
CADENCE CONFIDENTIAL

SystemC and the future of design
languages:
Opportunities for users and research

Grant Martin
Fellow, Cadence Berkeley Labs

SBCCI 2003, São Paolo, Brazil, 8-11 Sept 2003
9 September 2003: 10:20-11:10

2

Outline

• Alphabet Soup

• A language war?

• Or peaceful co-existence

• SystemC, HDLs and software modelling

• New Methodologies and Flows

• New Research Opportunities

• Conclusion

3

Alphabet Soup

Verilog

VHDL

SystemVerilog

Verilog-2005

S
ystem

C

PSL

Su
ga

r

Verilog-A

VH
D

L-AM
S

e
Vera

O
penV

era

O
VA

O
VL

UM
L

S
D

L

Matlab/Simulink

4

RTL

Verification

“EDA-style”
System Design

Embedded SW
Simulation

Making Sense of the Alphabet Soup

No

Best

OK+

VHDL/
Verilog

No

Good

Best

C/C++

OK

No Best

Good

OK

No

Verilog2005 (ext)
SystemVerilog

Best

SCVL,
Vera, e,

PSL/Sugar

No

No

No

SystemC 2.01/
2.1/3.0…

OK

Good

Best

Good

SW and System
Modelling

UML, SDL,
Matlab/Simulink

Best

No

No

No

Good

No one language does everything.

5

A “typical” System-on-Chip Design Project?
• Take a microprocessor and its Instruction Set Simulator

(ISS)…modelled in SystemC
• Add in some embedded SW – C or C++
• Add in some digital IP blocks – some modelled in Matlab

(dataflow) and some created in Verilog
• Buy some 3rd party digital IP – from a VHDL-based supplier

• Need to have some AMS interfaces – Spice models

• Need to validate AMS interfaces in SoC context – Verilog-A
• Build some testbenches – e
• Create some block assertions – PSL
………………….is 9 different languages or notations enough?

6

A Language War?
• SystemC won't go away quietly

By John Cooley, EE Times, Jun 23,
2003

• Cadence IEEE donation overlaps
SystemVerilog
By Richard Goering, EE Times, Jun
2, 2003)

• EDA language dispute erupts in
advance of DAC
By Richard Goering, EE Times, May
30, 2003

• New EDA consortium promotes
assertion language
By Richard Goering, EE Times, May
22, 2003

• VHDL, the new Latin
By John Cooley, EE Times, Apr 7,
2003

• Verilog 2001 compliance lacking,
designer says
By Richard Goering, EE Times, Feb
26, 2003

• DVCon: SystemVerilog key to new
design paradigm
By Michael Santarini, EE Times, Feb
24, 2003 (7:45 PM)

• C loves me, C loves me not
By Richard Goering, EE Times, Sep
16, 2002

• Synopsys donation defuses
assertion language war
By Richard Goering, EE Times, June
11, 2002

7

Or Peaceful coexistence?

8

SystemC is for System-Level Design

System and SW Modeling:
UML, SDL, etc.

System-Level Design and
System Level Integration
Infrastructure: SystemC

}
}
}

(Hugo De Man’s “7th. Heaven of Software”)

Mere Implementation!!
VHDL, Verilog,
SystemVerilog,
Verilog-2005

(Hugo De Man’s “Deep Submicron Hell of Physics”)

9

Important SystemC Milestones
• 1.0

– Layered on C++

– Fixed-point modelling

– RTL (as refinement target ……….but weak on system level modelling)

• 1.2
– Master-Slave library – methodology specific libraries layered on top of kernel

• 2.0
– True system level abstractions: channels, interfaces, events

– Basis for multiple Models of Computation and abstraction levels

• SCV 1.0
– Layered verification library on top of SystemC

• Current and future: 2.01 and LRM for IEEE standards transfer
– Transaction-level modelling standard for IP interoperability (2.1?)

