

SystemC Verification Standard
Specification

Version 1.0e

Submission to SystemC Steering Group

May 16, 2003

Written by the Members
of the SystemC Verification Working Group

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 1

SystemC Verification Working Group’s Active Participants:

Adam Rose, Motorola (Chairman)
Axel Braun, University of Tuebingen
Mark Glasser, Cadence
Thorsten Groetker, Synopsys
C. Norris Ip, Cadence
Mike Meredith, Forte
Hillel Miller, Motorola
Bill Paulsen, Cadence
Logie Ramachandran, Synopsys
Robert Siegmund, University of Chemnitz
Rob Slater, Motorola
Stuart Swan, Cadence

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 2

Contents

1 Introduction... 3
2 Glossary .. 4
3 Overview... 5

3.1 Transactor Modeling Style ... 5
3.2 Modeling Dynamic Concurrency ... 9
3.3 Transaction Manipulation and Recording .. 10
3.4 Constrained Randomization.. 12
3.5 Miscellaneous ... 13

4 Manipulation of Arbitrary Data Types ... 15
4.1 Manipulating Data Objects Without Compile-Time Information .. 16
4.2 Defining the Extensions for Data Types... 21
4.3 Accessing the Static Extensions of Data Objects ... 24
4.4 Accessing the Dynamic Extensions of Data Objects.. 26

5 Randomization, Constraints, and Weight Specifications ... 30
5.1 Seed and Random Stream Management ... 30
5.2 Basic Randomization .. 33
5.3 Constraint Specification and Constrained Randomization ... 34
5.4 Weight Specification and Biased Randomization .. 40

6 Variable and Transaction Recording .. 46
6.1 Variable Recording... 46
6.2 Transaction Recording.. 47

6.2.1 The Architecture ... 47
6.2.2 Generating Transactions ... 51

7 Miscellaneous Supporting Facilities... 60
7.1 HDL Connection... 60
7.2 Sparse Array ... 62
7.3 Exception Handling .. 63

8 Verification Features Not Addressed by This Specification .. 71
9 References... 73
Appendix A: Requirements Summary.. 74
Appendix B: API convention.. 80
Appendix C: The Complete Code for the Overview Example ... 81
Appendix D: Dynamic Concurrency .. 86
Appendix E: Debugging ... 89
Appendix F: Interface Introspection... 92
Appendix G: Assisted Transaction Recording ... 94

G.1 Providing Observability and Controllability of Communication Through Watchable Channels 94
G.2 Examples of Different Styles of Assisted Transaction Recording .. 97

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 3

1 Introduction
This document describes the specification of the SystemC Verification Standard. The SystemC Verification

Working Group has identified the applicable verification requirements, discussed proposals from various
members, and settled on the current specification as the set of features to be incorporated into the SystemC
Standard.

This document is not written exclusively from the user's point of view, but also includes explanation from a
more complex developer's point of view. The number of classes & complexity that need to be exposed to the
user is much simpler, and they are captured in table form within this document. This document mixes the
specification of the API with examples & explanation of how to use it. This is necessary to get everyone to a
common level of understanding, but perhaps adds to the perception of overall complexity, when in fact the
proposed APIs to be standardized are relatively small. Separate LRM, User Guide, and Implementation
Specification etc. will be created in the future.

The main items within the SystemC Verification Standard are:

• data introspection (manipulation of arbitrary data types)
• transaction-based verification (test bench modeling style and transaction recording)
• randomization
• constraints for randomization
• weights for randomization

A short description of many of the above concepts can be found in [1]. This specification assumes that the

reader is familiar with SystemC 2.0. A general introduction to SystemC 2.0 can be found in [18].
There are several small items that perhaps should eventually be added to the core SystemC standard. They

are included here in Section 7 because they are either particularly useful in a test bench or a pre-requisite for test
bench modeling.

• basic HDL connection
• a small set of data structures
• exception handling
• debugging

The majority of Verification Working Group members consider these small items, while generic in nature,
to be particularly important to functional verification. Without a standardized API for these facilities, it would
be difficult to create verification IPs that are interoperable among multiple SystemC implementations. As a
result, they are included in this specification, but we will leave it up to the SystemC Steering Committee to
decide whether to allow these items to remain part of the SystemC Verification Standard or to move them to
other SystemC Facilities.

Apart from the current specification, the SystemC Verification Working Group will continue to consider new
features, such as those itemized in section 8. However, we think the current proposal contains sufficient
materials for people to start writing effective test benches in SystemC.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 4

2 Glossary
• transaction: A set of information that represents some bounded activity within the execution of a

design or testbench. A transaction has a begin-time, an end-time, and a set of attributes (name-value
pairs).

• transactor: An adaptor between a transaction-level test and a design typically at a different level. It is
also referred to as a transaction verification model (TVM).

• transaction-level tests: Test case scenarios that are written in terms of transactions, calling transactor
methods in an abstract transactor interface.

• transactor interface: An interface from which a test communicates to a transactor.
• port interface: A list of ports from which a transactor communicates to the design.
• transactor method: A method defined in a transactor interface.
• transaction recording: The process of storing transaction information into a database for post-

simulation analysis.
• automatic transaction recording: A transactor modeling methodology that enables transactions to be

recorded without the transactor writer consciously putting transaction recording code into the transactor.
(The current specification does not specifically address this feature.)

• transaction stream: An object designed for transaction recording that groups related transaction
information in the database. A transaction stream supports overlapping transactions. There is no implicit
synchronization when manipulating a transaction stream. The test bench should exhibit the same run-
time behavior with or without manipulation of transaction streams.

• data introspection: The ability to query a data object through a predefined abstract interface to find out
what it is and how it can be manipulated.

• interface introspection: The ability to query a module or a channel through a predefined abstract
interface to find out what it is and how it can be manipulated. (The current specification does not
specifically address this feature.)

• constraint: Unless otherwise specified, it is a Boolean predicate representing a non-temporal constraint
for the random value generation process. Because constraints and assertions are both Boolean
predicates, sometimes people prefer to use the same Boolean predicate for both purposes.

• assertion: Unless otherwise specified, it is a Boolean predicate representing a non-temporal assertion
for the detection of design errors during simulation. Because constraints and assertions are both Boolean
predicates, sometimes people prefer to use the same Boolean predicate for both purposes.

• temporal constraint and temporal assertion: Temporal assertions are composed of multiple
Boolean predicates and checks for conditions across a finite or infinite interval of time.
Temporal constraints are composed of multiple Boolean predicates and generate multiple
random values across a finite or infinite interval of time. (The current specification does not
specifically address this feature.)

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 5

3 Overview
While the existing SystemC 2.0 standard can be used to perform basic verification of a design, the SystemC

Verification Standard improves the capability by providing APIs for transaction-based verification, constrained
randomization, exception handling, and other verification tasks. Using a generic data introspection capability, it
enables the library to manipulate arbitrary data types in a consistent way, including C/C++ built-in types,
SystemC built-in types, and user-defined composite types and enumerations. As a result, arbitrary data types can
be used in variable recording, transaction recording, constraints, randomization, and other functions.

In this section, we provide an overview of the facility through an example of a transaction-based test bench.
The design uses a pipelined bus, and a transactor is used to act as the adaptor between the transaction-level test
and the signal-level design. The reader should keep in mind that this entire section is only an overview to
capabilities that will be presented more completely later within this document. Because of this, this section is
not a formal part of the specification of the Verification Standard.

Because the SystemC 2.0 standard supports communication refinement, a transactor can be modeled as an
adaptor channel in SystemC 2.0.. Section 3.1 describes the structure of a transaction-based test bench in
SystemC. As shown in following figure, a transaction-based verification methodology partitions the system into
transaction-level tests, transactors, and the design. The tests and the transactors communicate through transactor
method invocation, at a level above the RTL level of abstraction. The transactors and the design communicate
through signal manipulation at the RTL/signal level.

Section 3.2 describes an example of dynamic concurrency in a test bench. While a design typically contains

static concurrency to model hardware concurrency, a test bench does not have such a restriction and typically
employs dynamic concurrency. The pipelined protocol in the example allows a maximum of two overlapping
operations, and the corresponding test can use dynamic threads to generate concurrent activities. While the APIs
for manipulation of dynamic threads are not part of the SystemC Verification Standard, they are an essential pre-
requisite to the modeling of a test bench. We are currently coordinating our activities with the SystemC
Language Working Group to create a standard for dynamic threads.

The remaining subsections describe an overview of various facilities in the SystemC Verification Standard,
which includes transactor modeling and transaction recording, constrained randomization, HDL connection, and
exception handling.

The SystemC Verification Standard is implemented in a name space to avoid name conflict. The tentative
name of the name space is systemc_verification_library. The corresponding header file will contain a “using”
statement, so the use of the name space will be transparent to the user. When there is a name clash, the user can
specify the specific API by appending the name of the name space to the call.

The classes and functions in the SystemC Verification Standard use the prefix scv_.

3.1 Transactor Modeling Style
The VWG considers transaction-based verification to be a main strategy in functional verification using

SystemC. By creating a test bench at the transaction level, the test bench can be used in both system-level
simulation and RTL-level simulation, using a user-defined channel. The code in this section uses the SystemC
2.0 standard only. The complete source code for this example is in appendix C.

In this section, we illustrate this methodology through a transaction-based test bench for a design with a
pipelined bus interface, as shown in Figure 1b.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 6

Using abstract methods in C++, the transactor interface can be declared as follows:

class rw_task_if : virtual public sc_interface {

public:

typedef sc_uint<64> addr_t;

typedef sc_uint<64> data_t;

struct write_t {

addr_t addr;

data_t data;

};

virtual data_t read(const addr_t *) = 0;

virtual void write(const write_t *) = 0;

};

This abstract base class specifies two abstract methods, read and write, and their related data types,
representing the abstract level in which a test is to be written. The class sc_interface is provided by SystemC to
facilitate the creation of such interfaces. The template sc_uint and other similar templates are provided by
SystemC to support data objects with different bit widths and different operator semantics.

The communication between the transactor and the design is captured in another class with signal-level ports:

class pipelined_bus_ports : public sc_module {
public:

sc_in<bool> clk;
sc_inout<bool> rw;
sc_inout<bool> addr_req;
sc_inout<bool> addr_ack;
sc_inout< sc_uint<8> > bus_addr;
sc_inout<bool> data_rdy;
sc_inout< sc_uint<8> > bus_data;

};

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 7

The signals in this class represent the RTL-level interface by which a design under verification
communicates to its environment. The class sc_module is provided by SystemC to specify a module. Signal
ports are created by using the templates sc_in, sc_out, and sc_inout, indicating a read-only port, a write-only
port, and a read-write port respectively.

A transaction-based verification methodology relies on transactors to act as the adaptors between the abstract
tests and the concrete design. By capturing these transactors as reusable IP, new tests with complex concurrent
behavior can be quickly created.

In this example, a transactor is created as a class deriving from both aforementioned interfaces:

class rw_pipelined_transactor
: public rw_task_if,

public pipelined_bus_ports {
 …

public:
SC_CTOR(rw_pipelined_transactor) {}
virtual data_t read(const addr_t *);
virtual void write(const write_t *);

};

The macro SC_CTOR is provided by SystemC to specify the constructor of a module. The implementation of
read() and write() convert the transaction-level operations to lower-level activities in the signal-level ports. With
the detailed protocol abstracted by the transactor, a test can be written in a form independent of the actual signal-
level interface, similar to the following code:

class test : public sc_module {

public:

sc_port< rw_task_if > transactor;

SC_CTOR(test) { SC_THREAD(main); }

void main();

};

void test::main() {

// simple sequential tests

for (int i=0; i<3; i++) {

rw_task_if::addr_t addr = i;

rw_task_if::data_t data = transactor->read(&addr);

cout << "received data : " << data << endl;

}

…

}

The test above generates a series of three read transactions, starting a new one only after the previous one has
completed. The macro SC_THREAD creates a new thread of execution for the method main() during simulation.

It is important to note that the port of this test has the rw_task_if interface as the template argument. Because
of this, the test can be reused with other designs with a different bus interface, by plugging in an appropriate

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 8

transactor for the bus interface. The rw_task_if interface can be made even more general and reusable by using a
template, for example by putting the width of address and data into template parameters instead of having a
fixed value.

The code for the RTL design uses the standard SystemC RTL modeling style.

class design : public pipelined_bus_ports {
 …
public:

SC_CTOR(design) {
...
SC_THREAD(addr_phase);
SC_THREAD(data_phase);

}
void addr_phase() { while (1) ... }
void data_phase() { while (1) ... }

};

The design implementation contains the same set of signals for the pipelined interface, with two C++ threads
to respond to the two phases of the pipeline.

The netlist connection for the transaction-based verification methodology uses the user-defined channel
connection for the transactor:

int sc_main(int argc, char *argv[]) {

...
// The module and channel structures in this simulation
test t ("t"); // the test
rw_pipelined_transactor tr ("tr"); // the transactor
design duv ("duv"); // the design under verification
sc_clock clk ("clk",20,0.5,0,true); // a clock

// The signals to connect the structures
sc_signal < bool > rw;
sc_signal < bool > addr_req;
…

// Connecting the signals and transactors to
// the ports of the modules
t.transactor = tr;
tr (clk.signal(), rw, addr_req, ...);
duv (clk.signal(), rw, addr_req, ...);

// Start the simulation
sc_start(10000);
...

}

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 9

Strictly speaking, this arrangement relies on the ability to drive the same signal (sc_signal) from more than
one thread. When multiple tests or multiple dynamic threads are calling the same transactor methods in a
transactor, the signals will be driven by different threads. However, because there is only one driver (either the
transactor or the design) for each signal, it is not necessary to use resolved signals. Assignments from different
threads are serialized by the synchronization within the transactor. In this use model, we would like the values to
be updated with the last-assignment-wins semantic, which happens to be how sc_signals currently work in
SystemC 2.0. Therefore, we propose extending the SystemC standard to allow sc_signal to be explicitly
configured to support this use model.

On the other hand, using a resolved signal will give you better error-detection, but it would require more
code and leads to slower performance. For example, when a misbehaving design tries to drive a signal while a
transactor is also driving it, collisions can be detected with a resolved signal. However, when a resolved signal is
used, code must be added to set the signal to high-impedance when it is no longer being driven by the current
thread. A resolved signal must be a logic bit or a logic vector, so 2-state data types and arithmetic cannot be
used directly, and explicit conversion must be made to an arithmetic type.

3.2 Modeling Dynamic Concurrency
Pipelined protocols, split protocols and other scenarios can be conveniently modeled using dynamic

concurrency. Therefore, a facility to handle dynamic threads would be a useful extension to SystemC. There is
currently an example in the examples directory SystemC 2.0.1 reference implementation that implements a
prototype of dynamic thread facility (see $SYSTEMC/examples/systemc/forkjoin). The file sc_fork.h in the
example directory defines sc_spawn_method() and sc_spawn_function(), which are dynamic spawning
enhancements that are not part of the SystemC 2.0 standard, but rather implemented on top of it. Both functions
actually use a pool of threads which are statically declared at the beginning of simulation. We have not included
this facility in the Verification standard, but we would like to use it in this example to illustrate how dynamic
concurrency can be used in verification.

Using sc_spawn_method, a test generating concurrent activities can be implemented as shown in the

following code. Three processes are spawned in the example below: Two read tasks that need to be
synchronized (i.e. we need to wait until both tasks complete before moving on) and a write task that can run as
long as it needs to (perhaps indefinitely):

void test::main() {

…

// Simple concurrent tests

rw_task_if::addr_t addr[3]; addr[0] = 0; addr [1] = 1; addr[2] = 2;

rw_task_if::data_t data[3]; data[2] = 4;

sc_join_handle readHandle1 = sc_spawn_method(&data[0], transactor[0], &rw_task_if::read, &addr[0]);

sc_join_handle readHandle2 = sc_spawn_method(&data[1], transactor[0], &rw_task_if::read, &addr[1]);

// The only reason sc_join_handle is needed is if we want to synchronize the task later.

// Since in our example we don’t need to synchronize the write, we can cast the return

// value of the sc_spawn_method() call below to void

sc_spawn_method((void*)0, transactor[0], &rw_task_if::write, &addr[2], &data[2]);

// Synchronize the two read tasks; the write task keeps going

sc_process_join(readHandle1);

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 10

sc_process_join(readHandle2);

cout << "received data : " << data[0] << "," << data[1] << “\n”;

}

This code generates two read transactions in parallel, so that they exercise the pipeline. The
sc_spawn_method function is similar to create() in PThreads, creating a new C++ thread and executing the
method specified in the third argument for the object in the second argument. The first argument is a pointer to
the object in which the return value is stored, and the last argument is the address of argument to the method.
Note that sc_spawn_method can take between zero to four arguments to be passed to the corresponding method
(in the example above, &addr[2] and &data[2] are the arguments to the rw_task_if::write() method).

The SystemC Verification Working Group has discussed a more comprehensive set of APIs to support
dynamic threads, but because of the overlap with the current activities in the Language Working Group we have
not reached a conclusion and therefore are not able to include a specification in this document. Long term, the
Language Working Group needs to provide a truly dynamic thread spawning system. When they do, it is likely
that the API will differ from the one shown here, but it will probably include similar features.

3.3 Transaction Manipulation and Recording
The job of a transactor is to convert a transaction as modeled by a function call into signal-level

communication, and vice versa. For example, the read method is implemented as follows:

data_t rw_pipelined_transactor::read(const addr_t * addr) {
addr_phase.lock();
bus_addr = *addr;
addr_req = 1;
wait (addr_ack->posedge_event());
addr_req = 0;
wait (addr_ack->negedge_event());
addr_phase.unlock();

data_phase.lock();

wait (data_rdy->posedge_event());

data_t data = bus_data.read();

wait (data_rdy->negedge_event());

data_phase.lock();

return data;

}

This method translates a call to the read() method into a series of signal activities according to the specific

protocol at the signal-level interface. Because a pipelined bus is used, two mutexes, addr_phase and
data_phase, are used for the two phases. Both of them grant access in a first-come-first-served manner. At the
beginning of the address phase, the corresponding mutex is locked so that there is at most one address
communication on the bus at any given time. At the end of the address phase, the corresponding mutex is
unlocked so that, although the data phase has not finished yet, another call to this transactor can still start its
address phase. The three methods, posedge_event(), negedge_event(), and read(), are provided by SystemC to

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 11

denote a positive edge transition of a signal, a negative edge transition of a signal, and access to the value in a
port. The procedure wait() in SystemC suspends the thread of execution until the event specified in the argument
occurs.

A read operation with this pipelined protocol generates three conceptual transactions, a read transaction and
two sub-transactions corresponding to the two phases of the pipelined protocol. These transactions are captured
in the following diagram:

Using the SystemC Verification Standard specified later in this document, you can capture this information

by adding the transaction recording code into the transactor:

class rw_pipelined_transactor : public pipelined_bus_ports, public rw_task_if {

public:

scv_tr_stream pipelined_stream;

scv_tr_stream addr_stream;

scv_tr_stream data_stream;

scv_tr_generator< addr_t, data_t > read_gen;

scv_tr_generator< addr_t, data_t > write_gen;

scv_tr_generator< addr_t > addr_gen;

scv_tr_generator< data_t > data_gen;

SC_CTOR(my_transactor) :

pipelined_stream(“pipelined_stream”),

addr_stream(“addr_stream”),

data_stream(“data_stream”),

read_gen(“read”,pipelined_stream, “addr”,”data”),

write_gen(“write”,pipelined_stream,”addr”,”data”),

addr_gen("addr",addr_stream,"addr"),

data_gen("data",data_stream, "data") { ... }

virtual data_t read(const addr_t * addr) {

address_phase.lock();

scv_tr_handle h = read_gen.begin_transaction(*addr);

scv_tr_handle h1 = addr_gen.begin_transaction(*addr, “addr_phase”, h);

...// address phase

addr_gen.end_transaction(h1);

addr_phase.unlock();

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 12

data_phase.lock();

scv_tr_handle h2 = data_gen.begin_transaction(“data_phase”,h);

...// data phase

data_gen.end(h2,data);

read_gen.end_transaction(h, data);

data_phase.unlock();

return data;

 }

};

This code creates three transaction streams in the database and creates four transaction generators, read_gen,
write_gen, addr_gen, and data_gen, corresponding to the four types of transactions in this protocol. During
execution of the read method, the methods begin_transaction() and end_transaction() start and terminate
transactions respectively. The address and the data are recorded as attributes of these transactions.

The SystemC Verification Standard relies on a static extension of the data types addr_t and data_t to access
and record the values of the transaction attributes, as described in Section 4.

3.4 Constrained Randomization
The job of a test is to create interesting stimulus to exercise the design. Apart from directed tests, constrained

random tests are also very important. The SystemC Verification Standard contains a set of APIs to support
constrained randomization.

For example, random addresses for the read operation can be created by using a simple next() call to a smart
pointer object:

scv_smart_ptr< rw_task_if::addr_t > addr;

for (int k = 0; k<100; k++) {

 addr->next();

 cout << “data for address “ << *addr << “ is “ << transactor[0]-> read (addr->get_instance()) << end;

}

Similarly, random write requests for our rw_pipelined_transactor transactor in Section 4 can be generated by
the following code:

scv_smart_ptr < rw_task_if::write_t > write;

for (int i=0; i<3; i++) {

write->next();

transactor->write(write->get_instance());

cout << "send data : " << write->data << endl;

}

The scv_smart_ptr template has a use model that is very similar to a C/C++ pointer. Fields and methods are
accessed by the overloaded operator->. The next() method generates a new random value, and the field access
returns a reference to the extension of the data field.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 13

Expressions and constraints can be created using scv_smart_ptr as well. For example, the following code
specifies an address range and a relationship between the address and the data:

class write_constraint : virtual public scv_constraint_base {

public:

scv_smart_ptr< rw_task_if::write_t > write;

SCV_CONSTRAINT_CTOR(write_constraint) {

SCV_CONSTRAINT(write->addr() < 0x00FF);

SCV_CONSTRAINT(write->addr() != write->data());

}

};

Declaring the constraints as classes allows the constraints to be processed once for high-speed

randomization. It also allows an object-oriented way to manage constraints, using hierarchy and inheritance.
Biased randomization using weights can be performed by using a bag. A bag is similar to the concept of a set

in mathematics, except that it can contain duplicated objects. For example, generating the value “1” 40% of the
time and the value “2” 60% of the time can be achieved using the following code:

scv_smart_ptr<int> data;

scv_bag<int > distribution;

distribution.push(1, 40);

distribution.push(2, 60);

data->set_mode(distribution);

for (int i=0; i<3; i++) {data->next(); process(data); }

3.5 Miscellaneous
The SystemC Verification Standard also includes other features that facilitate functional verification, such as

HDL connection, special data structures, exception handling, and debugging.
The API for HDL connection allows replacing the SystemC design with an HDL design in Verilog or

VHDL. The sc_signal signals at the signal-level port of the transactor can be connected to the HDL signals in
the HDL design through the following connection calls:

scv_connect(rw, “top.rw”, SCV_OUT);

scv_connect(addr_req, “top.addr_req”, SCV_OUT);

The following code illustrates how verification models can use the exception-handling class to report IP-
specific exceptions:

#define BAD_DATA “BAD_DATA”
rw_task_if::data_t rw_pipelined_transactor::read(* rw_task_if::addr_t * addr) {

 if (bad_data)

SCV_REPORT_ERROR(BAD_DATA,

“bad data is detected within read() of rw_pipelined_transactor”);

}

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 14

In this example, a report is generated through the standard API when bad data is detected within the task. As
a result, the library and other associated tools can use these messages to improve debugging and analysis.

