak, giuseppe.lopes, jair.junior}@acad.pucrs.br, tiago.ferreto@pucrs.br

Abstract—Cloud computing emerged in the last years as

a novel approach to deal with computational resources. The

amount of resources available seems infinite, resources are

charged per use (usually by the hour), provisioning or releasing

resources is performed on demand and quickly. In addition,

everyday more and more features are included by cloud providers

in their cloud services menu. These novelties impose a shift in

the traditional paradigm to build, manage and use computational

resources. Therefore, there is a need to prepare current and

future IT professionals to comprehend this new paradigm. This

paper presents EduCloud, an academic private cloud tool that

provides a simple environment to comprehend and experiment

cloud computing concepts. EduCloud can be easily deployed

using standard local computing resources, without the need of

special hardware or access to external resources. It can be used to

evaluate how a cloud computing environments works (e.g., cloud

portal interaction, provisioning/decommissioning of resources,

etc), and also to implement and experiment new strategies for

cloud resources management (e.g., automatic scaling strategies,

new billing models, etc) using standard computing resources.

I. INTRODUCTION

It is common sense that Cloud Computing introduced
significant changes in the manner IT infrastructure is used
and provisioned. Instead of being a singular breakthrough,
Cloud Computing is based on the composition of several
innovations proposed in the last decades, such as virtualization,
utility computing, IT infrastructure management, and others.
Nevertheless, Cloud Computing is still being constantly rede-
fined. Everyday, new proposals appear and disappear under
the “Cloud computing umbrella” . Therefore, understanding
deeply cloud computing is a continuous and laborious task,
specially when evaluating its applicability in a real scenario.
There are basically three approaches to understand and evalu-
ate a cloud computing approach: (i) subscribing a public cloud
provider, (ii) creating an on-premises private cloud, or (iii)
creating experiments using cloud simulators.

Public cloud providers [1], [2] offer a production environ-
ment to execute elastic applications. All sorts of resources are
provided to enable the execution of any type of application.
Despite its robust and complete environment, they usually
present a high learning curve. The amount of services provided
usually increases its complexity and confuses the user when
experiencing a cloud environment. Besides, most systems
require the user commitment through a credit card which may
not be feasible in some cases, such as in academia.

Another approach is deploying locally a private cloud
[3]–[5]. There are several open-source packages to deploy
production-grade private cloud environments. The installation
is usually straightforward and, after installation, the system can
be immediately used to host different types of applications.
However, these packages usually present huge requirements,
such as special processors with virtualization capability, huge
amounts of memory and disk, and the need of a dedicated
environment (usually as a hypervisor constraint). Performing
trivial experiments using standard hardware is almost imprac-
tical. For instance, Eucalyptus requires at least 2 machines
with 8GB of memory each, 8 2.4GHz cores for the frontend
controller and 4 2.4 GHz cores for node controllers, and a
Type 1 hypervisor which needs to run directly on top of host’s
hardware 1.

There are also cloud computing simulators [6]–[12] that
can be used to learn the functioning of a cloud computing
environment. These simulators provide abstractions for virtual
machines, storage, networks, enabling the simulation of a
whole Data Center and the behavior of applications running on
it. However, depending on the utilization, the high abstraction
can be prohibitive to evaluate a cloud computing environment,
making the experience quite far from a real environment.

This paper presents EduCloud, a private cloud tool for
academic environments. EduCloud enables the creation of a
small cloud testbed using minimal requirements in terms of
hardware and software. It can be effectively used to per-
form small experiments to evaluate common cloud computing
characteristics, such as: automatic provisioning of virtual ma-
chines, interaction through a web portal, scaling of resources,
among others. Due to its minimal requirements, it can be
easily deployed in a classroom, using available resources (e.g.
students’ notebooks) to teach cloud computing characteristics.
It can also be used to implement and evaluate new ideas to
solve problems like resource allocation, billing strategies, etc.

