Domain term relevance through $tf-dcf$

Lucelene Lopes
PPGCC - FACIN
PUCRS University
Porto Alegre - Brazil
lucent.lopes@pucrs.br

Paulo Fernandes
PPGCC - FACIN
PUCRS University
Porto Alegre - Brazil
paulo.fernandes@pucrs.br

Renata Vieira
PPGCC - FACIN
PUCRS University
Porto Alegre - Brazil
renata.vieira@pucrs.br

Abstract—This paper proposes a new index for the relevance of terms extracted from domain corpora. We call it term frequency, disjoint corpora frequency ($tf-dcf$), and it is based on the absolute term frequency of each term tempered by its frequency in other (contrasting) corpora. Conceptual differences and mathematical computation of the proposed index are discussed in respect with other similar approaches that also take the frequency in contrasting corpora into account. To illustrate the efficiency of the ($tf-dcf$) index, this paper evaluates the application of this index and other similar approaches.

I. INTRODUCTION

The automatic extraction of terms from texts is a well mapped task, but the automatic choice of which extracted terms are relevant for a specific domain is a much more difficult task. Finding the most relevant terms for a domain, i.e., the domain concepts, is an important step for knowledge engineering tasks such as ontology learning from texts [1].

Some classical linguistic-based work in this area suggest the use of distributional analysis [2] to associate terms and then, establish which of them are good concept candidates. A different approach, but yet following the same idea of inferring concepts from term association, is made by Chemudugunta et al. [3], where the identification of concepts is made through pure statistical measures tempered by previous inserted human information. Titov and Kozhevinikov [4] work also follows this line of research by inferring semantic relations among terms in order to identify different terms representing a same concept in sets of small documents (weather forecasts) with no linguistic annotation.

The work of Bosma and Vossen [5] presents a similar effort to establish term relevance measures considering a multiple corpora resource. This work proposes different relevance measures of terms to each corpus, but, Bosma and Vossen’s relevance measure of a term in a given corpus do not affect the relevance of this same term in other corpora. In fact, the methodology proposed in their work access WORDNET [6] in order to validate the term candidates according to their measures, but also to establish relations (hypernym, hyponym, meronym, etc.) among them.

In opposition to these efforts, this paper proposes an approach that is not linguistic-based, but it relies only on the statistical information gather from the domain corpus to establish a numerical measure to term relevance in this corpus. Therefore, this paper approach is aligned with works that take into account the term frequency on documents to compute a relevance index to establish how representative a term extracted from a corpus will be for the domain represented by this corpus. Some examples of such statistical-based approaches are the works of Dunning in 1993 [7] which proposes the use of log likelihood ratio, Manning and Schultz in 1999 [8] which proposes a composition of $tf-idf$ (term-frequency, inverse document frequency [9] adapted for term relevance in a corpus), and other initiatives based on computing indexes from one specific corpus only.

However, our claim is that those typical indices fail to rule out those terms which are not particularly relevant to a target domain. The basic idea behind approaches like the one in our paper is the assumption that a term relevance to a specific domain can only be established by comparison with corpora from other domains, called contrasting corpora.

One of the first examples of similar previous work like our own was the work of Chung in 2003 [10]. But recently, more sophisticated versions were proposed by Park et al. in 2008 [11] with domain specificity index, by Kit and Liu in 2008 with termhood index [12], and by Kim et al. in 2009 with term frequency, inverse domain frequency index [13]. These approaches brought some quality to the term extraction, as was verified by the works of Teixeira et al. [14], as well as, Rose et al. [15].

Similar to our proposal, all these previous works followed the same principle to compute a relevance index that is directly proportional to the term absolute frequency in the corpus and inversely proportional to the term absolute frequency in other corpora. The main difference among these similar previous works [11], [12], [13] and our own is the specific formula to weight the influence of other corpora frequency.

This paper first contribution resides in drawing a panorama of options of indices to express the relevance of extracted term from a domain corpus, focusing on indices that take into account also corpora of other domains (contrasting corpora). Some experiments illustrate the benefits of approaches using contrasting corpora over traditional indices.