– Synthesisable subset work

– SystemC 3.0 – RTOS, SW tasking and scheduling modelling constructs

– Continued experiments with Analogue/Mixed-Signal extensions

10

Role of SystemC
• System-level design at all levels of abstraction:

– Functional modelling using various models of computation

– Transaction-level modelling of hardware platforms

– Refinement of design from untimed functional models through to
RTL implementation

– Creation of HW-SW platform models for use by system designers
and embedded software developers

– System-level testbenches (using the new SCV library) which can be
propagated through implementation

• But clearly not:

– A substitute for HDL’s, nor

– A software modelling language

11

HDL Evolution

• Despite the appearance of language wars, there is a clear path
for HDL evolution:
– Via IEEE 1364 for Verilog

– Via IEEE 1076 for VHDL

• The IEEE process provides a mechanism for the reconciliation
of various interests:
– Commercial proprietary interests

– Industry bodies in language based design such as Accellera

– Academia

– users

12

Verilog Evolution
• IEEE 1364 Verilog working group has begun a process for evolving

Verilog beyond Verilog-2001 (“Verilog-2005”…)
• Will accept donations
• Is conducting User Surveys as to needs and priorities
• Opportunity for Accellera to donate SystemVerilog 3.1 or further

version as input
• Some companies have already donated technology as inputs

– E.g. Cadence – June 2003: testbench, IP encryption
• Opportunity for others to contribute
• IEEE 1364 is also a forum for users to influence the standardisation

process – as much or perhaps more than tool vendors
• Nothing proposed in this area moves Verilog up to true system-level

design abstractions

13

VHDL Evolution
• IEEE 1076 has begun a process to look at VHDL evolution beyond

VHDL-1998: called VHDL-200x
– Web site URL: http://www.eda.org/vhdl-200x/

• Led by Steve Bailey, now at Mentor Graphics

• Areas of interest in extending:
– Assertions, testbenches and verification

– Datatypes and abstraction

– Environment (simulation control) and interoperability

– Modeling and productivity

– Performance

• Hope to have finished by late 2004/early 2005

• Wants strong user input
– Users will have the strongest impact on the evolution and longevity of VHDL

http://www.eda.org/vhdl-200x/

14

HDL Evolution

• Despite the proprietary and commercial interests, ultimately
users decide on what happens with languages and tools

• Usage attracts tool vendors

• Revenues are more important than ideologies

• Legacy and conversion costs as well as differences of
capabilities are significant factors in language longevity

• ……………..it’s a multilingual world

• ……………………and likely to stay that way

15

Software Modelling Evolution
• UML moving towards finalisation in 2003 of UML 2.0

• Adds significant system modelling capabilities to UML’s object-oriented
software modelling capabilities:
– Structured classes or components (what in ROOM were called capsules)

– Ports as interfaces and service specifications

– Hierarchical sequence diagrams with loops and alternatives

– Hierarchical state machines

• In addition, UML profile for Scheduling, Performance and Time (SPT),
and Action semantics definition, support more complete modelling of
real-time aspects of systems, and more optimised code generation

• Finally, the Object Management Group (OMG)’s embrace of MDA –
Model Driven Architecture – fits more closely with the EDA/HW design
world notions of design methodology and flow

16

UML 2.0

:User :ACSystem
ref AC_EstablishAccess(txt)

sd EstablishAccess(String txt)

GivePINref

loop(0,3)

GivePINref

alt

Idle

PIN NOK

PIN OK

Cardid

msg("Try again!")

msg(txt)

ACSystem

ap: AccessPoint
0..100

c: Console
1..5

:Authorizer

e

d v v

e
outp inp

isOpen, isClosed

unlock, lock

outpinp

Console

e

Code

inp

outp

validity

v

sm GivePIN

enterDigit

send(msg("Give your PIN!")); n=0

waitCommand

[n==4] digit/
send(code(cid,PIN))

givePIN/send(msg("PIN:"))

Cardout
[n<4]digit/ n++

sm Panel

NoCard

OneCard:
GivePIN

Cardid(cid)

H

msg(t)/send(msg(t))

