Deploying IP Multicast

Session RST-2701

Networkers Multicast Sessions

• Breakout Sessions
 – RST 1701 – Introduction to IP Multicast
 – RST 2701 – Deploying IP Multicast
 – RST 2702 – Deploying IP Multicast VPN’s
 – RST 4701 – Advanced IP Multicast

• Techtorials
 – RST 2T07 – Enterprise IP Multicast

• Multicast BoF
Agenda

• Basic Multicast Engineering
 – PIM Configuration Steps
 – Which Mode: Sparse or Dense?
 – Basic RP Engineering
• Advanced Multicast Engineering
 – PIM Protocol Extensions
 – Combining Auto-RP and Anycast RP
 – Multicast Group Control
 – Using Admin. Scoped Zones
Basic Multicast Configuration – PIM Configuration Steps

PIM Configuration Steps

- Enable Multicast Routing on every router
- Configure every interface for PIM
- Configure the RP
 - Using Auto-RP or BSR
 - Configure certain routers as Candidate RP(s)
 - All other routers automatically learn elected RP
 - Anycast/Static RP addressing
 - RP address must be configured on every router
 - Note: Anycast RP requires MSDP
Configure PIM on Every Interface

Classic Partial Multicast Cloud Mistake #1

T1/E1 line has best metric to source

RPF Failure!!!!!

We'll just use the spare 56K line for the IP Multicast traffic and not the T1.

Configure PIM on Every Router

Classic Partial Multicast Cloud Mistake #2

Highest next-hop IP address used for RPF when equal cost paths exist.

RPF Failure!!!!!

We'll just keep multicast traffic off of certain routers in the network.
Which Mode—Sparse or Dense

- **Dense mode**
 - Flood and Prune behavior very inefficient
 - Can cause problems in certain network topologies
 - Creates (S, G) state in EVERY router
 - Even when there are no receivers for the traffic
 - Complex Assert mechanism
 - Mixed control and data planes
 - Results in (S, G) state in every router in the network
 - Can result in non-deterministic topological behavior
 Read: It can black-hole traffic and/or melt down your network!
 - Primarily usage:
 - Testing a router’s performance in the lab
Which Mode—Sparse or Dense

- **Sparse mode**
 - Must configure a Rendezvous Point (RP)
 - Very efficient
 - Uses Explicit Join model
 - Traffic only flows to where it’s needed
 - Separated control and data planes
 - Router state only created along flow paths
 - Deterministic topological behavior
 - Scales well
 - Works for both sparsely or densely populated networks

“Sparse mode Good! Dense mode Bad!”

Group Mode vs. Interface Mode

- Group & Interface mode are independent.
 - Interface Mode
 - Determines how the interface operates when sending/receiving multicast traffic.
 - Group Mode
 - Determines whether the group is Sparse or Dense.

Group Mode

- Group mode is controlled by local RP info
 - Local RP Information
 - Stored in the Group-to-RP Mapping Cache
 - May be statically configured or learned via Auto-RP or BSR
 - If RP info exists, Group = Sparse
 - If RP info does not exist, Group = Dense
 - Mode Changes are automatic.
 - i.e. if RP info is lost, Group falls back to Dense.
Configuring Interface

- **Interface Mode Configuration Commands**
 - Enables multicast forwarding on the interface.
 - Controls the *interface’s* mode of operation.

 - `ip pim dense-mode`
 - Interface mode is set to Dense mode operation.

 - `ip pim sparse-mode`
 - Interface mode is set to Sparse mode operation.

 - `ip pim sparse-dense-mode`
 - Interface mode is determined by the Group mode.
 - If Group is Dense, interface operates in Dense mode.
 - If Group is Sparse, interface operates in Sparse mode.
RP Configuration Methods

- Static
- Auto-RP
- BSR
- Anycast-RP’s

Static RP’s

- Hard-coded RP address
 - When used, must be configured on every router
 - All routers must have the same RP address
 - RP fail-over not possible
 - Exception: If Anycast RPs are used. (More on that later.)
 - Group can never fall back into Dense mode.
Auto-RP Overview

