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requirements capture and OEM-issued specifications
consisted of the message interface’s periods and general
performance requirements, but without a detailed defi-
nition of timing and synchronization properties and of
the communication protocols’ requirements. As a result,
the integration of subsystems is done routinely, albeit in
a heuristic and ad hoc way. The resulting lack of an over-
all understanding of the subsystems’ interplay, and the
difficulties encountered in integrating very complex parts,
make system integration a very challenging job. The “Car
Electronics Architecture” sidebar provides more infor-
mation on the complexity of modern architectures.

CHALLENGES
Novel methods and tools for system-level analysis and

modeling are needed not only for predictability and
composability when partitioning end-to-end functions at
design time (and later, at system integration time), but
also for providing guidance and support to the designer
in the very early stage where the electronics and soft-
ware architectures of product lines are evaluated and
selected. The critical architecture-evaluation and -selec-
tion design-process phase affects profoundly a product
line’s cost, performance, and quality.

Architecture selection typically is performed years in
advance of subsystem development and integration. In
this process, models of the functions and possible solu-
tions for the physical architecture must be defined and
matched to evaluate quality and select the best possi-
ble hardware platform with respect to performance,
reliability, and cost metrics and constraints.

To optimize the system design and allow for plug-and-play of subsystems, automotive 

electronic system architecture evaluation and development must be supported with a

robust design flow based on virtual platforms.
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T oday, though still relatively stable, the roles of
carmakers and their suppliers are undergoing a
period of stress caused by the increased impor-
tance and added value of electronics. The auto-
motive supply chain includes

� car manufacturers—or OEMs—such as GM, Ford,
DaimlerChrysler, and Toyota, who provide the final
product to the consumer market;

� Tier 1 suppliers—such as Bosch, Contiteves, Siemens,
Nippondenso, Delphi, and Magneti Marelli—that
provide subsystems such as power train management,
suspension control, and brake-by-wire devices to
OEMs;

� Tier 2 suppliers—chip manufacturers such as
Freescale, Infineon, ST, and Renesas; IP providers such
as ARM; and real-time operating system suppliers
such as WindRiver and ETAS—who serve both
OEMs and Tier 1 suppliers; and

� manufacturing suppliers such as Flextronics and
TSMC.

Because of liability issues, automakers generally limit
outside manufacturing to non-safety-critical verticals.
The standard approach for OEMs is to develop systems
by assembling components that have been completely
or partly designed and developed by Tier 1 suppliers.
However, these suppliers increasingly are shifting
toward outsourcing their manufacturing.

The supply process traditionally has been targeted at
simple, black-box integrated subsystems in which
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Given the high cost of research, training,
and possibly license acquisition for system-
level design, using a coherent set of models,
methods, and tools during a product’s or
platform’s entire lifetime is desirable. This
extends from the architecture-analysis stage
to system partitioning and design, and
includes model-based development, with its
automatic middleware and application code
generation steps, and the final integration,
testing, and validation stages.

Optimizing automotive electronics system
design requires standards in the software and
hardware domains that allow for plug-and-
play of subsystems. The ability to integrate
subsystems will then become a commodity
item, available to all OEMs. An OEM’s com-
petitive advantage will increasingly rely on
novel and compelling functionalities. The
essential technical problem to solve for this
vision is the establishment of standards for
interoperability among IPs—both software
and hardware—and tools. AUTOSAR,1 a
worldwide consortium of most of the play-
ers in the automotive domain electronics
supply chain, has this goal clearly in mind.

However, technical and business chal-
lenges must first be overcome. In particular,
from a technical viewpoint, while sharing
algorithms and functional designs seems fea-
sible at this time, the sharing of safety-criti-
cal and hard real-time software is difficult,
even assuming substantial improvements in
design methods and technology. Several
issues must be resolved for function parti-
tioning and subsystem integration in the
presence of real-time and reliability require-
ments. These include the following:

� Time predictability. This issue relates to
the capability of predicting the system-
level timing behavior (latencies and jit-
ter) resulting from the synchronization
between tasks and messages, as well as
from the interplay that different tasks can
have at the real-time operating system
(RTOS) level and the synchronization
and queuing policies of the middleware.
The timing of end-to-end computations
depends, in general, on the deployment
of the tasks and messages on the target
architecture and on the resource man-
agement policies.