Secondly, and most important, this paper contributes with the proposal of a new relevance index, called $tf-dcf$, that is, according to our experiments, superior to the other indexes based on contrasting corpora. This contribution is enhanced by the analysis of the $tf-dcf$ behavior against different options of contrasting corpora.
A. Term frequency and inverse document frequency - tf-idf

An alternative for plain term frequency is to take into account the frequency of the term among documents. The seminal work of Spärck-Jones [9] shows the importance to consider frequent terms, but also non-frequent ones in order to retrieve documents. These ideas lead to the well-known Robertson and Spärck-Jones probabilistic model to term relevance to specific documents [16]. Croft and Harper [17], and later Robertson and Walker [18], proposed formulations to a popular index that takes positively into account the term frequency (tf), i.e., the number of occurrences of a given term \(t \) in a document \(d \); and also considers negatively the number of documents of the corpus where term \(t \) appears at least once, i.e., the inverse document frequency (idf).

This index, called tf-idf has many formulations, e.g., [19], [20], [8], but in this paper we will consider the formulation adopted by Bell et al. [21]. The tf-idf index is mathematically defined for each term \(t \) to each document \(d \) belonging to a corpus \(c \) that has at least one occurrence of \(t \) as follows:

\[
\text{tf-idf}_{t,d} = (1 + \log(tf_{t,d})) \times \log \left(\frac{|D^{(c)}|}{|D_t^{(c)}|} \right)
\]

where \(tf_{t,d} \) is the number of occurrences of term \(t \) in document \(d \); \(D^{(c)} \) is the set of all documents of a given corpus \(c \); and \(D_t^{(c)} \) is the subset of these documents where \(t \) appears at least once.

Observing equation (2) it is possible to observe the term frequency (tf) and the inverse document frequency (idf) parts. The tf part considers the logarithmic frequency of the term, since the variation of term occurrences of terms approaches an exponential distribution, i.e., a term \(t \) that occurs \(10 \) times is not \(10 \) times more important than a term \(t' \) that appears only once. Nevertheless, term \(t \) is an order of magnitude more important than term \(t' \). The idf part represents a value that varies from \(\log(2) \) for a term that appears in all documents, until \(\log(1 + |D^{(c)}|) \) for a document that appears in only one document.

The idea behind tf-idf formulation is that a term \(t \) is more relevant as a keyword for a document \(d \) if it appears many times in this document and very few times (or ideally none) in other documents. This is an important distinction for information retrieval. The popularity of this index is justified mostly because it prevents frequent terms spread in many documents to be considered more relevant than they should. Indeed, tf-idf is an effective measure to identify the defining terms of documents, because it spots terms that are good for document indexation.

The use of tf-idf to establish relevance of terms to domain corpora was proposed by Manning and Schütze [8]. According to these authors, a possible index to express the relevance of a term \(t \) in a corpus \(c \) is expressed by:

\[
\text{tf-idf}_{t,c} = \sum_{d \in D_t^{(c)}} \text{tf-idf}_{t,d}
\]
B. Term domain specificity - tds

The first initiatives to consider the relevance of terms to a domain corpus taking into account contrastive generic corpus, or corpora, include the works made by Chung in 2003 [10] and Drouin in 2004 [22]. However, at the authors best knowledge, it is the work of Park et al. [11], in 2008, one of the first formulations of an index to express term relevance to a specific domain. In that work, such index is called domain specificity, and it is expressed as the ratio between the probability of occurrence of a term \(t \) in a domain corpus \(c \) and the probability of this same term in a generic corpus. Park et al. definition of term \(t \) domain specificity to a specific domain corpus \(c \), considering a generic domain corpus \(g \) was expressed as:

\[
tds_{t}^{(c)} = \frac{p_{t}^{(c)}}{p_{t}^{(g)}} = \frac{\frac{n_{t}^{(c)}}{N^{(c)}}}{\frac{n_{t}^{(g)}}{N^{(g)}}}
\]

where \(p_{t}^{(c)} \) express the probability of occurrence of term \(t \) in corpus \(c \); and \(N^{(c)} \) is the total number of terms in corpus \(c \), i.e., \(N^{(c)} = \sum_{t} n_{t}^{(c)} \).

