
PSL AND SVA:
TWO STANDARD ASSERTION LANGUAGES ADDRESSING

COMPLEMENTARY ENGINEERING NEEDS

John Havlicek, Freescale Semiconductor, Inc., Austin, TX
Yaron Wolfsthal, IBM Haifa Research Lab, Haifa, Israel

1 Introduction

On May 29, 2003, the Accellera EDA
standards organization announced the official
approval of Accellera PSL (Property
Specification Language), based on the Sugar
language from IBM, and of SystemVerilog,
which contains an assertion capability known as
SVA (SystemVerilog Assertions). SVA
combines features from Synopsys OVA,
Motorola CBV, and Accellera PSL. Since then,
these assertion languages have been developed
further within Accellera. Throughout this paper,
“PSL” and “SVA” refer to the PSL 1.1 and SVA
3.1a versions of the languages, respectively.
 A natural question that arises in this context
is whether the semiconductor industry can
benefit from two standards for assertion
languages. More practically, for engineers who
are about to embark on a new project, a pressing
issue is that of whether to use one assertion
language or the other.

In this paper, we aim to provide background
data for engineers, engineering managers and
EDA methodologists about the basic differences
between PSL and SVA. The actual decision of
which language to use in a specific system,
microprocessor or ASIC projects depends on
numerous factors, and describing that decision
process is beyond the scope of this article.
However, we believe that the key principles
described herein will aid in the selection of the
appropriate assertion language to use for the task
at hand. Practically, we feel that in many cases
engineers will want to have working knowledge
of both languages. In fact, with the recent
conclusion of the work done by a special
committee chartered by Accellera to make sure
the languages are made as close as possible,
developing a working knowledge of the two
languages is a straightforward task [1]. This
alignment work was accomplished primarily in
semantics, allowing tool builders to bridge

between the languages. Engineers need only to
recognize the syntax and precedence differences.

Before we move on, for completeness of
exposition, a short overview of assertions and
assertion-based verification (ABV) is in order.
The interested reader is referred to the literature
for additional breadth on the topic (cf., e.g. [2]).
Generally speaking, ABV is a powerful
paradigm for functional verification that
augments and improves earlier approaches. As
the complexity of hardware designs has grown to
a degree that exposes limitations in the
traditional approaches, the need for a better
design methodology, one with improved levels
of observability of the design behavior and
controllability of the verification process, has
become clear. ABV has been identified as a
modern, powerful verification paradigm that can,
if done right, assure enhanced productivity,
higher design quality, and, ultimately, faster time
to market and higher value to customers. With
ABV, assertions are used to capture the required
temporal behavior of the design in a formal and
unambiguous way. The design can then be
verified using dynamic and static verification
technologies to assure that it indeed conforms to
the design intent as captured by the assertions.
One key characteristic of ABV is that the
assertions capture the correct design behavior on
a cycle-by-cycle basis and can accordingly be
used to verify intermediate behaviors. As a
result, assertions can detect an incorrect design
behavior at the time and place it happens. This
significantly improves the ability to find and fix
bugs without relying on final simulation results
and therefore serves to shorten turnaround time
for the design process.

It should be clear from the above discussion
that a suitable language should be available to
capture the functional specification of the design,
including assumptions, obligations, and
invariants. PSL and SVA are two such languages.

A sample assertion is shown below in both
PSL and SVA .

PSL:

 assert always (
 {req && ack} |=>
 {!req within gnt[->1]}
)@(posedge clk);

SVA:

 always @(posedge clk)
 assert property (
 req && ack |=>
 (!req within gnt[->1])
);

This property reckons time according to the
posedge of clk. When checked in simulation,
the property says that if req and ack are both
true at a time point, then, beginning at the next
time point, req must be false up to and
including the first time point at which gnt is
true.

2 Why Two Languages?

 As can be seen from the above examples,
there is a high degree of similarity between PSL
and SVA. This is, effectively, the result of the
alignment work done by Accellera. Still, what
are the differences between the languages, and
why and where should each be used? The answer
to this question requires an understanding of the
different design decisions and objectives of the
two languages, as well as their different
language-theoretic foundations and purposes. To
this end, the following section provides a user
perspective of the differences, and the
subsequent section clarifies the separate
infrastructures of the languages.