The following example illustrates the debugging abstract interface during a C++ debugger session. By
presenting the abstract information in a simple method call, the user does not have to go through the internal
data members of various objects to determine their current state.

gdb> call packet.show()

src : 0x1000

dest : 0x00FE

payload : 0xabcd

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 15

4 Manipulation of Arbitrary Data Types
The SystemC Verification Standard uses a technique called data introspection to enable the manipulation of
arbitrary data types. It allows a library routine to extract information from data objects of arbitrary data types,
regardless of whether it is a C/C++ built-in type, a SystemC built-in type, a user-specified composite type
(struct), or a user-specified enumeration. Similar techniques can be found in several articles on C++ [4,5,6,7,8].
The original suggestion for the data introspection technique used in SCV based on C++ partial template
specialization came from Grzegorz Jakacki [11]. Before we dive into the details in sections 4.1, etc., let’s look at
the motivation and requirements first.

For example, the rw_task_if interface shown in Section 3.1 uses a SystemC data class, sc_uint<64>, and a
composite type, write_t. We would like a C++ library (or a user) to be able to extract information from these
types and manipulate them without having to modify the source code.

The data introspection facility introduced later in this section provides a standard abstract interface,
scv_extensions_if, from which a data object can be analyzed and manipulated. However, while traditional C++
libraries require the user to use a similar interface class as the base class of their composite type, we prefer to
use partial template specialization to attach this interface to the data objects. This style supports a wider range of
data types. It enables import of legacy code without modification, and allows the same pieces of code to work
on built-in types such as int, library types such as sc_uint<>, and composite types such as a user-defined packet
type with multiple fields.

This standard abstract interface provides the following functionality so that a piece of code can manipulate a
data object without explicit type information at compile-time:

o type information extraction
o value access and value assignment
o randomization
o callback registration

This facility can be considered as a C++ version of the Verilog PLI standard. The ability to handle arbitrary
data types enables the import of legacy code and facilitates the reuse of the same code for multiple libraries. It is
a crucial basic building block for constrained randomization, variable recording, and transaction attribute
recording. This section will describe the API and some simple examples; its usage is also shown in the
corresponding sections on the constrained randomization API and recording API.

This facility includes the following classes and templates:

o The scv_extensions_if abstract interface: This abstract interface enables the manipulation of

arbitrary data types without compile-time type information.
o The scv_extensions template: Data objects are extended to support the abstract interface

through partial template specialization of this template
o The scv_shared_ptr template: This template enables sharing of data objects among multiple

threads, with reference counting to perform automatic memory management.
o The scv_smart_ptr template: This template combines scv_extensions and scv_shared_ptr to

implement dynamic extensions that require instance-specific auxiliary data, such as
randomization and callback handling.

This facility utilizes partial template implementation, which is supported by gcc 2.95, aCC 3.31, and Sun

Compiler Version 7. It does not yet work on Visual C++ (we have tried it on version 6 and .net). The SystemC
Verification Working Group’s consensus is that we will continue to rely on this partial template specialization
technique, and trust that Visual C++ will eventually support it. An internet posting from Microsoft Corporation

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 16

[17] has indicated that this issue is one of the first things they will fix in subsequent releases of Visual C++. The
following paragraph is a direct quote from the posting:

Many modern C++ libraries—including the C++ standard library—require template partial specialization.
Because our shipping compiler is lacking here, these libraries either don't work at all with Visual C++, or
work with crippled semantics. You can expect that this is one of the first things we'll fix in subsequent
releases of Visual C++.

We have noticed that while many downloads of SystemC have been installed on Windows for evaluation
purposes, most production work is still performed on Unix. We may support a subset of data types that use full
template specialization on Windows so that our customers can still try out the Verification Standard on
Windows.

4.1 Manipulating Data Objects Without Compile-Time
Information

Manipulation of data objects without compile-time information is supported through the scv_extensions_if
abstract interface. The postfix “_if” indicates that this is an abstract interface class with C++ abstract methods
and without member variables.

The set of abstract methods in scv_extensions_if is partitioned into multiple components. This organization
will make it easy to add more extensions in the future. The current specification contains the following
components:

• component util: Basic utility methods
• component type: Methods to extract type information
• component rw: Methods to read and write to the data object, its fields, and its array elements
• component rand: Methods for randomization-related operations; for details about its usage, please see Section

 5.
• component callbacks: Methods for callback registration (e.g. value change); for details about its usage, please

see Section 6.

While conceptually these methods are part of scv_extensions_if, in the implementation of these components,
each component can be declared as a separate class in a linear inheritance hierarchy, and we use
scv_extension_util_if, scv_extension_type_if, etc. to illustrate the organization of scv_extensions_if. Although
the actual implementation might use a different architecture, the suggested architecture with multiple
components enables the addition of new components without requiring users to modify their test bench code (the
code needs to be recompiled though). Components can be removed and added by using a macro trick: The
interface of each component is declared with a macro representing its base class. After the interface is defined,
the component undefines the macro and puts itself into the macro. The following example illustrates this trick:

template<>

class scv_extension_util_if: public SCV_EXTENSION_BASE {

...

};

#undef SCV_EXTENSION_BASE

#define SCV_EXTENSION_BASE scv_extension_util_if

Using this linear arrangement instead of using multiple inheritances to derive scv_extensions_if from these
components, the overhead of virtual table pointers is kept to a minimum (c.f. [11]). The user of the Verification

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 17

Standard does not need to know this implementation detail; it is provided here to illustrate the benefit of using
data introspection to extend data types.

The scv_extensions_if class also contains the debugging interface, scv_object_if, as discussed in Section 1.
The abstract methods in these components are described in the following tables:

scv_extension_util_if Description
virtual bool has_valid_extensions() {
 return false;
}

This method returns true if the extension object is a valid
extension of the corresponding data object. This information
is useful in the cases when the user forgot to create the
template specialization for a composite type or an
enumeration type.

virtual bool is_dynamic() {
 return false;
}

This method returns true if the extension object supports
dynamic extensions. See Section 4.3 for a discussion on
dynamic extensions.

virtual void set_name(const char *) = 0; This method sets the name for the data object. It is an error
if this method is called more than once for a specific object.

virtual const char * get_name() {
 return NULL;
}

This method returns the name of the data object.

virtual const char * get_short_name() {
 return NULL;
}

This method returns the short name of the data object. If the
data object is a field within a record, the short name is the
field name. If the data object is an element within an array,
the short name is of the form “[n]”, where n is the index
corresponding to this element.

scv_extension_type_if Description
virtual const char * get_type_name() const = 0; This method returns a string corresponding to the type name

in C++.
enum data_type {
 BOOLEAN,
 ENUMERATION,
 INTEGER,
 UNSIGNED,
 FLOATING_POINT_NUMBER,
 BIT_VECTOR,
 LOGIC_VECTOR,
 FIXED_POINT_INTEGER,
 UNSIGNED_FIXED_POINT_INTEGER,
 RECORD,
 POINTER,
 ARRAY,
 STRING
);

This enumeration represents the possible types of the data
object.

virtual data_type get_type() const = 0; This method returns the object type as captured in the
enumeration.

virtual int get_bitwidth() const = 0; This method returns the number of bits for the object type.
bool is_bool() const; This method returns true if type is BOOLEAN.
bool is_enum() const; This method returns true if type is ENUMERATION.
virtual int get_enum_size() const = 0; This method returns the number of elements in the

enumeration. It returns 0 if this extension is not an

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 18

enumeration.

virtual void get_enum_detail(
 list<const char *>&,
 list<int>&
) const = 0;

This method sets the arguments to the string representation
and the integer representation of the enumeration. It clears
the lists if this extension is not an enumeration.

bool is_integer() const; This method returns true if type is INTEGER.
bool is_unsigned() const; This method returns true if type is UNSIGNED.
bool is_bit_vector() const; This method returns true if type is BIT_VECTOR.
bool is_logic_vector() const; This method returns true if type is LOGIC_VECTOR.
bool is_fixed() const; This method returns true if type is

FIXED_POINT_INTEGER.
bool is_unsigned_fixed() const; This method returns true if type is

UNSIGNED_FIXED_POINT_INTEGER.
bool is_floating_point_number() const; This method returns true if type is

FLOATING_POINT_NUMBER.
bool is_record() const; This method returns true if type is RECORD.
virtual int get_num_fields() const = 0; This method returns the number of fields in a record. It

returns 0 if this extension is not a record.
virtual scv_extensions_if * get_field(
 unsigned
) = 0;

This method returns the extension for a specific field in a
record. It returns 0 if the field does not exist or if this
extension is not a record.
This method treats the composite data object as a flat object,
without distinguishing where a field comes from within the
class hierarchy.

virtual const scv_extensions_if *
get_field(unsigned) const = 0;

This method returns the extension for a specific field in a
record. It returns 0 if the field does not exist or if this
extension is not a record.
This method treats the composite data object as a flat object,
without distinguishing where a field comes from within the
class hierarchy.

bool is_pointer() const; This method returns true if type is POINTER.
virtual scv_extensions_if * get_pointer() = 0; This method returns the extension of the object that is

pointed to by this extension. It returns 0 if this extension is
not a pointer.

virtual const scv_extensions_if * get_pointer()
const = 0;

This method returns the extension of the object that is
pointed to by this extension. It returns 0 it this extension is
not a pointer.

bool is_array() const; This method returns true if type is ARRAY.
virtual int get_array_size() const = 0; This method returns the number of elements in the array. It

returns 0 if this extension is not an array.
virtual scv_extensions_if * get_array_elt(int)
= 0;

This method returns the extension for a specific array
element. It returns 0 if the array element is invalid or if this
extension is not an array.

virtual const scv_extensions_if *
get_array_elt(int) const = 0;

This method returns the extension for a specific constant
array element. It returns 0 if the array element is invalid or
if this extension is not an array.

bool is_string() const; This method returns true if type is STRING.

The data_type enumeration has the following mapping:

• BOOLEAN: bool.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 19

• ENUMERATION: user-defined enumeration.
• INTEGER: char, short, int, long, long long, sc_int, sc_bigint.
• UNSIGNED: unsigned char, unsigned short, unsigned int, unsigned long, unsigned long long,

sc_uint, sc_biguint.
• FLOATING_POINT_NUMBER: float, double.
• BIT_VECTOR: sc_bit, sc_bv.
• LOGIC_VECTOR: sc_logic, sc_lv.
• FIXED_POINT_INTEGER: sc_fixed.
• UNSIGNED_FIXED_POINT_INTEGER: sc_ufixed
• RECORD: user-defined struct and class.
• POINTER: T*
• ARRAY: T[n]
• STRING: string, sc_string.

More methods might be added to extract the parameters of sc_fixed and sc_ufixed. The non-virtual methods

in this component are basically methods built on top of other virtual methods.

scv_extension_rw_if Description

virtual void assign(arg) = 0; A virtual assignment operator. This method is actually a
series of overloaded assign() methods, each taking an
argument of a different type. The argument arg can be
one of the following types: bool, char, unsigned char,
short, unsigned short, int, unsigned int, long, unsigned
long, long long, unsigned long long, float, double, const
string&, const sc_string&, const sc_bv_base&, and const
sc_lv_base&.

virtual void get_value(arg&) const = 0; A virtual value access operator. This method is actually
a series of overloaded get_value() methods, each taking
an argument of a different type. The argument arg can be
one of the following types: bool, char, unsigned char,
short, unsigned short, int, unsigned int, long, unsigned
long, long long, unsigned long long, float, double, string,
sc_string, sc_bv_base, and sc_lv_base.

virtual bool get_bool() const = 0; An alternative to get_value() without an argument.
virtual long long get_integer() const = 0; An alternative to get_value() without an argument.

virtual unsigned long long get_unsigned() const = 0; An alternative to get_value() without an argument.
virtual double get_double() const = 0; An alternative to get_value() without an argument.

virtual sc_string get_string() const = 0; An alternative to get_value() without an argument.

It is an error if the type of assignment or value access is incompatible with the type of the underlying data

object.

scv_extension_rand_if Description
enum mode_t { This enumeration represents the possible styles of

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 20

RANDOM,
SCAN,
RANDOM_AVOID_DUPLICATE,
DISTRIBUTION
};

value generation.

virtual void enable_randomization() = 0; This method turns on randomization for this data
object. This method is used typically for a field or
an array element within a composite type. This
method affects randomization of an object that is
part of a complex constraint.

virtual void disable_randomization() = 0; This method turns off randomization for this data
object.

virtual bool is_randomization_enabled()
const = 0;

This method returns true if randomization is not
turned off for this data object.

virtual void next() = 0; This method assigns a new value to the data object
according to the associated value generation mode,
if randomization has not been turned off.

virtual void set_random(
 scv_shared_ptr<scv_random>
) = 0;

This method assigns a new random stream to a data
object. See Section 5.1 for details.

virtual scv_shared_ptr<scv_random> get_random()
const = 0;

This method returns the random stream associated
with a data object.

virtual scv_expression form_expression()
const = 0;

This method creates a basic expression from the
data object for future evaluation and manipulation.

The mode_t enumeration has the following meanings:

• RANDOM: Uses a uniform distribution across the range of all legal values (low overhead).
• SCAN: Keeps a history and starts with the smallest legal values (medium overhead).
• RANDOM_AVOID_DUPLICATE: Keeps a history and avoids duplicated values until all legal

values have been generated; when all legal values have been generated, resets history (high
overhead).

• DISTRIBUTION: Takes a user-specified (step-like) distribution, and uses it to bias the
randomization process (overhead depends on the distribution).

scv_extension_callbacks_if Description

enum callback_reason {
 VALUE_CHANGE,
 DELETE
};

This enumeration represents the possible reasons
for executing a callback.
VALUE_CHANGE: the callback is executed
because a new value has been assigned to the data
object.
DELETE: the callback is executed because the data
object has been deleted.

typedef int callback_h; This component has an associated type for the
callback handle. The reference implementation will
implement it as an integer. This handle can be used
to remove a callback after it has been registered.

virtual callback_h register_cb(
 void (*f)(scv_extensions_if&, callback_reason)
) = 0;

This method registers a simple callback function.
Multiple callback functions can be registered and
they will be executed in the order in which they

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 21

were registered.

template<typename arg_type> callback_h register_cb(
 void (*f)(scv_extensions_if&, callback_reason, arg_type),
 arg_type arg
);

This template method registers a callback function
with an extra argument in a type-safe manner.
Multiple callback functions can be registered and
they will be executed in the order in which they
were registered.

virtual void remove_cb(callback_h) = 0; This method removes an existing callback.

The scv_extensions_if interface is an interface derived from this list of component interfaces. The

scv_extensions_if interface also contains the debugging interface discussed in Section 1. This interface can be
used to recursively traverse every field and array element in nested composite types, as shown in the following
example:

void print_fields(scv_extensions_if * e) {

switch(e->get_type()) {

case scv_extensions_if::RECORD :

{ for (int i=0; i < e->get_num_fields(); ++i) { print_fields(e->get_field(i)); } }

case scv_extensions_if::ARRAY :

{ for (int i=0; i < e->get_array_size(); ++i) { print_fields(e->get_array_elt(i)); }

case ...

}

}

4.2 Defining the Extensions for Data Types
The data introspection facility depends on partial template specialization of a template called scv_extensions

to extend data objects with the abstract interface scv_extensions_if. Each specialization of the scv_extensions
template implements the scv_extensions_if interface in a way appropriate to the type in the template parameter.
The target list of data types supported by the data introspection facility is shown in the following table.

Data Type Partial Template Specialization
bool class scv_extensions<bool>
char class scv_extensions<char>
short class scv_extensions<short>
int class scv_extensions<int>
long class scv_extensions<long>
long long class scv_extensions<long long>
unsigned char class scv_extensions<unsigned char>
unsigned short class scv_extensions<unsigned short>
unsigned int class scv_extensions<unsigned int>
unsigned long class scv_extensions<unsigned long>
unsigned long long class scv_extensions<unsigned long long>
float class scv_extensions<float>
double class scv_extensions<double>
string class scv_extensions<string>
pointer class scv_extensions<T*>
array class scv_extensions<T[N]>

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 22

sc_string class scv_extensions<sc_string>
sc_bit class scv_extensions<sc_bit>
sc_logic class scv_extensions<sc_logic>
sc_int template<int W> class scv_extensions< sc_int<W> >
sc_uint template<int W> class scv_extensions< sc_uint<W> >
sc_bigint template<int W> class scv_extensions< sc_bigint<W> >
sc_biguint template<int W> class scv_extensions< sc_biguint<W> >
sc_bv template<int W> class scv_extensions< sc_bv<W> >
sc_lv template<int W> class scv_extensions< sc_lv<W> >

sc_fixed template<int W, int I, sc_q_mode Q, sc_o_mode O, int N>
class scv_extensions< sc_fixed<W,I,Q,O,N> >

sc_ufixed template<int W, int I, sc_q_mode Q, sc_o_mode O, int N>
class scv_extensions< sc_ufixed<W,I,Q,O,N> >

These template specializations include appropriate operators so that they behave as if they are the underlying

data objects. For example, most of them include the operators +=, -=, *=, /=, %=, ^=, etc., and the
specializations for integer types include operators ++, --, <<=, and >>=. The specializations for SystemC types
include the corresponding methods in the underlying object, such as to_int64(). These operators are required to
support value change callbacks, etc. Implicit conversion to the underlying data type is used whenever possible.

Similar to read() and write() in a SystemC port (sc_port), these extension classes also have read() and write()
to get around the implicit conversion problem. In most cases, the C++ compiler can perform the implicit
conversion automatically. In the cases when the compiler cannot deduce the right conversion, read() and write()
can be used. Another method called get_instance() returns a non-constant pointer to the underlying object; this
method must be used in conjunction with another method trigger_value_change_cb() to make sure value change
callbacks are executed correctly.

Data introspection is useful only for normal data types, such as integers, structs, and arrays. It does not make
sense to use the data introspection API on channels such as sc_signal, especially when they have a specific
semantic associated with the object, instead of being a simple data object. One could imagine a future API in
SystemC that allows one to traverse through the design structure, get a handle to a FIFO, and then use the data
introspection to make queries about the current values stored within the FIFO, but this would be a separate API.

Defining the Extensions for User-Specified Types
In order to support user-specified composite types, the user needs to provide a partial template specialization

of scv_extensions for the specific composite type in the test bench. This process can be automated through a
simple Perl script, which takes a description like the following:

struct packet_t {

sc_uint<8> addr;

sc_uint<12> data;

};

and generates the appropriate partial template specialization:

SCV_EXTENSIONS(packet_t) {

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 23

public:

scv_extensions< sc_uint<8> > addr;

scv_extensions< sc_uint<12> > data;

SCV_EXTENSIONS_CTOR(packet_t) {

SCV_FIELD(addr);

SCV_FIELD(data);

}

};

It is easiest to create extensions for classes containing only public data. However, it is also possible to create an
extension for a class containing private data. Consider this class declaration:

class restricted_t {
public:

sc_uint<8> public_data;
private:

sc_uint<8> private_data;
};

One can create an extension for this class by omitting the private data:

SCV_EXTENSIONS(restricted_t) {
public:

scv_extensions< sc_uint<8> > public_data;
SCV_EXTENSIONS_CTOR(restricted_t) {

SCV_FIELD(public_data);
}

};

One can create an extension that includes the private data by making the extension class a friend of the user
type:

class restricted_t {
friend class scv_extensions<restricted_t>;
public:

sc_uint<8> public_data;
private:

sc_uint<8> private_data;
};

SCV_EXTENSIONS(restricted_t) {
public:

scv_extensions< sc_uint<8> > public_data;
scv_extensions< sc_uint<8> > private_data;
SCV_EXTENSIONS_CTOR(restricted_t) {

SCV_FIELD(public_data);
SCV_FIELD(private_data);

}
};

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 24

Similarly, an extension can be created on an enumeration:

enum instruction_t { ADD, SUB = 201 };

SCV_ENUM_EXTENSIONS(instruction_t) {

public:

 SCV_ENUM_CTOR(instruction_t) {

 SCV_ENUM(ADD);

 SCV_ENUM(SUB);

 }

};

Similar to the existing SystemC SC_MODULE macro, the SCV_EXTENSIONS and
SCV_ENUM_EXTENSIONS macros create appropriate classes for the user-specified composite type and user-
specified enumeration type. While the corresponding base classes are hidden from the users, for convenience,
we refer to the conceptual base class as the scv_extensions_base template in the UML diagram described later in
this section.

The related macros in the SystemC Verification Standard to facilitate this process are summarized in the
following table:

The scv_extensions Macros Description

SCV_EXTENSIONS(type_name) This macro is similar to SC_MODULE(). It defines
the extension class for the composite type identified
by type_name.

SCV_EXTENSIONS_CTOR(type_name) This macro is similar to SC_CTOR(). It defines the
constructor for the extension class of the composite
type identified by type_name.

SCV_EXTENSIONS_BASE_CLASS(base_type_name) This macro declares base_type_name as the base
class of the class to be extended. It must be
instantiated within the block after
SCV_EXTENSIONS_CTOR.

SCV_FIELD(field_name) This macro declares a field identified by field_name.

SCV_ENUM_EXTENSIONS(type_name) This macro is similar to SC_MODULE(). It defines
the extension class for an enumeration identified by
type_name.

SCV_ENUM_CTOR(type_name) This macro is similar to SC_CTOR(). It defines the
constructor for the extension class of the
enumeration identified by type_name.

SCV_ENUM(enum_element_name) This macro declares an enumeration element
identified by enum_element_name.

4.3 Accessing the Static Extensions of Data Objects

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 25

The methods in the abstract data introspection interface can be partitioned into two categories: static
extensions and dynamic extensions.

• Static extensions

A static extension method within the abstract interface scv_extensions_if can be used to determine the
specific type of an object, read from and write to the object, discover the record fields of the object, and
discover the array elements of the object, without referring to the C++ header that defines the data type. The
methods in the interface for scv_extension_type_if and scv_extension_rw_if are static extension methods.

• Dynamic extensions
A dynamic extension method within the abstract interface scv_extensions_if adds and manipulates auxiliary
data associated with a data object, which permits addition of instance-specific information to the object.
This enables registration of callbacks, configuration for randomization, and building an expression tree from
the data objects, without changing the C++ header that defines the data type.

Static extensions do not require auxiliary data to be associated with the data object, so they can be used for
any data object without special use model. The functions to access the static extensions of any data object are
captured in the following table.

Accessing Static Extensions Description
template<typename T>
scv_extensions<T> scv_get_extensions(T&);

This function returns an extension to a
data object.

template<typename T>
const scv_extensions<T>
scv_get_const_extensions(const T&);

This function returns an extension to a
constant data object.1

The returned object can be passed to any routine that takes a reference (or a pointer) of scv_extensions_if

type as an argument. It is a run-time error if the dynamic extension methods of the returned object are used,
because the returned object is a temporary wrapper around the data object. The auxiliary data stored in the extra
storage will be lost when the temporary wrapper goes out of scope. Another call to scv_get_extensions will not
be able to recover the same data. It might seem possible to store the auxiliary data in some global registry;
however, it is difficult to maintain the registry for data objects that come and go, because two objects in
different scopes can have the same pointer value when the memory is reused.

Static extensions can be used to extract information for value recording, as shown in the following code:

// The function my_code needs the C++ header for packet_t to instantiate p.

void my_code() { packet_t p; tool_A(p); }

// The utility tool_A can be designed for a generic type instead of the specific type packet_t

// This template needs the header for packet_t to compile.

template <typename T> void tool_A(const T& p) {

scv_extensions<T> ext = scv_get_extensions(p);

cout << "Argument p has " << ext.get_num_fields() << " fields." << endl;

1 In order to overcome an ambiguity error in HP’s aCC compiler, we have to use a different function name,

scv_get_const_extensions, instead of overloading scv_get_extensions for obtaining an extension from a constant object.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 26

if (ext.is_integer()) ext.assign(rand()); // basic assignment of values

tool_B(ext);

};

// The implementation of a proprietary function can be hidden with the use of scv_extensions_if

// This function does not need the header for packet_t to compile.

void tool_B(scv_extensions_if& p) {

if (p.is_integer()) cout << p.get_integer() << endl;

};

4.4 Accessing the Dynamic Extensions of Data Objects
In order to support dynamic extensions, we must be able to attach auxiliary data to a specific data object

instance. In this section, we introduce two templates scv_shared_ptr and scv_smart_ptr. The scv_shared_ptr
template enables sharing of data objects among multiple C++ threads by performing automatic memory
management. The scv_smart_ptr template combines scv_shared_ptr and scv_extensions to attach auxiliary data
to a data object. The scv_smart_ptr subsumes the functionality in scv_shared_ptr, but scv_smart_ptr is more
costly in both memory space and performance, so it should be used only when dynamic extensions are needed.

