
Programming with OpenGL: Advanced Rendering

6 Texture Mapping

Texture mapping is one of the primary techniques to improve the appearance of objects rendered with OpenGL.
Texturing is typically used to provide color detail for intricate surfaces by modifying the surface color. For ex-
ample, a woodgrain supplied by a texture can make a flat polygon appear to be made of wood. Current 3D video
games now use texture mapping extensively. Texturing can also be the basis for many more sophisticated render-
ing algorithms for improving visual realism and quality. For example, environment mapping is a view-dependent
texture mapping technique that supplies a specular reflection to the surface of objects. This makes it appear that
the environment is reflected in the object. More generally texturing can be thought of as a method of providing (or
perturbing) parameters to the shading equation such as the surface normal (bump mapping), or even the coordi-
nates of the point being shaded (displacement mapping) based on a parameterization of the surface defined by the
texture coordinates. OpenGL readily supports the first two techniques (surface color manipulation and environ-
ment mapping). Texture mapping, using bump mapping, can also solve some rendering problems in less obvious
ways. This section reviews some of the details of OpenGL texturing support, outlines some considerations when
using texturing and suggests some interesting algorithms using texturing.

6.1 Texturing Basics

6.1.1 The Texture Image

The meat of a texture is the texture’s image. This is a array of color values. The color values of a texture are
referred to astexels (short for texture elements and a pun on the word pixel). The texture image array is typically
1D or 2D, however OpenGL 1.2 adds support for 3D texture images as well.1 The OpenGLSGIS texture4D
extension even provides the option for 4D texture images.

The glTexImage1D, glTexImage2D, andglTexImage3D commands specify a complete texture image. The
commands copy the texture image data from the application’s address space into texture memory. OpenGL’s pixel
store unpack state determines how the texture image is arranged in memory. Other OpenGL commands update
rectangular subregions of an existing texture image (subtexture loads). Still other texture commands copy color
data from the frame buffer into texture memory.

Typically, texture images are loaded from image files stored using a standard 2D image file format such as TIFF
or JPEG. To make an image file into a texture for use by OpenGL, the OpenGL application is responsible for
reading and decompressing as necessary the image file. Once the image is in memory as an uncompressed array,
glTexImage2D can be passed the size, format, and pointer to the image in memory. The OpenGL API limits
itself to rendering functionality and therefore has no support for loading image files. You can either write an
image loader yourself or use one of the numerous image loading libraries that are widely available. In addition
to loading image files, applications are free to compute or otherwise procedurally generate texture images. Some
techniques for procedural texture generation are discussed in Section 6.20.2. Rendering the image using OpenGL
and then copying the image from the framebuffer withglCopyTexImage2D is yet another option.

OpenGL’s pixel transfer pipeline can process the texture image data when texture images are specified. While
typically the pixel transfer pipeline is configured to pass texture image data through unchanged, operations such
as color space conversions can be performed during texture image download. When optimized by your OpenGL
implementation, the pixel transfer operations can significantly accelerate various common processing operations
applied to texture image data. The pixel transfer pipeline is further described in Sections 13.1.1 and 13.1.4.

1The phrase3D texturing is often used in touting new graphics hardware and software products. The common usage of the phrase is to
indicate support for applying a 2D texture to 3D geometry. OpenGL’s specification would call that merely2D texturing. OpenGL assumes
that any type of texturing can be applied to arbitrary 3D geometry so the dimensionality of texture mapping (1D, 2D, or 3D) is based on
the dimensionality of the texture image. A 2D texture image (one with width and height) is used for 2D texturing. A 3D image (one with
width, height, and depth) is required for 3D texturing in the OpenGL technical sense of the phrase. Unfortunately, the market continues to
use the phrase3D texturing to mean justGL TEXTURE 2D. To avoid confusion, the phrasevolumetric texturing unambiguously refers to
what OpenGL technically calls 3D texturing. Be aware that the phrasessolid texture andhypertexture are also used in the graphics literature
to denote 3D texture images. One more bit of trivia: the termvoxel is often used to denote the texels of a 3D texture image.