RP-Announcements multicast to the Cisco Announce (224.0.1.39) group

Auto-RP Overview

RP-Discoveries multicast to the Cisco Discovery (224.0.1.40) group
BSR Overview

BSR Election Process

Highest Priority C-BSR is elected as BSR
BSR Overview

BSR Overview

BSR Mgs containing RP-set
Flooded Hop-by-Hop
Anycast RP—Overview

RP1: 10.1.1.1
RP2: 10.1.1.1

src
Rec
Rec

MSDP

Rec
Rec
General RP Recommendations

- Use Anycast RP’s:
 - When network must connect to Internet or
 - When rapid RP failover is critical

- Pros
 - Fastest RP Convergence method
 - Required when connecting to Internet

- Cons
 - Requires more configuration
 - Requires use of MSDP between RP’s
General RP Recommendations

- **Use Auto-RP**
 - When minimum configuration is desired and/or
 - When maximum flexibility is desired
- **Pros**
 - Most flexible method
 - Easiest to maintain
- **Cons**
 - Increased RP Failover times vs Anycast
 - Special care needed to avoid DM Fallback
 - Some methods greatly increase configuration

General RP Recommendations

- **Use BSR:**
 - When Static/Anycast RP’s cannot be used and
 - When maximum interoperability is needed
- **Pros**
 - Interoperates with all Vendors
- **Cons**
 - Increased RP Failover times vs Anycast
 - Special care needed to avoid DM Fallback
 - Some methods greatly increase configuration
 - Does not support Admin. Scoping
Basic RP Engineering – Avoiding Dense Mode Fallback

Dense Mode Fallback

• Caused by loss of local RP information in older IOS releases.
 – Entry in Group-to-RP mapping cache times out.
• Can happen when:
 – All C-RP's fail.
 – Auto-RP/BSR mechanism fails.
 • Generally a result of network congestion.
• Group is switched over to Dense mode.
 – Dense mode state is created in the network.
 – Dense mode flooding begins if interfaces configured as \texttt{ip pim sparse-dense-mode}.
Dense Mode Fallback

Avoiding Dense Mode Fallback

To always guarantee Sparse mode operation (and avoid falling back to Dense mode), make sure that every router *always* knows of an RP for every group.

Avoiding DM Fallback – Old Workaround

- Define an “RP-of-last-resort”
 - Configure as a Static RP on every router
 - Will only be used if all Candidate-RP’s fail
 - Can be a dummy address or local Loopback
 - Recommendation: Use local Loopback on each router
 - **MUST use ACL to avoid breaking Auto-RP**!
      ```
      ip pim rp-address <RP-of-last-resort> 10
      access-list 10 deny 224.0.1.39
      access-list 10 deny 224.0.1.40
      access-list 10 permit any
      ```
Avoiding DM Flooding

- **New IOS global command**
 - `ip pim autorp-listener`

- **Added support for Auto-RP Environments**
 - Modifies interface behavior
 - Interface always uses DM for Auto-RP groups
 - Permits use of `ip pim sparse-mode` interfaces and Auto-RP.
 - Prevents DM Flooding
 - When `ip pim sparse-mode` used on interfaces.
 - Does not prevent DM Fallback!

- Available 12.3(4)T, 12.2(28)S

Avoiding DM Flooding

- **Deploying `ip pim autorp-listener`**
 - Must be configured on every router.
 - Use RP-of-last-resort on older IOS versions until upgraded
 - Assign local Loopback as RP-of-last-resort on each router.
 - Example
 - `ip pim rp-address <local_loopback> 10`
 - `access-list 10 deny 224.0.1.39`
 - `access-list 10 deny 224.0.1.40`
 - `access-list 10 permit any`
Avoiding DM *Fallback*

- **New IOS global command**

  ```
  no ip pim dm-fallback
  ```

- **Totally prevents DM Fallback!!**
 - No DM Flooding since all state remains in SM

- **Default RP Address = 0.0.0.0 [nonexistent]**
 - Used if all RP’s fail.
 - Results in loss of Shared Tree.
 - All SPT’s remain active.

- **Available 12.3(4)T, 12.2(28)S**
PIM Protocol Extensions

Source Specific Multicast
Barriers to Multicast Deployment

- Global Multicast Address Allocation
 - Dynamic Address Allocation
 - No adequate dynamic address allocation methods exist
 - SDR – Doesn’t scale
 - MASC – Long ways off!
 - Static Address Allocation (GLOP)
 - Based on AS number.
 - Insufficient address space for large Content Providers.

- Multicast Content “Jammers”
 - Undesirable sources on a multicast group.
 - “Capt. Midnight” sources bogus data/noise to group.
 - Can cause DoS attack by congesting low speed links.