� Dependability. Deploying functions onto
the system engine control units (ECUs)
and determining communication and syn-

Car Electronics Architecture 

A typical modern vehicle contains between a dozen and nearly
100 electronic control units (ECUs).1 Current electronics systems
are typically partitioned by domains. There are two main classes of
electronic systems: hard-real-time control of mechanical parts and
information-entertainment. The first category includes

• chassis control;
• automotive body, including components such as interior 

air conditioning, dashboard, power windows, and control
subsystems;

• powertrain, including the engine, transmission, and emission
and control systems; and

• active safety control.

The second category includes information management, naviga-
tion, computing, external communication, and entertainment.

Each domain has its own requirements for computation speeds,
time scales, reliability, flexibility, and extensibility. Today, power-
train applications pose the most demanding challenge in terms of
real-time constraints and computational power, with activation
period requirements going down to a few milliseconds at high
engine speeds. 

New active safety applications, currently planned to execute at
slower rates—typically in the range of 20 to 100 ms—at each
stage, will pose new challenges because of their high distribution,
complexity, and interoperability. The typical power train ECU
today relies on a 32-bit microcontroller running at hundreds of
MHz, while the rest of the real-time subsystems use a 16-bit micro-
controller running at less than 1 MHz, with memory requirements
reaching up to 2 Mbytes for a few complex subsystems. The next
generation, however, is rapidly moving toward widespread use of
32-bit ECUs, with some running at more than 100 MHz. Multicore
ECUs will likely provide the next-generation solution for applica-
tions requiring high reliability.

For communications, a typical vehicle today contains two or
three controller area network buses, with rates from 25 to 500
Kbytes, two or three lower-speed local interconnect network
buses, and, optionally, some dedicated high-speed links for info-
tainment. Experimental vehicles now being developed have up to
10 CAN buses, with additional buses almost invariably providing
500-Kbps links. A further increase in the number of buses is 
unlikely because of the additional gateways and consequent
increased latencies and jitter. This is why FlexRay, aside from being
a possible solution for future highly reliable communication
needs, is already required for high-speed, highly deterministic
communication.

Reference
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chronization policies must be done with a view to
meeting dependability targets. A system-level design
tool should integrate support for design patterns
suited to the development of highly reliable systems
with fault containment at both the functional and tim-
ing levels. Such tools should also support the auto-
matic construction of fault trees to compute the
probability of a hazard occurrence or simply the
causal dependencies that link it to
subsystem-level or even atomic
component faults based on the
deployment choices.

� Composability and extensibility
versus efficiency. The timing of
software tasks depends on the
presence or absence of other
tasks, and a similar reasoning
applies to messages. A schedul-
ing policy that could prevent
timing variability in the presence
of dynamically changing task characteristics can be
conceived, but it will carry at least some overhead.
Further, no commercially available RTOS supports
this kind of policy. 

The previous situation shows the standard tradeoff
between efficiency and reliability, but with more impor-
tant business implications than usual. If software from dif-
ferent sources must be integrated on a common hardware
platform—in the absence of composition rules and formal
verification of the composed systems’ properties—who will
be responsible for the final product’s correct functioning?

Whoever takes responsibility for subsystem specifica-
tion and later integration will need a strong methodol-
ogy and iron fist to make suppliers and partners comply
with it. This may not be enough, in the sense that soft-
ware characteristics are hard to pin down. Even with
the best intentions, in the presence of foreign compo-
nents, developers might not be able to guarantee func-
tional and timing behavior and reliability targets.

The constant growth of embedded systems design 
complexity makes manual analysis and design impractical
and error prone. The ideal approach would automatically
map a set of tasks onto the platform, guaranteeing the
correct functionality and timing with optimal resource
utilization. This approach should take the design descrip-
tion at the pure functional level—including performance
and other constraints, as well as the platform architec-
ture—and produce correct settings for the middleware,
RTOS, and optimized application-level code. 

MODEL-BASED DESIGN
Software content in vehicles has grown steadily over

the years. Conceivably, by 2010 more than 100 million
lines of code will be present in even low-end vehicles.
Manufacturers increasingly adopt model-based design

methodologies for improving the quality and reusabil-
ity of these software artifacts. A model-based environ-
ment allows development of control and dataflow
applications in a graphical language familiar to control
engineers and domain experts. Defining components at
higher abstraction levels and with well-defined inter-
faces permits separation of concerns and improves mod-
ularity and reusability. Further, the use of virtual

prototyping tools during develop-
ment allows verification by simula-
tion of the system behavior. 