40



Programming with OpenGL: Advanced Rendering

The width, height, and depth of a texture image without a border must be powers of two. A texture with a border
has an additional one pixel border around the edge of the texture image proper. Since the border is on each side, the
border adds two texels in each texture dimension. The rationale for texture images with borders will be discussed
in Section 6.4. The texels that make up the texture image have a particular color format. The color format options
are RGB, RGBA, luminance, intensity, and luminance-alpha. Sized versions of the texture color formats permit
applications a means to hint to the OpenGL implementation for trading off texture memory requirements with
texture color quality.

Internal Texture Formats If you care about the quality of your textures or want to conserve the amount of
texture memory your application requires (and often conserving texture memory helps improve performance), you
should definitely use appropriate internal formats. Internal texture formats were introduced in OpenGL 1.1. Table
1 lists the available internal texture formats. If your texture is known to be only gray-scale or luminance values,
choosing theGL LUMINANCE format instead ofGL RGB typically cuts your texture memory usage by one third.
Requesting more efficient internal format sizes can also help. TheGL RGB8 internal texture format requests 8
bits of red, green, and blue precision for each texel. The more space efficientGL RGB4 internal texture format
uses only 4 bits per component making it require only half the texture memory of theGL RGB8 format. Of
course, theGL RGB4 format only has 16 distinct values per component instead of 256 values for theGL RGB8

format. However, if minimizing texture memory usage (and often improving texturing performance too) is more
important than better texture quality, theGL RGB4 format is a better choice. In the case where the source image for
your texture only has 4 bits of color resolution per component, there is absolutely no reason to request a format
with more than 4 bits of color resolution.

Some words of advice about internal texture formats: If you do not request a specific internal resolution for your
texture image because you requested aGL RGBA internal format instead of a size-specific internal format such
asGL RGBA8 or GL RGBA4, your OpenGL implementation is free to pick the “most appropriate” format for the
particular implementation. If a smaller texture format has better texturing performance, the implementation is
free to choose the smaller format. This means if you care about maintaining a particular level of internal format
resolution, selecting a size-specific texture format is strongly recommended.

Some words of warning about internal texture formats: Not all OpenGL implementations are expected to support
all the available internal texture formats. This means just because you request aGL LUMIANCE12 ALPHA4 format
(to pick a format that is likely to be obscure) does not mean that your texture is guaranteed to be stored in this
format. The size-specific internal texture formats are merely hints. If the best the OpenGL implementation can
provide isGL LUMINANCE8 ALPHA8, this will be the format you get, even though is provides less luminance
precision and more alpha precision than you requested.

6.1.2 Texture Coordinates

Texture coordinates are the means by which texture image positions are assigned to vertices. The per-vertex assign-
ment of texture coordinates is the key to mapping a texture image to rendered geometry. During rasterization, the
texture coordinates of a primitive’s vertices are interpolated across the primitive so that each rasterized fragment
making up the primitive has an appropriately interpolated texture coordinate. A fragment’s texture coordinates
are translated into the addresses of one or more texels within the current texture. The texels are fetched and their
color values are then filtered into a single texture color value for the fragment. The fragment’s texture color is then
combined with the fragments color.

The vertices of all primitives (including the raster position of pixel images) have associated texture coordinates.
Figure 27 shows how object coordinates have associated texture coordinates that is used to map into a texture
image when texture mapping is enabled. The texture coordinates are part of a three-dimensional homogeneous
coordinate system (s,t,r,q). Applications often only assign the 2Ds andt coordinates, but OpenGL treats this as
a special case of the more general 3D homogeneous texture coordinate space. Ther andq texture coordinates are
vital to techniques that utilize volumetric and projective texturing. Whent, r, or q are not explicitly assigned a

41



Programming with OpenGL: Advanced Rendering

Sized Base R G B A L I
Internal Format Internal Format bits bits bits bits bits bits

ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
LUMINANCE4 LUMINANCE 4
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4
LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6
LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8
LUMINANCE12 ALPHA4 LUMINANCE ALPHA 12 4
LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3 G3 B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5 A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGB10 A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16

Table 1: OpenGL Internal Texture Formats. Each internal texture format has a corresponding base internal format
and itsdesired component resolutions.