C. Termhood - thd

Following the approach to consider, besides the domain corpus of interest, a contrasting corpus, the work of Kit and Liu in 2008 [12] proposes an index called termhood. This index, as for Park et al.’s term domain specificity, follows the idea that a term relevant to a domain is more frequent in the corpus domain than in other corpora. The main difference brought by this work is to consider the term rank in the corpus vocabulary (the set of all terms in the corpus), instead of the term absolute frequency. Kit and Liu definition of term \(t \) termhood index for a corpus \(c \), a generic domain corpus \(g \) (called background corpus by them) was expressed by:

\[
\text{thd}_{t}^{(c)} = \frac{r_{t}^{(c)}}{V^{(c)}} - \frac{r_{t}^{(g)}}{V^{(g)}}
\]

where \(V^{(c)} \) is the vocabulary of corpus \(c \), i.e., \(\mid V^{(c)} \mid \) is the cardinality of the set of all terms in the corpus \(c \), and \(r_{t}^{(c)} \) is the rank value of term \(t \) expressed as \(\mid V^{(c)} \mid \) for the most frequent term, \(\mid V^{(c)} \mid -1 \) for the second most frequent, and so on until the less frequent term as \(r_{t}^{(c)} = 1 \).

Observing the termhood index we can see it as the difference between the normalized rank value of the term in the domain corpus \(c \) and the generic domain corpus \(g \). Actually, the division of the rank value by the vocabulary size is intended to keep the normalized rank value within the interval \([0, 1]\), with a value equal to 1 to the more frequent term, and the other terms decaying, according to their frequency, asymptotically toward 0.

As a result, the termhood index will be within the interval \([1, -1]\), having the more frequent term in \(c \) having a value equal to 1, if it does not belong to vocabulary \(V^{(g)} \), until a value -1 for the more frequent term in \(g \), if it does not belong to vocabulary \(V^{(c)} \).

D. Term frequency, inverse domain frequency - TF-IDF

Recently, Kim et al. [13] have proposed in 2009 another index to rank term relevance considering the original idea of the \(tf-idf \) index, which was to identify whereas a term is suitable to represent a document. In such way, Kim et al. did not actually proposed a new index, but instead, they proposed the use of the same \(tf-idf \) formulation, but considering the set of documents of a corpus as a single document. To avoid confusion, we will refer to this index with the acronym TF-IDF in uppercase, to differentiate it from the term frequency, inverse document frequency (\(tf-idf \)).

The TF-IDF index for term \(t \) at corpus \(c \), considering a set of corpora \(G \) as proposed by Kim et al. is numerically expressed by:

\[
\text{TF-IDF}_{t}^{(c)} = \frac{\sum_{G \in c} f_{t}^{(c)} \times \log \left(\frac{\mid G \mid}{\mid G_{t} \mid} \right)}{\mid G \mid} \quad (6)
\]

where \(f_{t}^{(c)} \) is the term frequency of term \(t \) in corpus \(c \); \(G \) is the set of all domain corpora; and \(G_{t} \) is the subset of \(G \) where the term \(t \) appears at least once.

It is important to notice that the basic formulation of \(tf-idf \) used as inspiration by Kim et al. proposal is not as robust as the one of Bell et al. (Eq. 3). For instance, if a term \(t \) appears in all corpora, the \(IDF \) part of Eq. 6 will become 0, and therefore, such term \(t \) will have a TF-IDF index also equal to 0, i.e., it will be considered less relevant than any other term, regardless its number of occurrences. Another important difference between Equations 3 and 6 is that Bell et al.’s (Eq. 3) uses the log of absolute term frequency in the \(tf \) part, while Kim et al.’s (Eq. 6) considers directly a relative term frequency.