This paper is organized as follows: In Section II we present
and discuss relevant works related to our proposal. In Section
III the Educloud platform is presented. In Section IV we
analyze the platform and show the results obtained. Finally,
Section V presents our conclusions and future works.

1Eucalyptus 3.1 Compatibility Matrix - http://www.eucalyptus.com/
eucalyptus-cloud/iaas/compatibility



II. RELATED WORK

In this section we present some relevant studies for the cloud
computing area focusing on educational purposes. Currently,
there are few options for teaching cloud computing concepts
using a practical approach. Some of these options are private
cloud platforms, some public cloud providers which offer free
student accounts and simulators.

A. Public cloud platforms

Along with the growth of the cloud computing paradigm,
several companies started to offer public cloud services. Some
of these, like Amazon EC2 [1] and Microsoft Azure [2] have
free trials and/or educational plans where students can use the
cloud services the same way as regular paid plans. Although
this provides a good experience as a user of cloud computing
technologies, public clouds cannot provide in-depth knowl-
edge about some concepts like the management and technical
configuration of a cloud environment. For instance, a user of a
public cloud is not allowed to change the scheduling policies
or to implement a new algorithm for scale-up. Several other
aspects like network configuration, consolidation policies and
placement algorithms are also inaccessible. EduCloud assists
in teaching not only the concepts from a user perspective, but
also the technical concepts of a cloud computing environment
from a ”datacenter engineer” point of view, allowing the
students to change parameters that alter the way the entire
cloud runs.

B. Private cloud platforms

1) Open Nebula: Open Nebula [4] is an open source
IaaS-type cloud development toolkit. It was projected for the
deployment of private clouds, but using interface exposition it
is possible to create public clouds. Also it is possible to create
hybrid clouds through communication to other clouds. The
Open-Nebula toolkit supports XEN, KVM and VMware hyper-
visors. The internal architecture of Open Nebula is divided in
three layers: tools, drivers and core. The tools has several tools
for managing the core through its interfaces. The available
API allows developers to create custom tools. One of the
tools distributed with the Open Nebula basic installation is the
Command Line Interface (CLI), which allows administrators
and users to manipulate the manual procedures of the virtual
infrastructure. The drivers layer has a set of modules for
communication with specific middleware. Some examples are
the hypervisors, cloud services, file transfer mechanisms, etc.
The core of Open Nebula is a set of components for managing
virtual machines, virtual networks, storage, etc.

Like other private clouds, Open Nebula manages storage,
network and host virtualization dynamically. It has three main
functional components: the hypervisor, Virtual Infrastructure
Manager and the Scheduler. The Hypervisor is the virtualiza-
tion manager installed in each host for VM management. The
Virtual Infrastructure Manager is the component responsible
for centralized VM management and overall management of

the cloud’s resources. The Scheduler is responsible for several
tasks like VM allocation policies, enforcement of restrictions,
capacity reservations, etc.

2) Eucalyptus: Eucalyptus [3] is an open source framework
for IaaS clouds. It supports XEN and KVM hypervisors. Eu-
calyptus’ modules were projected with well-defined interfaces,
aiming to facilitate the development of custom modules by its
users. The Eucalyptus framework is composed of four main
components:

Node Controller: The Node Controller is responsible for
controlling the virtual machines on the host were it is running.
This module responds the requisitions made by the Cluster
Controller.

Cluster Controller: The Cluster Controller intermediates
the requisitions from the Cloud Controller to the Node Con-
trollers. It also manages the virtual network of its Node
Controllers.

Storage Controller: The Storage Controller, also known as
Walrus, is a storage service which allows users to store and
retrieve data or images of VMs.

Cloud Controller: The Cloud Controller is the entry point
for the Eucalyptus users. It is responsible for the general
management of the cloud, making decisions and sending
requests to the Cluster Controllers.