42



Programming with OpenGL: Advanced Rendering

Texture coodinates

Object coordinates

Figure 27. Vertices with Texture Coordinates. Texture coordinates determine how texels in the texture are mapped
to the surface of a triangle in object space.

value (as when glTexCoord1f is called), their assumed values are 0, 0, and 1 respectively. If the concept of 3D
homogeneous texture coordinates is unfamiliar to your, the topic will be revisited in Section 6.16.

OpenGL’s interpolation of texture coordinates across a primitive compensates for the appearance of a textured
surface when viewed in perspective. While so-called perspective correct texture coordinate interpolation is more
expensive, failing to account for perspective results in incorrect and unsightly distortion of the texture image across
the textured primitive’s surface.

Each texture coordinate is assumed to be floating-point value. Each set of texture coordinates must be mapped
to a position within the texture image. The coordinates of the texture map range from [0..1] in each dimension.
OpenGL can treat coordinate values outside the range [0,1] in one of two ways: clamp or repeat. In the case of
clamp, the coordinates are simply clamped to [0,1] causing the edge values of the texture to be stretched across the
remaining parts of the polygon. In the case of repeat the integer part of the coordinate is discarded so the texture
image becomes an infinitely repeated tile pattern. In the case of clamping, proper filtering may require accounting
for border texels or, when no border is specified, the texture border color. OpenGL 1.2 adds a variation on clamping
known as clamp to edge that clamps such that the border is never sampled.2 The filtered color value that results
from texturing can be used to modify the original surface color value in one of several ways as determined by the
texture environment. The simplest way replaces the surface color with texel color, either by modulating a white
polygon or simply replacing the color value. Simple replacement was added as an extension by some vendors to
OpenGL 1.0 and is now part of OpenGL 1.1.

Assigning Texture Coordinates A common question is how texture coordinates are assigned to the vertices
of an object. There is no single answer. Sometimes the texture coordinates are some mathematical function of
the object coordinates. In other cases, the texture coordinates are manually assigned by the artist that created
a given 3D model. Most common 3D object file formats such as VRML or the Wavefront OBJ format contain
accompanying texture coordinates. Keep in mind that the assignment of texture coordinates for a particular 3D
model is not something that can be done independent of the intended texture to be mapped onto the object.

Optimizing Texture Coordinate Assignment Sloan, Weinstein, and Brederson [93] have explored optimizing
the assignment of texture coordinates based on an “ importance map” that can encode both intrinsic texture proper-

2The clamp to edge functionality is also available through the SGIS texture edge clamp extension.

43



Programming with OpenGL: Advanced Rendering

ties as well as user-guided highlights. Such importance driven texture coordinate optimization techniques highlight
the fact that textured detail is very likely not uniformly distributed for a particular texture image and a particu-
lar texture coordinate assignment. Warping the texture image and changing the texture coordinate assignment
provides opportunities for improving texture appearance without increasing the texture size.

6.1.3 Texture Coordinate Generation and Transformation

An alternative to assigning texture coordinate explicitly to every vertex is to have OpenGL generate texture co-
ordinates for you. OpenGL’s texture coordinate generation (often called texgen for short) can generate texture
coordinates automatically as a linear function of the eye-space or object-space coordinates or using a special
sphere map formula designed for environment mapping.

OpenGL also provides a 4 by 4 texture matrix that can be used to transform the per-vertex texture coordinates,
whether supplied explicitly or implicitly through texture coordinate generation. The texture matrix provides a
means to rescale, translate, or even project texture coordinates before the texture is applied during rasterization.

6.1.4 Filtering

The texture image is a discrete array of texels, but the texture coordinates vary continuously (at least conceptually).
This creates a sampling problem. In addition, a fragment can really be thought of as covering some region of the
texture image (the fragment’s footprint). Filtering also tries to account for a fragment’s footprint within the texture
image.