III. PROPOSED INDEX

The goal of all indices presented in the previous section is to obtain higher numeric values for terms that are relevant to a given domain, or for more recent knowledge engineering tasks [14], [15], terms that are suitable candidates for concepts of an ontology. The raw term absolute frequency (Eq. 1), obviously indicates a relevance, since a term that is very frequent is likely to be important to the domain. Also the \(tf-idf \) (Eq. 3) index can be an indicative of relevance, since terms that are very distinctive to some documents of the corpus are also likely to be representative of the domain.

The \(tds \) (Eq. 4), \(thd \) (Eq. 5) and TF-IDF (Eq. 6) indices have better chance to identifying concepts of a domain because they use contrasting corpora. Nevertheless, these indices adopt different approaches that reveals distinct empirical initiatives to tackle the concept identification problem.

The first difference is how these indices take the occurrences of terms in the domain corpus into account. The \(tds \) (Eq. 4) and TF-IDF (Eq. 6) indices compute a relative frequency of the term, since the term probability \(p_{t}^{(c)} \) for \(tds \) and the \(tf \) part for TF-IDF are computed as the absolute frequency divided
by the total number of terms in the domain corpus. The \(t_{td} \) (Eq. 5) index, however, computes a normalized rank value, that, even though being computed according to the absolute frequency, delivers a linear relation\(^1\) among all terms.

The second difference resides in the effect brought by the occurrence of terms in contrasting corpora. The \(t_{ds} \) (Eq. 4) index penalizes the terms that occurs in the contrasting corpora by dividing its probability in the domain corpus by the probability in the contrasting corpora. The \(t_{thd} \) (Eq. 5) index also penalizes the terms that occurs in the contrasting corpora, but in this case it subtracts the normalized rank value in the domain corpus by the normalized rank value in the contrasting corpora. The approach for \(TF-IDF \) (Eq. 6) index is quite different, since it rewards the terms that are unique to the domain corpus by multiplying the relative frequency by the log of the number of corpora. Such reward decreases as the term appears in other contrasting corpora, until it drops to 0 when the term appears in all corpora. It is important to notice that this reward decreases proportionally to the number of corpora, but it is independent to the number of term occurrences in contrasting corpora.

We propose a new index to estimate the term relevance to a domain following the same idea of contrasting corpora, but we propose differences in the way term occurrences in the domain corpus are taken into account, and most of all, in the effect brought by occurrences in the contrasting corpora. Specifically, we propose a representation to this effect called “disjoint corpora frequency” (dcf), which is a mathematical way to penalize terms that appear in contrasting corpora proportionally to its number of occurrences, as well as the number of contrasting corpora in which the term appears.

A. Term frequency, disjoint corpora frequency - tf-def

Our proposal, like other contrasting corpora approaches, is based on a primary indication of term relevance and a reward/penalization mechanism. The basis of \(tf-def \) index is to consider the absolute frequency as the primary indication of term relevance. Then, we choose to penalize terms that appear in the contrasting corpora by dividing its absolute frequency in the domain corpus by a geometric composition of its absolute frequency in each of the contrasting corpora. The \(tf-def \) index is mathematically expressed, for term \(t \) in corpus \(c \), considering a set of contrasting corpora \(G \), as:

\[
tf-def_t^c = \frac{f_t^c}{\prod_{g \in G} \left(1 + \log \left(1 + f_t^g \right) \right)}
\] (7)

The choice of absolute frequency as primary indication of term \(t \) relevance for corpus \(c \), instead of using a relative frequency (like \(tds \) and \(TF-IDF \)) or term rank (like \(thd \)), aims the simplicity of the measure for two main reasons:

- We do not consider that there is a need for linearization brought by the use of the term rank, as for \(thd \) index, nor there is a need to make explicit the normalization according to the corpus size, as for \(tds \) and \(TF-IDF \); In fact, any normalization according to the corpus size still remain possible after the \(tf-def \) computation;
- We consider that keeping a relation with the absolute term frequency preserves the index intuitive comprehension, since the \(tf-def \) index numeric value will be smaller (if the term appears in the contrasting corpora) or equal to \(tf \) (if the term does not appear in the contrasting corpora).