K E N N E D Y C A R T E R
Lockheed Martin Aeronautics Company

eXecutableeXecutable MDA: Application Software DevelopmentMDA: Application Software Development

eXecutableeXecutable UMLUML
ModelingModeling

RequirementsRequirements
DefinitionDefinition

IntegrationIntegration
& Test& Test

Platform SpecificPlatform Specific
MappingMapping

(Design Tagging)(Design Tagging)

Automatic
Code Generation

Application
Software
Interface
Definition

The The eXecutableeXecutable
MDA ApproachMDA Approach

as supported byas supported by
KC’s KC’s iUMLiUML and and iCCGiCCG

(Source: L. Clark, T. Ruthruff, Bary Hogan and Allan Kennedy, “F-16 Modular Mission Computer
Application Software: Achieving Cross-Platform Compatibility with Increased Productivity and
Quality Using the OMG’s Model-Driven Architecture”, OMG WebSite,
URL http://www.omg.org/mda/mda_files/New_MDA.ppt)

18

Flows and
Methodologies Higher level modelling:

UML, SDL, Matlab/Simulink

Functional Architectural

SystemC
Code Generation

Functional Architectural

Refine:
e.g. transaction-level

RTL

Synth Man

Implement

Platform Model
For System/SW

Verification

Possible Entry
Points

Implementation
Routes

SystemC, Verilog, VHDL, Verilog-2005, SystemVerilog

Verilog, VHDL, Verilog-2005, SystemVerilog

19

Fujitsu – UML, SystemC, flow to RTL implementation

20

Language-Based Design Research
Opportunities
• Paths to implementation:

– Next generation behavioural synthesis?

– Co-processor synthesis?

• Models of Computation for systems
– How many are necessary? How many are enough?

– How do you link them?

• Transaction-Level Abstractions for Platform modelling
– Which ones, and how many?

– Exporting platform models to embedded SW developers

• Verification
– Assertion-based, Transaction-based, Coverage-based

– Combined Dynamic (simulation) and Static (formal) verification

21

Next-Generation Behavioural Synthesis

• Not your grandfather’s or grandmother’s behavioural synthesis
– E.g. Cadence Visual Architect, Synopsys Behavioural Compiler
– Difficulty of use, quality of results, wrong target architecture, not much

above RTL synthesis
• A new generation emerges, with different use models

– E.g. low power behavioural analysis and synthesis
– ChipVision ORINOCO, Alternative System Concepts (ASC) “Pacific”

– E.g. co-processor synthesis
– Critical Blue

– E.g. new platform targets
– Reconfigurable logic – new reconfigurable platforms

• Are all the answers here? Not by a long shot…….

22

Alternative System Concepts “Pacific” Low-
Power Behavioural Synthesis

23

Co-processor Synthesis Example -
CriticalBlue

E. A. Lee, UC Berkeley 24

Models of Computation
(Source: Concurrent Component Patterns, Models of Computation, and Types
Edward Lee and Yuhong Xiong, Fourth Annual Workshop on New Directions
in Software Technology (NDIST’01), St. John, US Virgin Islands, December 2001).

Example Domains
Communicating Sequential Processes (CSP):
rendezvous-style communication
Process Networks (PN):
asynchronous communication, determinism
Synchronous Data Flow (SDF):
stream-based communication, statically scheduled
Discrete Event (DE):
event-based communication
Synchronous/Reactive (SR):
synchronous, fixed point semantics
Time Driven (Giotto):
synchronous, time-driven multitasking
Timed Multitasking (TM):
priority-driven multitasking, deterministic communication

http://ptolemy.eecs.berkeley.edu/presentations/01/stjohn.pdf

25

Models of Computation

• How many are enough?

– Another alphabet soup

– But we can certainly argue for:

– Dataflow or process network

– Discrete Event

– Synchronous/Reactive

– And for some systems, Continuous time (hybrid systems)

Chess, UC Berkeley, E. A. Lee 26

Heterogeneous Models: Periodic/Time-Driven
Control Inside Continuous Time

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be
nested and mixed.