However, when considered in the
context of a design flow that starts
from the early stages of architecture
exploration and analysis and supports
complex interacting functions with
real-time requirements, deployed on
a distributed architecture, most mod-
ern tools have several shortcomings:

� Lack of separation between the functional and archi-
tecture model. Such a separation is fundamental for
exploring different architecture options with respect
to functionality and for reusing an architecture plat-
form with different functions.

� Lack of support for defining the task and resource
model. Most model-based design flows support the
transition from the functional model directly to the
code implementation. The designer has limited con-
trol when generating the task set and can barely
address the task and resource model. Placement of
tasks in a distributed environment is typically per-
formed at the code level. The specification of task
and message design, and of resource allocation poli-
cies, is necessary to evaluate the system’s timing and
dependability properties. Modeling languages often
do not consider the definition of end-to-end dead-
lines and jitter constraints, which results in insuffi-
cient support for the specification of timing con-
straints and attributes.

� Lack of modeling support for the analysis and back-
annotation of scheduling-related delays. Most tools
support the functional model’s simulation and verifi-
cation, which developers typically base on an assump-
tion of zero communication and computation delays.
Deployment on a given architecture allows analysis
of the delays caused by resource sharing. In a sound
design flow, tools should support this analysis, and
the communication and scheduling delays should be
back-annotated into the model to verify the function’s
performance on a given architecture solution.

� Lack of sufficient semantics preservation. When gen-
erating code from a starting model description,
developers do not always preserve the original
semantics. Designers and developers must under-
stand under what conditions the code-generation
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times. Further, developers believe that such degradation
will in any case preserve the high-priority computations.

This is only partly true, however. Figure 1 shows the
worst-case response times of the highest-priority, a
medium-priority, and the lowest-priority task in a sam-
ple set of eight tasks.3 As Table 1 shows, these tasks
have nominal computation time and period values that
ensure completion within the designated period.
However, when their computation times are increased,
their response time depends linearly on the computa-
tion time only in limited portions of the graphs. For all
tasks except the highest-priority one, there exist points
of discontinuity, where the increased number of pre-
emptions adds the entire execution of one or more task
instances to the response time.

Development of larger and more complex applica-
tions—deployed with significant parallelism on each
ECU, consisting of a densely connected graph of dis-
tributed computations and new safety-critical functions
that require tight deadlines and the guaranteed absence
of timing faults—makes previous assumptions no longer
trustworthy. A new rigorous science must be established.
Several issues must be considered regarding current stan-
dards and the use of priority-based task and message
scheduling:

stage can preserve the model semantics. They must
also realize the implications of an incorrect imple-
mentation.

TIMING PREDICTABILITY AND ISOLATION
Traditionally, the automotive domain has been recep-

tive to methods and techniques for timing predictabil-
ity and time determinism. Developers based the stan-
dard controller area network (CAN) bus2 on a deter-
ministic resolution of the contention between messages
and on the assignment of priorities to them. The OSEK
standard for RTOSs (www.osek-vdx.org) not only sup-
ports predictable priority-based scheduling,3 but also
bounded worst-case blocking time through an imple-
mentation of the immediate priority ceiling protocol.4

OSEK also defines nonpreemptive groups5 for a possi-
ble further improvement of some response times and to
allow for stack space reuse. In the absence of faults, and
assuming that a task’s worst-case execution time can 
be safely estimated, these standards allow predicting
the worst-case timing behavior of computations and
communications.6,7

Priority-based scheduling of tasks and messages fits
well within the traditional design cycle, in which timing
properties are largely verified a posteriori and applica-
tions require conformance with respect to worst-case
latency constraints rather than tight time determinism.
Further, developers design control algorithms to be tol-
erant of both small changes in the timing behavior and
the nondeterminism in time. This can arise because of
preemption and scheduling delays8 or possibly because
of overwritten data or skipped task and message
instances caused by temporary timing faults. 

Finally, although formally incorrect, there is a 
common perception that small changes in the timing
parameters, such as decreased periods or wrong com-
putation-time estimates, typically result only in a grace-
ful degradation of the tasks’ and messages’ response
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Figure 1. Worst-case response times of the highest-priority, a medium-priority (fifth task), and the lowest-priority task in the 

sample set of eight tasks of Table 1, when their computation times are increased from 0 to the maximum value that ensures 

completion within the designated period.

Table 1. Sample task set.

