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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Hardware/Software
Interface Codesign 
for Embedded 
Systems

A n embedded computing system is an
application-specific electronic subsystem
that is used in a larger system such as a
consumer appliance, medical device, or
automobile. Embedded systems can

embody complete system functionality in several
ways—for example, by using software running on
CPUs or in specialized hardware accelerators. 

Technological evolution—particularly shrink-
ing silicon fabrication geometries—is enabling the
integration of complex platforms in a single sys-
tem on chip (SoC). In addition to specific hardware
subsystems, a modern SoC also can include one or
several CPU subsystems to execute software and
sophisticated interconnects. 

Mastering the design of these embedded systems
is a challenge for both system and semiconductor
houses that used to apply a software- or hardware-
only strategy. In addition to classic software and
hardware, SoC engineers must design hardware-
dependent software and software-dependent hard-
ware. Codesigning these HW/SW interfaces
requires a new kind of engineer who understands
both hardware and software design. 

Ninety percent of new application-specific inte-
grated circuits (ASICs) fabricated using 130-nm
technology already include a CPU,1 and 65-nm

SoCs with more than 100 processors could become
commonplace by 2007. Multimedia platforms such
as Nomadik and Nexperia are examples of multi-
processor SoCs that use digital signal processors,
microcontrollers, and other kinds of programmable
processors.2 These systems exploit heterogeneous
cores to meet tight performance and cost con-
straints. As the trend of building heterogeneous mul-
tiprocessor SoCs accelerates, they will be composed
of multiple, possibly highly parallel processors for
use in applications such as mobile terminals, set-top
boxes, and game, video, and network processors.
To facilitate communication, these chips will also
contain sophisticated networks-on-chips (NoCs). 

Providing SoCs consisting of an assembly of
processors executing tasks concurrently will require
design methodologies to focus on selecting and
using either programmable or dedicated processors
in place of the gates and arithmetic logic units that
current methods use. Compared with conventional
ASIC design, such a multiprocessor SoC requires a
fundamental change in chip design. 

MULTIPROCESSOR PLATFORMS
Application requirements force today’s system

designers to develop specific platforms for different
design spaces. Some have speculated that the semi-

Separate hardware- and software-only engineering approaches cannot
meet the increasingly complex requirements of embedded systems. 
HW/SW interface codesign will enable the integration of components in
heterogeneous multiprocessors. The authors analyze the evolution of 
this approach and define a long-term roadmap for future success.
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conductor industry is moving toward a universal
chip that will provide all the computation power
that all applications require. This solution should
be developed when it becomes feasible; using a
standard platform is likely to become the preferred
option because it would eliminate the cost and
effort required to build specific HW/SW platforms. 

However, due to many factors, it is likely that
SoC designs will use multiple platforms in the fore-
seeable future. It is possible to build one or more
platforms that effectively provide the basis for
many products within a particular application
space—such as Texas Instruments’ TI-OMAP and
STElectronics’ Nomadik for mobile terminals, and
Philips’ Nexperia for digital TV.2 However, enhanc-
ing such hardware platforms for use across multi-
ple applications is not viable because they must
meet several stringent design constraints simulta-
neously: hard real-time performance, low power
consumption, and low cost. Under these circum-
stances, the platform must be specialized to exploit
a given application’s characteristics.

Further, applications that have different combi-
nations of requirements demand multiple architec-
tures. For example, although AVC/H.264 is a
common standard for video compression, different
types of video compression systems require differ-
ent platforms. The computation complexity required
for video compression in digital cinema and high-
definition video (HDV) cameras is more than 32 tera
instructions per second. A cell phone with a video
camera uses much smaller frames and lower frame
rates, which requires less computation but imposes
more stringent power consumption requirements.
Because cell phones must also be more physically
compact than high-end video cameras, they require
more highly integrated architectures. Thus, even this
one application can require different platforms. 