Source Specific Multicast (SSM)

- Uses Source Trees only.
- Assumes One-to-Many model.
 - Most Internet multicast fits this model.
 - IP/TV also fits this model.
- Hosts responsible for source discovery.
 - Typically via some out-of-band mechanism.
 - Web page, Content Server, etc.
 - Eliminates need for RP and Shared Trees.
 - Eliminates need for MSDP.
SSM Overview

- Hosts join a specific source within a group.
 - Content identified by specific (S,G) instead of (*,G).
 - Hosts responsible for learning (S,G) information.
- Last-hop router sends (S,G) join toward source
 - Shared Tree is never joined or used.
 - Eliminates possibility of content Jammers.
 - Only specified (S,G) flow is delivered to host.
- Simplifies address allocation.
 - Dissimilar content sources can use same group without fear of interfering with each other.

SSM Example

Receiver 1

Source

Host learns of source, group/port
First-hop learns of source, group/port
First-hop send PIM (S,G) Join

Out-of-band source directory, example: web server

IGMPv3 (S, G) Join

PIM (S, G) Join

A

B

C

D

E

F

Receiver 1
SSM Example

- Source
- Result: Shortest path tree rooted at the source, with no shared tree.

SSM Configuration

- Global command
 - `ip pim ssm {default | <acl>}`
 - Defines SSM address range
 - Default range = 232.0.0.0/8
 - Use ACL for other ranges
 - Prevents Shared Tree Creation
 - (`*, G`) Joins never sent or processed
 - PIM Registers never sent or processed
 - Available in IOS versions
 - 12.1(5)T, 12.2, 12.0(15)S, 12.1(8)E
SSM – Summary

- Uses Source Trees only.
 - Hosts are responsible for source & group discovery.
 - Hosts must signal router which (S,G) to join.
- Solves multicast address allocation problems.
 - Flows differentiated by both source and group.
 - Content providers can use same group ranges.
 - Since each (S,G) flow is unique.
- Helps prevent certain DoS attacks
 - “Bogus” source traffic:
 - Can’t consume network bandwidth.
 - Not received by host application.

So where is SSM?

- Dependant on IGMPv3
 - Microsoft supports IGMPv3 in Windows XP
- Workarounds
 - IGMPv3 lite
 - API/Library/DLL
 - Used by Cisco IP/TV 3.2 and later.
 - URL RenDezvous (URD)
 - Redirect from Web page with specific information intercepted by Router
 - Static Source Mapping
 - Router maps IGMPv2 Joins in SSM range to well-known sources via DNS or static configuration
IGMP v3lite

• Source side:
 – No application changes required!
• Receiver side:
 – Application must use IGMPv3 API:
 – IGMP v3lite Library Component
 • Provides the IP SSM subset of IGMPv3 API
 – Applications must still filter out unwanted traffic.
 – IGMP v3lite Daemon Component
 • Sends special (S,G) Join to local router via UDP port 465

URD

• A content provider builds a web page that contains URD links.
 – List of sources willing to provide multicast content
• The user (receiver) clicks on one of the links
• Web Server sends back an HTTP redirect containing source and group info to TCP port 465
• Host sends the redirect via TCP port 465
• Local router intercepts TCP port 465 traffic
 – Uses source/group information in the redirect to identify the requested SSM flow.
SSM Mapping

- Allows only for one source per Group
- Router maps group to a single source
 - Uses either DNS or static internal database
 - DNS method allows content providers to provide the mapping
 - DNS Method independent from network operators

SSM Mapping – DNS Example

[Diagram showing the process of SSM mapping using DNS example, including IGMPv2 join, PIM (S,G) join, and reverse DNS lookup for group G, with DNS response showing 3.2.1.232 IN A 172.23.20.70]
SSM Mapping Configuration

Enabling SSM mapping on the router
 ip igmp ssm-map enable

For static mapping:
 ip igmp ssm-map static <acl-1> <source-1 IP address>
 ip igmp ssm-map static <acl-2> <source-2 IP address>

For DNS mapping (existing commands):
 ip domain-server <ip address>
 ip domain-name <domain.com>

To disable DNS mapping
 no ip igmp ssm-map query dns

DNS Record Format: 3.2.1.232 IN A 172.23.20.70

Bidirectional (Bidir) PIM
Multicast Application Categories

• One-to-Many Applications
 – Video, TV, Radio, Concerts, Stock Ticker, etc.