Sharing Data Objects Among Multiple Threads
Typically, simple enhancements to arbitrary data types can be achieved through the use of templates. For

example, the template auto_ptr from the standard C++ library is a smart pointer that points to a heap-based
object. When this template goes out of scope, it also deletes the heap-based object.

In the SystemC multi-thread environment, where multiple threads can share the same heap object, auto_ptr is
not very useful. The boost library from www.boost.org contains a template to enable reference-counted objects
and is currently proposing to include this in the standard C++ library [10]. The SystemC Verification Standard
includes a similar template, called scv_shared_ptr. The goal is to match this template with the one in the boost
library, so that when the standard C++ library is extended to support shared pointers, it will be easy to re-
package scv_shared_ptr to use the standard C++ library without asking SystemC users to change their code in
any significant way. If possible, scv_shared_ptr will just be a typedef for boost::shared_ptr, and we will include
the files directly from the boost library in the reference implementation of the Verification Standard.

The definition of the scv_shared_ptr template is shown in the following table. It uses reference counting to
detect when the heap-based object should be deleted. This class is designed to behave as if it were a C/C++
pointer.

The scv_shared_ptr Template Class Description

template< typename T>
class scv_shared_ptr;

A reference-counted pointer for a heap-based object of
type T.

scv_shared_ptr(T * core = 0); A constructor to convert the argument to a shared
pointer. A typical usage is:
 scv_shared_ptr p(new int());

scv_shared_ptr(const scv_shared_ptr&); A copy constructor.
bool compare(const scv_shared_ptr& other)
const;

This method returns true if this shared pointer points at
the same object as the other pointer.

bool isNull() const This method returns true if this shared pointer is null.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 27

scv_shared_ptr& operator=(
 const scv_shared_ptr&
);

The assignment operator.

bool operator!() const; This operator returns true if the pointer is NULL.
(see reference [5])

T& operator * () const; This operator returns a reference to the heap-based
object.

T * operator -> () const; This operator returns a pointer to the heap-based object.
friend bool operator==(
 const scv_shared_ptr<T>&,
 const scv_shared_ptr<T>&
);

This operator returns true if two shared pointers refer to
the same heap-based object.

friend bool operator!=(
 const scv_shared_ptr<T>&,
 const scv_shared_ptr<T>&
);

This operator returns true if two shared pointers refer to
two different heap-based objects.

This class is especially useful with dynamic threads. For example, you can use a shared pointer in the

following situation:

scv_shared_ptr<packet_t> p(new packet_t());

… // set up the packet…

sc_spawn_method(object,&object_t::method, p);

return;

In this code, a packet is created on the heap, and a new thread is spawned to process the object on the heap.
Because memory management is performed automatically by scv_shared_ptr, users don't have to wait for the
spawned task to finish before letting the stack variable p go out of scope. The packet will be deleted
automatically when all related scv_shared_ptr instances go out of scope. For details, please refer to Meyers'
discussion of smart pointers and reference counting [5].

This shared pointer concept forms the basis for adding extra storage space during data introspection on
arbitrary data objects, as discussed below.

Attaching Auxiliary Data to Data Objects

In order to support dynamic extensions with auxiliary data, an enhancement of the scv_shared_ptr template
is used. The enhanced template is called scv_smart_ptr, which combines the scv_extensions object and the data
object using scv_shared_ptr. Instead of instantiating the data object directly, a smart pointer to a heap object is
instantiated. This smart pointer also instantiates an extension object in the heap. Using the methods in the smart
pointer and its abstract interface, the same auxiliary data associated with the data object can be accessed across
simulation time and multiple threads and won’t be lost.

The scv_smart_ptr template implements the scv_smart_ptr_if abstract interface (and the debugging interface
discussed in Section 1). Their APIs are defined in the following tables:

The scv_smart_ptr_if Abstract Interface Description

virtual scv_extensions_if *
get_extensions_ptr() = 0;

This method returns a pointer to the associated
extension of the heap-based data object.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 28

virtual const scv_extensions_if *
get_extensions_ptr() const = 0;

This method returns a constant pointer to the
associated extension of the heap-based data object.

The scv_smart_ptr Template Class Description
template<typename T> class scv_smart_ptr; A smart pointer for data object of the type T.
scv_smart_ptr(
 T* heap_obj = 0,
 const char * name = 0
);

This constructor creates a smart pointer with the
supplied heap-based object. The heap-based object
must be associated with a smart pointer only once
using this constructor. Use the copy constructor to
create additional smart pointers to the same heap-
based object.
If no heap-based object is supplied, a new one will
be created using the default constructor. Note that
this semantic is slightly different than
scv_shared_ptr.

scv_smart_ptr(const scv_smart_ptr&); The copy constructor.
scv_smart_ptr& operator = (const scv_smart_ptr&); The assignment operator.
scv_extensions<T>& operator * () const; This operator returns a reference to the associated

extension for the data object.
scv_extensions<T> * operator -> () const; This operator returns a pointer to the associated

extension for the data object.

scv_expression operator () () const; This operator creates a basic expression from the
data object for future evaluation and manipulation.

const T& read() const; This method returns the value of a data object.
viod write(const T&); This method updates the value of a data object.

Conceptually, a smart pointer contains two shared pointers, one pointing to the data object and one pointing

to the associated extension object. The scv_smart_ptr template is designed to behave as if it were a C/C++
pointer. The following example illustrates the use model:

void my_procedure (scv_smart_ptr<packet_t> p) {

// The body is written as if this procedure is void my_procedure(packet_t *).

cout << "my address : " << p->addr << endl;

cout << "my data : " << p->data << endl;

if (p->data == 0) p-> data = rand();

cout << "the whole packet : " << *p << endl;

p->data.set(3); // set() is a method on sc_uint.

};

A value change callback can be registered before my_procedure() is called:

scv_smart_ptr<packet_t> p;

p->register_cb(my_callback_function);

my_procedure(p);

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 29

The following UML-like diagram illustrates the relationship among various classes in the data introspection
facility.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 30

5 Randomization, Constraints, and Weight
Specifications

Constrained random tests are an important element in a state-of-the-art verification environment. Using the
data introspection facility discussed previously, constrained randomization can be performed on arbitrary data
types. This section describes the corresponding APIs and the semantic for these features.

5.1 Seed and Random Stream Management
In order to support advanced seed management and enable independent random stream operations, we

propose a scv_random class, as a replacement for rand() and srand() from the standard C library. The
scv_random class uses an object-oriented paradigm to enable reproducibility in many use models.

An instantiation of the scv_random class gives the user an independent stream of random unsigned integer
values. It can take an explicit seed from the user, or extract a seed from the seed associated with the current
process thread. By default, it uses the same algorithm as jrand48() from the standard C library, but it can be
configured to use rand() or a user-specified algorithm. The interface for the scv_random class is shown in the
following table:

The scv_random Class (Global Configuration) Description
enum value_generation_algorithm {
 RAND,
 RAND32,
 RAND48,
 CUSTOM
};

This enumeration represents the different
randomization algorithm:

typedef unsigned int (*alg_func)(
 unsigned long long& next
);

The type for a custom randomization algorithm.

static void set_default_algorithm(
 value_generation_algorithm alg = RAND 48,
 alg_func custom_alg = 0
);

This static method sets the base algorithm for new
scv_random objects. The argument custom_alg is
ignored unless the first argument is CUSTOM. If
the first argument is CUSTOM and custom_alg is
0, RAND 48 is used.

static void set_global_seed(unsigned long long = 1); This static method sets the global seed from which
the seeds for new scv_random objects will be
calculated based on the corresponding thread
names.

static void print_initial_seeds(const char * filename); This static method prints the initial seed
information to the specified file.

static void print_initial_seeds(ostream&); This static method prints the initial seed
information to the specified stream.

static void print_current_seeds(const char * filename); This static method prints the current seed
information to the specified file.

static void print_current_seeds(osteram&); This static method prints the current seed
information to the specified stream.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 31

static void seed_monitor_on(
 bool retrieve,
 const char * filename
);

This static method turns seed monitor on. If
retrieve is true, seed information is loaded into the
registry and will be used to initialize subsequent
scv_random objects by name matching. If retrieve
is false, future seed information in stored in the
specified file until seed_monitor_off() is called. If
this method is executed twice without
seed_monitor_off(), a warning is generated and the
previous seed monitor will be turned off.

static void seed_monitor_on(
 bool retrieve,
 const char * monitorName,
 FILE * file
);

This static method is the same as the previous
seed_monitor_on() method, except that it stores the
seed information in a user-created file pointer.
Other code can use the same file to store other
information. The monitor name is used to prefix
any seed information, and the user must make sure
that the other information in the file does not use
the same prefix.

static void seed_monitor_off(); This static method turns off the seed monitor.

The scv_random class allows the user to specify which algorithm to use for random value generation. The

semantic for the different mode are:
• RAND: Uses the re-entrant version of the C rand() algorithm, i.e. rand_r(). If the implementation

of rand_r() in the C library of a platform generates only 16-bit integers, scv_random::next() will
generate only 16 bit integers. Similarly randomization using data introspection will generate 16-bit
integer for int and unsigned int. Randomization on other data types will give non-uniform
probability distribution and some values may never be generated.

• RAND32: Uses the re-entrant version of the C rand() algorithm, i.e. rand_r(). If the
implementation of rand_r() in the C library of a platform generates only 16-bit integers,
scv_random will it twice to make sure every bit gets randomly set.

• RAND48: Uses the jrand48() algorithm for uniform unsigned random streams.
• CUSTOM: Uses a custom randomization algorithm specified through set_default_algorithm() for

global configuration or set_algorithm() for specific random streams.

RAND is typically used for comparison or evaluation purposes, when a SystemC test bench needs to

generate the same series of values as a C++ test bench using rand(). RAND32 is faster then RAND48, but
rand() is know to generate values with a non-uniform distribution in many platforms.

The scv_random Class (per-instance) Description
scv_random(const char * name = “<anonymous>”); This constructor creates a random stream with a

specific name. A seed is generated from the global
seed and the corresponding thread name.

scv_random(unsigned long long seed); This constructor creates a random stream with an
explicit seed.

scv_random(
 const char * name,
 unsigned lnog long seed
);

This constructor creates a random stream with a
specific name and an explicit seed.

scv_random(
 const scvg_random& other,

The copy constructor.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 32

 const char * name = “<anonymous>”,
 unsigned lnog long seed = 0
);
unsigned int next(); This method generates the next random number.
unsigned long long get_initial_seed() const; This method returns the initial seed from which this

object was created.
void set_current_seed(unsigned long long) const; This method sets the current seed from which the

next random number will be generated
unsigned long long get_current_seed() const; This method returns the current seed from which

the next random number will be generated.
void set_algorithm(
 value_generation_algorithm = RAND48,
 alg_func algorithm = 0
);

This method changes the algorithm from which
future random numbers will be generated.

The scv_random class also contains the debugging interface discussed in Section 1. The following code

shows the basic usage of scv_random:

scv_random gen("gen", 200);

cout << gen.next(); // print a random unsigned integer value

Users can explicitly control how many random streams they want in their testbenches by instantiating
scv_random objects and associating them to scv_smart_ptr objects through the set_random() method in the data
introspection interface (and other objects that support randomized behavior, such as scv_bag, described in
Section 5.4)

The assignment of seeds to scv_random objects centers around reproducibility in several aspects.

Global Seed
The randomization facility has one global seed that the user can manipulate during elaboration time through
the method scv_random::set_global_seed().If the user does not provide the global seed explicitly, the
default seed is 1.

Generating a Unique Seed for Each Process Thread
Because different SystemC implementations might have different scheduling orders among the C++ threads,
this facility uses the hierarchical name of each process thread to transform the global seed to a unique seed
for each thread. In doing so, provided that the standard defines a consistent hierarchical name convention for
each process thread (and dynamic thread) across multiple SystemC implementations, the values generated
from the randomization would be independent of the order in which the threads are executed.
One advantage of transforming the global seed into a unique seed per thread is that when a new process
thread is added to an existing test bench (such as a new monitor module), the behavior of the existing thread
will not change.
In order to support this use model, a new API is added to extract the hierarchical name of each process
thread.

Supporting Function Description
const char * scv_thread_unique_name(This function returns the hierarchical name of the

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 33

 const sc_thread_handle
);

process thread.

Instantiating scv_random Objects
An instance of the scv_random class is automatically assigned a seed, based on the global seed. If it is a
variable within a module, the hierarchical path of the module and its position compared to other scv_random
objects within that module uniquely determine its seed. If it is a variable generated on-the-fly by a process
thread, the hierarchical name of the thread and its position with the code of the thread also uniquely
determine its seed.
As usual, instead of relying on the library to manage the seeds, users can override this assignment by
explicitly setting the seed of the scv_random objects.

Seed File Manipulation
Using the thread-based assignment of seeds, similar behavior is maintained in the test bench even when
threads are added or removed from your existing test bench. In the advanced cases in which the user wants
to change the behavior of part of the test bench, while maintaining a similar behavior for the other part of
the test bench, a seed file can be generated from a simulation run, and the user can manually change some of
the seeds in the file, and rerun the simulation with the new seed file.
By composing the hierarchical name and the name that was specified for the scv_random object, the
verification library can look up the initial seed that is used for each uniquely named scv_random object from
the seed file. As a result, even when a new scv_random object is added to existing code within a thread, as
long as this new scv_random object has a different name, the existing scv_random objects will be assigned
the same seeds from the seed file so that the values generated in the original code will remain the same.

5.2 Basic Randomization
Data objects of arbitrary data types can be randomized through the use of scv_smart_ptr. For example, a

random value for an sc_uint<8> can be generated using the following code:

scv_smart_ptr< sc_uint<8> > data;

data->next();

By default, scv_smart_ptr instantiates an internal scv_random object to perform randomization. The same

scv_random object can also be shared among smart pointers by calling the method set_random().
Similarly, it can randomize arrays and structs:

struct packet_t {

int data;

int array[10];

};

...

scv_smart_ptr< packet_t > p;

p->data.next(); // generate a random value and assign it to the data field

p->array[3].next(); // generate a random value and assign it to the array element with index 3

p->next(); // generate random values for all fields and all array elements

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 34

p->data.disable_randomization();

p->next(); // generate random values for all fields and all array elements, except for the data field.

These methods are defined in the data introspection interface for scv_extension_rand_if, in Section 4.1.
The randomization facility allows different modes of value generation. Section 1.1 talks about randomization

using constraints, and Section 5.4 talks about randomization using weights and distributions. In summary, the
randomization facility can be configured in several aspects:
• Randomization can be turned on and off using the methods enable_randomization() and

disable_randomization(). The default is on.
• The modes of value generation are specified as the enumeration scv_extensions_if::mode_t in the

data introspection facility.When randomization is on, the default value generation mode is
RANDOM. and the user can change the mode by calling set_mode() with the desired mode as
argument. If a bag is supplied as the argument to set_mode(), the DISTRIBUTION mode is set. If
the methods keeponly() and keep_out() are called, the DISTRIBUTION mode is also set. For
details about DISTRIBUTION mode and these methods, please see Section 5.4.

• The method reset_distribution() can be used to remove the existing distribution from a data object.
If the mode before this call is DISTRIBUTION, it is changed to RANDOM.

Mode changes do not affect whether randomization is turned on or not. The only method that turns on

randomization is enable_randomization(), and the only method that turns off randomization is
disable_randomization().

5.3 Constraint Specification and Constrained Randomization
Constraints are specified through derived classes of the scv_constraint_base class. An example is shown

below:
class write_constraint : virtual public scv_constraint_base {

public:

scv_smart_ptr< rw_task_if::write_t > write;

SCV_CONSTRAINT_CTOR(write_constraint) {

SCV_CONSTRAINT(write->addr() < 0x00FF);

SCV_CONSTRAINT(write->addr() != write->data());

}

};

When constraints get complicated, it might be difficult to debug unsatisfiable constraints. During the

SystemC Verification Working Group meetings, our conclusion is that the manual way of debugging is to “print
the constraints and stare at the screen” to determine that they are unsatisfiable. EDA vendors can create tools to
improve upon this, but the debugging solution does not need to be in the standard.

The standard does not require support of constraints on floats or doubles.
A constraint is derived from the scv_constraint_base class; the data to be randomized is specified as

scv_smart_ptr class variable(s). The basic components of an expression can be created from scv_smart_ptr
objects through operator()(), which can then be composed into more complicated expressions by using the
following operators:

• Arithmetic operators +, -, *
• Relational operators ==, !=, >, >=, <, <=

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 35

• Logical operators !, &&, ||

In general, operator()() is used to create expressions that can be analyzed or evaluated at the later point. Both

the scv_extensions classes and the scv_smart_ptr templates from the data introspection facility implement this
operator.

Expressions are captured in the scv_expression class, with methods described in the following table:

The scv_expression Class Description
enum operatorT {
 EMPTY, EXTENSION, INT_CONSTANT,
 UNSIGNED_CONSTANT, DOUBLE_CONSTANT,
 SC_SIGNAL, EQUAL, NOT_EQUAL,
 GREATER_THAN, LESS_THAN,
 GREATER_OR_EQUAL, LESS_OR_EQUAL,
 AND, OR, NOT, PLUS, MINUS, MULTIPLY
};

This enumeration represents the possible types of
expressions.

scv_expression(const scv_expression&); The copy constructor.
scv_expression(int); This constructor converts an integer to an

expression.
scv_expression(unsigned); This constructor converts an unsigned integer to an

expression.
scv_expression(long long); This constructor converts an long long to an

expression.
scv_expression(unsigned long long); This constructor converts an unsigned long long to

an expression.
scv_expression(double); This constructor converts a double to an expression.
template<typename T> static scv_expression
create_reference(
 const sc_signal_in_if<T>& sig
);

This virtual constructor converts an sc_signal object
into an expression. When the expression is
evaluation later in the simulation (or is analyzed by
the constraint solver), the latest value at that point
of the simulation will be used.

template<int W> static scv_expression
create_constant(const sc_int<W>&);

This virtual constructor converts the value in a
variable to an expression. The value at the time
when the expression is constructed will be used.

template<int W> static scv_expression
create_constant(const sc_uint<W>&);

This virtual constructor converts the value in a
variable to an expression. The value at the time
when the expression is constructed will be used.

template<int W> static scv_expression
create_constant(const sc_bigint<W>&);

This virtual constructor converts the value in a
variable to an expression. The value at the time
when the expression is constructed will be used.

template<int W> static scv_expression
create_constant(const sc_biguint<W>&);

This virtual constructor converts the value in a
variable to an expression. The value at the time
when the expression is constructed will be used.

template<int W> static scv_expression
create_constant(const sc_bv<W>&);

This virtual constructor converts the value in a
variable to an expression. The value at the time
when the expression is constructed will be used.

friend scv_expression operator==(
 const scv_expression&,
 const scv_expression&
);

This operator creates an expression with an equality
comparison.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 36

friend scv_expression operator!=(
 const scv_expression&,
 const scv_expression&
);

This operator creates an expression with an
inequality comparison.

friend scv_expression operator>(
 const scv_expression&,
 const scv_expression&
);

This operator creates an expression with a greater
than comparison.

friend scv_expression operator<(
 const scv_expression&,
 const scv_expression&
);

This operator creates an expression with a less than
comparison.

friend scv_expression operator>=(
 const scv_expression&,
 const scv_expression&
);

This operator creates an expression with a greater-
than-or-equal-to comparison.

friend scv_expression operator<=(
 const scv_expression&,
 const scv_expression&
);

This operator creates an expression with a less-
than-or-equal-to comparison.

friend scv_expression operator&&(
 const scv_expression&,
 const scv_expression&
);

This operator creates a conjunction expression.

friend scv_expression operator||(
 const scv_expression&,
 const scv_expression&
);

This operator creates a disjunction expression.

friend scv_expression operator!(
 const scv_expression&
);

This operator creates a negation expression.

friend scv_expression operator+(
 const scv_expression&,
 const scv_expression&
);

This operator creates an arithmetic addition
expression.

friend scv_expression operator-(
 const scv_expression&,
 const scv_expression&
);

This operator creates an arithmetic subtraction
expression.

friend scv_expression operator*(
 const scv_expression&,
 const scv_expression&
);

This operator creates an arithmetic multiplication
expression.

bool evaluate() const; This method evaluates the expression as a Boolean
predicate.

const char * get_expression_string() const; This method converts the expression into a string.
operatorT get_operator() const; This method returns the top-level operator of the

expression.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 37

const scv_expression& get_left() const; This method returns the left operand of the top-
level operator, if applicable.

const scv_expression& get_right() const; This method returns the right operand of the top-
level operator, if applicable.

scv_extensions_if * get_extension() const; This method returns the data introspection
extension of the corresponding data object.

 long long get_int_value() const; This method returns the integer value of an integer
expression.

unsigned long long get_unsigned_value() const; This method returns the unsigned integer value of
an unsigned integer expression.

double get_double_value() const; This method returns the double value of an double
expression.

void get_value(arg&) const; A method to access constant values in an
expression. This method is actually a series of
overloaded get_value() methods, each taking an
argument of a different type. The argument arg can
be one of the following types: bool, char, unsigned
char, short, unsigned short, int, unsigned int, long,
unsigned long, long long, unsigned long long, float,
double, string, sc_string, sc_bv_base, and
sc_lv_base.

sc_signal_in_if * get_signal() const; This method returns the signal pointer for a signal
expression.

void get_extension_list(list<scv_extensions_if*>&) const; This method sets the argument to the list of data
introspection extensions that were referenced in the
expression.

void get_signal_list(list<sc_signal_in_if*>&) const; This method sets the argument to the list of signal
objects that were referenced in the expression.

Using scv_expression, constraints can be specified as derived classes of scv_constraint_base, in conjunction

with several macros designed for this purpose. They are summarized in the following table:

The Constraint Macros Description
SCV_CONSTRAINT_CTOR(constraint_name) This macro is similar to SC_CTOR(), and it defines

the constructor for the constraint identified by
constraint_name.

SCV_CONSTRAINT(expression) This macro defines a hard constraint.
SCV_SOFT_CONSTRAINT(expression) This macro defines a soft constraint.
SCV_BASE_CONSTRAINT(base_constraint_name) This macro defines a base constraint.

The scv_constraint_base Class Description

void next(); This method generates a new random value to all
members of the constraint class. Randomization
of specific fields can be disabled or enabled by
using disable_randomization() and
enable_randomization() in the data introspection
facility.

scv_extension_if::mode_t get_mode() const; This method returns the current randomization
mode.

scv_shared_ptr<scv_random> get_random() const; This method returns the random stream that is

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 38

attached to the constraint object.
void get_members(list<scv_smart_ptr_if *>&) const; This method sets the argument to the list of

members of the constraint object.
void set_mode(scv_extensions_if::mode_t); This method sets the randomization mode for all

members of the constraint object.
void set_random(scv_shared_ptr<scv_random>); This method attaches a specific random stream to

the constraint object.

