
114 Computer

E M B E D D E D C O M P U T I N G

H ow many different types of
chips do we need? That has
been one of the big debates in
the semiconductor industry
over the past few years. It’s

also a topic that we’ve considered
in this column before (“How Many
System Architectures?” Mar. 2003,
pp. 93-95).

I’m beginning to have second
thoughts about my earlier prediction
that we will have many different com-
puting platforms for the foreseeable
future. The reason for my change of
heart is—in a word—software.

MANUFACTURING COSTS
Chips are getting more expensive

both to design and to manufacture.
That makes it tempting for semicon-
ductor companies to push more func-
tions onto a single chip, using software
to customize it for specific applications.

Each chip design needs a different set
of manufacturing masks, and the cost
of masks is increasing exponentially.
For today’s 90-nanometer processes, the
set of masks for a new chip costs about
$1 million (although most manufactur-
ers, eager to maintain their reputations
as bargain shoppers, say they don’t pay
retail). If a manufacturer sells 2 million
chips over the course of a year, the
masks add about 50 cents to the cost of
each one. When the chip sells for $4 or
$5, that’s a big bite out of profits.

Using software to customize a few
platforms for a variety of applications
spreads the mask costs over more
chips. It also saves the time of switch-
ing from one mask set to another. Time
is money, so reducing the variety of
parts that require fabrication helps
reduce costs in other ways as well.

As a result, chip manufacturers try
to design platforms that can support a
range of products. Customers who buy
the chips to build systems use software
to customize the functionality.

COMPUTATIONAL EFFICIENCIES
The traditional reasons for using

application-specific chips are cost and
power consumption.

A CPU is seldom the most efficient
vehicle for performing a particular,
well-defined function. CPUs use extra
gates to fetch and interpret instruc-
tions; the logic isn’t as small as a state
machine designed to do only one thing.
Furthermore, some functions don’t fit
neatly into the CPU’s word width; they

might require several instructions to
perform an operation that a specialized
piece of logic could complete in one
clock cycle.

Accordingly, hardware designers
began building systems composed of
several different processing elements.
In fact, some of those elements might
be CPUs, but many systems include
specialized processing elements to per-
form functions unique to an applica-
tion. Because the collection of elements
is irregular, the architectures need
irregular memory systems and irregu-
lar interconnections.

As more system-on-chips (SoCs) go
into battery-powered products—cell

phones, portable media players, and so
on—energy and power consumption
become critical design factors as well
as critical selling points for the chip.
Replacing a general-purpose processor
with a specialized piece of logic can sig-
nificantly improve a system’s battery
life. And that can mean the difference
between winning and losing the com-
petition to select a chipset for that new
mobile device.

STANDARD COMPLEXITIES
So we have a collision between two

undeniably important aspects of chip
design. On the one hand, specializing
an SoC to an application has undeni-
able advantages. On the other hand, it
is becoming wildly expensive to make
those specializations.

The jury is still out as to the number
of platforms that system designers will
have available to them. Manufacturing
costs and application requirements are
pushing chip designers in somewhat
different directions. Complex applica-

Applications
and
Architectures
Wayne Wolf, Princeton University

Are complex applications
pushing us toward more
general-purpose embedded
platforms?

November 2004 115

of one frame that has moved to a
new position in another frame. Those
pieces are generally squares, but the
piece shapes have nothing to do with
the object shapes in the picture.

As an object moves through the
scene, it can cover and uncover back-
ground objects. If a video system
chooses one reference frame to define
what is in the scene, it might not find
a good match between the motion-esti-
mation block and the content in suc-
cessive frames.

By defining motion estimation rela-
tive to several reference frames, a video
system can find better motion-estima-
tion matches, thereby reducing the
number of bits required to encode that
motion.

The window shapes used for motion
estimation are also important. Early
MPEG standards used one shape, a
16 × 16 element known as a mac-
roblock. Its size represented a com-
promise between image quality and
computational effort, but a mac-
roblock is too large for some of today’s
small video displays. H.264 provides
a variety of ways to segment mac-
roblocks, including shapes other than
a square when they would better fit the
window to the object that the motion
estimation is tracking.

Not just transmitters
These changes generally require

more complex receivers as well as
transmitters. Television broadcasting
is designed to allow simpler, cheaper
receivers at the cost of more complex
transmitters; but videoconferencing
and cell phones must balance com-
pression and decompression require-
ments since terminals must generally
do both. That means designers must
figure out how to support both func-

tions in low-cost, low-power systems.
If the authors of standards add fea-

tures destined for a high-end broad-
casting studio, the system designers
have more techniques available to
implement those features and fewer
constraints on their designs. When
they must put those features into con-
sumer items, not just professional-
grade systems, the designer’s job is
much harder.

