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Abstract—Systems on Chip (SoCs) congregate multiple modules 

and advanced interconnection schemes, such as networks on 

chip (NoCs). One relevant problem in SoC design is module 

mapping onto a NoC targeting low energy. To date, few works 

are available on design and evaluation of mapping algorithms. 

The main goal of this work is to propose some algorithms and 

evaluate its results and performance with regard to low energy 

NoC mappings. These include exhaustive and stochastic search 

methods and heuristic approaches, and some combinations. The 

use of combined approaches compared to pure stochastic algo-

rithms provides average reductions above 98% in execution 

time, while keeping energy saving within at most 5% of the best 

results. In addition, one heuristic provided average reductions in 

execution time above 90% when compared to pure stochastic 

algorithms, and obtained better energy saving than combined 

approaches. 

I. INTRODUCTION 

A NoC is an intra-chip communication infrastructure, composed 

by routers interconnected by communication channels. In direct 

NoC topologies, each router connects to a module and both are 

placed inside a limited region called tile. NoCs are seen as prom-

ising communication resources for implementing future SoCs. 

Consider an application composed by n modules, such as DSPs, 

other processors and memories, implemented as a SoC. Assume 

this SoC employs a NoC as communication infrastructure. The 

module mapping problem consists in finding a mapping of each 

module to a tile to optimize a cost function (e.g. energy con-

sumption, performance). Generally, this mapping problem al-

lows n! possible solutions. Given future SoCs with hundreds of 

tiles [1], exhaustive search of the solution space is unfeasible. 

Thus, the optimal implementation of such SoCs requires more 

efficient mapping approaches. 

The main goal of this work is to evaluate algorithms for the 

module-mapping problem, having energy consumption as cost 

function, given that communication can highly affect it [2]. The 

evaluated algorithms include from exhaustive and stochastic 

search to heuristic approaches, plus some combinations of these. 

The remaining of this paper is organized as follows. Section II 

presents the problem definition. Section III discusses related 

work. Section IV shows how to model application and architec-

ture, while sketching the algorithms. Section V shows results and 

Section VI presents some conclusions and future work. 

II. PROBLEM FORMULATION 

Definition 1: A Communication Weight Graph (CWG) is a di-

rected graph CWG = <M, C>, where M = {m1, m2,…, mn} repre-

sents the set of modules, corresponding to the set of CWG verti-

ces, and C = {(mi, mj, Wij) | (mi, mj) ∈ M} denotes the set of 

communications between modules, corresponding to the set of 

CWG edges. The edge weight Wij in (mi, mj, Wij) represents the 

total data amount in bits, sent from mi to mj. 

Definition 2: A Communication Resource Graph (CRG) is a 

directed graph CRG = <Γ, L>, where Γ = {τ1, τ2,…, τp} denotes 

the set of tiles, corresponding to the set of CRG vertices. 

L = {(τi, τj) | τi, τj ∈ Γ} designates the set of routing paths from 

tile τi to tile τj, corresponding to the set of CRG edges. The num-

ber of NoC tiles is denoted by p. 

CWG represents the communication weight, i.e. the number of 

phits
1
 transmitted between application modules. CRG represents 

the communication resources of the target architecture. 

III. RELATED WORK 

Table I reviews some of relevant works on the module mapping 

problem. Column Basic element shows if application behavior is 

modeled through modules or tasks interrelation. Column Model 

exposes the variety of application models to represent the quan-

tity
2
 and/or the order

3
 of computation and/or communication. 

Column Algorithm also exposes a great range of possibilities. 

Column Objective function shows that energy and latency are the 

most evaluated requirements. Column Benchmark exposes that 

synthetic and embedded applications have been preferred for 

evaluation. Column Topology summarizes that NoC 2D mesh is 

also preferred. Finally, column Maximum size (tiles) shows that 

the majority of target architectures have less than 100 tiles. 

Following the reviewed works trend, this paper analyzes map-

ping algorithms with respect to the energy consumption of 2D 

mesh NoCs with XY routing algorithm. Applications were de-

scribed with communication quantity, using a communication 

weight model (CWM) [3]. 

IV. MAPPING ALGORITHMS 

This work uses the CAFES framework [18], since it supports 

application modeling (e.g. CWM), mapping algorithms and syn-

                                                           
1 Phit is the physical unit information sent in a channel. 
2 Quantity information allows modeling e.g. the number of bits 

transmitted in a single communication. 
3 Order can be partial or total. When order is partial, it is called de-

pendence. Dependence allows knowing e.g. all messages that a 

given message depends on. A total ordering enables to know e.g. the 

exact instant of time a given task will be executed. 



thetic application generation. Based on the target architecture 

and the description of an application partitioned in modules, 

CAFES also allows obtaining the CRG and CWG, which are 

inputs to mapping algorithms. 