The expressions in the series of SCV_CONSTRAINT macros within the constructor are merged into a single

expression using the conjunction operator, &&, and stored in a static variable corresponding to the class. Using
the traditional semantic for a conjunction, the resulting behavior is independent of the order from which the
series of SCV_CONSTRAINT macros are declared. Because the constraint information is stored in a static
variable for this class, it is processed only once. The expressions in the macros must use operator()() on the
member smart pointers of the constraint class to relate the constraints to the underlying data objects referred by
the member smart pointers. It is an error to assign a different data object to the smart pointer member variable of
the constraint class. If a random value is needed for an existing smart pointer, you should call next() on the
constraint and then copy the resulting value to the existing smart pointer.

Using this constraint class in randomization is straightforward. The following code generates random data for
two writes and prints it to the screen:

write_constraint c("write constraint");

for (int i=0; i<2; ++i) {

c.next();

cout << *c.write << endl;

}

Selected fields can be randomized through the use of the disable_randomization() and
enable_randomization() methods. For example, the following code generates a random value for the field data
and uses sequential addresses:

write_constraint c("write constraint");

c.write->addr->disable_randomization();

for (int i=0; i<2; ++i) {

c.write->addr = i;

c.next();

cout << *c.write << endl;

}

Variables can be dynamically enabled or disabled for randomization without limit.
Using next() is a good way to randomize multiple scv_smart_ptr objects and multiple fields in the same

scv_smart_ptr object within the constraint. However, if only one field needs to be randomized, next() can be
called directly for the specific field, which avoids using disable_randomization(). For example, the following
code behaves the same way as the previous code:

write_constraint c("write constraint");

for (int i=0; i<2; ++i) {

c.write->addr = i;

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 39

c.write->data->next();

cout << *c.write << endl;

}

The constraints specified by the macro SCV_CONSTRAINT are hard constraints; if the constraint solver
cannot find a legal value that satisfies these hard constraints, an error is reported. Soft constraints can also be
specified using the macro SCV_SOFT_CONSTRAINT. If the constraint solver cannot find a legal value that
satisfies both soft and hard constraints, a warning is reported, and the solver will generate a value with respect to
the hard constraints only, while ignoring the soft constraints. If the constraint solver still cannot find a legal
value (ignoring the soft constraints), an error is reported, and the solver will generate a value while ignoring all
constraints.

Because all constraints in a constraint class are ignored if a single (hard) constraint cannot be satisfied, it may
be advisable to keep unrelated constraints in separate classes. Smaller constraint classes may make it easier to
determine why a set of constraints cannot be satisfied.

It is not possible to disable part of a constraint expression; however, the same effect can be achieved by
introducing a guard variable (with randomization disabled) to the relevant part of the expression. When the
guard variable is set to false, the related part of the expression is effectively disabled.

The class-based constraint specification facility also supports generation of constraints using sequential code.
For example, a constraint can be specified for each element of an array, as shown in the following code:

class complex_constraint : virtual public scv_constraint_base {

public:

scv_smart_ptr< int > data_array[2];

SCV_CONSTRAINT_CTOR(complex_constraint) {

for (int i=0; i<2; ++i) {

SCV_CONSTRAINT(data_array[i]() < 10);

}

}

};

Because the constraints are captured in class declarations, class inheritance can be used to create a hierarchy
of constraints. In the following example, the previous two constraints are merged into one with a new constraint
specifying that the data in the write request cannot be the same as the first element in the data array from the
other constraint.

class hierarchical_constraint : public write_constraint, public complex_constraint {

public:

SCV_CONSTRAINT_CTOR (hierarchical_constraint) {

SCV_BASE_CONSTRAINT(write_constraint);
SCV_BASE_CONSTRAINT(complex_constraint);
SCV_CONSTRAINT (write->data() != data_array[0]());

}

};

While this constraint code focuses on manipulation of constraint objects, sometimes it is easier to write code

with the data as the primary focus. The use_constraint() method applies a constraint to a data object.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 40

extern void my_select_constraint(scv_smart_ptr<rw_task_if::write_t>& data);
void my_test() {

scv_smart_ptr<rw_task_if::write_t> data;

my_select_constraint(data);

my_tvm.my_task(data);

}

void my_select_constraint(scv_smart_ptr<rw_task_if::write_t>& data) {
if (...) {

write_constraint c("c");
data.use_constraint(c.write);

} else {

hierarchical_constraint c("c");
for (int i=0; i<2; ++i) c.data_array[i]->next();
data.use_constraint(c.write);

}
}

Non-abstract methods in scv_extensions<T> Description
void use_constraint(scv_smart_ptr<T>&); This method assigns a constraint to a data object.

The argument is expected to be a smart pointer
within a constraint class. Otherwise, an error report
is generated.

5.4 Weight Specification and Biased Randomization
While a constraint specifies the range of legal values, a weight specification biases the random value

generation process so that some values are generated more often than others. This facility is captured in the
enumeration scv_extensions_if::mode_t, representing the different modes from which values can be generated.

Distributions are specified using the concept of a bag, which represents either a collection of weighted values
or a collection of weighted ranges (i.e., a bag of pairs). A bag is similar to a set, except that it can contain
duplicated elements. For weighted ranges, we use the pair template from STL, which is a quick way to create a
struct with two fields. The API for a bag is defined in the following table:

The scv_bag Class Description
template<typename T> class scv_bag; A bag with objects of type T.
scv_bag(
 const char * name = “<anonymous>”,
 unsigned long long seed = 0
);

This constructor creates an empty bag with the
specified name and the specified seed for
randomization. If seed is 0, a seed is generated from
the global seed and the corresponding thread name.

scv_bag(
 const scv_bag& other,
 const char * name = “<anonymous>”,
 unsigned long long seed = 0
);

The copy constructor.

scv_bag& operator=(const scv_bag&); The assignment operator.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 41

void push(const T&, int num = 1); This method adds the specified number of objects
with the specified value to the bag.

void remove(const T&, bool all_copies = true); This method removes one or all of the objects with
the same value as the argument.

void clear(); This method empties the bag.
const T& peek_random(); This method selects a random object from the bag

and returns its value.
int size() const; This method returns the number of objects in the

bag.
int distinct_size() const; This method returns the number of distinct objects

in the bag.
bool empty() const; This method returns true if the bag is empty.
void set_random(scv_shared_ptr<scv_random>); This method attaches the specified random stream

to the bag.
friend bool operator==(
 const scv_bag&,
 const scv_bag&,
);

Equality comparison.

friend bool operator==(
 const scv_bag&,
 const scv_bag&
);

Inequality comparison.

For example, to specify a distribution in which the value “1” is generated 60% of the time and the value “2”

is generated 40% of the time, the following code can be used:
scv_bag<int> bag;
bag.push(1,60);
bag.push(2,40);
scv_smart_ptr<int> data;
data->set_mode(bag);

for (int i=0; i<2; ++i) { data->next(); process(data); }

The set_mode() method allows the user to choose among four modes of value generation. For a data object

with a non-composite type, a distribution can be supplied as the argument to select the DISTRIBUTION mode.
When next() is executed for this data object, a random value is generated with respect to the supplied
distribution, without invoking the constraint solver, i.e., any constraint expressed with this data object will be
ignored in this process.

When next() is executed on a composite type or a constraint object with multiple smart pointers, some of the
fields or smart pointers may be configured with the distribution mode, and the others may be configured in
another mode. An example is attached as follows:

 class c_t : public scv_constraint_base {

 public:

 scv_smart_ptr<int> a;

SCV_CONSTRAINT_CTOR(c_t) {

SCV_CONSTRAINT(a() < 1);

}

};

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 42

void my_test() {

c_t c("c");

c.next(); // generate a value for “a” between INT_MIN and 0 inclusive

scv_bag<int> b;

b.add(10); b.add(11);

c.a->set_mode(b);

c.next(); // generate a value for “a” among { 10, 11 } with an error report about “a()<1” is made.

}

In this example, the constraint "a()<1" is checked after value generation from the distribution, and an error
report is generated. The final value of a retains the value generated from the distribution. The user can change
this semantic by overloading the next() method in their constraint classes.

When next() is executed on a composite type or a constraint with multiple smart pointers, the values are
generated in two steps. The first step is to pick values for all member fields or member smart pointers with the
distribution mode turned on. The values are picked from the distribution directly without consulting the related
Boolean constraints. If there are other fields without the distribution mode turned on, a second step is taken to
analyze the Boolean constraint and generate a constrained random value for them, using the values generated in
the previous step, i.e., as if randomization has been turned off via disable_randomization() for those data objects
in step 1. For example:

class c_t : public scv_constraint_base {

public:

scv_smart_ptr<int> a;

scv_smart_ptr<int> b;

SCV_CONSTRAINT_CTOR(c_t) {

SCV_CONSTRAINT(a() < b() && a() < 5);

}

};

void my_test() {

c_t c("c");

c.next(); // generate values for both a and b according to the Boolean constraint "a() < b() && a() < 5".

scv_bag<int> dist;

dist.add(2); dist.add(4);

c.a->set_mode(dist);

c.next();

// step 1: generate a value for a among { 2, 4 } and the Boolean constraint "a() < b() && a() < 5" is ignored.

// step 2: use the value generated in step 1 for “a”, and invoke the constraint solver to solve the

// Boolean constraint "a() < b() && a() < 5", and create a random value for “b”, while

// keeping the same value for “a”.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 43

scv_bag<int> dist2;

dist2.add(2); dist2.add(11);

c.a->set_mode(dist2);

c.next();

// step 1: generate a value for a among { 2, 11 } and the Boolean constraint "a() < b() && a() < 5"

// is ignored. Let's assume 11 is selected.

// step 2: use the value generated in step 1 for a, and invoke the constraint solver to solve the

// Boolean constraint "a() < b() && a() < 5". In this case, since the value selected for “a”

// in step 1 violates the Boolean constraint, no legal value for “b” can be found to satisfy

// the Boolean constraint and an error report is made. A unconstrained value is selected

// for “b” in this case.

}

The weights on a range of values can be specified easily. For example, generating the range [0,1] 40% of the

time and [2,10] 60% of the time can be achieved using the following code:

scv_smart_ptr<int> data;
scv_bag< pair< int,int> > distribution;
distribution.push(pair<int,int>(0,1), 40);
distribution.push(pair<int,int>(2,10), 60);
data->set_mode(distribution);
for (int i=0; i<3; i++) {data->next(); process(data); }

In this example, the next() method will select a range according to the weights, and then select a value from

the range using a uniform probability distribution. As a result, while the chance of having some value within the
range [2,10] is higher than that for some value within the range [0,1], the chance of having the value 10 is much
smaller than that for the value 0. Effectively, the values 40 and 60 reflect the area under the range.

If the ranges within a distribution overlap each other, a warning report is generated when set_mode() is
executed.

Using weights on ranges, a generic distribution, such as an exponential distribution, can be approximated by

a step-like distribution, as shown in the following diagram:

Using this step-like distribution, a bag of pairs can be created and used to bias the randomization process:

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 44

scv_bag< pair<int,int> > bag;
bag.push(pair<int,int>(1,3), 100);
bag.push(pair<int,int>(4,10), 30);
bag.push(pair<int,int>(11,20), 20);
bag.push(pair<int,int>(21,80), 80);

...
scv_smart_ptr<int> data;
data->set_mode(bag);
for (int i=0; i<2; ++i) { data->next(); process(data); }

The set_mode() method is described in the following table:
Non-abstract randomization interface in scv_extensions<T> Description
void set_mode(scv_extensions_if::mode_t); This method sets the value generation mode. If the

mode is DISTRIBUTION, the distribution from
previous set_mode() is used. If none has been
specified, an error report is generated, and the mode
RANDOM is used.

void set_mode(const scv_bag<T>&); This method sets the value generation mode to
DISTRIBUTION, and uses the supplied bag with
weights on individual values as the distribution to
generate the value.

void set_mode(const scv_bag< pair<T,T> > &); This method sets the value generation mode to
DISTRIBUTION, and uses the supplied bag with
weights on ranges as the distribution to generate the
value.

The data introspection facility also includes several methods for specifying a simple distribution without a

bag. They are listed in the following table. They are especially useful when the test bench wants to generate a
value from a simple range.

Non-abstract randomization interface in
scv_extensions<T>, where T is a non-composite type.

Description

void keep_only(const T&); This method modifies the current distribution from
other keep_only()s and keep_out()s to include only
the supplied value.

void keep_only(
 const T& lowerbound,
 const T& upperbound
);

This method modifies the current distribution from
other keep_only()s and keep_out()s to include only
the supplied range.

void keep_only(const list<T>&); This method modifies the current distribution from
other keep_only()s and keep_out()s to include only
the supplied list of values.

void keep_out(const T&); This method modifies the current distribution from
other keep_only()s and keep_out()s to exclude the
supplied value.

void keep_out(
 const T& lowerbound,
 const T& upperbound

This method modifies the current distribution from
other keep_only()s and keep_out()s to exclude the
supplied range.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 45

);

void keep_out(const list<T>&); This method modifies the current distribution from
other keep_only()s and keep_out()s to exclude the
supplied list of values.

void reset_distribution(); This method sets the attached distribution (from
keep_only()s, keep_out()s, or set_mode()) to an
empty bag, and sets the value generation mode to
RANDOM

The set of keep_only and keep_out provides a convenient way to specify a distribution without creating an

explicit bag. The calls to keep_only and keep_out are cumulative, and are combined using a simple conjunction
semantics.

When these methods are executed, any previous distribution supplied by the set_mode() method is removed,
and the value generation mode is automatically set to DISTRIBUTION, and constrained randomization will be
turned off for this data object. If a new distribution is provided as a bag via set_mode() after these calls are
executed, the new distribution will replace the distribution created through these keep_only and keep_out calls.

Some examples are included as follows:

scv_smart_ptr<int> i;

i->keep_only(0,4);

i->keep_out(2);

i->next(); // generate a value among { 0, 1, 3, 4 }

scv_bag<int> b;

b.add(2); b.add(7);

i->set_mode(b);

i->next(); // generate a value among {2,7}

i->reset_distribution();

i->next(); // generate a value between INT_MIN and INT_MAX.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 46

6 Variable and Transaction Recording
In order to effectively debug a simulation run, visualization of events and activities is very important. A test

bench must be able to record appropriate data into a database to support visualization. The same database can
also be used to perform coverage analysis. This section describes the API from which the user can control what
information is recorded in the database.

Two kinds of recordings have been considered. Because value transitions in variables can be recorded using
value-change callbacks, only the callback registration API in the data introspection facility is included in the
SystemC Verification Standard. The focus of the Verification Working Group discussion was on transaction
recording, which we felt is the suitable level of abstraction for recording activities in a test bench.

6.1 Variable Recording
The values of a variable across time can be recorded into a database using the VCD facility in SystemC 2.0.

However, it is more efficient to associate variable recording to value-change callbacks. In SystemC 2.0, a value-
change event on an sc_signal object can be performed using code similar to the following example:

class my_module : public sc_module {
public:

sc_inout< bool > sig1;
SC_CTOR(my_module) {

SC_METHOD(sig1_callback);
sensitive << sig1;

}
void sig1_callback() { cout << "The value of sig1 has been changed to : " << sig1 << endl; }

};

Using the data introspection facility described earlier, value-change callbacks can also be performed on a
data object by using scv_smart_ptr.

class my_module : public sc_module {
public:

scv_smart_ptr<int> fsm_state;
SC_CTOR(my_module) {

fsm_state->register_cb(fsm_state_callback);
}

void fsm_state_callback(scv_extensions_if& data, scv_extensions_if::callback_reason r) {
if (r == scv_extensions_if::VALUE_CHANGE) {

cout << "The FSM state has been changed to : " << data << endl;
write_to_the_database(data);

 }
}

};

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 47

Using value-change callbacks in a data object is different from using value-change callbacks in a signal.
Using data introspection, value-change callbacks can be registered in a data object of any type, and the callbacks
will be executed whenever an assignment to the data object is performed, regardless of whether the new value is
the same as the old value or not. A value-change callback in a signal is executed after the events in a delta cycle
are processed. So, if a signal has value 1, and a process assigns a value 0 and then a value 1 to the signal within
the same delta cycle, the callback will not be executed. If a data object with dynamic extensions has value 1, and
a process assigns a value 0 and then a value 1 to the data object within the same delta cycle, the callback will be
executed twice. If an action should be taken only when a different value is assigned to the data object, the
callback function could be written to store the previous value and to ignore invocations when the new value is
the same as the previous value.

6.2 Transaction Recording
Simulation activity in a testbench is best recorded at the transaction level. Transaction recording is the act of

recording timing information and attribute information associated with transactions into the database. This
information can be used to visualize simulation activities, debug, perform coverage analysis, and do other tasks.
Similar to the way synchronization (such as sc_semaphore) is organized in SystemC 2.0, the SystemC
Verification Standard uses a two-layer approach:

• Manual transaction recording: One set of core APIs in the standard with sufficient expressiveness

for various styles of transaction recording.
• Automatic/assisted transaction recording: Multiple sets of convenience APIs, built on top of

manual transaction recording, each simplifying the use model in a specific style of transaction
recording.

The current specification contains the manual transaction recording API. We are still discussing various ways

of doing automatic or assisted transaction recording. The SystemC Verification Standard probably needs to
include several specific styles that are commonly found in existing application domains, but the important part is
to make sure that manual transaction recording is expressive enough to support various non-standard transaction
recording styles.

Several styles of performing automatic or assisted transaction recording are summarized in the appendix.
Because we have not reached a conclusion, the information in the appendix is provided for reference and
archive, and to stimulate new ideas. The appendix should not be considered as part of the SystemC Verification
Standard.

6.2.1 The Architecture

The manual transaction recording API contains three major classes, scv_tr_db, scv_tr_stream, and
scv_tr_generator. These classes are independent of the actual database format that is used in the simulation.
Callback registrations are used to connect a specific database to the transaction recording facility. The main
reason for using callbacks is to address the following requirements:

• Support multiple databases in a single simulation.
• Enable proprietary databases to connect to any SystemC implementation.
• Be generic enough to support multiple styles and degrees of automation.
• Avoid unnecessary processing at simulation run-time.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 48

Partitioning the facility into three classes provides a flexible architecture to support different styles of

transaction recording. The responsibilities of the three classes are summarized in the following table:

Class Description Analogy Strategy
scv_tr_db A transaction database

containing a collection
of transaction streams.

A directory
containing multiple
files.

Multiple instances
represent multiple
databases in a single
simulation.

scv_tr_stream A transaction stream
containing a collection
of related transactions.

A file containing a
collection of
records.

Each module or channel
may use zero, one, or
multiple streams to group
the transactions that are
being generated.

scv_tr_generator A transaction
generator for a specific
transaction type,
containing information
such as the transaction
type names, and
attribute names.

A form for entering
records of a specific
record type, asking
the user for
information about
individual fields.

Compile-time type
checking, optimization,
and preprocessing can be
performed with minimal
overhead in the creation
of individual transactions.

The scv_tr_db objects are typically (but not necessarily) instantiated within sc_main. These objects let users

open and close a transaction recording database, and suspend and resume transaction recording.
After instantiating the database objects, transaction streams and their associated transaction generators can be

created for each database, typically (but not necessarily) at elaboration time in the simulation, and typically as
member variables of a module or a channel.

class rw_pipelined_transactor : public pipelined_bus_ports, public rw_task_if {

public:

scv_tr_stream rw_stream;

scv_tr_generator< addr_t, data_t> read_gen;

scv_tr_generator< addr_t, data_t> write_gen;

SC_CTOR(rw_pipelined_transactor) :

 rw_stream("my_transactor"),

read_gen("read",rw_stream,"addr","data"),

write_gen("write",rw_stream,"addr","data") { ... }

 …

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 49

};

The scv_tr_stream objects are the primary means to group related transactions into the same area within your

database; a stream can have overlapping transactions. You can either create a transaction stream directly as a
class variable in your transactor, or pass the pointer of a transaction stream to a transactor during the elaboration
phase.

The scv_tr_stream constructor takes a string as the first argument, which will be used as the name for this
stream. The second argument is a string identifying the kind of stream to be created. You can use this argument
to tag the stream as a stream in a transactor, in a test, or in other scenarios. The final argument is the database
from which this stream will be created. If no database is provided, the default database will be obtained from the
global database configured via the static method set_default_db().

After instantiating the transaction streams, information about the kind of transactions in a stream can be
specified by using the scv_tr_generator template class. The template takes two optional template arguments; the
first argument is the type of attribute that (if specified) must be provided when a transaction is first initiated; and
the second argument is the type of attribute that (if specified) must be provided when a transaction is terminated.
Apart from the attribute types specified in the template arguments, special attributes can be added to the
transaction through the transaction handle, although it is typically slower to do so.

The arguments to the constructor of the template are the type names of the transactions, the transaction
stream to be recorded on, and the optional string names of the two optional attributes. If you create two
scv_tr_generator objects with exactly the same template parameters and the same constructor arguments, the
two objects refer to the same underlying core to generate the same kinds of transactions.

Once the generators are instantiated, a transaction can be created by calling appropriate methods in a
generator. The actual API to create transactions is described in a later section. Because string names are
processed during the construction of the generator, the library does not have to process the names again when
individual transactions are created. The types of the begin attributes and the end attributes are provided through
template parameters, enabling performance optimization with respect to the attributes that use template
specialization.

The actual code to record the information into a specific database can be connected to this facility by
registering a series of callbacks. Using this callback mechanism, a text-based database is provided with the
reference implementation. Individual tool vendors can configure the reference implementation and their
proprietary implementation to record to a different database just by changing or adding related callbacks.

This architecture satisfies the requirements that were listed earlier in this section:

• Multiple databases can be created by instantiating multiple scv_tr_db objects
• These four classes are independent of the actual database format that is used in the simulation.

Connection to a specific database format (open or proprietary) can be established through the use
of callback registrations, using static methods such as register_class_cb().

• This architecture provides a flexible use model and supports different styles and different degree of
automation. For example:
o One or more transaction streams (scv_tr_stream) can be instantiated as class variables within

the same module or channel. They can also be shared among multiple modules or channels;
o One or more transaction generators (scv_tr_generator) can be instantiated as class variables

within the same module or channel. They can also be instantiated on-the-fly, right before a
transaction is recorded. The former style is efficient, but the latter style allows more
automation.

o A transaction stream (scv_tr_stream) can have more than one associated transaction generator
(scv_tr_generator) with different transaction types and different attribute types. It also supports
the use model with specialized transaction streams that contain only one specific transaction
type with fixed attribute types.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 50

• The use of scv_tr_generator enables transactions to be generated efficiently without manipulating
transaction type strings, attribute names, and other common information about the transaction
types. The use of template parameters to specify attribute types in scv_tr_generator enables further
optimization through partial template specialization.

The following tables describe the API for the scv_tr_db class and scv_tr_stream class. The callback

registration methods are the main API for these classes. While similar callback registration methods are included
in the generator class, the generator class also includes the methods to generate and manipulate transactions, so
the API table for the generator class will be presented later in the section instead of here.

While EDA vendors can use these callbacks to connect the SystemC test bench to their proprietary database,
the SystemC user only need to learn about how to construct these objects. These classes also contain the
debugging interface discussed in Section 1.

These classes utilize a typedef defined in global scope:

typedef long scv_tr_relation_handle_t;

The scv_tr_db Class Description
scv_tr_db(
 const char * db_name,
 sc_time_uint = SC_FS
);

This constructor creates a database with the specified name and
the specified time scale.

static void set_default_db(scv_tr_db *); This static method sets the default database for subsequent
stream creations.

static scv_tr_db * get_default_ db(); This static method returns the database configured via
set_default_db().

void set_recording(bool); This method turns recording on and off (the default is on).
bool get_recording() const; This method returns true if recording is turned on for this

database.
enum callback_reason {
 CREATE,
 DELETE,
 SUSPEND,
 RESUME
};

This enumeration represents the situations in which callbacks
are executed.
CREATE: When a database is created.
DELETE: When a database is deleted.
SUSPEND: When the recording to a database is suspended.
RESUME: When the recording to a database is resumed.

typedef int callback_h; The scv_tr_db class has an associated type for the callback
handle. The reference implementation will implement it as an
integer. This handle can be used to remove a callback after it
has been registered.

typedef void callback_function(
 scv_tr_db&,
 callback_reason,
 void * user_data
);

This type defines the callback function that can be registered.

scv_tr_relation_handle_t create_relation(
 const char *relation_name
) const;

Create a new relation that can be established between two
transactions. If a relation with the specified name has already
been created, return the handle to that relation.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 51

const char *get_relation_name(
 scv_tr_relation_handle_t relation_handle
) const;

Get the name of the relation with the specified handle. Return
NULL if the handle does not refer to a valid relation.

static callback_h register_class_cb(
 callback_function *,
 void * user_data = 0
);

This method registers a callback to be executed whenever one
of the situations represented by callback_reason happens. The
callback function should examine the callback_reason that is
provided through the argument and take appropriate action.

static void remove_class_cb(callback_h); This method removes a callback from the database.