Task Ci Ti ri

�1 1 8 1  
�2 3 10 4 
�3 2 12 6 
�4 3.5 20 15.5  
�5 3 30 19.5  
�6 2 60 40  
�7 7 120 115  
�8 8 300 238  



between the best- and worst-case delays. Even if
communication-by-sampling can be formally stud-
ied and platform implementations defined to guar-
antee at least some fundamental communication-
flow properties, such as data preservation,12 time
determinism is typically disrupted and the applica-
tion must tolerate the large latencies caused by 
random sampling delays. Figure 2 shows how com-
municating information by periodic sampling and
shared variables can result in large latencies and an
equally large jitter between the best- and worst-case
end-to-end latency. In a time-triggered system, task
and message scheduling can be arranged to reduce
latencies and jitter.

� Deployment of reliable systems requires timing isola-
tion in software-component execution and protection
from timing faults. Timing protection is even more
important in light of AUTOSAR, which integrates
components from Tier 1 suppliers into the same ECU,
requiring containment and isolation of faulty func-
tional and temporal behaviors.

� The development of future applications will also
require the enforcement of composability and com-
positionality, not only in the functional domain but
also for parafunctional system properties, including
the components’ timing behavior and reliability. 

Priority-based resource scheduling
has the major downside of allowing
faulty high-priority computation or
communication flows to easily take
control of the ECU or bus, subtracting
time from lower-priority tasks or mes-
sages. For example, an excessive
request for computation time from
any high-priority task affects the
response time of lower-priority tasks
on the same ECU.

In this case, additional control lay-
ers—consisting of runtime guards that
monitor the timing assertions—avoid
the propagation of timing faults. In the
future, application tasks from multi-
ple Tier 1 suppliers will integrate into
the same ECU—leveraging the stan-
dardization of interfaces allowed by
AUTOSAR—and it will be necessary
to protect the tasks of each IP from
other IPs’ timing errors. Timing isola-
tion is therefore required to provide
additional separation of concerns and
protection.

Time-based schedulers, including
those supported by the FlexRay and
OSEKtime standards, force context
switches on the ECUs and the assign-
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� Priority-based scheduling can lead to discontinuous
behavior in time and timing anomalies. The depen-
dency of a lower-priority task or message’s response
time on the computation time of a higher-priority
task is nonlinear and not even continuous. A small
additional high-priority load can lead to a sudden
increase in the response time on some computation
paths.9 Further, especially in distributed systems, tim-
ing anomalies are possible, and shorter computation
times may result in larger latencies.10

� Variability of the response times between worst- and
best-case scenarios, together with the possible pre-
emptions, can lead to violation of time-deterministic
model semantics in the implementation of software
models by priority scheduled tasks and messages.11

� Extensibility and, to some degree, tolerance with
respect to unexpectedly large resource requirements
from tasks and messages allowed by priority-based
scheduling comes at the price of additional jitter,
latency, and lack of timing isolation.

� Future applications, including safety-critical and
active-safety ones, need shorter latencies and time
determinism—reduced jitter—to increase perfor-
mance. The current model for propagating infor-
mation, based on communication by periodic
sampling among nonsynchronized nodes,12 has very
high latency in the worst case and significant jitter
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Message

Task 1

Message

System with periodic sampling

Small
latency Very large latency

Time−triggered system

Latency can be controlled at scheduling time

Variable scheduling delays

Variable sampling times
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Figure 2. Periodic sampling model versus a time-triggered system. Communicating

information by periodic sampling and shared variables can result in large latencies

and an equally large jitter between the best- and worst-case end-to-end latency.

In a time-triggered system, task and message scheduling can be arranged to reduce

latencies and jitter.



ment of the communication bus at
predefined points, regardless of the
outstanding requests for computation
and communication bandwidth. They
are thus better suited to provide tem-
poral protection, except that the
enforcement of a strict time window
for execution and communication
requires that the designer have a much
better ability to predict the worst-case
task execution times13 to allow sizing
the execution window appropriately.
Further, guardians must be used to
ensure that an out-of-time transmis-
sion will not disrupt the bus’s communication flow.

COMMUNICATION AND DISTRIBUTED SYSTEMS
Motivations for the upcoming FlexRay communica-

tion standard for highly deterministic and high-speed
communication include development of new by-wire
functions with stringent requirements for determinism
and short latencies, as well as innovative active safety
functions. These are characterized by large volumes of
data traffic, generated by 360-degree sensors positioned
around the vehicles.