FEEDING HABITS
According to designers at ST Micro-

electronics, it takes more than a million
lines of code to support the audio fea-
tures of high-end consumer electronic
products today. If this sounds surpris-
ing, consider all the product logos on
your audio equipment. Dolby, for
example, requires licensees to imple-
ment multiple standards to provide
compatibility with older material. DTX
is a competing standard. MP3 is a must
for audio compression, but there are
others as well.

Each of these standards is complex
in itself. Putting them all together
yields a very large chunk of code.

Similarly, implementing a major
video standard takes well over a mil-
lion lines of code today, and the num-
ber will increase to three or four
million soon. Consider a digital hub
that could play video from your mini-
DV camera on your HDTV or record
it on your DVD drive. As with audio,
products must support multiple stan-
dards to be useful. The combination
of standards requires a huge software
load.

At issue is the complexity of that
software as much as its volume. If
we can efficiently implement key rou-
tines in hardware, most software
could still run on a CPU with hard-
ware assist. But as the volume of code
grows, so does the complexity of stan-
dards functions—as the motion-esti-
mation example illustrates. And not
all functions are good candidates for
hardware speedup. If the memory
access patterns are highly data-depen-
dent, for example, software may be a

tions push us toward general-purpose
processors or multiprocessors and
away from highly application-specific
chips, but some straightforward hard-
ware tricks can speed up some appli-
cations quite a bit.

I don’t know yet what the final
answer will be, but in contrast to my
earlier column, I see more and more
applications that require more regular,
highly programmable architectures.

Important application algorithms
are becoming extremely complex.
While more sophisticated algorithms
can produce higher functioning prod-
ucts such as cell phones, video players,
or cameras, they also make these sys-
tems much harder to build.

Consider video compression, for
example. The key to video compres-
sion has always been to use several dif-
ferent algorithms together: the discrete
cosine transform to encode certain key
frames, motion estimation to provide
higher compression rates for the mov-
ing objects in frames between the key
frames, and Huffman encoding to
reduce the size of representing all this
data.

But recent standards address many
more modes and features. The new
Advanced Video Coding standard, also
known as H.264, is the latest in a line
of video-compression standards.
H.264 covers the full spectrum of
video platforms, ranging from cell
phones with very small screens running
at 15 frames per second to HDTV with
high-resolution displays running at 60
frames per second.

In addition, cell phones operate at
different resolutions and have varying
amounts of bandwidth available. These
variables require somewhat different
approaches to video compression.

Encompassing all these complexities
requires newer standards like H.264 to
be bigger and support many more
modes of operation.

Relative motion
A prime example is motion estima-

tion for multiple reference frames.
Motion estimation tries to find a piece

At issue is the
complexity of the
software as much

as its volume.

116 Computer

E m b e d d e d C o m p u t i n g

more natural way to capture the algo-
rithm’s behavior.

To be fair, there are reasons to keep
designing new platforms. For example,
designing hardware for fairly generic
functions can significantly improve sys-
tem performance. Specialized hard-
ware for graphics operations, text
operations, and other operator-rich
routines can run faster than equivalent
code. Multiple processor cores can
support some task-level parallelism.

When standards capture these types
of operations, we know they won’t
change quickly, so designing a chip to
perform them is often cost-effective
and power-efficient.

O nly time will tell how many dif-
ferent chips we finally need to
support our computing habits.

But to understand platform require-
ments, I do think it’s time for a more
substantial dialog between application
designers and architects.

As applications become more com-
plex, application designers become
more tempted to try methods that
don’t implement well. They need some
early warning before those methods
end up in standards. Embedded system
architects can help them judge their
options by giving them platform mod-
els to evaluate the characteristics of the
algorithms they propose.

Building such models won’t be triv-
ial, but better models will represent
a major step forward in computing-
system development. �

Wayne Wolf is a professor of electrical
engineering at Princeton University.
Contact him at wolf@princeton.edu.

How to Reach
Computer
Writers
We welcome submissions. For detailed information, visit www.
computer.org/computer/author.htm.

News Ideas
Contact Lee Garber at lgarber@ computer.org with ideas for news
features or news briefs.

Products and Books
Send product announcements to products@computer.org. Contact
computer-ma@computer.org with book announcements.

Letters to the Editor
Please provide an e-mail address with your letter. Send letters to
computer@computer.org.

On the Web
Explore www.computer.org/computer/ for free articles and general
information about Computer magazine.

Magazine Change of Address
Send change-of-address requests for magazine subscriptions to
address.change@ieee.org. Make sure to specify Computer.

Missing or Damaged Copies
If you are missing an issue or received a damaged copy, contact
membership@computer.org.

Reprint Permission
To obtain permission to reprint an article, contact William Hagen,
IEEE Copyrights and Trademarks Manager, at whagen@ieee.org.
To buy a reprint, send a query to computer@computer.org.