TABLE I.  ACCOUNT OF RELATED WORK IN MAPPING ALGORITHMS AND APPLICATION MODELS FOR NOC COMMUNICATION ARCHITECTURES 

Application Mapping NoC 
²W ork 
(Year) Basic 

element 
Model Algorithm Objective function 

Benchmark 
Topology 

Max size 
(tiles) 

[3] / (2005) module communication dependence and quantity exhaustive and SA energy embedded and synthetic mesh 100 

[4] / (2005) module communication quantity branch-and-bound energy and bandwidth video, audio and synthetic mesh 169 

[5] / (2004) module communication quantity branch-and-bound bandwidth  mesh and torus 65 

[6] / (2005) module 
communication dependence and 

quantity, and computation quantity 
exhaustive and SA energy and latency embedded and synthetic mesh 120 

[7] / (2005) module communication quantity and total ordering tabu search energy and latency embedded and synthetic mesh, folded-torus and fat tree 16 

[8] / (2004) module communication quantity genetic energy and latency embedded and synthetic mesh 25 

[9] / (2004) module communication quantity genetic thermal balance codec tile-based NoCs 100 

[10] / (2006) task computation dependence and quantity exhaustive  area and latency multiprocessors and synthetic mesh  9 

[11] / (2003) task computation dependence and quantity genetic latency synthetic mesh 15 

[12] / (2004) module communication quantity integer linear programming energy video and synthetic  mesh 16 

[13] / (2003) task computation dependence and quantity genetic energy embedded and synthetic  - 5 

[14] / (2005) module communication quantity greedy and stochastic energy and latency video 
mesh, torus, butterfly, clos and 

hypercube 
16 

[15] / (2005) module communication quantity branch-and-bound energy synthetic mesh 40 

[16] / (2004) task computation dependence and quantity greedy energy and deadline synthetic mesh 16 

[17] / (2005) module communication quantity greedy and tabu search 
latency, energy, QoS area 

and critical constraints 
video 

mesh, torus, butterfly, clos and 
hypercube 

16 

[18] / (2005) module communication quantity greedy 
energy, bandwidth and 

latency 
embedded and multimedia mesh 16 

 

Mapping algorithms are divided in two parts: (i) an internal part, 

which is target architecture and application model dependent; 

and (ii) an external part that generates mappings and calls the 

internal part to compute the mapping cost. Four basic external 

algorithms are evaluated for solving the module-mapping prob-

lem: exhaustive search (ES), simulated annealing (SA), tabu 

search (TS) and two greedy heuristics proposed here: Largest 

Communication First (LCF) and Incremental (GI). From these, 

the Authors derived three mixed approaches: SA and TS with 

seed mapping generated by LCF (HSO and HT, respectively), 

and a version of SA with a single iteration loop (HSM), using 

LCF seed mapping. Since ES has a trivial formulation, it is not 

discussed here. 

A. Simulated Annealing (SA) Algorithm 

SA is a stochastic approach implementing the external mapping 

algorithm with two nested loops. The external loop implements a 

global search technique, and the internal loop implements a local 

refinement. The internal loop optimizes mappings provided by 

the external one, successively swapping two random modules 

and storing the best mapping thus obtained. Best mapping is de-

fined as the mapping with lowest energy consumption when 

compared to previously computed mappings. To avoid local 

minima, searches that start from swaps that do not save energy 

can be accepted depending on a temperature parameter. Larger 

temperatures imply greater probability to accept worse map-

pings. After each execution of the internal loop, temperature is 

decremented. The final best mapping from the internal loop is 

compared to the global best mapping and the best energy saving 

is stored as a new best mapping. The external loop randomly 

swaps several modules to search for widely different mappings. 

B. Tabu Search (TS) 

Like SA, TS is a stochastic approach implementing the external 

mapping algorithm with two nested loops. The internal loop ran-

domly searches pairs of modules, looking for a swap that results 

in less energy consumption. A swap list with all distinct pairs of 

swappable modules optimizes the search. E.g., if the list contains 

a pair (Rx, Ry), it will not contain the pair (Ry, Rx). The search 

process accesses the swap list randomly. If a swap saves more 

energy than a previous one, the swap list index of this pair is 

stored. When the internal loop finishes, if an energy saving pair 

was found, it is inserted into a tabu list, removed from the swap 

list, and the current mapping is modified with this swap. If not, 

no action is taken and a new internal loop is performed. 

C. Largest Communication First (LCF) 

LCF is a greedy heuristic proposed here, where the most com-

municating modules are mapped first. The amount of communi-

cation is computed for each module using a balance between 

communication weight (associated to CWG edges) and the num-

ber of tiles with which each module communicates. Here, mod-

ules are placed from the center to the borders of the communica-

tion infrastructure. 