A consortium that includes BMW, DaimlerChrysler,
General Motors, Freescale, NXP, Bosch, and Volkswagen/
Audi as core members is developing the FlexRay 
standard (www.flexray.com). The consortium seeks 
to support cost-effective deployment of distributed 
by-wire controls.

The currently available CAN standard2 is limited to a
speed of 500 Kbps and imposes a protocol overhead of
more than 40 percent, given that the maximum payload
of each frame is 64 bits and the protocol overhead con-
sists of at least 47 bits for the standard format. In CAN,
a contention phase assigns the shared bus immediately
before each message’s transmission. At each contention,
the message with the lowest identifier gets the right 
to transmit.

FlexRay defines the communication speed at 10
Mbps. The bus time is assigned according to a time-
triggered pattern, with time divided into communica-
tion cycles. Each cycle contains up to four segments:
static, dynamic, symbol, and nit. Clock synchroniza-
tion for communication has been embedded in the stan-
dard using part of the nit segment and therefore incurs
no additional cost.

Of the communication segments, the static part allows
transmission of time-critical messages according to a
periodic cycle in which the system always reserves a time
slot of fixed length at a given position on the same node.
The dynamic segment allows for flexible communica-
tion. Identifier priority arbitrates message transmission
in the dynamic part, with the lowest identifier messages
transmitted first, similar to CAN. 

FlexRay includes a dual-channel bus specification for
increased reliability. Including bus guardians at the node-
and star-level in the upcoming specification will in turn
offer increased reliability and timing protection. In a
dual-channel configuration, messages can be replicated
on both channels, as Figure 3 shows for the messages
from node N1. This facilitates safety-critical communi-
cations that leverage physical redundancy. The slots can
also be assigned independently, in which case the system
doubles the communication bandwidth.

FlexRay’s time-triggered model not only allows for
much better time determinism, but developers also con-
sider it a better paradigm for composability and exten-
sibility. Each node only needs to know the time slots for
its outgoing and incoming communications. The speci-
fications of these time slots reside in local scheduling
tables. No global description exists and each node exe-
cutes with respect to its own synchronized clock. As long
as the local tables are kept consistent, no timing con-
flicts or interferences arise. Slots left free in the virtual
global table resulting from the local tables’ composition
can be used for future extensions. Reserving time slots
guarantees time protection and isolation from timing
faults, while guardians avoid that node transmit outside
the allocated time window.

Clock synchronization and time determinism on the
communication channel allow implementation of end-
to-end computations in which the data generation, data
consumption, and communication processes align 
temporally, avoiding sampling delays. Also, system-
level time-triggered schedules allow the semantics-
preserving implementation of distributed control mod-
els—including models with a synchronous reactive
semantics, like those that popular commercial tools
such as Simulink from Mathworks (www.mathworks.
com) produce. To achieve these goals, the time-triggered
communication model must be propagated to the com-
putation layers, using a time-triggered scheduler and
careful coordination of the communication and com-
putation schedules, so that the schedule becomes global.
However, although the OSEKtime standard is a suit-
able candidate for a time-triggered RTOS, current stan-
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Figure 3. FlexRay’s dual-channel bus. Dual-channel configurations allow replicating

messages on both channels, which facilitates safety-critical communications that
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dards barely address synchronization of the communi-
cation and RTOS layers.

Finally, with respect to reliability, although FlexRay
has a powerful error-detection mechanism, the foreseen
error-management scheme instructs the receiver to dis-
card a corrupted frame. Because the standard does not
provide support for an acknowledgment mechanism
(which does exist in CAN), if an application needs a reli-
able communication mechanism, an acknowledgment
must be implemented at the application level.

However, the communication cycle’s fixed structure
would probably require preallocating a communication
slot specifically for acknowledging each transmission.
Since the system uses fixed-size static slots, this can
imply a significant loss of bandwidth and, even in the
best case, the transmitter must wait for its next com-
munication cycle before attempting a retransmission.