OpenGL provides a number of filtering methods to compute the texel value. There are separate filters for magnifi-
cation (many pixel fragment values map to one texel value) and minification (many texel values map to one pixel
fragment). The simplest of the filters is point sampling, in which the texel value nearest the texture coordinates is
selected. Point sampling seldom gives satisfactory results, so most applications choose some filter which interpo-
lates. For magnification, OpenGL only supports linear interpolation between four texel values. For minification,
OpenGL supports various types of mipmapping [107], with the most useful (and computationally expensive) being
tri-linear mipmapping (four samples taken from each of the nearest two mipmap levels and then interpolating the
two sets of samples). Some vendors have also added an extension called SGIS texture filter4 that provides
a larger filter kernel in which the weighted sum of a 4x4 array of texels is used.

With mipmapping, a texture consists of multiple levels-of-detail (LODs). Each mipmap level is a distinct texture
image. The base mipmap level has the highest resolution and is called mipmap level zero. Each subsequent level
is half the dimensions (height, width, and depth) until each dimension goes to one and finally all the dimensions
reduce to one. For mipmap filtering to work reasonably, each subsequent mipmap level is down-sampled version
of the previous mipmap level texture image. Figure 28 shows how texture mipmap levels provide multiple LODs
for a base texture image. OpenGL does not provide any built-in commands for generating mipmaps, but the GLU
provides some simple routines (gluBuild1DMipmaps, gluBuild2DMipmaps, and gluBuild3DMipmaps3) for
generating mipmaps using a simple box filter.

During texturing, OpenGL automatically computes (or more likely, approximates) each fragment’s LOD parameter
based on the partial derivatives of the primitive’s mapping of texture coordinates to window coordinates. This
LOD parameter is often called lambda (�). The integer portion of the lambda value determines which mipmap
levels to use for mipmap filtering and the fractional portion of the lambda value determines the weighting for
selecting or blending mipmaps levels. Because OpenGL handles mipmapping automatically, the details of LOD
computation are most interesting to OpenGL implementors, but it is important that users of OpenGL understand
the interpolation math so that they will not be surprised by unexpected results.

Additional Control of Texture Level of Detail In OpenGL 1.0 and 1.1, all the mipmap levels of a texture must
be specified and consistent. To be consistent, every mipmap level of a texture must be half the dimensions (until

3Introduced in GLU version 1.3.

44



Programming with OpenGL: Advanced Rendering

Original texture

Pre−filtered mipmap
textures

1/4

1/16

1/64
1/256

Figure 28. Multiple Levels of Texture Detail using Mipmaps

reaching a dimension of one and excluding border texels) of the previous mipmap LOD, and all the mipmaps must
shared the same internal format and borders.

If mipmap filtering is requested for a texture, but all the mipmap levels of a texture are not present or not consistent,
OpenGL silently disables texturing. A common pitfall for OpenGL programmers is supplying an inconsistent or
incomplete set of mipmap levels and then wondering why texturing does not work. Be sure to specify all the
mipmap levels of a texture consistently. If you use the GLU routines for building mipmaps, this is guaranteed.

OpenGL 1.2 relaxes the texture consistency requirement by allowing the application to specify a contiguous range
of mipmap levels that must be consistent. This permits an application to still use mipmapping if only the 1x1
through 256x256 mipmap levels of a texture with a 1024x1024 level 0 texture, but not supply the 512x512 and
1024x1024 levels by managing the texture’s GL TEXTURE BASE LEVEL and GL TEXTURE MAX LEVEL parameters.
If an application is designed to guarantee a constant frame-rate, one reason the application might constrain the
base and maximum LODs in this way is that the application does not have the time to read the 512x512 and
1024x1024 mipmap levels from disk. In this case, the application makes the choice to settle for lower resolution
LODs, possibly resulting in blurry textured surfaces, rather than of dropping a frame. Hopefully on subsequent
frames, the application can manage to load the full set of mipmap levels for the texture and continue with full
texture quality. The OpenGL implementation implements this feature by simply clamping the � LOD value to the
range of available mipmap levels.