HDV recording illustrates the need for hetero-
geneous platforms. Assume that the design uses a
pure software approach with a SoC platform con-
sisting of programmable processors. To meet the
computation requirements, the SoC platform
requires 32,000 RISC processors running at 1 GHz.

In the foreseeable future, such a SoC platform may
not be realizable in terms of either chip area or
power consumption. Such a platform has a signif-
icant limitation in terms of power consumption
because it would require numerous transistors, and
the leakage current—which is proportional to the
number of devices—would dominate power con-
sumption. However, when implemented as a mixed
HW/SW design, the same MPEG-2 encoder would
require only a four-processor solution for a digital
cinema application.3

INTERFACE-BASED DESIGN
For quite some time, Moore’s law has driven

advances in chip density that far outpace advances
in designer productivity. To get back on track,
designers must work at higher levels of abstraction.
The productivity of a designer who can generate
only 100 lines of Hardware Description Language
(HDL) code per day is higher if those lines represent
large blocks rather than logic gates. 

SoC design generally requires developing complex
software, entailing hundreds of thousands of lines
of code, to run on the SoC platform. The designer
must accomplish this work while balancing the com-
peting constraints of a short time-to-market window
and ever-increasingly complex functionality. Scaling
current ASIC design approaches to such highly par-
allel multiprocessor SoCs is difficult, and using clas-
sic methods to design these new systems would result
in unacceptable realization costs and delays. 

These constraints are pushing SoC design toward
an interface-based methodology that takes advan-
tage of intellectual property.

Current design methodology
Traditional ASIC designers have a hardware-cen-

tric view of the system design problem. Similarly,
software designers have a software-centric view.
SoC designs require creating and using radical new
design methodologies because some of the key
problems in SoC design lie at the boundary between
hardware and software.

As Figure 1a shows, a SoC can include specific
hardware subsystems and one or several CPU sub-
systems to execute software. The design includes a
hardware adapter—a bridge or communication
coprocessor—to connect the CPU subsystems to
the other subsystems. Each CPU subsystem includes
a register transfer level (RTL) or gate model of the
CPU and a set of peripherals connected using the
CPU bus. 

In the final design, the system compiles and rep-
resents software as binary code that it can load in

Figure 1. Evolution
of interface-based
design. (a) Current
methodology
prevents designing
the software until
the hardware plat-
form design is com-
plete. (b) HW/SW
interface codesign
requires abstract
models of both types
of components.

HW
subsystems

(a)

HW/SW
interface

SW adaptation
(OS/drivers)

SW tasks 

CPU
subsystem

HW
adaptation

SW tasks

(b)

HW
subsystem



the CPU subsystem’s memory. The current SoC
design process uses separate teams working serially
to create the hardware and software designs.

The first step consists of designing the hardware
and validating it through RTL simulation using clas-
sic HDL simulators, which are much too slow to
handle the embedded CPUs. Using a CPU instruc-
tion-set simulator can accelerate this simulation.
Instruction-set simulators can use a cosimulation
backplane to connect to the HDL simulator.4

The next step involves testing an operating sys-
tem or middleware on the hardware platform and
then porting the software to the OS or middleware.
Thus, the software design team can begin only after
the hardware platform design is complete. This
often leads to poor hardware designs because prob-
lems caught during software development cannot
be fixed in the platform. It also means that the
design process takes far too long.5

A new approach
Concurrent HW/SW design requires abstract

models of both types of components, as Figure 1b
shows. Ideally, the design process would start with
a set of software tasks communicating with a set
of hardware subsystems. Because software com-
ponents run on processors, the abstraction needed
to describe the interconnection between the soft-
ware and hardware components is totally different
from the existing abstraction of wires between
hardware components as well as the function call
abstraction that describes the software. 