3 User Perspective

SVA is part of and tightly tied into
SystemVerilog. As a result, SVA can be written
directly as a part of SystemVerilog designs and
testbenches. SVA also inherits the expression
language of SystemVerilog, including its data
types, expression syntax, and semantics. PSL is
a separate language specifically designed to
work with many HDLs and their expression
layers. As a result, PSL cannot be written
directly as a part of any HDL. However, PSL

properties can be attached to HDL models using
binding directives, and tools can support PSL
inclusion in HDLs via comment pragmas.
Similarly, SVA cannot be written directly into
HDLs other than SystemVerilog, but tool
support for the use of SVA with other HDLs is
possible through binding directives and comment
pragmas.

3.1 User View of SVA
 The full SystemVerilog language addresses
needs of both hardware designers and
verification engineers. Its features support the
design and verification of hardware from the
block level up to the system and full-chip levels.
In addition to the assertion sub-language, SVA,
these features include sophisticated software
constructs for the design of complex SoCs and
for the development of the verification
testbenches to validate them.

There are several advantages to having SVA
integrated with the full SystemVerilog language.
 A designer can use SVA to embed assertions
directly into the hardware design definition
and/or into the testbench definition. These
“white box” assertions record assumptions,
expectations, and intentions of the designer that
can quickly pinpoint design or integration
mistakes and that are difficult to recapture after
the design phase. The assertion representation is
at a level of precision that is not easily rendered
in natural language and that enhances the
documentation of the design. Designers and
verification engineers can also use SVA to
define temporal correctness properties and
coverage events external to the design code. A
binding construct allows externally defined
assertions to be attached to the appropriate
signals in the design model or in a
SystemVerilog testbench.

The tight coupling of SVA with the full
SystemVerilog language means that assertions
can be written to interact with other testbench
components in powerful ways and without
crossing the boundary of a programming
language interface. For example, through the
use of action blocks, the passing or failure of an
assertion can be defined to trigger execution of a
specific block of SystemVerilog code. The code
in the action block might call a failure handling
task, update a testbench coverage database, or
influence the heuristic parameters of a reactive or
self-adaptive testbench. As another example, an
assertion can receive information by referring to

an auxiliary HDL model constructed as part of
the SystemVerilog testbench.

SystemVerilog also provides a feature for
attaching method calls to the detection of a
temporal event within an assertion. The method
calls can be passed any data in the local state of
the assertion at the time the event is detected,
thereby enabling the communication of fine-
grained information about the event to other
components of the SystemVerilog testbench. As
a result, assertions can be a convenient and
effective construct for the development of
SystemVerilog testbench monitors.

In the future, SVA work will include
investigations to provide adapters to other
languages. Some people are already working on
extending the binding construct of
SystemVerilog to be able to access a VHDL
instance.

3.2 User View of PSL

Practically, only some companies can adopt
a single language approach. Most have to deal
with both VHDL and Verilog For example, they
may import IP from third parties who use the
'other' language, or as a result of acquisition
there may be different divisions using different
languages.

Furthermore, larger companies doing
system-level design are often using, or planning
to use, SystemC. These companies are looking
for a way of writing assertions starting at the
system level, with the expectations that such
assertions can flow down to the RTL domain
with little or no modification and that those
assertions, together with more developed at the
RT level, will work transparently in both VHDL
and Verilog contexts. In support of this initiative,
an implementation of PSL for use with SystemC
has been demonstrated at DAC’04 [3].

Another domain addressed by PSL is that of
system verification. A good number of system
design houses (e.g. IBM, Intel, more) employ
this pre-RTL methodology, where a high-level
description of the system is modeled in an FSM
form and verified against the architectural
requirements [4]. PSL provides special support
for this powerful verification methodology using
the GDL (Generic Definition Language) flavor.
A different application of PSL will be its
extension to analog and mixed signal domains.
A working group sponsored by the EU is
presently pursuing the definition of such
extensions to PSL [5]. Yet another pressing

application is the verification of asynchronous
designs, and work on extending PSL to support
such design style is underway [6]. It is
conceivable that more domains, applications and
language flavors for PSL - which by design is
flavor-extendible - will come up in the near
future. One such creative application of PSL is
its use for aerospace control applications [7]; an
earlier one (where the base Sugar language was
actually used) is for validation of railway
interlock protocols [8].