Additionally, even when all the mipmap levels are present and consistent, some of the texture images for some
levels may be out-of-date if the texture is being dynamically updated using subtexture loads. OpenGL 1.2’s
GL TEXTURE MIN LOD and GL TEXTURE MAX LOD texture parameters provide a further means to clamp the � LOD
value to a contiguous range of mipmap levels.4 Section 6.8 applies this functionality to the task of texture paging.

6.1.5 Texture Environment

The process by which the final fragment color value is derived is called the texture environment function (glTex-
Env) Several methods exist for computing the final color, each capable of producing a particular effect. One of the
most commonly used is the GL MODULATE environment function. The modulate function multiplies or modulates
the original fragment color with the texel color. Typically, applications generate polygons with per-vertex lighting

4This same functionality for controlling texture level of detail is also available through the SGIS texture lod extension.

45



Programming with OpenGL: Advanced Rendering

enabled and then modulate the texture image with the fragment’s interpolated lit color value to produce a lit, tex-
tured surface. The GL REPLACE texture environment5 is even simpler. The replace function simply replaces the
fragment’s color with the color from the texture. The same effect as replace can be accomplished in OpenGL 1.1
by using the modulate environment with a constant white current color, though the replace function has a lower
computational cost.

The GL DECAL environment function performs simple alpha-blending between the fragment color and an RGBA
texture; for RGB textures it simply replaces the fragment color. Decal mode is undefined for other texture formats
(luminance, alpha, intensity). The GL BLEND environment function uses the texture value to control the mix of the
incoming fragment color and a constant texture environment color.

At the time of this writing, efforts are underway to standardize extensions that enhance the texture environment by
adding new functions. For example, there should be a way to add the texture color to the fragment color.

6.1.6 Texture Objects

Most texture mapping applications switch among many different textures during the course of rendering a scene.
To facilitate efficient switching among multiple textures and to facilitate texture management, OpenGL uses texture
objects to maintain texture state.

The state of a texture object consists of the set of texture images for the all mipmap levels of the texture and the
texturing parameters such as the texture wrap and minification and magnification filtering modes. Other OpenGL
texture-related state such as the texture environment or texture coordinate generation modes are not part of a
texture object’s state. Conceptually, the state of a texture object is just the texture image and the parameters that
determine how to filter that image.

As with display lists, each texture object is identified by a 32-bit unsigned integer that serves as the texture’s name.
Also as with display lists names, the application is free to assign arbitrary unused names to new texture objects.
The command glGenTextures assists in the assignment of texture object names by returning a set of names
guaranteed to be unused. A texture object is bound, prioritized, checked for residency, and deleted by its name.
The value zero is reserved to name the default texture of each texture target type. Each texture object has its own
texture target type. The three supported texture targets are:

� GL TEXTURE 1D

� GL TEXTURE 2D

� GL TEXTURE 3D

Calling glBindTexture binds the named texture object as the current texture for the specified texture target.
Instead of creating a texture object explicitly, a texture object is created whenever a texture image or parameter
is set for an unused texture object name. Once created a texture object’s target (1D, 2D, or 3D) is fixed until the
texture object is deleted.

The glTexImage, glTexParameter, glGetTexParameter, glGetTexLevelParameter, and glGetTexIm-
age commands update or query the state of the currently bound texture of the specified target type. Keep in mind
that there are really three current textures, one for each texture target type: 1D, 2D, and 3D. When texturing is
fully enabled, the current texture object (i.e., current for the enabled texture target) is used for texturing. When
rendering objects with different textures, glBindTexture is the way to switch among the available textures.

Keep mind that switching textures is a fairly expensive operation. If a texture is not already resident in dedicated
texture memory, switching to a non-resident texture requires that the texture be downloaded to the hardware before
use. Even if the texture is already downloaded, caches that maximize texture performance may be invalidated
when switching textures. The details of switching textures varies depending on your OpenGL implementation,

5Introduced by OpenGL 1.1.