• Few-to-Few Applications
 – Small (<10 member) Video/Audio Conferences

• Few-to-Many Applications
 – TIBCO RV Servers (Publishing)

• Many-to-Many Applications
 – Stock Trading Floors, Gaming

• Many-to-Few Applications
 – TIBCO RV Clients (Subscriptions)

Multicast Application Categories
PIM-SM (S, G) State

• One-to-Many Applications
 – Single (S,G) entry

• Few-to-Few Applications
 – Few (<10 typical) (S,G) entries

• Few-to-Many Applications
 – Few (<10 typical) (S,G) entries

• Many-to-Many Applications
 – Unlimited (S,G) entries

• Many-to-Few Applications
 – Unlimited (S,G) entries
Multicast State Maintenance

- CPU load factors
 - Must send/receive Registers
 - Must send periodic Joins/Prunes
 - Must perform RPF recalculations
 - Watch the total number of mroute table entries
 - Unicast route table size impacts RPF recalculation
- Memory load factors
 -
 - (*, G) entry ~ 380 bytes + OIL size
 - (S, G) entry ~ 220 bytes + OIL size
 - Outgoing interface list (OIL) size
 - Each oil entry ~ 150 bytes

Many-to-Any State Problem

- Creates huge amounts of (S,G) state
 - State maintenance workloads skyrocket
 - High OIL fanouts make the problem worse
 - Router performance begins to suffer
- Using Shared-Trees only
 - Provides some (S,G) state reduction
 - Results in (S,G) state only along SPT to RP
 - Frequently still too much (S,G) state
 - Need a solution that only uses (*,G) state
Bidirectional (Bidir) PIM

• Idea:
 – Use the same tree for traffic from sources towards RP and from RP to receivers

• Benefits:
 – Less state in routers
 • Only (*, G) state is used
 • Source traffic follows the Shared Tree
 – Flows up the Shared Tree to reach the RP.
 – Flows down the Shared Tree to reach all other receivers.

Bidirectional (Bidir) PIM

• Bidirectional Shared-Trees
 – Violates current (*,G) RPF rules
 • Traffic often accepted on outgoing interfaces.
 • Care must be taken to avoid multicast loops
 – Requires a Designated Forwarder (DF)
 • Responsible for forwarding traffic up Shared Tree
 – DF’s will accept data on the interfaces in their OIL.
 – Then send it out all other interfaces. (Including the IIF.)
Bidirectional (Bidir) PIM

- Designated Forwarders (DF)
 - On each link the router with the best path to the RP is elected to be the DF
 - Note: Designated Routers (DR) are not used for bidir groups
 - The DF is responsible for forwarding traffic upstream towards the RP
 - No special treatment is required for local sources

Bidirectional PIM — Example
Bidirectional PIM — Example

Receiver — RP — Sender/Receiver

Shared Tree
Source Traffic

Receiver

Source Traffic forwarded bidirectionally using (*,G) state.

Configuring Bidir PIM
(Auto-RP Example)

- Define Candidate RP and groups / modes it is willing to serve

```plaintext
ip pim send-rp-announce Loopback0 scope 10 group-list 45 bidir
ip pim send-rp-announce Loopback1 scope 10 group-list 46
! Two loopbacks needed due to a nature of ACLs (permit, deny)
ip pim send-rp-discovery scope 10

access-list 45 permit 224.0.0.0 0.255.255.255
access-list 45 permit 227.0.0.0 0.255.255.255
! 224/8 and 227/8 will be PIM Bidir groups
access-list 45 deny 225.0.0.0 0.255.255.255
! 225/8 will be a PIM Dense Mode group
access-list 46 permit 226.0.0.0 0.255.255.255
! 226/8 will be a PIM Sparse Mode group
```
Question: Does a Bidir RP even have to physically exist?
Answer: No. It can just be a phantom address.

Router “E” forwards traffic onto core LAN segment.
Bidir PIM – Phantom RP

Router “F” forwards traffic on down the Shared Tree ala normal PIM-SM.

RP doesn’t even have to physically exist.