The scv_tr_stream Class Description
scv_tr_stream(
 const char * stream_name,
 const char * stream_kind,
 scv_tr_db * database
 = scv_tr_db::get_default_db()
);

This constructor creates a transaction stream with the
specified name in the specified database. The string for
stream_kind describes what kind of stream it is. For
example, you can use “transactor” for streams within any
transactor.

const char * get_stream_kind() const; This method returns the stream kind string supplied in the
argument of the constructor.

scv_tr_db * get_tr_db() const; This method returns the database associated with this stream.
enum callback_reason {
 CREATE,
 DELETE
};

This enumeration represents the situations in which the
callbacks are executed.
CREATE: When a stream is created.
DELETE: When a stream is deleted.

typedef int callback_h; The scv_tr_stream class has an associated type for the
callback handle. The reference implementation will
implement it as an integer. This handle can be used to
remove a callback after it has been registered.

typedef void callback_function(
 scv_tr_stream&,
 callback_reason,
 void * user_data
);

This type defines the callback function that can be registered.

static callback_h register_class_cb(
 callback_function *,
 void * user_data = 0
);

This method registers a callback to be executed whenever
one of the situations represented by callback_reason
happens. The callback function should examine the
callback_reason that is provided through the argument and
take appropriate action.

static void remove_class_cb(callback_h); This method removes a callback from the stream.

6.2.2 Generating Transactions

The design of the transaction generator is tightly related to the definition of transactions:

• A transaction is a collection of attribute values that are stored as a group in a transaction recording
database.

• Each transaction has a specific type (identified by a string), a specific start time, and a specific end
time,

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 52

• The attributes are classified as begin attributes, end attributes, and special attributes. These
attributes are all optional. The value of the begin attribute needs to be specified when you create a
transaction, and the value of the end attribute needs to be specified when you terminate a
transaction. Special attributes can be added as necessary between the begin time and the end time.

• A transaction can be related to another transaction. A relationship can be specified using a string
identifier, explicitly provided by users.

• Transactions can have a collection of built-in attributes that are automatically set by the
implementation. These include begin_time, end_time, and others. From the user point of view, a
test bench does not have to know that these attributes exist.

After considering various scenarios that may need transaction recording, we have identified the following

requirements for an API for the transaction generators:

• Able to record transactions at the exact time it starts and finishes (e.g. in a stimulus generator).
• Able to record transactions that started and/or finished in the past (e.g. in a monitor).
• Support overlapping transactions (for pipelined protocols and split protocols)

Recording Basic Transactions

Basic transactions can be created by the methods begin_transaction() and end_transaction() in the generator.
For example, the following code create a read transaction for each execution of the read() method.

data_t rw_pipelined_transactor::read(const addr_t * addr) {

 scv_tr_handle h = read_gen.begin_transaction(*addr);

 …

 if (special_case) h.record_attribute(“special attribute”, special_attribute);

 read_gen.end_transaction(h, data);

 return data;

 }

This basic usage of the three methods in the generator creates a transaction that begins at the time when
begin_transaction() is executed, and ends at the time when end_transaction() is executed. The separation of the
begin attribute and end attribute fits nicely into this method with one argument and one return value. Concurrent
execution of the read() method will generate overlapping read transactions, and users can add appropriate
synchronization among concurrent threads to control how much overlapping is allowed in their test benches.

Because there might be multiple outstanding transactions at a given time, a transaction handle is used to
match the calls to begin_transaction() and end_transaction() so that appropriate transactions can be terminated.
After a transaction is terminated, the handle is still valid, allowing it to be used, for example, to specify
relationships among transactions, as described later in this section. The run-time information about the
transaction is deleted when all handles to the specific transaction go out of scope.

Through the template parameters of the generator, compile-time type-checking can be performed on these
methods to make sure the user has passed in begin and end attributes with the correct types. Recording these
attributes when the library creates or terminates a transaction allows more optimization than using the special
attributes to implement the begin and end attributes.

When additional attributes are recorded using record_attribute(), an explicit name must be provided. Each
attribute of a transaction is considered to have one valid value. This is the last value recorded for the attribute for
a given transaction. If multiple record_attribute calls are made with the same attribute name on a transaction,

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 53

this is equivalent to a glitch. The last value is considered the good value. It is up to the scv_tr database writer
implementation whether to store the glitch values or not. However, the last value must be stored for any
implementation1.

All applicable attribute types must have a data introspection extension so that SystemC can extract the right
values from the variables and store them into the database. During recording, pointer fields in a composite type
are not traversed, so that the size of the attribute is constant across multiple transactions of the same transaction
type. In the future, if there is a demand, we may decide to add in the capability to traverse pointers, probably
enabled through an optional argument to the generator.

Taking the example in Section 3, we can illustrate how transactions can be recorded in a design with a
pipelined interface. A transactor for a pipelined bus with at most two outstanding transactions can be modeled as
follows:

class rw_pipelined_transactor : public pipelined_bus_ports, public rw_task_if {

public:

fifo_mutex address_phase;

fifo_mutex data_phase;

scv_tr_stream pipelined_stream;

scv_tr_generator< addr_t, data_t > read_gen;

scv_tr_generator< addr_t, data_t > write_gen;

...

virtual data_t read(addr_t * addr) {

address_phase.lock();

scv_tr_handle h = read_gen.begin_transaction(*addr);

...// Address phase

addr_phase.unlock();

data_phase.lock();

...// Data phase

read_gen.end_transaction(h, data);

data_phase.unlock();

return data;

}

};

If there are two concurrent threads calling read() at the same time, the following transactions will be

generated in the database.

1 According to the definition of a transaction, each attribute has only one value. If we store all specified values, together
with the exact time such values are recorded, we will incur the full overhead of signal recording, and change our definition
of a transaction.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 54

Advanced Transaction Recording

In order to support monitor-style transaction recording, variants of the begin_transaction() and

end_transaction() methods are included for specifying transactions that started and terminated in the past. This
variant takes an extra argument to specify the exact time at which the transaction has begun or ended. The value
of this extra argument must indicate a time in the past so that the database can be implemented efficiently. It is a
run-time error if the supplied time argument is in the future.

The ability to specify transaction relationships is important to facilitate debugging in terms of transactions. It
enables recording of causal relationships among the activities in the simulation. For example, the following
example creates a transaction for each phase of the pipeline. A transaction relationship is a natural way to link
the related transactions together.

class rw_pipelined_transactor : public pipelined_bus_ports, public rw_task_if {

public:

…

scv_tr_stream addr_stream;

scv_tr_stream data_stream;

scv_tr_generator< addr_t > addr_gen;

scv_tr_generator< data_t > data_gen;

SC_CTOR(my_transactor)

: ...

addr_gen("addr",addr_stream,"addr"),

data_gen("data",data_stream, "data") { ... }

virtual data_t read(addr_t * addr) {

address_phase.lock();

scv_tr_handle h = read_gen.begin_transaction(*addr);

scv_tr_handle h1 = addr_gen.begin_transaction(*addr, “addr_phase”, h);

...// Address phase

addr_gen.end_transaction(h1);

addr_phase.unlock();

data_phase.lock();

scv_tr_handle h2 = data_gen.begin_transaction(“data_phase”,h);

...// Data phase

data_gen.end(h2,data);

read_gen.end_transaction(h, data);

data_phase.unlock();

return data;

 }

};

This code will generate the following transactions in the database:

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 55

The following tables describe the API for the scv_tr_generator template class (and its base class

scv_tr_generator_base) and scv_tr_handle class. While EDA vendors can use these callbacks to connect the
SystemC test bench to their proprietary database, the SystemC user only needs to learn about how to create
transactions. These classes also contain the debugging interface discussed in Section 1.

The scv_tr_generator_base Class Description
scv_tr_stream * get_tr_stream() const; This method returns the transaction stream associated with

this generator.
const char * get_begin_attribute_name()
const;

This method returns the name of the begin attributes.

const char *
get_end_attribute_name() const;

This method returns the name of the end attributes.

enum callback_reason {
 CREATE,
 DELETE
};

This enumeration represents the situations in which the
callbacks are executed.
CREATE: When a generator is created.
DELETE: When a generator is deleted.

typedef int callback_h; The scv_tr_generator_base class has an associated type for
the callback handle. The reference implementation will
implement it as an integer. This handle can be used to
remove a callback after it has been registered.

typedef void callback_function(
 scv_tr_generator&,
 callback_reason,
 void * user_data
);

This type defines the callback function that can be
registered.

static callback_h register_class_cb(
 callback_function *,
 void * user_data = 0
);

This method registers a callback to be executed whenever
one of the situations represented by callback_reason
happens. The callback function should examine the
callback_reason that is provided through the argument and
take appropriate action.

static void remove_class_cb(callback_h); This method removes a callback from the generator.

The scv_tr_generator Template Class Description

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 56

template<typename begin_type, typename end_type>
class scv_tr_generator;

A transaction generator is a template with two
optional parameters, representing the types of the
begin attribute and the end attribute.

scv_tr_generator(
 const char * transaction_type_name,
 scv_tr_stream&,
 const char * begin_attribute_name = 0,
 const char * end_attribute_name = 0
);

This constructor creates a generator with the
specified name and stream. The names of the begin
attribute and the end attribute can be supplied as
optional arguments.

scv_tr_handle begin_transaction(); This method creates a new transaction without a
begin attribute, starting at the current time.

scv_tr_handle begin_transaction(
 const begin_type&
);

This method creates a new transaction with the
specified begin attribute, starting at the current time.

scv_tr_handle begin_transaction(
 const sc_time& begin_time
);

This method creates a new transaction without a
begin attribute, starting in the past as specified in the
argument.

scv_tr_handle begin_transaction(
 const begin_type&,
 const sc_time& begin_time
);

This method creates a new transaction with the
specified begin attribute, starting in the past as
specified in the argument.

scv_tr_handle begin_transaction(
 const char * relation_name,
 const scv_tr_handle&
);

This method creates a new transaction without a
begin attribute, starting at the current time.
The two arguments specify a transaction relationship
with another existing transaction. By providing this
information in the same call as begin_transaction()
(instead of a separate call to add_relation()), more
optimization can be achieved.

scv_tr_handle begin_transaction(
 scv_tr_relation_handle_t relation_handle,
 const scv_tr_handle&
);

This method creates a new transaction without a
begin attribute, starting at the current time.
The two arguments specify a transaction relationship
with another existing transaction. By providing this
information in the same call as begin_transaction()
(instead of a separate call to add_relation()), more
optimization can be achieved. Identifying the
relation by handle rather than by name is still more
efficient.

scv_tr_handle begin_transaction(
 const begin_type&,
 const char * relation_name,
 const scv_tr_handle&
);

This method creates a new transaction with the
specified begin attribute, starting at the current time.
The last two arguments specify a transaction
relationship with another existing transaction.

scv_tr_handle begin_transaction(
 const begin_type&,
 scv_tr_relation_handle_t relation_handle,
 const scv_tr_handle&
);

This method creates a new transaction with the
specified begin attribute, starting at the current time.
The last two arguments specify a transaction
relationship with another existing transaction.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 57

scv_tr_handle begin_transaction(
 const sc_time&,
 const char * relation_name,
 const scv_tr_handle&
);

This method creates a new transaction without a
begin attribute, starting in the past as specified in the
argument.
The last two arguments specify a transaction
relationship with another existing transaction.

scv_tr_handle begin_transaction(
 const sc_time&,
 scv_tr_relation_handle_t relation_handle,
 const scv_tr_handle&
);

This method creates a new transaction without a
begin attribute, starting in the past as specified in the
argument.
The last two arguments specify a transaction
relationship with another existing transaction

scv_tr_handle begin_transaction(
 const begin_type&,
 const sc_time&,
 const char * relation_name,
 const scv_tr_handle&
);

This method creates a new transaction with the
specified begin attribute, starting in the past as
specified in the argument.
The last two arguments specify a transaction
relationship with another existing transaction.

scv_tr_handle begin_transaction(
 const begin_type&,
 const sc_time&,
 scv_tr_relation_handle_t relation_handle,
 const scv_tr_handle&
);

This method creates a new transaction with the
specified begin attribute, starting in the past as
specified in the argument.
The last two arguments specify a transaction
relationship with another existing transaction.

void end_transaction(
 const scv_tr_handle&
);

This method terminates a transaction without an end
attribute, ending at the current time.

void end_transaction(
 const scv_tr_handle&,
 const end_type&
);

This method terminates a transaction with the
specified end attribute, ending at the current time.

void end_transaction(
 const scv_tr_handle&,
 const sc_time&
);

This method terminates a transaction without an end
attribute, ending in the past as specified in the
argument.

void end_transaction(
 const scv_tr_handle&,
 const end_type&,
 const sc_time&
);

This method terminates a transaction with the
specified end attribute, ending in the past as specified
in the argument.

The scv_tr_handle Class Description
scv_tr_handle(); The default constructor to create a place-holder for a

transaction.
scv_tr_handle(const scv_tr_handle&); The copy constructor.
scv_tr_handle& operator=(const scv_tr_handle&); The assignment operator.
scv_tr_stream * get_tr_stream() const; This method returns the stream associated with this

transaction.
scv_tr_generator_base * get_tr_generator() const; This method returns the generator associated with this

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 58

transaction.
bool is_valid() const; This method returns true if this handle refers to a valid

transaction.
bool is_active() const; This method returns true if this handle refers to a valid

transaction that has not been terminated.
long long get_id() const; This method returns a integer id for this transaction that

is unique throughout the entire simulation
template<typename T> void record_attribute(
 const char * attribute_name,
 const T& attribute_value
);

This method records a special attribute.

template<typename T> void record_attribute(
 const T& attribute_value
);

This method records a special attribute. It can be used
for attribute_value types which have scv_extensions that
include the name of the object.

void add_relation(
 const char * relation_name,
 const scv_tr_handle&
);

This method specifies a transaction relationship between
the current transaction and the specified transaction.

void add_relation(
 scv_tr_relation_handle_t relation_handle,
 const scv_tr_handle& transaction_handle
);

This method specifies a transaction relationship between
the current transaction and the specified transaction

scv_extensions_if * get_begin_exts() const; This method returns the extension of the begin attribute.
scv_extensions_if * get_end_exts() const; This method returns the extension of the end attribute.
const scv_tr_handle
*get_immediate_related_transaction(
 scv_tr_relation_handle_t * relation_handle_p
);

If a related transaction is specified at the beginning of a
new transaction, then this method returns the other
related transaction and the relation_handle. Else it
returns NULL.

enum callback_reason {
 BEGIN,
 END,
 DELETE
};

This enumeration represents the situations in which the
callbacks are executed.
BEGIN: When a transaction is created.
END: When a transaction is terminated.
DELETE: When all related handles for a specific
transaction have gone out of scope.

typedef int callback_h; This class has an associated type for the callback handle.
The reference implementation will implement it as an
integer. This handle can be used to remove a callback
after it has been registered.

typedef void callback_function(
 scv_tr_handle&,
 callback_reason,
 void * user_data
);

This type defines the callback function that can be
registered.

static callback_h register_class_cb(
 callback_function *,
 void * user_data = 0
);

This method registers a callback to be executed
whenever one of the situations represented by
callback_reason happens. The callback function should
examine the callback_reason that is provided through the
argument and take appropriate action.

typedef void callback_special_attribute_function(This type defines the callback function that can be
registered for the special attributes.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 59

 scv_tr_handle&,
 const char * attribute_name,
 scv_extensions_if * attribute_value,
 void * user_data
);
static callback_h register_special_attribute_cb(
 callback_special_attribute_function *,
 void * user_data = 0
);

This method registers a callback to be executed
whenever a special attribute is specified for a specific
transaction.

typedef void callback_relation_function(
 scv_tr_handle&,
 scv_tr_handle&,
 void * user_data,
 scv_tr_relation_handle_t relation_handle
);

This type defines the callback function that can be
registered for a transaction relationship.

static callback_h register_relation_cb(
 callback_relation_function *,
 void * user_data = 0
);

This method registers a callback to be executed
whenever a transaction relationship is specified on two
specific transactions.

static void remove_class_cb(callback_h); This method removes a callback from the list of
callbacks registered through the static methods for
scv_tr_handle.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 60

7 Miscellaneous Supporting Facilities
There are several smaller facilities that we have found useful for supporting test bench creation, verification

IP creation, and debugging. They are described in this section.

7.1 HDL Connection
The SystemC Verification Standard enables the use of SystemC to create testbenches. We would like such

testbenches to be able to simulate both SystemC designs and HDL designs. As a result, HDL connection in
SystemC is an important prerequisite to the Verification Standard. Because it is not currently in the SystemC
standard, the SystemC Verification Standard contains a basic API to enable such use models. The intent of this
API is to not impose any requirement that cannot be met through standard interfaces for connection to an HDL
simulator, such as PLI, VPI, and VHPI.

An elaborated API for HDL connection is out of the scope of the current SystemC Verification Standard
specification. Specifically, the current specification does not handle connection to a bit-slice of an HDL signal,
a Verilog memory, or a Verilog memory element. It does not allow forcing an HDL resolved signal to a specific
value or releasing it from the SystemC code. This specification does not cover the ability of directly
instantiating HDL modules in SystemC or vice versa. It merely assumes that the SystemC design hierarchy and
the HDL design hierarchy are in the same simulation executable, but neither is directly aware of the other. This
API assumes an integration between SystemC and the HDL simulator that performs synchronization at the delta
cycle level and that maintains a single global time. Such a tight integration is necessary to handle common
design scenarios, such as the case where a register is instantiated in SystemC and a register is instantiated in
HDL, and they are cross coupled and are driven by a common clock. All conforming implementations of the
scv_connect() calls must properly simulate the design just described.

The following table describes the SystemC Verification Standard API for HDL connection:

Basic HDL Connection API Description
enum scv_hdl_direction {
 SCV_INPUT = 1,
 SCV_OUTPUT = 2
};

This enumeration represents the possible
directions of the connection
• SCV_INPUT: HDL is the only driver
• SCV_OUTPUT: SystemC is the only

driver

template < typename T> void scv_connect(
 sc_signal<T> & signal,
 const char * hdl_signal,
 scv_hdl_direction d = SCV_OUTPUT,
 unsigned hdl_sim_inst = 0
);

This function connects an sc_signal object
to an HDL signal.
The hdl_sim_inst argument supports the
scenario where multiple HDL simulator
instances are combined in one overall
simulation. Its value indicates which HDL
simulator instance the signal should be
connected to. The value 0 indicates the
default simulator if there is only one HDL
simulator. The value 1 indicates the first
instance of a Verilog simulator. The value
2 indicates the first instance of a VHDL
simulator. The meaning for values larger
then 2 are vendor/simulator dependent.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 61

void scv_connect(
 sc_signal_resolved& signal,
 const char * hdl_signal,
 scv_hdl_direction d = SCV_OUTPUT,
 unsigned hdl_sim_inst = 0
);

This function connects an
sc_signal_resolved object to an HDL
signal.

template < int W> void scv_connect(
 sc_signal_rv<W>& signal,
 const char * hdl_signal,
 scv_hdl_direction d = SCV_OUTPUT,
 unsigned hdl_sim_inst = 0
);

This function connects an sc_signal_rv
object to an HDL signal.

The current specification only support SCV_INPUT and SCV_OUTPUT, but not a bi-directional connection.

This is because bi-directional connections cannot be implemented with existing standards such as PLI, and the
semantics related to such a connection is unclear. In the future, we may add SCV_INOUT to the
scv_hdl_direction enumeration with a well-defined semantic.

The connection must be made during the elaboration phase (before sc_initialize() or sc_start()). A SystemC
signal can only be connected to one HDL signal, and similarly a HDL signal can only be connected to one
SystemC signal. These APIs are similar to those for out-of-module references in Verilog. The format of the
HDL signal string must adhere to the specific HDL language domain within which the HDL signal resides.

• When a connection is made using SCV_OUTPUT, the SystemC signal controls the propagation of

values. When the value is assigned to the SystemC signal, the value is propagated to the HDL
signal. The behavior is undefined if a new value is assigned to the HDL signal from the HDL
description.

When sc_signal<T> is used in SystemC 2.0, there is no resolution of values when multiple SystemC drivers
try to write to the SystemC signal; the last assignment wins. When sc_signal_resolved or sc_signal_rv<W>
is used, resolution according to the SystemC semantic is performed before the value is propagated to the
HDL signals.

• When a connection is made using SCV_INPUT, the HDL signal controls the propagation of values.

When the value is assigned to the HDL signal, the value is propagated to the SystemC signal. It is
an error if a new value is assigned to the SystemC signal from the C++ code.

The HDL connection can connect signals with compatible types, as specified in the following tables. If the
type is not compatible according to the table, an error should be reported. A warning will be reported if a
connection is being made between an unsigned type and a signed type, such as a connection between unsigned
bit vector in Verilog and sc_int<W> in SystemC.

Verilog SystemC

scalar sc_bit, sc_logic, sc_signal_resolved.
bit vector of size W (both sc_bv<W>, sc_lv<W>, sc_int<W>, sc_uint<W>, sc_bigint<W>,

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 62

signed and unsigned) sc_biguint<W> sc_signal_rv<W>.
integer sc_int<32>

VHDL SystemC
bit, std_logic, std_ulogic sc_bit, sc_logic, sc_signal_resolved.
bit vector, std_ulogic_vector of size W,
std_logic_vector of size W.

sc_bv<W>, sc_lv<W>, sc_int<W>, sc_uint<W>, sc_bigint<W>,
sc_biguint<W>, sc_signal_rv<W>.

In all cases, it is legal to bind a vector of length one to a scalar.
The HDL connection must be performed on these types of HDL signals only. It is an error to connect to a bit-

slice of an HDL signal, a Verilog memory, or a Verilog memory element.
In the reference implementation of SystemC without an HDL simulator, these functions will be implemented

as place-holders and will not actually do anything. It will be up to individual EDA vendors to integrate this
interface to their HDL simulator.

7.2 Sparse Array
The SystemC Verification Standard contains several generic data structures. For example, in Section 5.4, a

bag is used to describe a weighted distribution for the randomization facility.
One of the requirements from the Verification Working Group is to support memory modeling in multiple

levels of abstraction. Similarly, it is natural for people to ask for other kinds of verification IP. We propose to
include a set of frequently-used data structures in the standard to facilitate, for example, modeling of memory as
a sparse array. It is the responsibility of IP vendors to provide other models in other abstraction levels.

Because SystemC 2.0 and the SystemC Verification Standard are in C++, users can use the C++ standard
template library (or the Microsoft Foundation Classes if they are using Visual C++) for many frequently-used
data structures. In order to support memory modeling, the SystemC Verification Standard includes a sparse
array, which can be regarded as a memory-efficient representation of a memory at the highest level of
abstraction.