In CAN, however, faults usually have limited conse-
quences. All receivers discard error
frames and attempt retransmission
immediately, without the applica-
tion’s intervention. Similarly, CAN
offers some limited protection against
byzantine faults, although most ser-
ial data designers and users probably
are not aware of this. Again, such
protection must be planned for and
explicitly implemented at FlexRay’s
application level. Taking all these fac-
tors into account, the potential 20
times speedup for FlexRay with respect to 500 Kbps CAN
communication will probably be much less than
expected.14

COMPOSABILITY AND AUTOSAR
The increasing complexity of software implementa-

tions parallels increasing supply-chain complexity.
Software developers design their components based on
requirement definitions from the OEMs or Tier 1 sup-
pliers, who are later responsible for their integration. The
AUTOSAR development partnership,1 which includes
several OEM manufacturers, Tier 1 suppliers, and tool
and software vendors, has been created to develop an
open industry standard for automotive software archi-
tectures. To achieve the technical goals of modularity,
scalability, transferability, and function reusability,
AUTOSAR provides a common software infrastructure
based on standardized interfaces for the different layers.

The current version of AUTOSAR includes a refer-
ence architecture and interface specifications. Also, the
AUTOSAR consortium recently acknowledged that the
specification lacks a formal model of components for
design time verification of their properties and devel-
opment of virtual platforms. As a result, the develop-
ment partnership started defining the AUTOSAR
metamodel.

The AUTOSAR project has focused on the concepts of
location independence, interface standardization, and
code portability. Although these goals are extremely
important, their achievement will not necessarily be suf-
ficient for improving the software systems’ quality. As with
most other embedded systems, car electronics are charac-
terized by functional and nonfunctional properties,
assumptions, and constraints. In complex systems, com-
ponent-based design can provide encapsulation and sep-
aration of concerns, thereby improving reuse if infor-
mation hiding is implemented so that the component
model allows the following properties6:

� composability, which guarantees preservation of a
component property across integration; and

� compositionality, which allows deduction of the
composed object’s global properties from its com-
ponent properties; this property enables correctness-

by-construction.

The current specification has at
least two major shortcomings that
prevent achieving the desired goals.
The AUTOSAR metamodel, as of
now, lacks a clear and unambiguous
communication and synchronization
semantics and a timing model.
Similar to UML—not surprisingly,
considering that UML 2.1 inspired
the specification, which by its very

description is provided in the form of UML diagrams—
the AUTOSAR metamodel is sufficiently mature in its
static or structural part, but offers an incomplete behav-
ioral description. Developers plan to remedy this with
significant updates in the upcoming AUTOSAR revi-
sion, however.

Further, none of the standard’s several layers address
issues related to timing and performance, which thus
underestimates the complexity of current and future
applications. These applications’ component interac-
tions generate a variety of timing dependencies due to
scheduling, communication, synchronization, arbitra-
tion, blocking, and buffering. Ensuring component reuse
is not simply a matter of compile-time guarantees that
the provided and required functions be accessible
regardless of the software module’s location and that
formal parameters and actual parameters match. It also
demands that the behavior of the reused components
can be predicted in the new configuration and the result
of the composition can be analyzed for timing faults. If
developers fail to address this problem, the composition
will eventually lead to possibly transient timing prob-
lems, including missed deadlines, task and message skip-
ping, or overwriting and buffer overflows.

The definition of a timing model for AUTOSAR, and
the development of a standardized infrastructure for the
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handling of time specifications, is the objective of the
European Union ITEA 2 (Information Technology for
European Advancement) project TIMMO (timing
model). Started in April 2007, the project includes 
car manufacturers like PSA, Volvo Technology, and
Volkswagen/Audi. The project targets networked auto-
motive real-time systems with the goal of providing

� a description language for time aspects in the devel-
opment of automobile control units and networks,

� a methodology for cross-company usage of this
description language, and

� a validation of the language by means of prototypi-
cal demonstrators.

AUTOSAR also encompasses electronics and tool sup-
pliers, including Bosch, Continental, ETAS, Siemens
VDO, Symtavision, and TTTech.

PLATFORM-BASED DESIGN 
FOR ARCHITECTURE SELECTION

Platform-based design15-17 requires and elicits clearly
identified abstraction layers and a design interface that
allows for separation of concerns between refinement
of the functional architecture specification and the
abstractions of possible implementations. This approach
decouples application-layer software components from
changes in microcontroller hardware, ECU hardware,
I/O devices, sensors, actuators, and communication
links. The left side of Figure 4 demonstrates the basic
idea. The vertex of the two cones represents the combi-
nation of the functional model and the architecture plat-
form. Decoupling the application-layer logic from
dependencies on infrastructure-layer hardware or soft-

ware allows reusing the application-layer components
across multiple vehicle programs without changes. 