3) OpenStack: OpenStack [5] is an IaaS Project created
by a partnership between Rackspace Cloud and NASA. It is
free and open source under the Apache license terms. It is
composed of three main components:

Nova (services infrastructure): Controls the lifecycle of the
instances and manages the computational resources, network,
authorizations and scalability. It has a REST based API and
supports several hypervisors like XEN, XenServer, KVM,
UML and Hyper-V.

Swift (storage infrastructure): Handles the cloud’s storage
tasks. It stores the virtual machines’ images, provides redun-
dancy, fault tolerance, backup services and archiving.

Glance (images infrastructure): It does the searching and
retrieval of VMs’ images. It can interact with the OpenStack
native image system or with the Amazon’s S3.

4) Platforms comparison: Table I shows a comparison of
the presented platforms. The following characteristics were
considered:

• Supported hypervisors;
• Platform’s codebase;
• Security/authentication methods supported;
• Implantation models supported;
• Storage systems supported;
• Public cloud providers compatibility.

C. Simulators

1) iCanCloud: iCanCloud is a simulation platform aimed
to model and simulate cloud computing systems. The main
objectiveof iCanCloud is to predict the trade-offs between cost
and performance of a given set of applications executed in a



TABLE I
CLOUD PLATFORMS COMPARISON.

Eucalyptus OpenNebula OpenStack
Hypervisors VMware, KVM, Xen VMware, KVM, Xen Xen, KVM, QEMU, LXC1, VMWare1, ESXi1,

Hyper-V
Code base Java Java, Ruby Python
Security Public/private keys Passwords, SSH, RSA, LDAP Security Groups
Implantation Models Public1, Private, Hybrid Public, Private, Hybrid Public, Private, Hybrid
Storage Walrus NFS, Secure CoPy Swift
Public Providers EC2 , S3 EC2 EC2, S3

specific hardware, and then provide to users useful information
about such costs [10].

The iCanCloud simulator was written in C++ and has MPI
support to enable simulations in distributed systems (not fully
implemented yet). It has a graphical user interface to facilitate
its usage and has models compatible with Amazon’s EC2.

2) MDCsim: MDCsim [11] is an event driven simulator
built on top of CSIM [7]. It is composed of three layers: the
communication layer where all communications are modeled,
the kernel layer which maintains a run queue for each CPU
in the system, and the high-level application layer where pro-
cesses like Web/Application/Database Servers are managed.
The main drawback of MDCSim, as stated in [10] is that
MDCsim is not available for public download as CSIM is
a commercial product.

3) CloudSim: CloudSim [6] is a cloud simulator formerly
based on GridSim [9], a grid simulator. In its later versions its
core has been rewritten to not depend on GridSim anymore.
It is written in Java, which is a drawback due to some JVM
restrictions (for instance, 32 bit versions of the JVM can only
use 2GB of system memory).

4) GreenCloud: GreenCloud [8] is a cloud simulator fo-
cused on energy efficiency, simulating the power consumption
of nodes, switches, links and etc. It is based on the NS2 net-
work simulator [12] and written in C++ language. GreenCloud
mainly simulates the communication between processes in a
cloud environment and allow the use of plugins to extend its
functionalities.

In this section we presented some options to help teaching
the cloud computing concepts using a practical approach.
However, the options mentioned above have some drawbacks.
Most of the private cloud platforms must be installed and
deployed using dedicated hardware or present restrictions to
aggregate heterogeneous hardware to its resource pool. Some
public clouds (Amazon EC2 for instance) although providing
free accounts, only provide the experience from a user point
of view, not providing knowledge about the technical aspects
of the environment. This complicates the teaching of some key
concepts like scaling, placement or consolidation. Simulators
are an inexpensive option but of difficult understanding and
usage. Also, there are not many options of existing cloud
computing simulators and some of these are not available for

public access [11].