Phantom RP on Point-to-Point Core

Static Route Method

RP: 1.1.1.1

ip multicast-routing
interface Loopback0
ip address 1.1.1.1 255.255.255.255
ip pim sparse-mode
router ospf 11
redistribute static subnets
ip route 1.1.1.1 255.255.255.255 Loopback0
ip pim bidir-enable
ip pim rp-address 1.1.1.1 bidir

ip multicast-routing
interface Loopback0
ip address 1.1.1.2 255.255.255.255
ip pim sparse-mode
router ospf 11
redistribute static subnets
ip route 1.1.1.2 255.255.255.255 Loopback0
ip pim bidir-enable
ip pim rp-address 1.1.1.1 bidir
Phantom RP on Point-to-Point Core

Netmask Method

RP: 1.1.1.2

ip multicast-routing
interface Loopback0
ip address 1.1.1.1 255.255.255.252
ip ospf network point-to-point
router ospf 11
network 1.1.1.0 0.0.0.3 area 0
network 10.1.1.0 0.0.0.255 area 0
network 10.1.2.0 0.0.0.255 area 0
ip pim bidir-enable
ip pim rp-address 1.1.1.1
ip pim rp-address 1.1.1.2 bidir

ip multicast-routing
interface Loopback0
ip address 1.1.1.1 255.255.255.248
ip ospf network point-to-point
router ospf 11
network 1.1.1.0 0.0.0.7 area 0
network 10.1.1.0 0.0.0.255 area 0
network 10.1.2.0 0.0.0.255 area 0
ip pim bidir-enable
ip pim rp-address 1.1.1.1
ip pim rp-address 1.1.1.2 bidir

Bidir PIM—Summary

- Drastically reduces network mroute state
 - Eliminates ALL (S,G) state in the network
 - SPT’s between sources to RP eliminated
 - Source traffic flows both up and down Shared Tree
- Allows Many-to-Any applications to scale
 - Permits virtually an unlimited number of sources
Multicast Group Control

Controlling Receivers

IGMP Access-Group Approach

interface VLAN100
 ip igmp access-group IPMC-ACL
 ip access-list standard IPMC-ACL
 permit 239.192.244.1
 deny any

No filter (default)

Permit VT Stream
 Deny Executive Meeting Stream

This is micro-management of IP Multicast traffic!!!
Controlling Source Registration

- **Global command**
 - `ip pim accept-register [list <acl>] | [route-map <map>]`
 - Used on RP to filter incoming Register messages
 - Filter on Source address alone (Simple ACL)
 - Filter on (S, G) pair (Extended ACL)
 - May use route-map to specify what to filter
 - Filter by AS-PATH if (m)BGP is in use.

- Helps prevents unwanted sources from sending
 - First hop router blocks traffic from reaching net
 - Note: Traffic can still flow under certain situations

RP
- RP configured to only accept Registers from specific source.

```
ip pim accept-register list 10
access-list 10 permit 192.16.1.1
```
Controlling Source Registration

Unwanted source traffic hits first-hop router.

First-hop router creates (S,G) state and sends Register.

RP rejects Register, sends back a Register-Stop.

Weaknesses in ‘accept-register’ usage.

Traffic will flow on local subnet where source resides.

Traffic will flow from first-hop router down any branches of the Shared Tree.

- Results when (*.G) OIL is copied to (S,G) OIL at first-hop router.
- Causes (S,G) traffic to flow down all interfaces in (*.G) OIL of first-hop router.
- Fundamental limitation of PIM protocol.
Disabling Entire Group Ranges

- **Accept-Register Method**
  ```
  ip pim accept-register group-list 10
  access-list 10 deny 224.2.0.0 0.0.255.255
  access-list 10 permit any
  ```

- **Pros**
 - Only configured on RP(s)

- **Cons**
 - Shared Trees and (*,G) state still created.
 - Results in unwanted (*,G) PIM Control Traffic.
 - Source traffic can still flow.
 (See previous section on Accept-Register)

Disabling Entire Group Ranges

- **Garbage Can RP Method**
 - **Concept:**
 - Separate RP for “disabled” groups
 - Could be non-existent router
 - Blackholes all Registers and Joins
 - **Implementation:**
 - Define separate RP for disabled groups
 - Use Auto-RP, BSR or Static RP definition
 - Disable RP functionality on Garbage Can RP
 - Use ‘accept-rp’ command on GC RP to “deny” it from serving as RP for the disabled group range.
Disabling Entire Group Ranges