The HW/SW interface abstraction must hide the
CPU, a hardware module that executes a software
program. On the software side, the abstraction
hides the CPU under a low-level software layer
ranging from basic drivers and I/O functionality to
sophisticated operating systems and middleware.
On the hardware side, the interface abstraction
hides CPU bus details through a hardware adapta-
tion layer generally called the CPU interface. This
can range from simple registers to sophisticated I/O
peripherals including direct memory access queues
and complex data conversion and buffering sys-
tems.

This heterogeneity complicates designing the
interface and makes it time-consuming because it
requires knowledge of both hardware and software
and their interaction. Consequently, HW/SW inter-
face codesign remains a largely unexplored no-
man’s-land. 

General-purpose computer system designers
must also consider both hardware and software,
but the two are more loosely coupled than in SoC

design. Consequently, general-purpose systems typ-
ically model HW/SW interfaces twice: once to test
the hardware design and the second time to vali-
date software functionality. Using two separate
models induces a discontinuity that wastes design
time and results in less efficient, lower-quality hard-
ware and software. 

This overhead in cost and reduced efficiency are
unacceptable for SoC design. Efficiently combin-
ing hardware and software to share a single inter-
face requires a new type of HW/SW designer.5

LINKING INTERFACES TO EMBEDDED
SOFTWARE

Some designers use the term “embedded soft-
ware” to designate any software in an embedded
system, while others use it to mean only that part
of the software that is intimately related to hard-
ware—for example, the hardware team generally
designs low-level software functions such as dri-
vers and interrupt management. 

The generic architecture shown in Figure 2 helps
to clarify the relationship between hardware and
software. An embedded system is an application-
specific HW/SW architecture. Ideally, the applica-
tion is a body of software to be executed on a
hardware platform. The SoC platform itself also
includes, in addition to hardware, a software layer
called hardware-dependent software that must be
codesigned with hardware interfaces. 

From the software application point of view, the
reaction time is measured in milliseconds; at that
execution rate, the platform can be abstracted as
an application programming interface or pro-
gramming model. The API hides hardware details
such as interrupt controllers or memory and I/O
systems. Software designers develop the applica-
tion software and use real-time techniques to vali-
date the software application properties.6
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system architecture.
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classic application
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The hardware-dependent software sup-
ports the API, adapting it to the CPU subsys-
tem. The CPU subsystem can hide the
complex architecture it generally requires to
meet performance demands. In addition to
the classical CPU, the subsystem can include
sophisticated I/O and memory subsystems. 

The SoC can include several heterogeneous
subsystems, including specific hardware com-
ponents and sophisticated interconnects.
When the subsystems and interconnect
designs are decoupled, hardware interfaces
are required to adapt them in the final SoC.
Both application software and hardware-
dependent software may be distributed over
different subsystems. 

To design the application software, classical real-
time software designers can use specific analysis
tools that support complexity. The hardware-depen-
dent software adapts the application software to a
CPU subsystem. In general-purpose computer sys-
tems, this layer can use standard components, such
as an operating system or middleware, that can be
ported to different hardware platforms. When
applied to a SoC, however, this solution induces sig-
nificant overhead in code size, runtime, energy con-
sumption, and other system costs. 

Two factors cause this overhead. The operating
system and middleware must be ported from a
uniprocessor platform to heterogeneous multi-
processor platforms. The systems also must imple-
ment full-featured functionality to support various
types of embedded software. 

A similar distinction exists on the hardware side,
where part of the design depends on software and
must be isolated.

HARDWARE/SOFTWARE INTERFACE CODESIGN
High-performance embedded systems consist of

multiple HW/SW subsystems, with application
software tasks distributed over heterogeneous
processor subsystems using sophisticated inter-
connects. The HW/SW interface and the CPU sub-
systems must handle the interaction between
software tasks and the interconnect structure. The
interface provides the application software layer
with an abstraction of the SoC architecture, called
a parallel programming model. It also includes a
network interface for both multiprocessor booting
and interprocessor communication that connects
the subsystem to the network. 