PSL provides the capability to write
assertions that range from system-level - in
various kinds of systems - down to RT level.
PSL has a structure of multiple abstraction layers
and a rich set of operators that can be used at
different levels of abstraction. The low-level
layer of PSL, which governs the application
domain, can be easily adjusted to many
applications and design languages (e.g., the PSL
Boolean layer - is suitable for reasoning about
RTL designs - and has Verilog, VHDL, and
GDL flavors). Moreover, the application layer
can be even extended or replaced by a different
layer to support new applications. In summary,
PSL is a multi-purpose, multi-level, multi-flavor
assertion language. In contrast, SVA is tightly
connected to the SystemVerilog language.

4 Language-Theoretic Perspective

In this section, we compare and contrast
PSL and SVA from a language-theoretic point of
view. At a high level PSL is divided into the
Foundation Language (FL) and the Optional
Branching Extension (OBE). These are really
separate sub-languages of PSL. A FL formula
and an OBE formula cannot generally be
combined into a single PSL formula. There is no
analogous division in SVA, which is comparable
as a whole to the FL sub-language of PSL.

4.1 Linear and Branching Semantics

PSL FL and SVA are linear temporal logics.
This means that their formulas are interpreted
over linear “traces” (i.e., “computation paths”) in
which each state has at most a single successor.
Both languages are well suited to the dynamic or
simulation-based ABV paradigm, in which
assertions are checked over particular simulation
traces of a design interacting with a testbench.
Both languages can also be used for static
verification, in which a single verification

computation can achieve the effect of checking
an assertion over all possible linear traces. Most
engineers in most applications will find the
linear logics PSL FL and SVA sufficient for their
purposes.

PSL provides additional support for
advanced formal verification via the OBE. The
OBE is a branching temporal logic very similar
to CTL [9]. This means that an OBE formula is
interpreted over “computation trees” in which a
state can have multiple successors, as, e.g., in the
case of a design interacting with a non-
deterministic environment. Multiple successors
can be treated either conjunctively or
disjunctively, and the treatment can vary from
one point in the formula to another. Thus, the
OBE is well suited for expressing properties,
such as freedom from deadlock, in which
multiple successors need to be treated differently
in different parts of the formula. OBE formulas
generally cannot be meaningfully interpreted
over simulation traces. Therefore, the checking
of OBE formulas is typically limited to static
techniques. A discussion of the applicability of
branching semantics in formal verification can
be found in [10].

SVA has no branching semantics features.

4.2 The Linear Logics of PSL and SVA
 Here we compare PSL FL and SVA,
ignoring "forall" quantification in the former and
local variables in the latter.
 Both PSL FL and SVA are built over
sublanguages of regular expressions. The
regular expressions are used to define finite
linear temporal patterns. In PSL FL, the regular
expressions are called SEREs (“Sequential
Extended Regular Expressions”), while in SVA
the regular expressions are called sequences.
 PSL and SVA are highly similar at the level
of regular expressions. PSL offers more derived
operators ("syntactic sugar") than SVA and
fewer restrictions on multiply-clocked regular
expressions. For the typical user, though, either
regular expression sublanguage will be entirely
adequate.
 Both languages provide for promotion of a
regular expression to a strong formula, meaning
that the temporal pattern described by the regular
expression must be evidenced in the linear trace.
PSL also offers promotion of a regular
expression to a weak formula, which is not a
feature of SVA (except as captured by weak
finite-trace semantics). Both languages provide

implication operators for predicating the
checking of a formula on match of the pattern
specified by a regular expression.
 Above the level of regular expressions, the two
languages differ more substantially. Both
languages offer the Boolean operators for
combining formulas. PSL offers the full range
of temporal operators from LTL [11] as language
constructs: weak and strong “until”, “globally”,
“eventually”, weak and strong “next -time”.
From this list of operators, SVA offers only
“globally” in the form of the SystemVerilog
“always” or the implicit “globally” of a
concurrent assertion. However, SVA gives
access to the weak LTL operators through user-
defined recursive properties, as discussed in the
next sub-section.
 Broadly speaking, above the level of regular
expressions PSL provides uniform access to both
safety and liveness operators, while SVA is more
oriented towards safety. In practice, safety
properties tend to be much more common than
liveness properties, and liveness checking is
typically meaningful only with static verification
techniques.