46



Programming with OpenGL: Advanced Rendering

but suffice it to say that OpenGL implementations are inevitably optimized to maximize texturing performance for
whatever texture is currently bound so changing textures is something to minimize. Real-world applications often
derive significant performance gains by sorting by texture the objects that they render to minimize the number of
glBindTexture commands required to render the scene. For example, if a scene uses three different tree textures
to draw several dozen trees within a scene, it is a good idea to draw all the trees that share a single texture first
before switching to a different tree texture.

Texture objects were introduced by OpenGL 1.1. The original OpenGL 1.0 specification did not support texture
objects. The thinking at the time was that display lists containing a complete set of texture images and texture
parameters could provide a sufficient mechanism for fast texture switches. But display listed textures proved
inadequate for several reasons. Recognizing textures embedded in display list efficiently proved difficult. One
problem was that a display listed glTexImage2D must encapsulate the original image, which might not be the
final texture as transformed by the pixel transfer pipeline. Changes to the pixel transfer pipeline state could change
the texture image downloaded in subsequent calls of the display list. Unless every pixel transfer state setting was
explicitly set in the display list, OpenGL implementations had to maintain the original texture data and be prepared
to re-transform it by the current pixel transfer pipeline state when the texture display list is called. Moreover, even
if every pixel transfer state setting is explicitly set in the display list, supporting future extensions that add new
pixel transfer state would invalidate the optimization. Texture objects store the post-pixel transfer pipeline image
so texture objects have no such problem. Another issue is that because display lists are not editable, display lists
precluded support for subtexture loads as provided by the glTexSubImage2D command. Lastly, display lists lack
a means to query and update the priority and residency of textures.6

6.2 Multitexture

Multitexture refers to the ability to apply two or more distinct textures to a single fragment. Each texture has
the ability to supply its own texture color to rasterized fragments. Without multitexture, there is only a single
supported texture unit. OpenGL’s multitexture support requires that every texture unit be fully functional and
maintain state that is independent of any other texture units. Each texture unit has its own texture coordinate
generation state, texture matrix state, texture enable state, and texture environment state. However, each texture
unit within an OpenGL context shares the same set of texture objects.

Rendering algorithms that require multiple rendering passes can often be reimplemented to use multitexture in
operate in less rendering passes. Some effects are only viable with multitexture.

Many OpenGL games such as Quake and Unreal use light maps to improve the lighting quality within their scenes.
Without multitexture, light map textures must be modulated into the scene with a second blended rendering pass in
addition to a first pass to render the base surface texture. With multitexture, the light maps and base surface texture
can be rendered in a single rendering pass. This can cut the transformation overhead almost in half when rendering
light maps because a single multitexture rendering pass means that polygons need to only be transformed once.
The framebuffer update overhead is also lower when using multitexture to render light maps. When multitexture
is used, the overhead of blending in the second rendering pass is completely eliminated. A single multitextured
rendering pass can render both the surface texture and the light map texture without any framebuffer blending
because the modulation of the surface texture with the light map texture occurs as part of the multitexture texture
environment. Light maps are described in more detail in Section 10.2.

The OpenGL 1.2.1 revision of the OpenGL specification [91] includes an Appendix F that introduces the concept
of OpenGL Architecture Review Board (ARB) approved extensions and specifies the ARB multitexture exten-
sion, the first distinct ARB extension. The original OpenGL 1.2 specification includes an ARB extension called
the ARB imaging extension, but the ARB imaging description is intermingled with the core OpenGL 1.2 speci-
fication. The ARB multitexture extension is the first ARB extension that is specified in an Appendix distinct
from the core specification. The purpose of ARB extensions is to add important new functionality to OpenGL in

6While the SGIX list priority extension does provide a way to prioritize display lists, the concept of querying texture residency,
while important to texture objects, is not applicable to display lists.

47