When the SoC includes more than one CPU,
HW/SW interface design becomes more complicated.
Parallel programming models are more complex than

uniprocessor programming models; similarly, net-
work interfaces are more complex than a unified
memory. Thus, as a recent multiprocessor SoC case
study confirms,3 the HW/SW interface  could become
a key challenge in heterogeneous SoC design.

Bridging the gap
Because design teams traditionally have applied a

software- or hardware-only strategy, there is a temp-
tation to continue using this approach to implement
large applications. Software teams claim that their
approach results in a shorter design cycle. For exam-
ple, a pure software approach may reduce the design
cycle for derivative design because software is flex-
ible enough to add new functionality. On the other
hand, hardware teams argue that their approach is
more efficient. While an embedded software
approach could result in a larger chip or even a
chipset, the ASIC approach will yield a smaller chip. 

Even for a single product, achieving the best vol-
ume in a given market window considering chip-
size and yield in chip production may require
combining hardware and software solutions. In
terms of yield in chip production, both ASIC and
embedded software approaches have pros and
cons. The ASIC approach can suffer from low yield
in the first few months of chip production until the
learning curve improves. However, the reduced
chip size may improve total chip production. An
embedded software approach can give a good ini-
tial yield since it reuses an already proven SoC plat-
form. However, a larger chip size may reduce the
effects of yield improvement.

Ultimately, achieving optimal SoC production
will require some combination of hardware and
software solutions.

Figure 3 shows a simplified flow of concurrent
HW/SW design. This codesign scheme opens the
design process to several optimizations that are not
possible using the classic approach in which hard-
ware and software are designed separately. 

The most obvious improvement is better adap-
tation of the CPU to both hardware and software
interfaces. For example, designers can use new flex-
ible processor technologies such as Tensilica7 to
optimize performance at the HW/SW interface by
introducing application-specific I/O operation. In
addition, using reconfigurable hardware, such as
the Xilinx Virtex II Pro, can optimize hardware
interfaces to an embedded CPU. 

Interface codesign roadmap
The complexity of the HW/SW codesign process

will depend on the abstraction level at which the

There is a
temptation to 
continue using 
the traditional 
software- or

hardware-only
approach to

implement large
applications.



process starts. Researchers2,8,9 have clearly identified
five abstraction levels that will constitute key mile-
stones for future HW/SW codesign automation.

Explicit interfaces. The currently used model for
SoC design describes hardware as RTL modules.
The CPU acts as the HW/SW interface, and design-
ers use explicit memory and I/O architectures to
detail the software down to assembly code or low-
level C programs.

Data transfer. At this level, the CPU is abstract.
Hardware and software modules interact by
exchanging transactions through an explicit inter-
connect structure, a model generally referred to as
transaction-level modeling. Among the various
TLM languages, most were developed using
SystemC.4 In addition to designing interfaces for
different hardware modules, refining a TLM model
requires designing a CPU subsystem for each soft-
ware subsystem.

Synchronization. At this level, the interconnect and
synchronization are abstractions. The hardware
and software modules interact by exchanging data
following well-defined communication protocols.
The Message Passing Interface (MPI)8 is an exam-
ple of this approach. Refining an abstract HW/SW
interface model requires first designing the inter-
connect—a system bus or NoC—and then cor-
recting the synchronization schemes. Data transfer
must also be refined down to the RTL.

Communication. At this level, the communication
protocol is abstract. The hardware and software
modules interact by exchanging abstract data with-

out regard to the protocol used or the synchroniza-
tion and interconnect the design will implement.
The design typically uses the Specification and
Description Language8 to abstract communication.
Refining an SDL model requires first selecting a
communication protocol—for example, message
passing or shared memory—and then following the
refinement steps used in lower  abstraction levels.