4.3 Weak Linear Temporal Operators and
Recursive Properties

As indicated above, PSL FL includes all of
the LTL operators as formula operators. SVA
has none of these operators at the formula level,
although it does have “globally” at the assertion
level. However, SVA has a feature that allows
the user to define parameterized properties that
are equivalent to the LTL “globally” and weak
“until” operators. This feature is the recursive
property.

For example, to get the effect of the PSL FL
formula

 always p

a user of SVA can define the parameterized
recursive property

 property my_always(p1);
 p1 and
 (1’b1 |=> my_always(p1));
 endproperty

and instantiate

 my_always(p)

Similarly, to get the effect of the PSL FL
formula

 p until q

a user of SVA can define the parameterized
recursive property

 property my_until(p1, p2);
 p2 or
 (p1 and
 (1’b1 |=> my_until(p1,p2)));
 endproperty

and instantiate

 my_until(p,q)

It follows that all of the weak formulas of PSL
FL can be rendered in a straightforward way in
SVA using recursive properties. The rendering
in SVA is somewhat less convenient than in FL
because the recursive property definitions have
to be written or imported from a library.

4.4 Manipulating Data in Assertions

It is a common problem when writing
temporal assertions that data values that are
observable at one time must be referenced at a
later time when they are no longer directly
observable. For example, the value of a signal
that is valid in one stage of a protocol may be
needed to define correctness of a later stage
when the signal is no longer valid. The assertion
may also need to compute some arithmetic
combination of data that are valid at various
times in order to define correctness.

One general solution to this problem is to
create an auxiliary state machine to capture and
manipulate the data as required. The assertion
can then be written to reference the state
machine at the appropriate times. Both PSL and
SVA support this approach. In PSL, one can use
the relevant modeling layer to define the
auxiliary state machine, while in SVA the
SystemVerilog HDL itself can be used. A
disadvantage to this approach is that the state
machine can be quite complicated and error
prone. The closer the auxiliary state machine is
to being a reference model for the design, the
closer its complexity tends to approach that of
the design itself.

Both PSL and SVA provide alternatives to
the auxiliary state machine approach to capturing

and manipulating data for use in assertions. In
PSL, universal quantification (forall) can be
applied at the top level of a formula. This allows
the assertion writer to introduce "dummy"
variables that can be used to capture data at one
point and reference it later. For example, the
PSL FL formula

 forall v in boolean :
 always (
 {a && (v == e1)} |=> (1)
 {b[->1]} |-> (e2 == v)
)@(posedge clk)

reckons time according to the posedge of clk
and says the following:

Whenever a is true, the boolean value of e1
at that time must equal the boolean value of
e2 at the next strictly subsequent time such
that b is true.

The dummy variable v effectively samples the
value of expression e1 when a is true and holds
this value until it is needed for the later
comparison with e2 when b is true.

The use of forall for manipulating data
has limitations. The semantics is not very useful
when the dummy variable appears only in the
consequent of an implication. For example, the
PSL FL formula

 forall v in boolean :
 always (
 {a} |=>
 {b[->1] : v == e1 ; (2)
 b[->1] : e2 == v}!
)@(posedge clk)

reckons time according to the posedge of clk
and says the following:

If a is true, then 1) there are at least two
future times at which b is true, 2) e1 must
be equal both to 0 and to 1 at the first of
these times, and 3) e2 must be equal both to
0 and to 1 at the second of these times.

The contradictory requirements on e1 and e2
are unlikely to be the intent of the assertion
writer. A more useful intended meaning is the
following:

If a is true, then there are at least two future
times at which b is true, and the value of e1
at the first of these times must equal the
value of e2 at the second of these times.