• Garbage Can RP Method
 – Pros:
 • Few if any.
 – Cons:
 • Periodic Registers still sent to GC RP
 • Periodic Joins still sent to GC RP
 • Has same source issues as Accept-Register
 – Source traffic can still flow under certain conditions.
 • Adds significant complexity to network

Disabling Entire Group Ranges

• Local Loopback RP Method
 – Concept:
 • Only Auto-RP-learned groups are authorized.
 • All other groups are considered unauthorized.
 – Implementation:
 • Define local Loopback as RP for unauthorized groups on each router.

ip pim rp-address <local_loopback> 10
 access-list 10 permit 224.2.0.0 0.0.255.255

 Note: The permit clause defines the unauthorized group.
Disabling Entire Group Ranges

- Local Loopback RP Method
 - Operation:
 - Each router serves as RP for unauthorized groups.
 - Collapses PIM-SM domain of unauthorized groups down to the local router.
 - Unauthorized group traffic cannot flow beyond local router.
 - Pros:
 - No PIM control traffic sent.
 - Local router is RP so no Registers/Joins are sent.
 - No additional workload on local router.
 - First-hop routers always have to create state anyway.
 - Can also serve as RP-of-last-resort
 - Solving DM Fallback problem at the same time.
 - Cons:
 - Must be configured on every router.
 - Local sources can still send to local receivers.
Disabling Entire Group Ranges

- New **no ip pim dm-fallback** command
 - Groups with no known RP default to an RP address of 0.0.0.0.
 - Effectively disables multicast for these groups.
 - New sources are not Registered.
 - New receivers are not Joined.
- Available 12.3(4)T, 12.2(28)S.

Disabling Entire Group Ranges

- **Recommendations**
 - Use **no ip pim dm-fallback** command
 - Available 12.3(4)T, 12.2(28)S
 - Use Local Loopback RP Method
 - Effectively disables unauthorized group traffic.
 - Can also serve as RP-of-last-resort
 ip pim rp-address <local_loopback> 10
 access-list 10 deny 224.0.1.39
 access-list 10 deny 224.0.1.40
 access-list 10 permit any
Combining Auto-RP and Anycast-RP

- Anycast-RP and Auto-RP may be combined.
 - Provides advantages of both methods
 - Rapid RP failover of Anycast RP
 - No DM Fallback
 - Configuration flexibility of Auto-RP
 - Ability to effectively disable undesired groups
Combining Auto-RP and Anycast-RP

Configuration Steps

1. Enable Auto-RP
 - Newer IOS images
 - Use `ip pim autorp listener` global command and configure `ip pim sparse-mode` on all interfaces.
 - Older IOS images
 - Configure `ip pim sparse-dense-mode` on all interfaces.

2. Configure Auto-RP Mapping Agents
   ```
   ip pim send-rp-discovery interface Loopback0 scope 32
   ```

3. Block DM Fallback
 - Newer IOS images
 - Use no `ip pim dm-fallback`
 - Older IOS images
 - Configure RP-of-last-Resort
       ```
       ip pim rp-address <local_loopback> 10
       access-list 10 deny 224.0.1.39
       access-list 10 deny 224.0.1.40
       access-list 10 permit any
       ```

4. Configure Anycast RP’s for desired group range.
5. Configure Anycast RP’s as Auto-RP C-RP’s
   ```
   ip pim send-rp-discovery Loopback0 scope 32 group-list 10
   ```
 - Loopback0 = Anycast RP Address
 - Anycast-RP’s will announce Anycast-RP address via Auto-RP
Example Auto-RP and Anycast-RP

Older IOS

- interface Loopback 0
 - ip address 10.2.1.1 255.255.255.255
- interface Ethernet0/0
 - ip pim sparse-dense-mode
 - ip pim rp-address 10.2.1.1 10
 - access-list 10 deny 224.0.1.39
 - access-list 10 deny 224.0.1.40
 - access-list 10 permit any

Newer IOS

- ip pim autorp-listener
- no ip pim dm-fallback
- interface Ethernet0/0
 - ip pim sparse-mode

Example Auto-RP and Anycast-RP

Older IOS

- interface Loopback 0
 - ip address 10.1.1.1 255.255.255.255
- interface Ethernet0/0
 - ip pim autorp-listener
 - no ip pim dm-fallback
 - interface Ethernet0/0
 - ip pim sparse-mode