The scv_sparse_array Template Class Description
template<typename I, typename T> class scv_sparse_array; This template represents a sparse array

indexed by an integer. The type of the
index is I, and the type of each array
element is T. The supported index types
are C/C++ integer types and SystemC
integer types.

scv_sparse_array::scv_sparse_array(
 const char * name = 0,
 const T& default_value = T(),
 const I& lowerbound, const I& upperbound,
);

A constructor with an object name, a
default value for the array elements, and
the upper and lower bound of the indices.

scv_sparse_array::scv_sparse_array(
 const scv_sparse_array& other, const char * name = 0
);

The copy constructor

scv_sparse_array& scv_sparse_array::operator=(
 const scv_sparse_array&
);

The assignment operator.

const T& scv_sparse_array::operator[] (const I& i) const; This operator returns the element

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 63

corresponding to the index i.
T& scv_sparse_array::operator[] (const I& i); This operator returns the element

corresponding to the index i.

7.3 Exception Handling
Exception handling is an important element in verification. The purpose of a test bench is to find bugs in a

design, and bugs can be reported as exceptions. Because verification IP also needs to report errors to the user,
the SystemC Verification Standard includes an API from which the SystemC implementations, current and
future SystemC extensions, verification IP, SystemC designs, and SystemC test benches can report exceptions.
In doing so, a SystemC implementation can generate a summary of all exceptions reported through the standard
API, and pass it to other tools for analysis.

The basic exception-handling facility already in SystemC version 2.0.1 allows the reference implementation
to report errors in a consistent way. The new API presented here extends such an effort to provide a facility that
is more configurable and has the ability to report user-specified exceptions.

This facility is captured in a scv_report and scv_report_handler classes, with the following goals:

• It must be very similar to the existing SystemC 2.0.1 sc_report facility, so that it can easily be
merged with it with very little impact on existing SystemC code.

• It must be highly configurable so that users can precisely control the actions that the exception
facility will undertake when different kinds of exceptions occur.

• It must be precisely configurable to support both C++ style exception actions (throw/catch) as well
as C-style exception actions (similar to POSIX “perror()”).

• It must allow any number of other libraries or user models to easily use the same exception API.
(As an example, the existing exception API in SystemC 2.0.1 makes this difficult because its
message IDs are integers with pre-defined values. Preventing ID clashes between different libraries
or models that have been independently developed is thus difficult.) By having all libraries and
models use the same exception API, exceptions can be reported to the user in a consistent way.

This new exception handling API will also be available in SystemC 2.1, as sc_report and sc_report_handler.

At that point, the SystemC Verification Library will use the SystemC implementation of the API instead of its
own. We will include typedefs so that scv_report and scv_report_handler can still be used (but they’ll refer to
the corresponding SystemC classes).

An occurrence of an exception is hereafter referred to as a report. The scv_severity enum is used to classify

the severity of a report:

The scv_severity enum Description
enum scv_severity {
 SCV_INFO = 0,
 SCV_WARNING,
 SCV_ERROR,
 SCV_FATAL
};

This enumeration describes the severity of a report.
• SCV_INFO: The report is informative

only.
• SCV_WARNING: The report indicates

a potentially incorrect condition.
• SCV_ERROR: The report indicates a

definite problem during execution.
• SCV_FATAL: The report indicates a

problem which cannot be recovered

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 64

from. By default, the simulation is
terminated immediately after reporting
a SCV_FATAL report.

It is the job of the exception package to determine what actions to take when a report occurs. For a given

report, typically multiple actions are taken. The scv_actions type is used to specify most of the actions that the
exception API can take for a report. There are several predefined values:

• SCV_UNSPECIFIED: Take the action specified by a configuration rule of lower precedence. (see

the description of the set_action() methods below about precedence.)
• SCV_DO_NOTHING: Don’t take any actions for the report.
• SCV_THROW: Throw a C++ exception that represents the report.
• SCV_LOG: Print the report into the report log, typically a file on disk.
• SCV_DISPLAY: Display the report to the screen, typically by printing to “cout”.
• SCV_CACHE_REPORT: Save the report into a cache so that calling code can interrogate it

(similar to POSIX perror()).
• SCV_STOP: Call sc_stop(). No further simulation can be done, but the simulator remains “in

control”. Simulator GUI stays alive and available. On exit all normal cleanup code, manual
destructors, etc. are executed.

• SCV_ABORT: Call abort().
• SCV_INTERRUPT: Interrupt simulation if simulation is not being run in batch mode.

Each exception report can be configured to take one or more scv_actions. Multiple actions can be specified

using bit-wise OR. When SCV_DO_NOTHING is combined with any thing other than SCV_UNSPECIFIED,
the bit is ignored by the facility. Please see later discussion for an example.

In addition to the actions specified via scv_actions, the exception API also can take two additional actions.
The first action is always taken: the sc_stop_here() function is called for every report, thus providing users a
convenient location to set breakpoints to detect error reports, warning reports, etc. The second action that can be
taken is to immediately abort the simulation (via sc_stop()). The stop action is configured via the stop_after()
method described below, which allows users to set specific limits on the number of reports of various types that
will cause simulation to abort.

For the SCV_CACHE_REPORT feature to work reliably in the presence of multiple SystemC threads, it
seems necessary that thread-specific storage be used to cache reports. Perhaps a single sc_attribute on a process
can be used for this purpose.

The SystemC 2.0.1 exception API uses integer IDs to classify various message types of reports. We have
decided to switch from an integer ID to a simple literal character string ID in the new exception API, because it
is difficult to avoid ID clashes with independently developed libraries and models if integer IDs are used. Using
string IDs greatly reduces the chances of a clash and also allows the ID itself to provide useful description and
classification information to the user. The new API uses the following typedef for message types:

typedef const char * scv_msg_type;

In the SystemC 2.0.1 exception package, all of the possible message IDs needed to be pre-registered with the
exception package prior to any generation of reports. In the new API, no pre-registration is used since this is
unnecessary and it is error-prone if pre-registration is not optional.

The exception API is contained within the scv_report and scv_report_handler classes.

The scv_report_handler Class Description

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 65

static void set_handler(
 void (*handler)(
 const scv_report&, const scv_actions&
) = 0
);

Specify an alternate report handler. You can revert
to the default handler by passing in 0. If an
alternate handler has been specified,
scv_report_handler::report() calls it after looking
up the scv_action based on the msg_type and
severity. The alternate handler can pass control
back to the default handler by calling
scv_report_handler::default_handler().

static scv_actions set_actions(
 scv_severity severity,
 scv_actions actions = SCV_UNSPECIFIED
);

Configure the set of actions to take for reports of
the given severity. (Lowest precedence match.)
The previous actions set for this severity is returned
as the result. SCV_UNSPECIFIED is returned if
there was no previous actions set for this severity.

static scv_actions set_actions(
 scv_msg_type msg_type,
 scv_actions actions = SCV_UNSPECIFIED);

Configure the set of actions to take for reports of
the given message type. (Middle precedence
match.) The previous actions set for this message
type is returned as the result. SCV_UNSPECIFIED
is returned if there was no previous actions set for
this message type.

static scv_actions set_actions(
 scv_msg_type msg_type,
 scv_severity severity,
 scv_actions actions = SCV_UNSPECIFIED
);

Configure the set of actions to take for reports
having both the given message type and severity.
(Highest precedence match.) The previous actions
set for this message type and severity is returned
as the result. SCV_UNSPECIFIED is returned if
there was no previous actions set for this message
type and severity

static int stop_after(
 scv_severity severity,
 int limit = -1
);

Call sc_stop() after encountering limit number of
reports of the given severity. (Lowest precedence
match.) If limit is set to one, the first occurrence of
a matching report will cause the stop action. If limit
is 0, stop action will never be taken due to a
matching report. If limit is negative, stop action
will never be taken for non-fatal error, and stop
action will be taken for the first occurrence of a
fatal error. The previous limit for this severity is
returned as the result. The stop_after() call will
return UINT_MAX in the case where no previous
corresponding stop_after() call was made.

static int stop_after(
 scv_msg_type msg_type,
 int limit = -1
);

Call sc_stop() after encountering limit number of
reports of the given message type. (Middle
precedence match.) The previous limit for this
message type is returned as the result. If limit is 0,
stop action will never be taken due to a matching
report. If limit is negative, the limit specified by a
lower precedence rule is used. The stop_after() call
will return UINT_MAX in the case where no
previous corresponding stop_after() call was made.

static int stop_after(
 scv_msg_type msg_type,
 scv_severity severity,
 int limit = -1
);

Call sc_stop() after encountering limit number of
reports having both the given message type and
severity. (Highest precedence match.) If limit is 0,
stop action will never be taken due to a matching
report. If limit is negative, the limit specified by a
lower precedence rule is used. The previous limit
for this message type and severity is returned as the
result. The stop_after() call will return UINT_MAX
in the case where no previous corresponding

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 66

stop_after() call was made.

static scv_actions suppress(scv_actions actions); Suppress specified actions for subsequent reports
regardless of configuration and clears previous
calls to suppress(). The return value is the actions
that were suppressed prior to this call.

static scv_actions suppress(); Restore default behavior by clearing previous calls
to suppress(). The return value is the actions that
were suppressed prior to this call.

static scv_actions force(scv_actions actions); Force specified actions to be taken for subsequent
reports in addition to the actions specified in the
current configuration and clears previous calls to
force(). The return value is the actions that were
forced prior to this call

static scv_actions force(); Restore default behavior by clearing previous calls
to force(). The return value is the actions that were
forced prior to this call.

static scv_actions get_new_action_id(); Return an unused scv_actions value. Returns a
different value each time it is called (returns
SCV_UNSPECIFIED if no more unique values are
available). Used when establishing user-defined
actions, interpreted by a non-default report handler.

static const char *get_log_file_name(); Return the log file name currently in effect.
static void set_log_file_name(const char *name); Set the log file name. The log file name in effect

when the first log entry is made determines the
actual name of the log file. Once the log file has
been created, subsequent calls to
set_log_file_name() are ignored.

static void report(
 scv_severity severity,
 scv_msg_type msg_type,
 const char * msg,
 const char *file, int line
);

Generate a report instance, which will cause the
exception package to take the appropriate actions
based on the current configuration.

static void default_handler(
 const scv_report& report,
 const scv_action& action
);

Generate a report instance, but always use the
default report handler (ignore calls to
set_handler()). This method is used in alternate
message handlers to pass messages on to the
default handler.

static const scv_report* get_cached_report(); Return pointer to cached report available for the
current process if one is available.

static void clear_cached_report(); Clear cached report for the current process (if any).

 The force() and suppress() methods provide a brute-force way to override the current configuration. For

example, force(SCV_LOG) could be called during debugging to cause all reports to be logged regardless of the
current configuration. As another example, “scv_actions prev = suppress(); suppress(prev | SCV_THROW);”
could be called by code that is not C++ throw-safe when it starts execution, and then suppress(prev) would be
called when it completes execution. To avoid affecting other threads that are executing other code, the above
suppress() calls would need to be made without any intervening wait() statements.

If no calls to stop_after(SCV_FATAL, ..) are made, or if no stop_after(SCV_FATAL, ..) rules are currently
in effect, then the default behavior of the exception API will be to call sc_stop() after the occurrence of the first
fatal error. When the exception API is to take an abort action, it will first take all other actions that are in effect
for the report (e.g. SCV_LOG, SCV_DISPLAY) and then it will abort without performing a throw action.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 67

Once set_handler() is called to establish a separate handler for one or more reports, none of the usual
processing for these reports (logging, fatal error counting, etc.) takes place, unless the new handler calls
default_handler().

The scv_report Class Description
scv_severity get_severity() const; Get severity of a report object.
const char* get_msg_type() const; Get message type of a report object.
const char* get_msg() const; Get message contents of a report object.
const char* get_file_name() const; Get file name that generated report object.
int get_line_number() const; Get line number that generated report object.
sc_time get_time() const; Get the simulation time that report object was

generated.
const char* get_process_name() const; Get the process name that generated the report

object.

When a report is logged to a file, the current simulation time and current process name will automatically be

included within the report, similar to the sc_report_handler::compose_message() method within the existing
SystemC 2.0.1 API.

An implementation of the SystemC Verification Standard can decide what the actions are initially set to. For
example, an implementation may implement the system defaults as follows:

// These four constants are globally visible:

const scv_actions SCV_DEFAULT_INFO_ACTIONS = SCV_LOG;

const scv_actions SCV_DEFAULT_WARNING_ACTIONS = SCV_LOG | SCV_DISPLAY;

const scv_actions SCV_DEFAULT_ERROR_ACTIONS

= SCV_LOG | SCV_DISPLAY | SCV_CACHE_REPORT | SCV_THROW;

const scv_actions SCV_DEFAULT_FATAL_ACTIONS

= SCV_LOG | SCV_DISPLAY | SCV_CACHE_REPORT | SCV_THROW;

void scv_report_handler::initialize() {

// actions for each severity level must be present in initialize()

set_actions(SCV_INFO, SCV_DEFAULT_INFO_ACTIONS);

set_actions(SCV_WARNING, SCV_DEFAULT_WARNING_ACTIONS);

set_actions(SCV_ERROR, SCV_DEFAULT_ERROR_ACTIONS);

set_actions(SCV_FATAL, SCV_DEFAULT_FATAL_ACTIONS);

// other actions for messages reported from the SystemC Verification

// library may also be specified here.

set_actions(“SCV_CONFIGURATION_REPORT”, SCV_LOG | SCV_DISPLAY);

}

The following macros are globally visible as part of the standard and should be used to generate reports:

#define SCV_REPORT_INFO(msg_type, msg) \

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 68

scv_report_handler::report(SCV_INFO, msg_type, msg, __FILE__, __LINE__)

#define SCV_REPORT_WARNING(msg_type, msg) \

scv_report_handler::report(SCV_WARNING, msg_type, msg, __FILE__, __LINE__)

#define SCV_REPORT_ERROR(msg_type, msg) \

scv_report_handler::report(SCV_ERROR, msg_type, msg, __FILE__, __LINE__)

#define SCV_REPORT_FATAL(msg_type, msg) \

scv_report_handler::report(SCV_FATAL, msg_type, msg, __FILE__, __LINE__)

The following example illustrates how the exception API might be custom configured and how reports are

generated. Note that message types are best captured within one or more header files, where they are declared
using #define macros. This technique insures that strings representing message types are only declared once and
that any typos that might occur when message types are specified in the SCV_REPORT_* macros are caught by
the compiler.

const char *SCV_RPT_INVALID_THREAD_HANDLE = "SCV invalid thread handle";

const char *PCI_RPT_PROTOCOL_EXCEPTION = "PCI Protocol Exception";

const char *PCI_RPT_PROTOCOL_READ_RETRY = "PCI Read Retry";

sc_main() {

// Custom configure the exception package:

scv_report_handler::stop_after(SCV_ERROR, 10);

scv_report_handler::set_actions(PCI_RPT_PROTOCOL_READ_RETRY, SCV_DO_NOTHING);

// PCI_RPT_PROTOCOL_READ_RETRY reports will now be completely ignored…

sc_start(1, SC_MS);

scv_report_handler::set_actions(PCI_RPT_PROTOCOL_READ_RETRY, SCV_DISPLAY);

// PCI_RPT_PROTOCOL_READ_RETRY reports will now be displayed to the screen

sc_start(1, SC_MS);

scv_report_handler::set_actions(PCI_RPT_PROTOCOL_READ_RETRY);

// SCV_REPORT_INFO(PCI_RPT_PROTOCOL_READ_RETRY, …) reports will now

// be configured to SCV_UNSPECIFIED. Therefore, a lower precedence

// rule applies and the actions in SCV_DEFAULT_INFO_ACTIONS will take

// effect for PCI_RPT_PROTOCOL_READ_RETRY . Note that we do not go back

// to the previous SCV_DO_NOTHING action for PCI_RPT_PROTOCOL_READ_RETRY.

sc_start(1, SC_MS);

}

void foo() {

if (thread_handle.in_use())

SCV_REPORT_ERROR(SCV_RPT_INVALID_THREAD_HANDLE,

“Thread handle is invalid because it is already in use");

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 69

}

void bar() {

sc_time max_time(500, SC_NS);

if (...)

SCV_REPORT_WARNING(PCI_RPT_PROTOCOL_EXCEPTION,

"PCI burst read exceeded max time limit of " + max_time.to_string());

if (...)

SCV_REPORT_INFO(PCI_RPT_PROTOCOL_READ_RETRY,

"PCI read retry at time " + sc_time_stamp().to_string());

}

The following example illustrates how reports using SCV_CACHE_REPORT actions can be accessed:

void c_style_example() {

// POSIX perror() style exception:

scv_report_handler::clear_cached_report();

execute_my_routine();

if (scv_report* rp = scv_report_handler::get_cached_report()) {

cout << rp->get_msg() << endl;

}

}

The following example illustrates how reports using SCV_THROW actions can be accessed:

void cpp_style_example() {

// C++ style exception:

try {

execute_my_routine();

} catch (sc_exception e) {

cout << e.get_report().get_msg() << endl;

}

}

The C++ exception handling style may be preferable to the POSIX perror() style over the long term. At the
moment, the current Verification Standard prototype supports the POSIX perror() style exception handling only,
primarily because it is difficult to create a library that is completely throw-safe. The current SystemC 2.0.1
release does rely on throw for handling errors. The presence of scv_shared_ptr template makes it a little bit
easier to create throw-safe code, but it is still not foolproof.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 70

The goal is to make the reference implementation for the SystemC Verification Standard throw-safe, but if it
is not throw-safe, this fact can be documented. It will be up to individual EDA vendors to decide whether to
support C++-style exceptions in their implementations of the Verification Standard and in other SystemC
libraries and models.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 71

8 Verification Features Not Addressed by This
Specification

Some verification features and requirements were discussed during the VWG meetings that are not
incorporated into this specification. A short summary about them is recorded in this section. The descriptions of
them are not yet formulated with sufficient details to be proposed as part of a standard. More investigation is
needed to clarify the requirements from various parties and to design an appropriate API to address them.

Concurrency and Complex Synchronization
A proposal for concurrency and complex synchronization has been submitted by Cadence to the SystemC

Verification Working Group (VWG). However, during the VWG discussion, we realized that this proposal is
similar to the current activities in the SystemC Language Working Group (LWG), with some interesting
differences. Although the goal of the LWG is to enhance SystemC to support embedded software, the actual
requirements [13] are very similar to the VWG requirements [4]. As a result, we have decided to defer the
specific proposal in this area until we can determine a consistent API that supports both verification and
embedded software.

Interface Introspection
We have discussed an extension of the data introspection facility to handle interface [14, 15]. However, we

have not reached a conclusion as to whether to propose it as part of the SystemC Verification Standard. A short
description is included in the appendix for your references. This is not part of the proposal; it is included there
for reference and archive purpose and to stimulate new ideas. Because we have not discussed it in details or
agree upon the API, if we decided to include interface introspection in a later proposal, it may take a different
form.

Assisted Transaction Recording
As discussed in the section on transaction recording, we are looking into different ways of automating or

assisting the process of transaction recording. Several styles have been considered [12, 15], but we have not
reached a conclusion about which styles of automation should be part of the standard. The appendix contains
several examples for your references. This is not part of the proposal; it is included there for reference and
archive purpose and to stimulate new ideas. Because we have not discussed it in details or agree upon the API, if
we decided to include assisted transaction recording in a later proposal, it might take a different form.

Transaction Retrieval API
Apart from recording transactions into a database during simulation, we have briefly discussed the API for

retrieving transactions from a database during simulation. From a verification standpoint, it might make sense to
write a SystemC model that could open the database and read the stored transactions, for the purposes of
replaying it or for the purposes of generating other transactions. However, any proposed API for retrieving
transactions from databases would be independent and would not affect the current API, and defining such an
API may take a fair amount of time & effort. Because the existing spec provides enough capabilities to enable
creation of most verification IP and testbenches, we have decided to defer discussion on this topic.

Non-temporal and Temporal Assertions
Several assertion efforts have been discussed. Cadence’s TestBuilder team has temporal assertion capability

in the TestBuilder 1.3 release [1]. The Accellera Formal Verification Technical Committee has voted and
selected Sugar 2.0 [16] (which includes a Verilog dialect and a VHDL dialect) as the standard language for
assertion-based verification in April 2002. The SystemC standard for assertion must adhere to Sugar 2.0 and
implements a subset of the Sugar 2.0 standard in a C++ dialect. We have not designed the API for this aspect of
the standard yet.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 72

Coverage
We have briefly discussed the requirement for collecting coverage information in a test bench. In the

simplest case - just collecting the coverage information and presenting it to the user - it is probably a tool issue
to be solved by tool vendors instead of part of the proposal. In the more advanced cases of using coverage
information to dynamically change the test bench, a standard is probably needed. Because it represents a facility
that is independent from the facility in this proposal, we have postponed the discussion on this topic.

Temporal Constraints
A simple temporal constraint can typically be translated into a process thread with state variables and non-

temporal constraints. The values at a specific time can be generated according to the value of the state variable.
In the complex cases where a value generated at an earlier time might cause a conflict (no legal value can be
found) at a later time, sequential ATPG is required to generate the sequence of values to satisfy the temporal
constraint. As such, the technology is not mature enough for us to create a standard interface to specify temporal
constraints for such a sequential ATPG solver. Temporal constraints can also be regarded as a twin to temporal
assertions.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 73

9 References

1. C. Norris Ip and Stuart Swan, Using Transaction-Based Verification in SystemC, Cadence Design
Systems, Inc. This is a white paper available at http://www.systemc.org.

2. TestBuilder releases 0.92 to 1.3, document and source code available at http://www.testbuilder.net.
3. SystemC releases 1.0 and 2.0, document and source code available at http://www.systemc.org.
4. Adam Rose, SystemC Functional Verification Requirement Spreadsheet, SystemC Verification

Working Group, 2001 & 2002.
5. Scott Meyers, More Effective C++, Addison-Wesley, 1996. For information about smart pointers,

see item 28, smart pointers and item 29, reference counting.
6. C. Norris Ip, Stuart Swan, and Jasvinder Singh. A Prototype Implementation for Data Introspection

and Constraint Specification, Cadence Design Systems, February 2002. This is a prototype with
source-code circulated among the VWG members.

7. Nathan C. Myers, Traits: a new and useful template technique, C++ Report, June 1995.
The paper is available at http://www.cantrip.org/traits.html.

8. Thaddaeus Frogley, An introduction to C++ traits, Overload #43. The paper is available at
http://thad.notagoth.org/cpptraits_intro.

9. John Maddock and Steve Cleary, C++ Type traits, Dr Dobb's Journal, October 2000.
The paper is available at http://www.boost.org/libs/type_traits/c++_type_traits.htm.

10. the Boost type traits library. Information about this library is available at
http://www.boost.org/libs/type_traits.

11. Grzegorz Jakacki, Extensions, China Integrated Circuit Design Center, September 21, 2001. This is
a proposal submitted to the SystemC Language Working Group.

12. C. Norris Ip, Bill Paulsen, and John Rose. Transaction Recording : an elaboration of section 4.3 of
the SystemC Verification Proposal, Cadence Design Systems. This is a document circulated among
VWG members, May 16, 2002.

13. Johan Cockx, Requirements for Software Modeling in SystemC 3.0, IMEC, Version 1.2, July 8,
2002. This is a document circulated among LWG members.

14. Mike Meredith, Interface Introspection Examples, Forte Design Systems, May 21, 2002. This is a
document circulated among the VWG members.

15. Mike Meredith, Steve Sutherland, Andrew Fairley, and Sean Dart. Proposal of Technology for
Incorporation in SystemC Verification Facility, Forte Design Systems, April 16, 2002 This is a
document circulated among VWG members.

16. Cindy Eisner and Dana Fisman, Sugar 2.0 : An Introduction, IBM Haifa Research Laboratory and
Weizmann Institute of Science, Rehovot, Israel, May 2002. This is a tutorial available at
http://img.cmpnet.com/eedesign/2002/may/sugar_tutorial.pdf.

17. Bobby Schmidt, Partial Template Implementation, Microsoft Corporation, July 9, 2002. This is an
internet posting available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndeepc/html/deep07092002.asp.