Source: “Model-Based Design in the Ptolemy Project”
Edward A. Lee, July 31, 2003, A Chess project
presented at Boeing, Seattle.

27

Transaction-Level Models for SoC Design Platforms:
example

Source: Jon Connell, ARM: DAC 2002 Open System C Meeting: “Platform Modelling for System Design Using SystemC”

Transaction-Level Abstractions – one proposal
(Source: “Transaction Level Modeling: Overview and Requirements for SystemC Methodology” and
“Introduction to TLM” by Mark Burton (ARM), Frank Ghenassia (STMicroelectronics and Stuart Swan
(Cadence), May 13, 2003; and “ARM System-Level Modelling” by Jon Connell, June 25, 2003).

Cycle Level (CC) Word transfers
Foundation: Clock Edge Cycle-accurate

Programmer’s View + Timing (PVT) Bus architecture
Foundation: Timed Protocol Timing approx.

Programmer’s View (PV) Bus generic
Foundation: Memory Map Architectural

RT Level (RT) Signal/Bit
Foundation: Implementation Cycle-accurate

Algorithmic Level (AL) Function-calls
Foundation: Function FunctionalSystem

Architecture

System
Verification

System
Validation

Logic / Physical
Design

Hardware
Implementation

Hardware
µArchitecture

HW dependent
Software

Implementation

Middleware
µArchitecture

Application
Software

Design

H
D

L
Transaction Level M

odeling
U

M
L

29

Example of Virtual Platform Model:
Virtio VPAI Arm-based model

Source: http://www.virtio.com/support/platforms/homePage/1,2457,559,00.html

30

Verification
• Transaction-based verification

– Beyond the abstraction level decisions – where do the verification stimuli, monitors
and checkers come from?

– From assertions? - Expressed in what form? How can we cover all ‘interesting’ properties
of a protocol?

– From other notations? Output of system-level simulations?

– Non-functional properties such as performance?

• Assertion-based verification
– How do we efficiently generate assertions from specifications?

– Can a research language such as Rosetta be useful in this context?

– How do we combine static and dynamic verification methods?

• Coverage
– The old question – “how much simulation (verification) is enough?”

– Are we adequately exploiting the years of experience in verifying large systems in
building our verification methodologies and tools – and decision making criteria?

– Can Verification be put on a more sound theoretical footing?

31

Conclusions

• The role of SystemC is becoming well-defined

• It makes no pretence to cover the full design flow from
specification to full physical implementation

• But it covers, reasonably, a set of well-defined use models and
requirements in system modelling, refinement, model generation
and links to implementation

• We should think of it in the context of a multi-language, multi-
disciplinary flow that covers the whole specify-design-implement
space

• Notwithstanding the progress that has been made – there are
many interesting design problems yet to solve, and many
interesting research contributions yet to be made.

	SystemC and the future of design languages:Opportunities for users and research
	Outline
	Alphabet Soup
	Making Sense of the Alphabet Soup
	A “typical” System-on-Chip Design Project?
	A Language War?
	Or Peaceful coexistence?
	SystemC is for System-Level Design
	Important SystemC Milestones
	Role of SystemC
	HDL Evolution
	Verilog Evolution
	VHDL Evolution
	HDL Evolution
	Software Modelling Evolution
	UML 2.0
	eXecutable MDA: Application Software Development
	Flows andMethodologies
	Fujitsu – UML, SystemC, flow to RTL implementation
	Language-Based Design Research Opportunities
	Next-Generation Behavioural Synthesis
	Alternative System Concepts “Pacific” Low-Power Behavioural Synthesis
	Co-processor Synthesis Example - CriticalBlue
	Example Domains
	Models of Computation
	Heterogeneous Models: Periodic/Time-Driven Control Inside Continuous Time
	Transaction-Level Models for SoC Design Platforms: example
	Transaction-Level Abstractions – one proposal(Source: “Transaction Level Modeling: Overview and Requirements for SystemC Me
	Example of Virtual Platform Model:Virtio VPAI Arm-based model
	Verification
	Conclusions