III. EDUCLOUD

The EduCloud is an open source platform for private cloud
computing that can use dedicated or transient resources (like a
student’s laptop) to build its infrastructure. Transient resources
do not need to be fully dedicated to run Educloud. The main
purpose of Educloud is to provide a simple and user friendly
private cloud infrastructure for academic environments. The
service model implemented by EduCloud is Infrastructure as
a Service (IaaS) and it uses VirtualBox [13] to provide vir-
tualization. In the next sections the architecture of EduCloud
and its functions will be explained.

A. Architecture

The architecture of EduCloud is divided in five main
components: Cloud Controller, Node Controller, Centralized
Storage, API Control and User Interface. Figure III-A shows
the relation between the components of the architecture. These
components will be explained in the next sections.

PCPCPC

PC

VirtualBox

VM VM

Node Controller

Cloud Controller

VirtualBox

API Control

Centralized 
Storage

...

VirtualBox

VM VM

Node Controller

VirtualBox

VM VM

Node Controller

... ...

User 
Interface

User 
Interface

UserUser

Fig. 1. Architecture of Educloud

1Not fully supported yet.



1) Cloud Controller: The Cloud Controller is the central
component of EduCloud. It is responsible for managing all
the routines of EduCloud, tasks running on the cloud and
schedule new requests from the graphical interface. The use
of a scheduler allows asynchronous task execution.

Also, the Cloud Controller manages the VM responsible
for the centralized storage. This requires VirtualBox to be
installed on the Cloud Controller. The management done
by the Cloud Controller consists in creating LVMs (Logical
Volume Manager) where the discs of the VMs provisioned by
Educloud are stored. The Cloud Controller is also responsible
for exporting the LVM to its respective VM.

The user management is another task of the Cloud Con-
troller as well as its authentication. It also manages a database
containing information about the structure and resources avail-
able and provides a communication interface through the con-
trol API. This communication interface sends the information
required by the Node Controller to manage its requests.

2) Node Controller: The Node Controller has full control
over one single host on the infrastructure. It is responsible
for the execution of local tasks in its respective host. The
local tasks done by the Node Controller are: creation and
removal of virtual machines, starting up and shutting down
virtual machines, registering new virtual machines and sending
information about the virtual machines to the Cloud Controller.
Each Node Controller needs VirtualBox installed and the
communication between the Node Controller and VirtualBox
is done through VirtualBox’s WebServices. These tasks are
better explained in Section III-B.

3) Control API: The control API is a Java component that
abstracts the access to functions and information exported by
the Cloud Controller’s interface. The control API allows de-
velopers to integrate other functionalities or Java applications
to Educloud.

4) Centralized Storage: The Centralized Storage Unit can
be deployed by several ways, the most common being the
utilization of a dedicated hardware called NAS storage. This
type of equipment has high acquisition and management costs.
To avoid this restriction, software-based solutions can be used.
These solutions can emulate storage units on regular hardware
or even in virtual machines. There are some ready to use
solutions that emulate a Network-Attached Storage (NAS),
such as FreeNAS [14] and OpenFiler [15], but some difficulties
of integrating these solutions with Educloud forced the use of
another option. In Educloud we used a distribution of Linux
CentOS 6.2 with tools for exporting iSCSI and creation and
management of LVMs.

The centralized storage unit consists of a virtual machine
hosted at the same node as the Cloud Controller. This unit is
managed by the Cloud Controller, and accessed by the Node
Controllers to configure its virtual machines with disks hosted
in it. The disk is remotely exported by the centralized storage
to the VMs using iSCSI protocol. This way, each virtual
machine has only one iSCSI target pointing to the centralized

storage unit. The templates of virtual machines that can be
provisioned by the Educloud are also stored in this unit.

The usage of a centralized storage area may cause a per-
formance bottleneck on the provisioning of virtual machines
since there will be dispute for resources during the creation of
new VMs. But this is not a critical issue since the main focus
of the EduCloud platform is to be deployed in small scale
environments with educational purposes (e.g. a class room
with a few computers) and not a high performance system.