Example Auto-RP and Anycast-RP

Older IOS

- interface Loopback 0
 - ip address 10.1.1.1 255.255.255.255
- interface Ethernet0/0
 - ip pim autorp-listener
 - no ip pim dm-fallback
 - interface Ethernet0/0
 - ip pim sparse-mode
Administratively-Scoped Zones

• Used to limit:
 – High-BW sources to local site
 – Control sensitive multicast traffic

• Simple scoped zone example:
 – 239.193.0.0/16 = Campus Scope
 – 239.194.0.0/16 = Region Scope
 – 239.195.0.0/16 = Organization-Local (Enterprise) Scope
 – 224.1.0.0 - 238.255.255.255 = Global scope (Internet) zone
 • High-BW sources use Site-Local scope
 • Low-Med. BW sources use Org.-Local scope
 • Internet-wide sources use Global scope
Administratively Scoped Zones Example

- Campus Scope: 239.193.x.x/16
- RP per Campus

Level 1: Campus Scope
Administratively-Scoped Zones Example

Level 2: Regional Scope

- Regional Scope: 239.194.x.x/16
- RP per Region

Level 3: Enterprise Scope

- Enterprise Scope: 239.195.x.x/16
- Multiple Enterprise RPs (via MSDP full mesh)
Administratively-Scoped Zones Example

Level 4: Internet Global Scope

- Global Scope: 224.0.[2-255].x – 238.255.255.255
- Multiple Global RPs (via MSDP full mesh)
- MSDP connectivity to SP network

Administratively Scoped Address Range

- RFC 2365 Administratively Scoped Zones.
 - Organization-Local Scope (239.192/14)
 - Expands downward in address range.
 - Site-Local Scope (239.255/16)
 - Expands downward in address range.
 - Smallest possible scope.
 - Other scopes may be equal but not smaller.
Example Scope Address Assignments

- Allocate all ranges from the Org-Local space.
- Keep Site-Local space separate.
 - Avoids moving applications when smaller scopes are added later.

Adding a Additional Scopes

- Additional scope ranges are allocated downward into Org-Local Expansion.
 - Not necessary to keep ranges in scope size order.
 - (i.e. “Sub-Region” scope is a larger physical scope than the “Building” and “Campus” scopes).
Address Ranges to Avoid

- Avoid ranges that map to a MAC address of 0x0100-5E00-00xx!
 - i.e. 239.128.0/24 & 239.0.0/24
 - These addresses are always flooded by Layer 2 switches!

Enterprise Scope Relative Range

- Be sure to place Enterprise Scope at the high end of the Org-Local range.
 - Keeps Org-Local and Enterprise Scope Relative ranges identical.
 - Insures applications that use Org-Local Scope Relative addresses work correctly.

239.192.0.0 - 239.195.254.255

239.195.255.255

Organization-Local Scope
239.192.0.0/14

Enterprise Scope
239.195.0.0/16

Organization-Local Scope Relative
239.195.255.0/24

Organization-Local Scope Relative
239.195.255.0/24
Adding Bidir Ranges to each Scope

- Subdivide each scope's address range into Bidir and ASM ranges.
 - Keep ASM range at the upper end of the address range.
 - Keeps Scope-Relative multicast in ASM mode.

Adding Private SSM Space

- Allocate 239.232/16 from Site-Local Expansion range for private SSM space.
 - Subdivide SSM space into scoped zones.
Deploying Administratively-Scoped Zones

Region 1

Campus A (HQ)

• Campus boundaries block high-rate 239.193.0.0/16 traffic from going out the WAN links.

Campus Boundaries

Campus B

Border A

Border B

Border C

Campus C

239.193.0.0/16

239.193.0.0/16

239.193.0.0/16

Interface Serial0

ip multicast boundary 10

access-list 10 deny 239.193.0.0 0.0.255.255

access-list 10 permit any

Interface Serial1

ip multicast boundary 10

access-list 10 deny 239.193.0.0 0.0.255.255

access-list 10 permit any

Campus Boundaries

Region 1

Campus A (HQ)

• Campus boundaries block high-rate 239.193.0.0/16 traffic from going out the WAN links.