The geometric composition of absolute frequencies in the contrasting corpora is equal to 0. This decision follows the same principle adopted in the original proposition of \(tf-idf \) measure proposed by Robertson and Spärck-Jones [16].

The second assumption made us adapt this log function in order to deliver a value equal to 1 when the number of occurrences of a term in a contrasting corpus is equal to 0. This decision follows the same principle adopted to the Bell et al. [21] to express their formulation of \(tf-idf \) measure.

Finally, the third assumption led us to employ the product of the log of occurrences in each contrasting corpora. The product represents that the importance of occurrences grows geometrically as it appears in other corpora. In fact, any normalization according to the contrasting corpora chosen to express the penalization, i.e., the divisor in Eq. 7, tries to encompass the following assumptions:

- The number of occurrences of a term in each of the contrasting corpora is distributed according to a Zipf law [23], and to correctly estimated this importance, a linearization of this number of occurrences must be made;
- A term that appears only in the domain corpora should not be penalized at all, i.e., terms that do not occur in the contrasting corpora must have the divisor equal to 1; and
- A term that appears in many corpora is more likely to be irrelevant to the domain corpus, than those terms that appears in fewer corpora.

Because of the first assumption, we choose to consider a log function to compute the absolute frequency in each contrasting corpora \((tf_t^g) \). This decision follows the same principle adopted in the original proposition of \(tf-idf \) measure.

The second assumption made us adapt this log function with the addition of value 1 inside and outside the log function in order to deliver a value equal to 1 when the number of occurrences of a term in a contrasting corpus is equal to 0. This decision follows the same principle adopted to the Bell et al. [21] to express their formulation of \(tf-idf \) measure.

Finally, the third assumption led us to employ the product of the log of occurrences in each contrasting corpora. The product represents that the importance of occurrences grows geometrically as it appears in other corpora. In fact, according to our formulation a term is more likely to be irrelevant for a domain corpus when it appears few times in many multiple contrasting corpora, than if it appears many times in just few contrasting corpora. Additionally, the product is compatible with the idea to have a divisor equal to 1 when a term appears only in the domain corpus.

IV. PRACTICAL RESULTS

The practical application of the proposed index is meant to illustrate its effectiveness and some basic characteristics of \(tf-def \) according to the contrasting corpora used. The experiments were conducted over Brazilian Portuguese corpora, using a linguistic-based term extraction tool to provide terms and their number of occurrences. Nevertheless, corpora in any language submitted to any kind of extraction could be employed without any loss of generality.
A. The chosen corpora

The chosen test bed was one corpus from Pediatrics domain [24] with 281 documents from The Brazilian Journal on Pediatrics. This corpus (PED) was chosen because of the availability of reference lists of relevant terms.

Four other scientific corpora were used as support for definition of specific Pediatrics terms. These corpora have approximately 1 million words each and their domains are: Stochastic modeling (SM), Data mining (DM), Parallel processing (PP) and Geology (GEO) [25]. Tab. I summarizes the information about these corpora.

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Documents</th>
<th>Sentences</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatrics PED</td>
<td>281</td>
<td>27,724</td>
<td>835,412</td>
</tr>
<tr>
<td>Stochastic Modeling SM</td>
<td>88</td>
<td>44,222</td>
<td>1,173,401</td>
</tr>
<tr>
<td>Data Mining DM</td>
<td>53</td>
<td>42,932</td>
<td>1,127,816</td>
</tr>
<tr>
<td>Parallel Processing PP</td>
<td>62</td>
<td>40,928</td>
<td>1,086,771</td>
</tr>
<tr>
<td>Geology GEO</td>
<td>234</td>
<td>69,461</td>
<td>2,010,527</td>
</tr>
</tbody>
</table>

B. Extraction tools

The extraction procedure of terms and their frequencies was made by a two step process. First the documents were annotated by the Portuguese parser PALAVRAS [26]. Then the PALAVRAS output, i.e., a set of TigerXML files, was submitted to ExATOlp term extractor [27].