5) User Interface: The User Interface is the component
responsible for the user interaction with Educloud via a web
browser. It provides access to all the Educloud’s functionali-
ties, allowing the inclusion, alteration and removal of tasks on
the cloud, providing easy and fast usability of the Educloud
system.

Also, the Educloud users access the portal using the user
interface, where they must input an user login and password.
There are two types of users: normal users and administrators.
The administrators can manage the templates available in the
cloud, the normal users and have access to the information
about the nodes that compose the cloud infrastructure. The
normal user has access to the information about its provisioned
resources and can modify or allocate new resources.

B. Functions

In this section we present the functionalities of the Educloud
platform. We show in detail the Template Registry, the Virtual
Machine management and the scale-up and scale-out func-
tions.

1) VM Template Registry: Each template loads a ready-
to-use virtual machine image. This image must be already
registered at Educloud. The template files must be previously
saved inside the Cloud Controller’s file system using the
VirtualBox’s virtual disk format (.vdi). The templates must
be registered by an administrator through the User Intrface
before they can be used by the users.

2) Virtual Machine Management: The main features of
Educloud related to VM management are: Creation and Re-
moval, Initialization and Shutdown, Scale-up and Scale-out.
This features are described in the following sections.

Creation and Removal: The disk units management of
each node is done by the centralized storage unit at the behest
of the Cloud Controller. The Cloud Controller will register the
new virtual machine at the Educloud’s database, where it will
remain in the “pending” state until the process is completed.
The disks of the VMs provided by the cloud are kept by
the Centralized Storage Unit inside a LVM. A copy of the
template’s disk is stored in this LVM. When this process
is completed, the state of the virtual machine is changed to
“finished” indicating it is ready for use. The process of removal
of a virtual machine consists of deleting the information about
the VM and the logical volume. This process ensures that all
the data generated during the existence of the VM is erased.



Initialization and Shutdown: These tasks are requested
by the Cloud Controller to the Node Controller through the
VirtualBox’s WebServices.

Scale-up: The scale-up process consists of request for
resizing a virtual machine, allowing the alteration of the
computational resources allocated for this machine. VirtualBox
allows the dynamic resizing of some resources, without the
need to reboot the virtual machine. However, some operating
systems do not support dynamic hardware changes. In this case
it is necessary to reboot the virtual machine. The resources
that can be changed through scale-up are: amount of RAM,
number of processors and processing capacity (CAP). The
amount of RAM is the quantity of physical RAM allocated
to the virtual machine based on the amount of RAM available
on the node where the VM is being executed. The number
of processors is based on the amount of cores available in the
node. Also, as mentioned before, scale-up allows the alteration
of the processing capacity of the VM. This parameter defines
a percentage of processing capacity that can be used by the
virtual machine. This way it is possible, for instance, to set a
VM to use only 20% of the node’s total processing capacity,
allowing scale-up even when there are no cores available.

Scale-out: The feature of scale-out (or horizontal scaling)
allows to increase or decrease the processing capacity of
a virtual machine by duplicating or cloning it. The tool
responsible for the load balance between the machines in
Educloud is the LVS (Linux Virtual Server). Some LVS’
characteristics relevant to this work are its versatility about
hardware and software requirements, its free license policy
and, most important, it is a native service of the Linux
operating system. During the configuration of the LVS, the
virtual machines related to a cluster are mapped into the
LVS by its MAC addresses. Then the LVS manages the load
balancing among these machines. To enable the scale-out
feature it is necessary to inform that a virtual machine will
use this feature as this means that, during the provisioning, an
additional virtual machine must be created to act as the load
balancer. The scale-out process consists of cloning a virtual
machine and attaching it to the cluster through the LVS.

IV. EVALUATION

To demonstrate the utilization of Educloud, some tests
were performed. With such tests it is possible to evaluate
the platform’s performance, usability and operation. Initially
we present the test environment followed by the analysis and
results obtained.