Partitioning. The ultimate abstraction level is the
functional model in which hardware and software
are not partitioned. Designers can use a variety of
models to abstract HW/SW partitioning, includ-
ing sequential programming languages such as
C/C++, concurrent languages, and higher-level
models such as algebraic notation—for example,
the B language. Refining such a model requires first
separating the software and hardware functions
and then performing the refinements used in higher
abstraction levels. 

Toward full codesign
The ultimate goal is to design both hardware and

software at all abstraction levels. Figure 4 details
one such full codesign scheme. Traditional codesign
research has concentrated on HW/SW partitioning,
but without solving the problem of abstracting the
hardware platform. Rather than using ad hoc hard-
ware models, SoC designs demand a well-thought-
out approach to the HW/SW interface. The next
steps in automation would be data transfer synthe-
sis, synchronization and interconnect, communica-
tion, and HW/SW partitioning.
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OPPORTUNITIES AND CHALLENGES
Successful HW/SW interface codesign will fun-

damentally improve the SoC design process by
increasing both hardware and software quality and
reliability and by enabling early verification,
reusability, and interoperability. It will also provide
opportunities for tackling a number of technical
challenges confronting embedded-system designers. 

Improved software quality 
Embedded software relies on the hardware plat-

form to support complex quality-of-service (QoS)
requirements and ensure reliability. Current prac-
tice is to use an existing OS or middleware to vali-
date the nonfunctional properties of application
software. Because these generally support real-time
and delay requirements but not nonfunctional
properties such as intersubsystem communication,
bandwidth, jitter, and reliable communication, they
cannot systematically monitor and guarantee QoS.
In this scenario, it is even difficult to guarantee the
reliability of the HW/SW interface design itself.
Overcoming this challenge requires a QoS-aware
HW/SW interface abstraction. 

Early verification
Verifying the interface independent of its context

is not sufficient—the interface must be verified rel-
ative to a given hardware platform. It is not possi-
ble to delay performing this verification until the
hardware prototype is available. Abstracting the
HW/SW interface model will make it possible to
verify the interface abstract design itself without
using the physical prototype.

Reusability
Mastering embedded system design requires

using an efficient method to configure and optimize
the HW/SW interface. Using a general HW/SW
interface model makes it possible to reuse applica-
tion software, hardware components, and platform
and middleware modules across different products,
product families, and even application domains.
However, a drawback of generality is inefficiency.
For applications that require only a small subset of
the complete HW/SW interface functionality, a
generic model imposes tremendous overhead that
cost-sensitive applications cannot tolerate. A highly
configurable and parameterized abstract interface
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architecture enables designers to optimize and
streamline an instance of the interface to a given
application’s particular needs. 

Interoperability
Creating abstract HW/SW interfaces facilitates

dialogue between design teams that can belong to
different companies or even market sectors.10 For
example, an automaker could use a standard inter-
face HW/SW API to develop the car’s software
while reserving the right to select the hardware plat-
form as late as possible. 

T he key issue when integrating the parts of an
embedded system is the creation of a contin-
uum between the hardware and software,

which requires new technologies to effectively inte-
grate components. For example, most conventional
parallel programming models—including MPI, the
open specifications for multiprocessing (OpenMP),
the bulk synchronous parallel (BSP) model, and
LogP—are designed for general-purpose comput-
ing. SoC APIs must specify application-specific
design constraints—for example, in terms of energy
consumption, runtime, cost, and reliability. 

In addition, abstract HW/SW interface models are
widely available for single-processor subsystems and
homogeneous multiprocessors, but SoCs involve
complex interactions between heterogeneous sub-
systems. Abstracting multiprocessor platforms
require a scalable, configurable interface architecture. 

Embedded computing applications often com-
bine several different kinds of algorithms.
Specializing cores by operation type would provide
substantial savings in cost and power consumption.
Embedded applications also show wide variations
in data loads during execution. Flexible networks
would allow using interconnect resources more effi-
ciently. Finally, using reconfigurable fabrics as
embedded system components would make it pos-
sible to target a platform to far more products. �
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