PALAVRAS and ExATOlp joint application delivers high quality term lists, since the extracted terms are noun phrases found in the corpus and their frequencies. The extracted noun phrases were filtered according to ExATOlp heuristic rules aiming the output of noun phrases as meaningful as possible. These heuristics goes from simple exclusion of articles, but also quite ingenious ones like detection of implicit noun phrases2 [28].

C. Extracted terms and reference lists

The extracted terms were divided in two lists, bigrams and trigrams. Single terms and those with more than three words were not considered in the evaluation, since they were not included in the hand-made reference list constructed by terminology laboratory TEXTECC (http://www6.ufrgs.br/textecc/).

The reference lists were produced by a careful and laborious process that involved terminologists, domain specialists (Pedi- atricians) and academic students. These lists are available for download at TEXTECC website and they have been used for practical applications including glossary construction, translation aid, and even ontology construction. These reference lists are composed by 1,534 bigrams and 2,660 trigrams and they can also be consulted at http://ontolp.inf.pucrs.br/ontolp/downloads-ontolpista.php.

The full extracted term lists delivered by PALAVRAS and ExATOlp for the Pediatrics corpus were composed by 15,483 distinct bigrams and 18,171 distinct trigrams. To each of these lists the computed indices were:

- \(tf \) the absolute term frequency (Eq. 1);
- \(tf-idf \) the term frequency, inverse document frequency (Eq. 3) with the basic formulation from Bell et al. [21] aggregated with the sum proposed by Manning and Schütze [8] to be used as an example of index not using contrasting corpora;
- \(tds \) the term domain specificity (Eq. 4) proposed by Park et al. [11];
- \(thd \) the termhood (Eq. 5) proposed by Kit and Liu [12];
- \(TF-IDF \) the term frequency, inverse domain frequency (Eq. 6) proposed by Kim et al. [13]; and
- \(tf-dcf \) the term frequency, disjoint corpora frequency (Eq. 7) proposed in the previous section of this paper.

D. The impact of different measures on frequent terms

Observing in detail some terms in the extracted lists it is possible to have a better understanding of the effect of each index, and, therefore, the benefits brought by \(tf-dcf \) as relevance index. Tab. II presents the top ten frequent terms, i.e., the ten terms with more absolute occurrences in the Pediatrics corpus. In this table it is shown the number of occurrences of the term in each corpora, i.e., Pediatrics (PED), Stochastic modeling (SM), Data mining (DM), Parallel processing (PP) and Geology (GEO). Additionally, the last column (ref. list) indicates wether the term belongs (“IN”) or not (“OUT”) to the reference list.

<table>
<thead>
<tr>
<th>Term in Portuguese</th>
<th>Translation</th>
<th>PED</th>
<th>SM</th>
<th>DM</th>
<th>PP</th>
<th>GEO</th>
<th>ref. list</th>
</tr>
</thead>
<tbody>
<tr>
<td>registro materno</td>
<td>(breast feeding)</td>
<td>906</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>recém nascido</td>
<td>(new born)</td>
<td>299</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>faixa etária</td>
<td>(age slot)</td>
<td>234</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>presente estado</td>
<td>(current study)</td>
<td>188</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>OUT</td>
</tr>
<tr>
<td>idade gestacional</td>
<td>(gestational age)</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>ventilação mecânica</td>
<td>(mechanical ventilation)</td>
<td>138</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>peso natal</td>
<td>(birth weight)</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>pressão arterial</td>
<td>(blood pressure)</td>
<td>112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IN</td>
</tr>
<tr>
<td>sexo masculino</td>
<td>(male sex)</td>
<td>109</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>OUT</td>
</tr>
</tbody>
</table>