A. Test Environment

The test environment consisted of three computers intercon-
nected by a Gigabit Ethernet network. The operating system
installed was Linux Ubuntu 11.10 and several other software
tools required by the application, such as Java and VirtualBox,
were installed.

The computers used in the test environment had two differ-
ent hardware configurations. The machine responsible by the

Cloud Controller had a 2.4Ghz Intel Core 2 Quad processor
and 4 GB of RAM. The two computers responsible for the
Node Controllers had 2.8Ghz Intel Core i3 processors with
4GB of RAM.

B. Results and Analysis

The tests performed focused on the main functionalities of
the Educloud platform: Template Registration, VM Provision-
ing, VM Startup, VM Provisioning with scale-out, VM Startup
with scale-out, Scale-out and scale-up. The results obtained are
shown in Table II (further analyses are made in the following
sections).

TABLE II
TEST RESULTS

Test Time (secs)

Template Registration 5
VM Provisioning 255
VM Startup 6
VM Provisioning with Scale-out 453
VM Startup with Scale-out 25
Scale-out 258
Scale-up 1

1) Template Registration: To perform the Template Regis-
tration test we used a 2GB file that was already stored at the
Cloud Controller. The Template Registration test total time
was approximately 5 seconds. This time was performed on a
centralized storage unit and the time is considered acceptable.

2) VM Provisioning: The greatest challenge during this test
is its execution time. The process of template cloning makes a
physical copy of the disk block informed by the used template,
which is one of the most time consuming processes in this
application. During this test an Ubuntu virtual machine is
created, using a 2GB disk. As the storage unit is centralized,
there is no need to transfer data through the network and the
storage unit is responsible for the disk management. This is
done via iSCSI protocol.

3) VM Startup: The centralization of the storage unit
provides lower startup times as there is no need to send storage
blocks through the network. This way it is only necessary to
start the VM at the node controller and it will be ready to the
user.

4) VM Provisioning with Scale-out: The entire execution
process took approximately 453 seconds, representing a 77%
increase in comparison to the creation of a virtual machine
without the scale-out feature enabled. This is due to the fact
that, in this case, it is necessary to instantiate to distinct virtual
machines, one to act as the VM itself and another one for the
Load Balancer, as seen in Section III-B2.

5) VM Startup with Scale-out: This process, besides being
responsible for the VM startup, prepares the environment for
the scale-out process. This way, the load balancer and the
virtual machine are configured to support this functionality.



After this test was performed, it was found that this process
takes approximately 25 seconds to complete, representing an
increase when compared to the startup process of a regular
VM. It is important to note that a VM with the scale-out
feature enabled starts two virtual machines.

6) Scale-out: After the creation and initialization of the
virtual machine and the configuration of the load balancer, the
scale-out feature is available. This process is composed of two
stages: initially a clone of the source VM is created and then
this new instance is added to the existing load balancer. After
this test was performed, we found that the process responsible
to clone the VM takes almost the entire time to conclude the
whole task (approximately 98%).

7) Scale-up: During the execution of the scale-up tests,
three available parameters were tested showing this functional-
ity. The tests were performed on a VM running Linux Ubuntu,
configured to initially use 1 processor with a 30% load cap
and 256MB of RAM. All the parameters were successfully
changed and the VM had its computational resources reallo-
cated instantly. The entire process was completed in less than
1 second mainly as a consequence of the Node Controller and
VirtualBox integration. The Node Controller requests direct
access to the VM and reallocates its resources. Although the
resource reallocation was dynamic, the operational system was
unable to identify it, requiring a VM reboot.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented Educloud, a simple tool to
build cloud computing testbeds using standard hardware and
software. Educloud enables the execution of several tasks
related to the management of a cloud infrastructure, serving
as an option to demonstrate the concepts of cloud computing.
Another feature of Educloud is the possibility of expanding
its functionalities through its Control API or modifying its
internal source code.