A prerequisite for adopting the platform-based design
and meet-in-the middle approach is the definition of the
right models and abstractions for the functional platform
specification’s description and the architecture solutions
at the top and bottom of the hourglass in Figure 4. The
platform interface must be isolated from lower-level
details but, at the same time, must provide enough infor-
mation to allow design space exploration with a fairly
accurate prediction of the implementation’s properties.

This model can include size, reliability, power con-
sumption, and timing—variables associated with lower-
level abstraction. Design space exploration consists of
seeking the system platform model’s optimal mapping
into the candidate execution platform instances. This
mapping must be driven by a set of methods and tools
that provide a measure of the architecture solutions’ fit-
ness for providing a set of feasibility constraints and
optimization-metric functions. This work focuses on
timing constraints and metrics. In the currently avail-
able approach, a what-if analysis, developers select dif-
ferent options as representatives of the principal
architecture solutions and evaluate them metrically.

What-if analysis
A what-if iterative process drives architecture selec-

tion and evaluation. First, developers define the set of
metrics and constraints that apply to the design. Then,
based on the designer’s experience, the team produces a
set of initial candidate architecture configurations. The
team evaluates these configurations and, based on the
results of the quantitative analysis, extracts a solution
from the set as the best fit. If the designer is dissatisfied
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with the result, the team can select a new set of candi-
date architectures. The iterative process continues until
a solution is obtained. 

The designer must intervene in two tightly related
stages of the exploration cycle. First, the initial set of
architecture options must be provided. Second, once the
analysis and simulation tools have scored and annotated
the options, the designer must assess the analysis’s results
and select the architecture options that best fit the explo-
ration goals. More importantly, the designer must eval-
uate the analysis results to add other options to the next
set of architecture configurations for evaluation. The
currently available set of analysis methods, including
those not related to timing constraints and metrics, are
as follows:

� evaluation of end-to-end latency and schedulability
against deadlines for computation chains spanning
tasks and messages scheduled with fixed priority;6,7

� sensitivity analysis for tasks and messages scheduled
with fixed priorities, and sensitivity analysis for
resources scheduled with fixed priorities;9

� evaluation of message latencies in CAN bus net-
works;4

� system-level simulation of time properties and func-
tional behaviors, based on the Metropolis engine;18

� analysis of fault probability and cutsets (conditions
leading to critical faults) based on fault trees;19 and

� product-line cost analysis.

Going beyond the purely designer-driven what-if
approach, our current research includes algorithms and
methods for the automatic configuration of the software
architecture or at least some of its attributes. 

Automatic SW architecture configuration 
Mapping the functional model into the execution plat-

form is part of the platform-based design and Y-chart
design flow.20,21 As Figure 5 shows, this chart’s applica-
tion and architectural descriptions are joined in an
explicit mapping step. The mapping definition and cre-
ation of the task and resource models can be performed
in several ways. In single-processor systems, the problem
is usually simple and often subsumed by the code-gen-
eration phase. In distributed architectures, designing the
software architecture presents a more complex task that
often must be delegated to the most experienced
designer. When resource constraints make a software
implementation infeasible, design iterations might be
triggered, and the functional model itself, or the archi-
tecture configuration, might be modified.

Once developers define the function and architecture,
they have several options for the intermediate layer. At
least conceptually, automated tools could provide guid-
ance in selecting the optimal configuration’s timing con-
straints and performance-related metric function. The
mapping consists of the following stages: function-to-
task mapping, task-to-ECU deployment, signal-to-mes-
sage mapping, and assignment of priorities to tasks and
messages. When the functional model requires itera-
tions, a different selection of the functions’ execution
periods or synchronization and communication solu-
tions could be explored.

In past research, we defined solutions based on mixed-
integer linear programming and geometric programming,
respectively, to optimize the tasks and messages activation
mode22 and the selection of task periods.23 We demon-
strated the effectiveness of these approaches by applying
them to an experimental vehicle system case. We are cur-
rently exploring approximated solutions for the selection
of a feasible mapping of tasks to ECUs, signals to mes-
sages, and assignment of priorities to tasks and messages.

U sing this methodology, we envision the availability
of an intermediate platform layer in which devel-
opers map the functions into the architecture

option and evaluate the result with respect to parafunc-
tional metrics and constraints related to timing, depend-
ability, and cost. This will be of the highest importance
in supporting the evolution of automotive standards and
ensuring the feasibility of a correct and robust design
flow based on a virtual platform. ■
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