This meaning is represented by the PSL FL
formula

 forall v in boolean :
 always (
 {a} |=>
 (

{b[->2]}! (3)
&&
({b[->1] : v == e1}
|=> {b[->1] : e2 == v})

)
)@(posedge clk)

SVA supports the manipulation of data in
assertions with special assertion variables, called
local variables. The local variables are declared
as part of a regular expression or a formula. A
local variable can be assigned a value at the end
of a match of any regular sub-expression. The
value stored in the local variable can then be
referenced later in the assertion. For example,
the FL formula (1) above can be rendered in
SVA as

 property p1;
 bit v ;
 (a, v = e1) |=>
 b[->1] |-> (e2 == v);
 endproperty
 always @(posedge clk)
 assert property (p1);

Assignment to and reference of a local variable
in the consequent of an implication does not
result in contradictory requirements as in FL
formula (2) above. FL formula (3) above can be
rendered in SVAas

 property p3;
 bit v ;
 a |=>
 (b[->1], v = e1) ##1
 b[->1] ##0 (e2 == v);
 endproperty
 always @(posedge clk)
 assert property (p3);

5 Summary

Clearly, SVA and PSL are different
languages, each with certain unique advantages
and disadvantages. In view of the discussion
above, engineers will likely want to have a
working knowledge and to use both languages,
sometimes within the same project. At a high
level, the choice between the two may depend on
interoperability and marketing decisions. On a
deeper technical level, there are fundamental
language-theoretic differences between the two
that may influence the choice, depending on the
verification requirements and methodology.
Lastly, we note that observations similar to ours
about the applicability of different languages in
different contexts have been made by other
authors (cf. [12]), and a multiple-language
approach has been argued to be a practical
engineering methodology.

6 Acknowledgements

The authors gratefully acknowledge the
comments of Cindy Eisner, Erich Marschner,
and several anonymous referees from Synopsys.

References

[1] Accellera FVTC Alignment Subcommittee
Final Report,
http://www.eda.org/vfv/docs/alignment_final_re
port.pdf, February 11, 2004

[2] H. Foster, A. Krolnik, D. Lacey, Assertion-
Based Design, Kluwer Academic Publishers, 2nd
edition, 2003.

[3] S. Swan, “Enabling PSL Assertions in
SystemC”, PSL/Sugar Meeting, DAC 2004,
http://www.pslsugar.org/papers/pm2_stuart_psl_
sysc.pdf

[4] C. Eisner et al., “A Methodology for Formal
Design of Hardware Control with Application to
Cache Coherence Protocols”,
http://www.haifa.il.ibm.com/projects/verification
/RB_Homepage/ps/methodology.ps

[5] Y. Wolfsthal, “EU-Sponsored Deployment of
PSL”, PSL/Sugar Consortium Meeting,
DATE’04, Februar 2004,
http://www.pslsugar.org/psl_meeting.html

[6] J. Willis, “Breaking the EDA barrier in
Async Design”, EE Times,
http://www.eetimes.com/in_focus/embedded_sys
tems/OEG20030606S0035

[7] M. Moulin, L. Gluhovsky, E. Bendersky,
"Formal Verification of Maneuvering Target
Tracking", Proceedings of the AIAA Guidance,
Navigation and Control Conference, Austin,
Texas, 2003.

[8] Using Symbolic Model Checking to Verify
the Railway Stations of Hoorn-Kersenboogerd
and Heerhugowaard,
http://www.haifa.il.ibm.com/projects/verification
/RB_Homepage/ps/trains.ps

[9] E. Allen Emerson, E.M. Clarke, “Using
Branching Time Temporal Logic to Synthesize
Synchronization Skeletons”, Science of
Computer Programming, Vol. 3, pp. 241--266,
1982.

[10] Existential Properties: Sample Applications,
Education Material, IBM Haifa Formal Methods
Group, August 2001,
http://www.haifa.il.ibm.com/projects/verification
/sugar/examples.html

[11] A. Pnueli, “The Temporal Logic of
Programs”, Technical Report CS97-14,
Mathematics & Computer Science, Weizmann
Institute of Science, 1997,
http://wisdomarchive.wisdom.weizmann.ac.il:81/
archive/00000150/

[12] B. Bailey, “Verification Languages and
Where They Fit”, EDA Forum 2003,
http://edacentrum.ims.uni-
hannover.de/dateien/downloadables/dateien/men
tor-seminar.pdf