Considering that the goal of EduCloud is not to substitute
other private clouds solutions, such as Open Nebula [4],
Eucalyptus [3] or OpenStack [5] , performance was not the
main issue when implementing the tool. However, results show
that the time required to perform by the tasks is acceptable for
an academic scenario. It is important to note that EduCloud
enables the deployment of a private cloud using heterogeneous
resources, composed by common hardware usually found in
academic environments. This is one of the most important
characteristics of Educloud.

As future work we intend to add support for several hypervi-
sors, reduce the load balancer and centralized storage size and
allow integration between private and public clouds. Also we
plan to add new features, such as dynamic scaling and live
migration. We provide more details about each future work
below.

• Multi-hypervisor Supporting several hypervisors would
make EduCloud more platform independent. Currently it

supports only VirtualBox but other hypervisors could be
integrated, like Xen [16] or VmWare [17].

• Reduced load balancer, centralized storage and tem-

plate sizes It would reduce the disk capacity required by
the Cloud Controller and Node Controller and also would
decrease the size of the Educloud’s package, facilitating
its distribution to students.

• Integration between private and public clouds Integrat-
ing EduCloud with other private and public clouds could
make Educloud’s infrastructure more scalable, allowing
to allocate more resources when available.

• Dynamic Scaling feature Implementing a dynamic scal-
ing strategy would provide better utilization of the cloud’s
resources as the resources allocated would be only what
the application running in the cloud demands.

• Live Migration feature Supporting live migration would
solve the issue related to transient resources being part
of the cloud. This feature would allow the live migration
of VMs allocated in a node that will be removed from
the cloud, to another free node in the infrastructure.

REFERENCES

[1] “Amazon EC2,” sep 2012. [Online]. Available: http://aws.amazon.com/
ec2/

[2] “Windows Azure,” sep 2012. [Online]. Available: http://www.
windowsazure.com/

[3] “Eucalyptus.com,” sep 2012. [Online]. Available: http://www.eucalyptus.
com

[4] “OpenNebula.org,” sep 2012. [Online]. Available: http://opennebula.org
[5] “OpenStack.org,” sep 2012. [Online]. Available: http://www.openstack.

org
[6] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya, “Cloudsim:

A novel framework for modeling and simulation of cloud computing
infrastructures and services,” CoRR, vol. abs/0903.2525, 2009.

[7] “CSIM Development Toolkit,” sep 2012. [Online]. Available: http:
//www.mesquite.com

[8] D. Kliazovich, P. Bouvry, and S. Khan, “Greencloud: a packet-level
simulator of energy-aware cloud computing data centers,” The Journal
of Supercomputing, pp. 1–21, 2010.

[9] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and Computation: Practice and Experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[10] A. Nunez, J. Vazquez-Poletti, A. Caminero, G. Castane, J. Carretero,
and I. Llorente, “iCanCloud: A flexible and scalable cloud infrastructure
simulator,” Journal of Grid Computing, vol. 10, pp. 185–209, 2012,
10.1007/s10723-012-9208-5.

[11] S.-H. Lim, B. Sharma, G. Nam, E.-K. Kim, and C. R. Das, “Mdcsim: A
multi-tier data center simulation, platform.” in CLUSTER. IEEE, 2009,
pp. 1–9.

[12] S. Mccanne, S. Floyd, and K. Fall, “NS2 (Network Simulator 2),”
http://www-nrg.ee.lbl.gov/ns/. [Online]. Available: http://www-nrg.ee.
lbl.gov/ns

[13] “Oracle VM VirtualBox,” sep 2012. [Online]. Available: https:
//www.virtualbox.org

[14] “FreeNAS,” sep 2012. [Online]. Available: http://www.freenas.org
[15] “OpenFiler,” sep 2012. [Online]. Available: http://www.openfiler.com
[16] “Xen,” sep 2012. [Online]. Available: https://www.xensource.com
[17] “VmWare,” sep 2012. [Online]. Available: http://www.vmware.com