18. Thorsten Groetker, Stan Liao, Grant Martin, Stuart Swan, “System Design with SystemC”. Book
available at www.systemc.org -> Products and Solutions -> Books.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 74

Appendix A: Requirements Summary

Topics in the VWG requirement list

Requirement
Identifiers Brief Description VWG Discussion Summary

Section that
Addresses these
Requirements

R1 (1-8)
general requirement about look and feel
and applicability in different application

domains

subjective judgment
for the overall

proposal

R2 (1-6)
general requirement about reproducibility

and seed controls in a multi-thread
environment

--- Section 5.1

R3 (1-d)
non-temporal constraint specification for
the purpose of generating a random value

(aspects regarding expressive power)

discussed a possible API during the
introspection prototype presentation on Feb 20,

2002
Section 1.1

R4 (1-5)

non-temporal constraint specification for
the purpose of generating a random value

(aspects regarding ease of use and efficient
implementation)

discussed a possible API during the
introspection prototype presentation on Feb 20,

2002
Section 1.1

R5 (1-6) Weight specification for biased random
value generation

identify potential subtle interaction with non-
temporal constraints during the constraint

solving process
Section 5.4

R6 (1-c) functional coverage measurement and on-
the-fly feedback to the test bench

need more investigation; defer to later
discussion Section 8

R7 (1-2) non-temporal and temporal assertions for
error detection

need more investigation; defer to later
discussion. Section 8

R8 (1-5)

transaction recording to generate a
database from which other tools can

analyze simulation activities in terms of
transactions

several email discussions around January 2002,
and a possible API was circulated on March 20,

2002.
Section 6.2

R9 (1-4)
automatic translation of a description in a

transactor description language to an
executable C++ transactor

the technology seems to be premature and
should be considered as an API independent of
the verification standard - a possible prototype

might may be distributed with SystemC

Not Applicable

Ra (1-a)
Modeling a transactor as an adaptor

between a transaction-level test and a
signal-level design

an example using the current SystemC 2.0
standard has been circulated; it seems that no

new API is needed except for transaction
recording

Section 3.1

Rb (1-7) the ability to handle arbitrary data types in
various facilities

discussed a possible API during the
introspection prototype presentation on Feb 20,

2002
Section 4

Rc (1-a)

general multi-thread support, including
dynamic thread manipulation, complex

synchronization, and sensitivity on
transactions

 need to defer this proposal until we can
determine its relationship to the LWG activities

on embedded software
Not discussed

Rd (1) miscellaneous (memory modeling) --- Section 7.2

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 75

Summary for the general requirement
Requirement

Identifier Brief Description Proposal

R11 look and feel we believe the current proposal has the SystemC look and feel

R12 multiple language support not considered / not ready to send proposal yet

R13 protocol hierarchy communication refinement in SystemC 2.0

R14 complex buses transactor modeling style discussed in Section 3

R15 combine split arbitrate transactor modeling style

R16 dynamic threads and complex
scheduling proposal deferred to a later time

R17 verification patterns we believe the general facility proposed here is sufficient to support many
verification patterns

R18 communication types we believe the general facility proposed here is sufficient for modeling
complex communication patterns

Summary for transactor modeling
Requirement

Identifier Brief Description Proposal Use Case Scenarios (taken from the
rw_pipelined_transactor example in this section)

Ra1 verification at transaction
level

adapting communication
refinement in SystemC

2.0

class rw_pipelined_transactor
: public rw_task_if,
public rw_bus_ports { ... };

Ra2 transaction-level test cases
should be reusable

adapting communication
refinement in SystemC

2.0

class test : public sc_module {
public:
sc_port<rw_task_if> transactor;
...
};

Ra3 separation of test case and
transactors

object-oriented
programming

separation of the test bench into two classes:
rw_pipelined_transactor and test;

Ra4

translation from a
parameterized transaction

command to wire-level
protocol

adapting communication
refinement in SystemC

2.0

class rw_pipelined_transactor implementing the abstract
interface rw_task_if by manipulating the signals in class
rw_pipelined_bus_ports

Ra5 plug and play with RTL
(HDL simulators?) Basic HDL connection discussed in Section 7.1

Ra6 pipelined transactions Dynamic threads +
thread synchronization data_t rw_pipelined_transactor::read(addr_t * addr) { ... }

Ra7 split transactions Dynamic threads +
thread synchronization data_t rw_pipelined_transactor::read(addr_t * addr) { ... }

Ra8 single command dynamic thread + thread
synchronization data_t rw_pipelined_transactor::read(addr_t * addr) { ... }

Ra9 multi-thread Static and dynamic
threads

multiple process threads can each call read()/write() on the
same or multiple instances of rw_pipelined_transactor
object.
A single process thread can spawn multiple dynamic threads
to execute read()/write() concurrently.

Raa multi-language basic HDL connection discussed in Section 7.1

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 76

Summary for the supports of arbitrary data types
Requirement

Identifier Brief Description Proposal Use Case Scenarios

Rb1 supporting arbitrary data
types

template specialization of
scv_extensions<T> ---

Rb2
information extraction from

data objects in order to
generate random values

abstract interface class
scv_extensions_if

void generate_random_value
(scv_extensions_if * data) {

...
cout << data->get_bit_width();

...
}

Rb3
information extraction from

data objects in order to record
values

abstract interface class
scv_extensions_if

void record_value
(scv_extensions_if* data) {

...
cout << data->get_integer();
...

};

Rb4 Value change callbacks on
data objects

template wrapper class
scv_smart_ptr<T>

(see also Section 6.1)

class my_module : public sc_module {
public:

scv_smart_ptr<fsm_state_t> state;
SC_CTOR(my_module) {

state.register_cb(...);
...

}
};

Rb5 Find design element in
hierarchy

explicit class member access
(or through a registry)

int sc_main(...) {
...
design.module1 .fsm_state.register_cb(...);
...
}

Rb6 peek/poke (no scope rule that
limits access)

use sc_signal_rv or enable write from
multiple threads in sc_signal

(current reference implementation
prints an error when sc_signal is used
with DEBUG_SYSTEMC turned on)

int sc_main(...) {
...
top.module1.port_data = 1;
...
}

Rb7 Block a process not included in this proposal ---

Summary for constrained randomization

Requirement
Identifier Brief Description Proposal Use Case Scenarios

R21 reproducibility global seed, thread-based seeds,
scv_random, and seed files ---

R21 unique per thread
(for automatically generated seeds)

generation of a seed for each thread
by a deterministic transformation

from the global seed using the thread
name

R23 independent seeding scv_random scv_random gen1("gen1",999);
scv_random gen2("gen2",1001);

R24 global configuration of seed
management static methods in scv_random scv_random::set_global_seed(999);

R25 unique default seeds generation of default seeds from the
unique seed in the current thread. scv_random gen1("gen1");

R26 ability to range over list of objects weighted distribution on the list of
object

scv_bag<int> b; b.push(1);
b.push(2);
scv_smart_ptr<int> data;
data->set_mode(b);

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 77

data->next();

R 31 arithmetic and logical constraints scv_expression write->addr() != write->data()

R32 if/else in constraints convert to Boolean implication (!write->addr() == 0xFF)
|| write->data() < 1000

R33 grouping constraints into groups
with guard scv_extensions_if::use_constraint() see example in main text with

my_select_constraint().

R34 specifying ranges as constraints convert to comparison operator 0 < a() && a() < 100

R35
classifying variables into variables

with fixed values and variables with
values to be randomly generated

scv_extensions_if::
disable_randomization()

scv_smart_ptr<my_record> data;
data-
>field1.disable_randomization();
data->next();

R36 class-based constraint specification base class scv_constraint_base
class write_constraint
: virtual public scv_constraint_base
{ ... }

R37 using scope in constraints class variable in a constraint derived
from scv_constraint_base

class write_constraint ... {
public:
scv_smart_ptr<int> data;
... }

R38 using inheritance in constraints class inheritance in C++

class hierarchical_constraint
: public write_constraint,
public complex_constraint
{ ... }

R39 Ranging over lists weighted distribution on the list

scv_bag<int> b; b.push(1);
b.push(2);
scv_smart_ptr<int> data;
data->set_mode(b);
data->next();

R3a Constraining the size of a variable-
sized data object

use a fixed size object with invalid
elements to mimic a variable-sized

object

R3b constrained randomization should
be simple to use

using scv_smart_ptr as if it was a
real C pointer with randomization

methods

class write_constraint ... { ...}
void my_test() {
write_constraint c("c");
c.next();
cout << *c.data << endl;
}

R3c seed control in constrained
randomization set_random()

scv_shared_ptr<scv_random>
rand(new
scv_random("rand",1999));
write_constraint c("c");
c.set_random(rand);

R3d supports basic types and composite
types in constraints scv_smart_ptr

scv_smart_ptr<int> data1;
scv_smart_ptr<ethernet_packet>
data2;

R41 efficiency, scale, and complexity for
constraint solver

class-based constraint specification
enables pre-processing with low run-

time overhead

class write_constraint
: virtual public scv_constraint_base
{ ... }

R42 low user intervention

not a language issue. The proposal
API assumes a fully autonomous

constraint solver. Individual vendors
may provide configuration methods
for the user to configure the solver.

R43 order changing for solver

not a language issue. The proposed
API assumes the solver does not
depend on the order of constraint

specifications. It uses a simple

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 78

conjunction semantic for the list of
constraints. Individual vendors may
manipulate the constraint expression

tree to rearrange the order.

R44 debug in the case of deadlock

not a language issue. The proposed
API assumes the solver eventually
returns. Individual vendors may

provide a solver that fails sometimes,
and in those cases, trigger the

exception handling mechanism
mentioned in Section 4.5.2

Individual vendors may also provide
configuration methods for the user to

adjust the behavior.

R45 single run

the class-based constraint
specification enables the expression

to be processed once only using
static variables within the class.

R51 weighting value ranges within
variable domain scv_bag<pair<T,T>> ---

R52 weighting single values within
variable domain scv_bag<T> ---

Summary for weight specifications

R53
varying

weights over
time

create an SC_METHOD or an SC_THREAD, and
change the weighting over time using

set_mode(scv_bag)

R54

generating
values

according to a
user-defined
distribution

scv_bag<pair<T,T>> ---

R55
weighting

object within a
set of objects

scv_bag<T> ---

R56

dynamic
editing of the

list in the
weight

specification

create an SC_METHOD or an SC_THREAD, and
change the weighting over time using

set_mode(scv_bag)

Summary for transaction recording

Requirement
Identifier Brief Description Proposal Use Case Scenarios

R81 playback from transaction
recording database not considered ---

R82 generated error within
transactions

create another transaction to indicate error
and link it to the current transaction ---

R83 transaction definition see Section 6.2.2 ---

R84 transaction recording scv_tr_db, scv_tr_stream,
scv_tr_generator, and scv_tr_handle

h = read_tr.begin_transaction(addr);
...
read_tr.end_transaction(h, data);

R85 Linking scv_tr_handle::add_relation()
h = read_tr.begin_transaction(addr);
h1 = addr_tr.begin_transaction(addr);
h.add_relation("addr_phase",h1);

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 79

Summary for memory modeling

Requirement
Identifier Brief Description Proposal Use Case Scenarios

Rd1
modeling memory at

multiple levels of
abstraction

not a language requirement; it seems more like
an application-specific library to be provided by

a IP vendor

scv_sparse_array can be used as the
highest level of abstraction for a

memory

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 80

Appendix B: API convention
Name Space and Prefix

The name space “systemc_verification_library” and the prefix “scv_” are used in the Verification Standard to
avoid name conflict.

Interface classes vs. Base classes
The SystemC Verification Standard contains several interface classes, such as scv_extensions_if and

scv_object_if. These interface classes use “_if” as postfix to indicate that they contain C++ abstract methods and
that they do not contain member variables. A derived class from an interface class is expected to implement the
abstract methods. On the other hand, the name convention for a base class is to have a postfix “_base”, such as
the scv_extensions_base template in the introspection facility. Typically a base class contains member variables
and implements a set of methods common to all classes derived from this base class.

String
The type “const char *” is used in most places for strings, except in some functions or methods, which might

return “sc_string”. The guideline as discussed in LWG and VWG is summarized as follows:

• When a function or method uses a string argument, the type "const char *" is used. The
function/method must copy the string if it intends to retain the string after the function returns.

• When a function or method returns a string:

o It is returned as "const char *" if the content of the string stays the same throughout the lifetime
of the simulation (for function and static method) or the lifetime of the object (for non-static
method).

o It is returned as "sc_string" if the content of the string may change during the lifetime of the
simulation (for functions and static methods) or the lifetime of the object (for non-static
methods).

Callbacks
Callbacks are registered:

• globally to a facility through methods with the name register_class_cb(), and
• locally to an object through methods with the name register_cb().

Callbacks can be removed by calling a method with the name remove_cb(). The handle for the callbacks is

declared as a type within the related class; the type has the name callback_h. Most callbacks use an enumeration
within the related class to capture the possible reasons for which the callbacks are executed; the enumeration has
the name callback_reason.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 81

Appendix C: The Complete Code for the
Overview Example

// this code compiles and runs with our latest prototype for this specification

#include "scv.h"
#include "fifo_mutex.h"

class rw_task_if : virtual public sc_interface {
public:
 typedef sc_uint<8> addr_t;
 typedef sc_uint<8> data_t;
 struct write_t {
 addr_t addr;
 data_t data;
 };

 virtual data_t read(const addr_t*) = 0;
 virtual void write(const write_t*) = 0;
};

SCV_EXTENSIONS(rw_task_if::write_t) {
public:
 scv_extensions<rw_task_if::addr_t> addr;
 scv_extensions<rw_task_if::data_t> data;
 SCV_EXTENSIONS_CTOR(rw_task_if::write_t) {
 SCV_FIELD(addr);
 SCV_FIELD(data);
 }
};

class pipelined_bus_ports : public sc_module {
public:
 sc_in< bool > clk;
 sc_inout< bool > rw;
 sc_inout< bool > addr_req;
 sc_inout< bool > addr_ack;
 sc_inout< sc_uint<8> > bus_addr;
 sc_inout< bool > data_rdy;
 sc_inout< sc_uint<8> > bus_data;

 SC_CTOR(pipelined_bus_ports)
 : clk("clk"), rw("rw"),
 addr_req("addr_req"),
 addr_ack("addr_ack"), bus_addr("bus_addr"),
 data_rdy("data_rdy"), bus_data("bus_data") {}
};

class rw_pipelined_transactor
 : public rw_task_if,
 public pipelined_bus_ports {

 fifo_mutex addr_phase;

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 82

 fifo_mutex data_phase;

 scv_tr_stream pipelined_stream;
 scv_tr_stream addr_stream;
 scv_tr_stream data_stream;
 scv_tr_generator<sc_uint<8>, sc_uint<8> > read_gen;
 scv_tr_generator<sc_uint<8>, sc_uint<8> > write_gen;
 scv_tr_generator<sc_uint<8> > addr_gen;
 scv_tr_generator<sc_uint<8> > data_gen;

public:
 rw_pipelined_transactor(sc_module_name nm) :
 pipelined_bus_ports(nm),
 addr_phase("addr_phase"),
 data_phase("data_phase"),
 pipelined_stream("pipelined_stream"),
 addr_stream("addr_stream"),
 data_stream("data_stream"),
 read_gen("read",pipelined_stream,"addr","data"),
 write_gen("write",pipelined_stream,"addr","data"),
 addr_gen("addr",addr_stream,"addr"),
 data_gen("data",data_stream,"data")
 {}
 virtual data_t read(const addr_t* p_addr);
 virtual void write(const write_t * req);
};

rw_task_if::data_t rw_pipelined_transactor::read(const rw_task_if::addr_t* addr) {
 addr_phase.lock();
 scv_tr_handle h = read_gen.begin_transaction(*addr);

 scv_tr_handle h1 = addr_gen.begin_transaction(*addr,"addr_phase",h);
 wait(clk->posedge_event());
 bus_addr = *addr;
 addr_req = 1;
 wait(addr_ack->posedge_event());
 wait(clk->negedge_event());
 addr_req = 0;
 wait(addr_ack->negedge_event());
 addr_gen.end_transaction(h1);
 addr_phase.unlock();

 data_phase.lock();
 scv_tr_handle h2 = data_gen.begin_transaction("data_phase",h);
 wait(data_rdy->posedge_event());
 data_t data = bus_data.read();
 wait(data_rdy->negedge_event());
 data_gen.end_transaction(h2);
 read_gen.end_transaction(h,data);
 data_phase.unlock();

 return data;
}

void rw_pipelined_transactor::write(const write_t * req) {
 scv_tr_handle h = write_gen.begin_transaction(req->addr);
 // ...
 write_gen.end_transaction(h,req->data);
}

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 83

class test : public sc_module {
public:
 sc_port< rw_task_if > transactor;
 SC_CTOR(test) {
 scv_thread::spawn("test::main",this,&test::main);
 // SC_THREAD(main);
 }
 void main();
};

class write_constraint : virtual public scv_constraint_base {
public:
 scv_smart_ptr<rw_task_if::write_t> write;
 SCV_CONSTRAINT_CTOR(write_constraint) {
 SCV_CONSTRAINT(write->addr() < 0x00ff);
 SCV_CONSTRAINT(write->addr() != write->data());
 }
};

inline void process(scv_smart_ptr<int> data) {}

inline void test::main() {
 // simple sequential tests
 for (int i=0; i<3; i++) {
 rw_task_if::addr_t addr = i;
 rw_task_if::data_t data = transactor->read(&addr);
 cout << "received data : " << data << endl;
 }

 scv_smart_ptr<rw_task_if::addr_t> addr;
 for (int i=0; i<3; i++) {

 addr->next();
 rw_task_if::data_t data = transactor->read(addr->get_instance());
 cout << "data for address " << *addr << " is " << data << endl;
 }

 scv_smart_ptr<rw_task_if::write_t> write;
 for (int i=0; i<3; i++) {
 write->next();
 transactor->write(write->get_instance());
 cout << "send data : " << write->data << endl;
 }

 scv_smart_ptr<int> data;
 scv_bag<int> distribution;
 distribution.push(1,40);
 distribution.push(2,60);
 data->set_mode(distribution);
 for (int i=0;i<3; i++) { data->next(); process(data); }
}

class design : public pipelined_bus_ports {
 list< sc_uint<8> > outstandingAddresses;
 list< bool > outstandingType;
 sc_uint<8> memory[128];

public:

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 84

 SC_HAS_PROCESS(design);
 design(sc_module_name nm) : pipelined_bus_ports(nm) {
 for (int i=0; i<128; ++i) { memory[i] = i; }
 SC_THREAD(addr_phase);
 SC_THREAD(data_phase);
 }
 void addr_phase();
 void data_phase();
};

inline void design::addr_phase() {
 while (1) {
 while (addr_req.read() != 1) {
 wait(addr_req->value_changed_event());
 }
 sc_uint<8> _addr = bus_addr.read();
 bool _rw = rw.read();

 int cycle = rand() % 10 + 1;
 while (cycle-- > 0) {
 wait(clk->posedge_event());
 }

 addr_ack = 1;
 wait(clk->posedge_event());
 addr_ack = 0;

 outstandingAddresses.push_back(_addr);
 outstandingType.push_back(_rw);
 cout << "received request for memory address " << _addr << endl;
 }
}

inline void design::data_phase() {
 while (1) {
 while (outstandingAddresses.empty()) {
 wait(clk->posedge_event());
 }
 int cycle = rand() % 10 + 1;
 while (cycle-- > 0) {
 wait(clk->posedge_event());
 }
 if (outstandingType.front() == 0) {
 cout << "reading memory address " << outstandingAddresses.front()
 << " with value " << memory[outstandingAddresses.front()] << endl;
 bus_data = memory[outstandingAddresses.front()];
 data_rdy = 1;
 wait(clk->posedge_event());
 data_rdy = 0;

 } else {
 cout << "not implemented yet" << endl;
 }
 outstandingAddresses.pop_front();
 outstandingType.pop_front();
 }
}

int sc_main (int argc , char *argv[]) {

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 85

 scv_tr_db db("my_db");
 // scv_tr::set_global_db(&db);

 // create signals
 sc_clock clk("clk",20,0.5,0,true);
 sc_signal< bool > rw;
 sc_signal< bool > addr_req;
 sc_signal< bool > addr_ack;
 sc_signal< sc_uint<8> > bus_addr;
 sc_signal< bool > data_rdy;
 sc_signal< sc_uint<8> > bus_data;

 // create modules/channels
 test t("t");
 rw_pipelined_transactor tr("tr");
 design duv("duv");

 // connect them up
 t.transactor(tr);

 tr.clk(clk);
 tr.rw(rw);
 tr.addr_req(addr_req);
 tr.addr_ack(addr_ack);
 tr.bus_addr(bus_addr);
 tr.data_rdy(data_rdy);
 tr.bus_data(bus_data);

 duv.clk(clk);
 duv.rw(rw);
 duv.addr_req(addr_req);
 duv.addr_ack(addr_ack);
 duv.bus_addr(bus_addr);
 duv.data_rdy(data_rdy);
 duv.bus_data(bus_data);

 // run the simulation
 sc_start(1000000);

 return 0;
}

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 86

Appendix D: Dynamic Concurrency
There is currently an example in the examples directory SystemC 2.0.1 reference implementation that

implements a prototype of dynamic thread facility (see $SYSTEMC/examples/systemc/forkjoin). To use this
facility, the *.cpp files in the forkjoin library need to be compiled and linked into user’s SystemC simulation.
Also the sc_fork.h file will need to be included by SystemC source files that use the facility.

The file sc_fork.h in the example directory defines sc_spawn_method() and sc_spawn_function(), which are
dynamic spawning enhancements that are not part of the SystemC 2.0 standard, but rather implemented on top
of it. Both functions actually use a pool of threads that are statically declared at the beginning of simulation.

Both functions return an sc_join_handle object that can be used to later synchronize the spawned method.
The syntax of sc_spawn_method() and sc_spawn_function() are as follows:

sc_join_handle sc_spawn_method(&returnValue, &object, ClassName::MethodName, &arg1, &arg2);

sc_join_handle sc_spawn_function(&returnValue, FunctionName, &arg1, &arg2);

If the method being spawned does not return a value, “(void*)0” should be used in place of “&returnValue”.
Each of the above methods is overloaded to take any number of arguments to supply to the spawned function

between zero and four.
class MyClass{

 // …

 int myMethod(const char *arg1, unsigned int arg2);

 // …

}; // class MyClass

void mySysCProc() // lives inside a subclass of sc_module and is declared to be SC_THREAD(mySysCProc)

{

MyClass *pMyObject = new MyClass();

 while(true)

 {

 int retVal;

 const char arg1 = “Data”;

 unsigned int arg2 = 7;

 sc_join_handle myHandle = sc_spawn_method(&retVal, pMyObject, MyClass::myMethod, &arg1,
&arg2);

 }

} // mySysCProc()

The forkjoin library uses static thread pool that needs to be declared before threads can be spawned. Ideally

this should be done in sc_main():
#include <systemc.h>

#include “sc_fork.h”

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 87

// sc_main() initializes simulation run, runs the simulation, and then cleans up before exit

int sc_main(int argc, char *argv[])

{

// Create the global thread pool with a limit of 10 threads

thread_pool::init(10);

// Rest of sc_main() implementation goes here…

 // Return the thread pool to prevent a memory leak

 thread_pool::destroy();

// Other sc_main() clean up code goes here

} // sc_main()

Using the API provided by this example, a test generating concurrent activities can be implemented as shown
in the following code. Three processes are spawned in the example below: Two read tasks that need to be
synchronized (i.e. we need to wait until both tasks complete before moving on) and a write task that can run as
long as it needs to (perhaps indefinitely):

#include <systemc.h>

#include “sc_fork.h”

class MyTest : public sc_module

{

 // …

 SC_HAS_PROCESS(MyTest);

 void testCase1()

 {

// Simple concurrent tests

rw_task_if::addr_t addr[3]; addr[0] = 0; addr [1] = 1; addr[2] = 2;

rw_task_if::data_t data[3]; data[2] = 4;

sc_join_handle readHandle1 = sc_spawn_method(&data[0], transactor[0], &rw_task_if::read,
&addr[0]);

sc_join_handle readHandle2 = sc_spawn_method(&data[1], transactor[0], &rw_task_if::read,
&addr[1]);

// The only reason sc_join_handle is needed is if we want to synchronize the task later.