The same ten more frequent terms are also shown in Tab. III with the values for the six presented indices, as well as their rank according to each of them. For example, in the third row of Tab. III, the term “faixa etária” (“age slot” in English) belongs to the reference list and it is ranked as the third term in the lists sorted with the term frequency (\(tf \) - Eq. 1) and with the term frequency, inverse document frequency (\(tf-idf \) - Eq. 3). In the lists sorted with the other indices this term is ranked as the 13,281th (for \(tds \) - Eq. 4), the fourth (for \(thd \) - Eq. 5), the sixth (for \(TF-IDF \) - Eq. 6), and the fifteenth (for \(tf-dcf \) - Eq. 7).

Observing the rank differences between the lists sorted with the term frequency (\(tf \) - Eq. 1) and the term frequency, inverse document frequency (\(tf-idf \) - Eq. 3), we noticed an important
Table III

ANALYSIS OF FREQUENT TERMS FROM PEDIATRICS CORPUS.

<table>
<thead>
<tr>
<th>Term in Portuguese (translation)</th>
<th>tf</th>
<th>tf-idf</th>
<th>tdf</th>
<th>tf-dcf</th>
<th>TF-IDF</th>
<th>tf-dcf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atenciona materno (maternal care)</td>
<td>306</td>
<td>193.18</td>
<td>1.10</td>
<td>0.79</td>
<td>0.002</td>
<td>1.091</td>
</tr>
<tr>
<td>Term masculino (male sex)</td>
<td>299</td>
<td>184.98</td>
<td>1.09</td>
<td>0.99</td>
<td>0.002</td>
<td>209.00</td>
</tr>
<tr>
<td>Faixa etaria (age slot)</td>
<td>234</td>
<td>169.18</td>
<td>0.98</td>
<td>0.93</td>
<td>0.0012</td>
<td>61.46</td>
</tr>
<tr>
<td>Presente estudo (current study)</td>
<td>188</td>
<td>167.74</td>
<td>0.73</td>
<td>0.50</td>
<td>0.0002</td>
<td>3.99</td>
</tr>
<tr>
<td>Tds masculino (male sex)</td>
<td>120</td>
<td>132.12</td>
<td>1.00</td>
<td>0.90</td>
<td>0.0011</td>
<td>120.00</td>
</tr>
<tr>
<td>Pressao arterial (blood pressure)</td>
<td>112</td>
<td>92.72</td>
<td>1.00</td>
<td>0.88</td>
<td>0.0009</td>
<td>112.00</td>
</tr>
<tr>
<td>leite materno (mother’s milk)</td>
<td>92</td>
<td>131.18</td>
<td>1.00</td>
<td>0.92</td>
<td>0.0013</td>
<td>131.18</td>
</tr>
<tr>
<td>Mezcal Ventil (mechanical ventilation)</td>
<td>150</td>
<td>163.70</td>
<td>1.00</td>
<td>0.93</td>
<td>0.0001</td>
<td>163.70</td>
</tr>
<tr>
<td>Edad gestacional (gestational age)</td>
<td>144</td>
<td>133.60</td>
<td>1.05</td>
<td>1.26</td>
<td>0.0120</td>
<td>133.60</td>
</tr>
<tr>
<td>Gestacao materna (gestational age)</td>
<td>110</td>
<td>125.70</td>
<td>0.88</td>
<td>0.77</td>
<td>0.0001</td>
<td>0.77</td>
</tr>
</tbody>
</table>

The list sorted according to term frequency, inverse domain frequency index (tdf - Eq. 4) shows the downgrading effect on the three terms appearing in the contrasting corpora (grey rows in Tabs. II and III). However, these terms are not sent very low, since even the term “faixa etaria” (age slot”), “presente estudo” (current study) and “sexo masculino” (male sex”) are all ranked beyond the 13,000th position.