Campus Boundaries

Campus B

Border A

Border B

Border C

Campus C

239.193.0.0/16

239.193.0.0/16

239.193.0.0/16

Interface Serial0

ip multicast boundary 10

access-list 10 deny 239.193.0.0 0.0.255.255

access-list 10 permit any

Interface Serial10

ip multicast boundary 10

access-list 10 deny 239.193.0.0 0.0.255.255

access-list 10 permit any

Interface Serial11

ip multicast boundary 10

access-list 10 deny 239.193.0.0 0.0.255.255

access-list 10 permit any

Campus Boundaries
Deploying Administratively-Scoped Zones

Auto-RP Example

Region 1

Campus A (HQ)

• Each Campus needs its own set of Campus C-RP's and Mapping Agent(s).

Campus B

Campus C

• Problem: Campus RP info can leak into other sites and cause wrong C-RP to be elected.
Deploying Administratively-Scoped Zones
Preventing Auto-RP Info Leakage

• Multicast Boundary Command
 ip multicast boundary <acl> [filter-autorp]
 – New ‘filter-autorp’ option
 • Filters contents of Auto-RP packets
 – Filters both Announcement and Discovery messages
 – C-RP entries that fail <acl> are removed from packet
 • Prevents C-RP information from leaking in/out of scoped zone.
 • Greatly simplifies Admin. Scoped Zone support in Auto-RP.
 • Available in 12.0(22)S, 12.2(12).

• How ‘filter-autorp’ option works:
 For each RP Entry in Auto-RP packet:
 If group-range in RP-Entry \textit{intersects} any ‘denied’
 group-range in the Multicast Boundary ACL, delete
 RP Entry from Auto-RP packet.

 If resulting Auto-RP packet is non-empty, forward
 across multicast boundary.
Deploying Administratively-Scoped Zones
Preventing Auto-RP Info Leakage

• Using Multicast Boundary ‘filter-autorp’
 – Avoid Auto-RP Group-Range Overlaps
 • Overlapping ranges can “intersect” denied ranges at multicast boundaries.
 – Can cause unexpected Auto-RP info filtering at multicast boundaries.
 – Results in loss of Auto-RP info to other parts of network.
 – Rule of Thumb:
 • Make sure Auto-RP Group-Ranges match exactly any Multicast Boundary Ranges!
 (i.e. don’t use overlapping Auto-RP group ranges.)

Avoid Overlapping Group Ranges

Global Scope
224.0.0.0/4

Enterprise Scope
239.192.0.0/16
239.195.0.0/16

Local Scope
239.255.0.0/16

Avoid!!!
Can result in confusion and misconfiguration

Use non-overlapping group ranges when using Admin. Scoping.

Global Scope
224.0.0.0/8
225.0.0.0/8
226.0.0.0/8

236.0.0.0/8
237.0.0.0/8
238.0.0.0/8
Avoid Overlapping Group Ranges

- Avoiding Overlapping Group Ranges
 - Can’t use “deny” clause in C-RP ACL’s
 - Implies “Dense-mode Override”
      ```
      ip pim send-rp-announce loopback0 scope 16 group-list 10
      access-list 10 deny 239.0.0.0 0.255.255.255
      access-list 10 permit 224.0.0.0 15.255.255.255
      ```
 - Must only use “permit” clauses
    ```
    ip pim send-rp-announce loopback0 scope 16 group-list 10
    access-list 10 permit 224.0.0.0 0.255.255.255
    access-list 10 permit 225.0.0.0 0.255.255.255
    access-list 10 permit 226.0.0.0 0.255.255.255
    access-list 10 permit 237.0.0.0 0.255.255.255
    access-list 10 permit 238.0.0.0 0.255.255.255
    ```
Deploying Administratively-Scoped Zones

Auto-RP Example with ‘filter-autorp’ boundaries

- The ‘filter-autorp’ option prevents Site-Local RP information from leaking out of the Site.

- Configuring Campus C-RP’s and Mapping Agents in each Campus. (Only one campus shown.)
Deploying Administratively-Scoped Zones
Auto-RP Example with ‘filter-autorp’ boundaries

- Need an RP for the Region Groups.

Region C-RP's

- White Papers
- Web and Mailers
- Cisco Press

RTFB = “Read the Fine Book”
Wonderful Bedtime Stories

Complete Your Online Session Evaluation!

WHAT: Complete an online session evaluation and your name will be entered into a daily drawing

WHY: Win fabulous prizes! Give us your feedback!

WHERE: Go to the Internet stations located throughout the Convention Center

HOW: Winners will be posted on the onsite Networkers Website; four winners per day