// Since in our example we don’t need to synchronize the write, we can cast the return

// value of the sc_spawn_method() call below to void

(void)sc_spawn_method((void*)0, transactor[0], &rw_task_if::write, &addr[2], &data[2]);

 // Synchronize the two read tasks; the write task keep going

 sc_process_join(readHandle1);

 sc_process_join(readHandle2);

cout << "received data : " << data[0] << "," << data[1] << “\n”;

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 88

} // testCase1()

// …

MyTest(const sc_module_name name) : sc_module(name) // …

{

 // …

 SC_THREAD(testCase1);

 //…

} // MyTest()

}; // class MyTest

This code generates two read transactions in parallel, so that they exercise the pipeline. The

sc_spawn_method function is similar to create() in PThreads, creating a new C++ thread and executing the
method specified in the third argument for the object in the second argument. The first argument is a pointer to
the object in which the return value is stored, and the last argument is the address of argument to the method.
Note that sc_spawn_method can take from zero to four arguments to be passed to the corresponding method (in
the example above, &addr[2] and &data[2] are the arguments to the rw_task_if::write() method).

The SystemC Verification Working Group has discussed a more comprehensive set of APIs to support
dynamic threads, but because of the overlap with the current activities in the Language Working Group we have
not reached a conclusion and therefore are not able to include a specification in this document. Long term, the
Language Working Group needs to provide a truly dynamic thread spawning system. When they do, it is likely
that the API will differ from the one shown here, but it will probably include similar features.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 89

Appendix E: Debugging
Debugging is a crucial component in any verification effort. Because SystemC is a C++ library, a C++

debugger can be used for debugging. However, a C++ debugger does not understand the built-in concepts that
are presented in SystemC 2.0 and the SystemC Verification Standard.

The SystemC 2.0 standard includes a base class called sc_object, which implements some common
functionality that a custom tool for SystemC can use to manipulate objects in SystemC. For example, it enables
assignment of attributes to SystemC objects. While we might use the same base class for the objects in the
SystemC Verification Standard, in some simple objects such as a handle for a transaction, it might be
unreasonable to have the overhead of maintaining the full capability of sc_object.

We also realized that one of the problems in debugging data objects with non-C++ built-in types in a
traditional C++ debugger is to extract appropriate information from data internal to a data object. Therefore, the
SystemC Verification Standard includes a lightweight abstract interface to facilitate this process. It is up to the
actual class to implement this interface when it is appropriate.

Conceptually (and a possible strategy for SystemC 3.0), we are partitioning the existing sc_object base class
into two classes, a lightweight abstract interface called sc_object_if and a base class called sc_object_base
derived from sc_object_if.

The scv_object_if Abstract Interface Description
virtual const char * get_name() const {
 return NULL;
}

This method returns the instance name of the
object.

virtual const char * kind() const {
 return NULL;
}

This method returns a string that is unique to each
class.

virtual void print (
 ostream& o,
 int details,
 int indent
) const {}

This method prints the current values on the output
stream. If the details argument is nonzero, the
method displays more information, typically
displaying substructures if any. A positive value
specifies how many levels of detail to print. A
negative value causes the method to print all
available levels of detail. The indent argument
specifies the number of spaces that prefix each
line.

virtual void show(
 int details,
 int indent
) const { print(cout,-1,0); }

This method prints the current values to the screen.
This method is designed to be executed within a
debugger, such as gdb. The default implementation
is sufficient most of the time, but a derived class
can override the default implementation if
necessary.

static void set_debug_level(
 const char * facility,
 Int level = -1
);

This static method turns on debugging messages
for a specific facility.

virtual int get_debug() const { return 0; } This method returns the debugging level for a
specific class.

virtual void set_debug(int) {} This method sets the debugging level for a specific
class.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 90

The derived classes of the scv_object_if abstract interface must implement two static methods called “int
get_debug()” and “void set_debug(int)”, but the body of their implementation can be left empty. During our
discussion in the VWG meetings, we have considered using data introspection to extract the appropriate
information from a data object. However, it was brought up that the extraction would most likely be done in a
debugger such as gdb, and using templated functions such as scv_get_extensions() would not be possible. The
lightweight abstract interface can be executed in a debugger as a simple function call.

The first two methods provide a quick summary of what the object is. The show() and print() methods are
used for displaying information about the object. The show() method is designed to be used within a debugger.
For example, if packet is a variable in the thread being debugged, the following session shows how its value can
be extracted without going through the internal data of the packet class.

gdb> call packet.show()

src : 0x1000

dest : 0x00FE

payload : 0xabcd

Typically, the print() methods (and similarly for show()) will follow this form:
virtual void print(ostream& o, int details, int indent) {

// print basic information

...

// print details

if (details != 0) {

int newdetails = (details > 0) ? details-1 : details;

for (each substructure s) s.print(o,newdetails,indent+2);

}

}

The static method and the last two methods in the previous table are designed to configure the library to print

out debugging messages during simulation. This is useful in tracing the operation of a misbehaving test bench.
The set_debug() method turns on debugging information for the specific class, not just the current object. The
set_debug_level() method turns on tracing for a specific facility, such as threads, etc. Different vendors can
design different sets of facility name strings for turning on debugging information for different kinds of
functionality. You can specify the level of details to be generated by using the integer argument level. If it is -1,
debug output for the related facility is turned off. If it is 0, all available debug output is turned on. Positive
values control the verbosity of the debug messages (larger values produce more outputs).

The classes that derive from the common debugging interface are:

Classes that should derive from the common
debugging interface
scv_extensions_if
scv_smart_ptr_if
scv_random
scv_expression
scv_constraint_base
scv_tr_db
scv_tr_stream

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 91

scv_tr_generator
scv_tr_handle
scv_report

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 92

Appendix F: Interface Introspection
During the VWG meetings, we have discussed extending the data introspection facility to include interface

introspection [14]. While it seems to be useful for assisted transaction recording, we have not determine whether
it should be included in the Verification Standard, nor have we worked out the details in the API. This appendix
captures a short example as discussed in the email discussion. This facility is not part of the proposal; it is
included here for reference and archive and to stimulate new idea. Because we have not discussed it in details
or agree upon the API, if we decided to include interface introspection in a later proposal, it might take a
different form.

Using the data introspection facility in this proposal, information about a data type such as sc_uint< N > is
captured in scv_extensions< sc_uint < N > >. Similarly, the interface introspection extracts information about a
C++ class with public methods. For example :

// An application specific interface

class my_interface {

public:

 virtual int myf1(char a, short b)=0;

 virtual long myf2(int a)=0;

};

// A class that implements the interface

class my_implementation : public my_interface {

 virtual int myf1(char a, short b) { return 0; }

 virtual long myf2(int a) { return 0; }

};

An extension of these interfaces can be captured in an interface introspection facility, using macro
instantiation such as the following:

// Define a specialization for the interface

SCV_II(my_interface, 2)

SCV_II_FUNCTION_2(0, myf1, int, char, short)

SCV_II_FUNCTION_1(1, myf2, long, int)

SCV_II_END(my_interface)

A different macro is needed for a method with different numbers of arguments, or without a return type. It is
not clear whether this series of macro instantiations can be generalized to a form similar to the data introspection
extension specification, using a class structure to group related macros.

When these macros are specified appropriately for the interface, an extension object can be generated for the
interface. This extension object will implement an abstract interface from which details about a method can be
extracted. For example, the following code takes a pointer to an extension object that corresponds to a specific
method in an interface. It extracts the name of the return value, the name of the method, and name of the
parameters to the method.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 93

void print_function(const interface_introspection_if::function_description *d) {

 cout << d->return_value->name() << " ";

 cout << d->name() << "(";

 for (int i=0; i<d->number_of_parameters; i++) {

 if (i>0)

 cout << ", ";

 cout << (char *)d->parameters[i]->name() << " param" << i;

 }

 cout << ")";

}

The following code extracts the list of methods in a class:

void print_interface(const interface_introspection_if *ii) {

 cout << "class " << ii->name() << " : public sc_interface { \n";

 for (int i=0; i<ii->number_of_functions(); i++) {

 print_function(ii->function(i));

 cout << ";\n";

 }

 cout << "\n};";

}

The following code shows how the interface extension object can be constructed from a specific object,
where get_ii() returns an interface introspection extension of the argument, similar to scv_get_extensions() in the
data introspection facility:

int main() {

 …

 // accessing information about an interface

 my_implementation m;

 const interface_introspection<my_interface> &ii = get_ii(&m);

 cout << "my_implementation has " << get_ii(&m).number_of_functions() << " functions.\n";

 cout << "\n\nmy_implementation is:\n";

 print_interface(&get_ii(&m));

 cout << "\n";

 …

}

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 94

Appendix G: Assisted Transaction Recording
We have spent a significant amount of time discussing automatic or assisted transaction recording in our

VWG meetings. This appendix summarizes some of the discussion.

G.1 Providing Observability and Controllability of
Communication Through Watchable Channels

This section summarizes the discussion of watchable and watcher classes with respect to automatic
transaction recording. The paragraphs in italics are direct quote from the document distributed by Forte [15].
The other paragraphs might contain personal opinions from individual members during the VWG discussions,
so they might differ from the original document.

Goals : A fundamental requirement for a verification infrastructure is to provide observability and
controllability of activity within and around the design. In SystemC 2.0 a central organizing principal is the
representation of activity as communication between modules through channels. We believe that a primary goal
of the SystemC verification standard must be to provide observability and controllability of communication
through channels.

This observability and controllability will be used to provide many capabilities to the verification user including
:

• The ability to generate constrained random activity on a channel
• The ability to log activity on a channel for later analysis
• The ability to create verification entities that passively observe activity on a channel for purposes such

as measurement of functional coverage, and validation of correct behavior.

Secondary goals include:

• Minimizing the amount of additional work that must be done by the end user to support verification
• Minimizing the extent to which the needs of verification intrude on the designer of a channel. This

means minimizing the amount of modification that must be made to a channel to enable verification
• Permitting the decision of whether to log activity on a channel to be made as late as possible.

We have developed a set of classes that demonstrate one way these goals may be achieved. […]

The goals listed above describe the need of an assisted transaction recording style that simplifies the use of

transaction recording in a channel. The VWG members believe it can be layered on top of the current manual
transaction recording facility in the current proposal.

The description in the original document relies on a base class from which the corresponding channel should

be derived from. The base class contains a general-purpose channel-oriented callback infrastructure. According
to the document, the benefit is:

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 95

The benefit of building the logging capability on top of a general-purpose channel-oriented callback
infrastructure, is that it simplifies the process of adding logging to a channel, as well as permitting a rich set of
solutions to be developed in addition to logging. In this proposal the general callback infrastructure is
implemented in “watcher” class, scv_watcher, and a “watchable” class, scv_watchable. Objects that derive
from scv_watcher are able to register for callbacks from objects that derive from scv_watchable. The ability to
derive functionality from a generic watcher extends beyond the basic logging capability to include such things
as debuggers, functional watchers in the testbench and higher-level system modeling.

The watchable classes and watcher classes are defined as follows:

Watchable classes : SystemC provides standard mechanisms for one entity to anonymously learn of activity in
another entity. These are the event, and the ability to have a process that is sensitive to changes of value of a set
of signals. Sensitivity to signals is not available for non-signal channels. So it does not extend easily to the
general case. Events are used for inter-thread synchronization in user code and in channel classes, but because
there is no data associated with events, they don’t provide a convenient basis on which to build a system that
performs anonymous logging and watching of channel activity.

We will introduce the scv_watchable class as a base class that provides general-purpose registration and
notification services. It is tailored to the requirements of the logging and watching of transaction activity on
channels, but it is designed as a general-purpose class.

An scv_watchable object generates events that are delivered asynchronously to all of the clients (scv_watchers)
who are registered to receive them. Events are delivered to clients by means of an immediate function call
rather than one that is deferred until the end of the cycle, as it is the case with an sc_event. This is important
because multiple important transaction level events can occur in one simulation delta. This mechanism ensures
that clients cannot miss these events.

An scv_watchable allows watching clients to anonymously register to receive a subset of the possible event
types. Each scv_watcher-derived class is responsible for generating the events, but is not responsible for
keeping track of which clients are registered. The set of possible event types is fixed. It is designed to serve a
wide variety of channel types by observing that the basic function of any channel is for information to be
provided by one entity and received by others. […]

Watcher classes : If we’ve got watchables, we need watchers. The scv_watcher class provides the basis for all
classes that are clients of scv_watchable. Only scv_watcher classes may register to receive events from
scv_watchable classes. […]

The example of logging from the original document is shown below:

class txconsumer : public sc_module, public xf1, public scv_watchable<xf1*> {

public:

sc_port<xf1, 0> m_input_port;

txconsumer(sc_module_name name) : sc_module (name), m_input_port(*this) {}

~txconsumer() {}

// implementation of the receive function

void receive(int a, int * d) {

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 96

 notify_read_start();

 cerr << “In txconsumer::receive at “ <<

 sc_get_curr_simcontext()->time_stamp() << “\n”;

 wait(10, SC_NS);

 NOTIFY_READ_END_IF(xf1)->receive(a,d);

}

// implementation of the transmit function {

 notify read_start();

 cerr << “In txconsumer::transmit at “ <<

 sc_get_curr_simcontext()->time_stamp() << “\n”;

 wait(10, SC_NS);

 NOTIFY_READ_END_IF(xf1)->transmit(a, d);

}

[…]

};

The watcher and watchable classes must rely on extending the data introspection mechanism in this proposal
to describe the functions of an interface. However, while the document claims that this combined with a generic
callback infrastructure will allow almost transparent, anonymous, automatic logging, the example shown in the
document relies on intrusive addition of notify_read_start() and NOTIFY_READ_END_IF() in the channel
implementation, which is similar to begin_transaction() and end_transaction() in the current manual transaction
recording specification. However, it does simplify the use model by eliminating the need to explicitly instantiate
the transaction streams and the transaction generator (at the expenses of requiring the interface introspection
declaration for the channel interface)

Even with full support of interface introspection, it is unlikely to be able to eliminate the manual addition of

a call to specify the start time and attribute of a transaction. It was brought up in the VWG meeting that
sometime a channel has to synchronize multiple tasks, and the time at which a channel method is called might
not correspond to the conceptual start of a transaction; so the begin_transaction() method may need to be called
after the channel method gains access to a certain resource. Furthermore, sometime it is not appropriate to
record some of the arguments to the channel methods as attributes of the corresponding transactions.

The communication between the watchable classes and the watcher classes seems to lead to a generic facility

that supports more than just transaction recording. For example, it might provide the mechanism for a transactor
to communicate to a golden model. The VWG meetings have not discussed this possibility independent of
transaction recording.

The original document also describes an scv_msg class, which has not been discussed in the VWG meetings.

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 97

G.2 Examples of Different Styles of Assisted Transaction
Recording

During the discussion of automatic and assisted transaction recording, several examples illustrating different
styles of automation were distributed. This section summarizes five examples that were described in a document
from Cadence [12]. These styles of assisted transaction recording can be implemented as a layer on top of the
current manual transaction recording API:

a) Hiding transaction stream and transaction generator in a transactor (similar to the watchable
classes described in D.1)

b) A non-intrusive class wrapper in the connection
c) A non-intrusive method wrapper in a transactor
d) A non-intrusive method wrapper in a test
e) Simple macros in a transactor method implementation

Each of these examples has its pros and cons. Some of them are better thought out than others. Example A is

very similar to the watchable class idea in the previous section. Example B is a completely non-intrusive
solution that works on existing transactor IPs. The remaining ones are mostly from earlier investigation and it
seems that in practice, the styles in A and B are more useful and addresses different needs that may arise in
different situation.

A) hiding a transaction stream and transaction generator in a transactor

#include <systemc.h>

#include <vwg.h>

// a thin assisted transaction recording layer

class scv_watchable_interface : public sc_interface {

 scv_tr_stream stream;

public:

template<typename T>

scv_tr_handle begin_transaction(const string& transaction_name, const T& begin_attr) {

scv_tr_generator<T> gen(transaction_name,stream);

 // the optional end-attribute is not used.

 return gen.begin_transaction(begin_attr);

}

template<typename T>

void end_transaction(scv_tr_handle& h, const T& end_attr) {

 h.get_tr_generator_base().end_transaction(h,end_attr);

}

template<typename T>

void record_attribute(scv_tr_handle& h, const sc_string& name, const T& attribute) {

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 98

h.get_tr_generator_base().record_attribute(h,name,attribute);

}

};

// how a user will specify what transaction to record and what attributes to record.

class my_transactor_if : public scv_watchable_interface {

public:

virtual int read(int addr) = 0;

};

class my_transactor : public my_transactor_if {

public:

virtual int read(int addr) {

scv_tr_handle h = begin_transaction("read",addr);

...

if (addr < 0xFF) {

record_attribute(h, "special_attr",3);

}

...

end_transaction(h,data);

return data; }

};

B) non-intrusive class wrapper in the connection

#include <systemc.h>

#include <vwg.h>

// --

// a thin assisted transaction recording layer

// - implementation is too long to put into this document. But it has been done.

// - an anchor to determine the right begin time has also been done to handle

// concurrent calls to the transactor methods.

// --

template<typename T> class scv_atr_base { ... }

template<typename T> class scv_atr_extensions : public scv_atr_base<T> {}

template<typename T> scv_atr_extensions<T> scv_get_atr(T& a) { ... }

// --

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 99

// how a user will specify what transaction to record and what attributes to record.

// --

class my_transactor_if : virtual public sc_interface {

public:

virtual void write(int addr, int data) = 0;

};

 template<>

class scv_atr_extensions<my_transactor_if> : public scv_atr_base<my_transactor_if> {

my_transactor_if * _instance;

public:

virtual void write(int addr, int data) {

 // deferrable_begin_transaction() is similar to

 // begin_transaction, except that it examines whether the wrapper has been

 // configure to begin the transaction right away or after certain resource

// is obtained. (A later example shows the use of “anchor” to achieve delayed

 // begin of the transaction

scv_tr_handle h = deferrable_begin_transaction(addr);

_instance->write(addr,data);

end_transaction(h,data);

}

};

class my_transactor : public my_transactor_if {

public:

virtual void write(int addr, int data) { ... }

};

class my_test : ... {

public:

sc_port<my_transactor_if> port_1;

};

int sc_main(...) {

my_test t("t"); // a test which knows nothing about transaction recording

my_transactor tr("tr"); // a transaction which knows nothing about transaction recording

t.port_1(scv_get_atr(tr));

 scv_get_atr gets a wrapper around “tr” to do transaction recording

};

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 100

This approach is a non-intrusive approach that works with existing tests and transactors. The change is in the
connection. In sc_main(), when the test is connected to the transactor, the template function scv_get_atr() is
called to instantiate the transaction-recording wrapper around the transactor.

This can be extended to handle transactor methods that must obtain a resource before starting a transaction,
through the use of an anchor:

template<> class scv_atr_extensions<my_pipelined_transactor>

: public scv_atr_extensions<my_transactor_if> {

public:

virtual scv_begin_anchor get_begin_anchor(const sc_string& task) {

 return ((my_pipelined_transactor*) get_instance())->addr_mutex;

 }

};

C) non-intrusive method wrapper in a transactor

#include <systemc.h>

#include <vwg.h>

// --

// a thin layer for assisted transaction recording

// --

// and other overload version for different method

// signatures (1 arg, 2arg, ..., with or without return type,

// etc.)

template<typename transactor_t, typename T1, typename T2>

void scv_atr(scv_tr_stream& s,

 const string& transaction_name, transactor_t& transactor,

 void (*transactor_t::method)(T1,T2), T1 arg1, T2 arg2) {

scv_tr_generator<T1,T2> gen(transaction_name, s);

scv_tr_handle h = gen.begin_transaction(begin_attr);

transactor.(*method)(arg1,arg2);

gen.end_transaction(h,end_attr);

};

// --

// how a user will specify what transaction to record and what attributes to record.

// --

class my_transactor_if : public sc_interface {

public:

virtual void write(int addr, int data) = 0;

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 101

};

class my_transactor : public my_transactor_if {

scv_tr_stream my_stream;

fifo_mutex addr_phase;

fifo_mutex data_phase;

public:

SC_CTOR(my_transactor) : my_stream("my_transactor") {}

void write(int addr, int data) {

addr_phase.lock(); // determine exact begin time

// the only line for transaction recording

 scv_atr(my_stream,"write", this,&my_transactor::write_core,addr,data);

}

private:

void write_core(int addr, int data) {

// perform actual protocol manipulation

// ...

addr_phase.unlock();

data_phase.lock();

// ...

data_phase.unlock();

}

};

D) non-intrusive method wrapper in a test

#include <systemc.h>

#include <vwg.h>

// --

// a thin assisted transaction recording layer

// --

// and other overload version for different method

// signatures (1 arg, 2arg, ..., with or without return type,

// etc.)

template<typename transactor_t, typename T1, typename T2>

void scv_atr(scv_tr_stream& s,

 const string& transaction_name, transactor_t& transacor,

 void (*transactor_t::method)(T1,T2), T1 arg1, T2 arg2) {

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 102

scv_tr_generator<T1,T2> gen(transaction_name, s);

scv_tr_handle h = gen.begin_transaction(begin_attr);

transactor.(*method)(arg1,arg2);

gen.end_transaction(h,end_attr);

};

// --

// how a user will specify what transaction to record and what attributes to record.

// --

class my_transactor_if : public sc_interface {

public:

virtual void write(int addr, int data) = 0;

};

class my_test : public sc_module {

scv_tr_stream stream;

public:

sc_port<my_transactor_if> port_1;

SC_CTOR(my_test) : stream(“my_test”) { SC_THREAD(main); }

void main() {

int addr, data;

// instead of calling port_1->write(addr,data),

scv_atr(stream,"write", port_1[0], &my_transactor_if::write,addr,data);

}

};

E) simple macros in a transactor method implementation

#include <systemc.h>

#include <vwg.h>

// --

// a thin layer for assisted transaction recording

// --

#define SCV_TRANSACTION_DATA \

scv_tr_stream my_stream;

#define SCV_BEGIN_TRANSACTION(transaction_name,begin_attr_type, begin_attr) \

scv_tr_generator<begin_attr_type> gen(# transaction_name, my_stream); \

scv_tr_handle h = gen.begin_transaction(begin_attr);

#define SCV_RECORD_ATTRIBUTE(attr) \

SystemC Verification Standard Specification [Version 1.0e]

 © 2002 by all contributors 103

gen.record_attribute(h,# attr, attr);

#define SCV_END_TRANSACTION(end_attr) \

gen.record_attribute(h, “end-attribute”, end_attr); \

gen.end_transaction(h);

// --

// how a user will specify what transaction to record and what attributes to record.

// --

class my_transactor_if : public sc_interface {

public:

virtual void write(int addr, int data) = 0;

};

class my_transactor : public my_transactor_if {

SCV_TRANSACTION_DATA;

fifo_mutex addr_phase;

fifo_mutex data_phase;

public:

SC_CTOR(my_transactor) {}

void write(int addr, int data) {

addr_phase.lock();

SCV_BEGIN_TRANSACTION("write",int,addr);

// ...

addr_phase.unlock();

data_phase.lock();

// ...

data_phase.unlock();

SCV_END_TRANSACTION(data);

}

};