The list sorted according to term domain specificity index (tfd - Eq. 5) shows the downgrading effect on the third terms appearing in the contrasting corpora (see rows in Tabs. II and III). However, these terms are not sent very low, since even the term “faixa etaria” (age slot”), “presente estudo” (current study) and “sexo masculino” (male sex”) are all ranked beyond the 13,000th position.

The list sorted according to term frequency, inverse domain frequency index (tf-idf - Eq. 6) shows the downgrading effect on the three terms appearing in the contrasting corpora (see rows in Tabs. II and III). However, these terms are not sent very low, since even the term “faixa etaria” (age slot”), “presente estudo” (current study) and “sexo masculino” (male sex”) are all ranked beyond the 13,000th position.

The list sorted according to term frequency, inverse domain frequency index (tf-dcf - Eq. 7) shows the downgrading effect on the three terms appearing in the contrasting corpora (see rows in Tabs. II and III). However, these terms are not sent very low, since even the term “faixa etaria” (age slot”), “presente estudo” (current study) and “sexo masculino” (male sex”) are all ranked beyond the 13,000th position.

It is important to call the reader attention that our proposed index (tf-dcf - Eq. 7) is the only one that takes into account both the number of occurrences in the contrasting corpora (as termhood and term domain specificity), and the number of corpora in which the term appears (as term frequency, inverse corpus frequency). For that reason, the downgrading effect in the list sorted according to our index is the stronger one. Our index casts out the term “presente estudo” (“current study”) to the 1,276th position, while it downgrades significantly the term “sexo masculino” (“male sex”) to the 543th position. In opposition, the term “faixa etaria” (“age slot”) is mildly downgraded from the third to the fifteenth position.

V. CONCLUSION

This paper presented a novel numerical index to estimate the relevance of extracted terms with respect to a specific domain. The inclusion of disjoint corpora frequency (dcf) component successfully improved the precision of extracted lists in comparison with the traditional tf and tf-idf, but also other indices based on comparison with contrasting corpora, namely term domain specificity [11], termhood [12] and term frequency, inverse domain frequency [13].

The proposed dcf approach was described here in composition with the absolute frequency (tf) and it has the advantage to keep an analogue semantic of the original absolute frequency index. If a given term does not appear in other corpora, its tf-dcf index will be equal to the term frequency, i.e., only terms appearing in other corpora will be numerically downgraded. This is not the case of any of the other pre-existent measures.

Our proposal is the follow up to initial studies based on the comparison with contrasting corpora. Such intuitive idea was initially proposed during the last 10 years [10, 22, 29, 11, 12, 13, 15], but, at the authors best knowledge, our proposal is the first one to pay attention to a correct weighting of the influence of occurrences of terms in contrasting corpora.

Specifically, our tf-dcf index formulation consider the product of the log of the number of occurrences in other corpora as reductive factor for the domain corpus absolute term frequency. This choice is justified by the fact that term occurrences are likely to be distributed by a Zipf law [23]. In Park et al. [11] this fact was ignored. In Kit and Liu [12] this fact was approached by the rank difference. In Kim et al. [13] this fact was approached by term relative frequency and the logarithm in the IDF part. Therefore, our formulation seems to be mathematically more robust.

The main limitation of the current study is the lack of thorough experiments with other corpora. We had choose to limit our experiments to the studied corpora because there were no sign of availability of data sets previously employed by other authors. Nevertheless, since the objective of this paper is to propose the tf-dcf index, it remains as a natural future work the experimentation of our proposal to a statistically significant set of corpora. Such future work will demand the analysis of the proposed tf-dcf index, in comparison with other indices, in terms of numerical measures, as precision, and the gathering of corpora and corresponding lists of references.

Another valid future work is the study of heuristics to choose a good cut-off point to apply in the extracted term lists. With the use of a simple index of relevance, like the absolute term frequency, the cut-off point choice seems simple, since it is enough to define a minimum number of term occurrences. However, with a more sophisticated one, as the tf-dcf index proposed here, it is a little less obvious to define a meaningful and effective cut-off point [30].