Six steps constitute LCF: (i) creation of a list containing the NoC 

router types that associates module communication needs with 

router communication capacity; (ii) conversion of CWG to an 

undirected graph, combining the weight of opposed parallel 

edges. This increases performance of the algorithm, while keep-

ing its accuracy; (iii) associating modules to routers, considering 

communication weight and amount of modules with which the 

module communicates; (iv) creation of a communication list 

based on the undirected graph. The list is ordered decreasingly, 

according to the amount of communication between pairs of 

modules; (v) using the communication list to assign modules to 

router types, creating an assignment list, considering module 

communication requirement and router availability; (vi) mapping 

creation, considering the assignment list and the place of each 

router type. This guarantees that modules placed at the center of 

the NoC are those with largest communication demands. 

D. Greedy Incremental (GI) Algorithm 

GI is also a 2-nested loops algorithm. Given a predefined ran-

domly generated initial mapping, the external loop fixes a place 

to be the pivot of evaluation. The internal loop performs swaps 

using as decision criterion the largest obtained energy saving. 

Five steps compose the GI algorithm: (i) CWG conversion, equal 

to step (ii) of LCF. (ii) Initial mapping definition. (iii) Choosing 

a NoC position to be the pivot for internal loop evaluation. The 

pivot place changes incrementally each time the external loop is 

executed. The first pivot position is the top-left corner of the 

NoC and the last is the bottom-right corner of the NoC. (iv) In-



ternal loop execution defining which swap leads to the best en-

ergy saving. It operates by incrementally computing savings 

achieved by swapping the chosen position module with each 

module in one of the remaining positions. These places include 

only those not yet chosen by the external loop as pivots. When 

the algorithm attains the end of the internal loop, it has achieved 

the most energy saving alternative among all possibilities evalu-

ated up to here. (v) If there is a pair of NoC positions leading to a 

better mapping, this step swaps them. Otherwise nothing occurs. 

After the action, the algorithm discards the pivot from considera-

tion. Next, execution resumes to step (iii), to define another 

pivot. The algorithm stops when there are no more pivots avail-

able. The greedy nature of the algorithm is defined by the discard 

policy described when discussing step (iv). 

E. Mixed Approaches (HSO, HT, HSM) 

The initial mapping used in stochastic algorithms influences the 

search for optimal mappings. Since LCF is the fastest presented 

approach and obtains figures better than random mappings (See 

Section V), it is a potentially good generator of seed mappings. 

Three approaches help enhancing stochastic algorithms with 

LCF: (i) First, HSO mixes LCF and SA. While SA external loop 

randomly swaps several modules to produce widely different 

mappings, HSO mappings are produced only once by LCF. 

Thus, HSO performs refinement by swapping modules in the 

internal loop, looking for local minima. The last mapping result-

ing from the internal loop execution is input for the next internal 

loop. (ii) Second, HT mixes LCF and TS. Similar to HSO, the 

random seed mapping generation inside TS is replaced by an 

LCF-generated mapping. The remaining of TS is unaltered. (iii) 

Third, HSM mixes LCF and SA. It differs from HSO since the 

external loop is performed just once, which may lead to worse 

mappings, but drastically reduces execution time. 

V. EXPERIMENTATION 

Mapping algorithms were compared w.r.t. execution time and 

energy saving. For each mapping, the energy consumed in the 

NoC is estimated by applying a method defined in [3]. To com-

pare the quality of mappings, random methods were employed. 

A. Experiments Description 

A set of experiments with varying degree of connectivity, com-

munication weight, NoC size, and NoC occupation was con-

ducted in CAFES to compare the algorithms described in Section 

IV. A subset of relevant results is discussed here. Four sets of 

experiments were conducted, widely varying one given aspect 

while keeping others fixed or varying within a narrow range. In 

one set of experiments, the NoC size varied from 2x3 up to 

17x17, keeping connectivity at 20%, occupation at 100% and 

varying communication weight randomly between 10 to 50 phits. 

In another, a 7x7 NoC had its communication weight varied in 

intervals between 1-10 phits to 1-10
4
 phits. Similar choices apply 

to the NoC occupation experiment and the connectivity experi-

ment sets. All algorithms, except eventually ES, were performed 

for each experiment set, with some results discussed next. 

B. Results and Evaluation 

NoC size variation is the most relevant aspect of algorithms for 

future SoCs, assuming good execution time and reasonable en-

ergy savings are obtained. This is indeed true for the NoC map-

ping problem. Considering NoC size variation, Figure 1 and 

Figure 2 depict the execution time and the energy gain for all 

approaches. Here, energy gain means the optimization of the 

energy consumption. All applications have 20% connectivity, 

random communication weight between 10-50 phits and 100% 

occupation. It is important to highlight that the results showed 

here for SA and TS are average values, obtained varying pa-

rameters like initial temperature and stop criterion. 
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Figure 2 – Energy gain w.r.t. number of tiles compared to random mapping 

Figure 3 illustrates how the connectivity of application modules 

affects the energy gain of mapping algorithms for a large NoC 

(14x15). Here, the communication weight is randomly set be-

tween 10-50 phits and the occupation is fixed at 100%. 
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Figure 3 – Energy gain with respect to connectivity degree 

Each point in the plot represents the energy gain achieved with 

one algorithm in each connectivity range. Clearly, increasing 

connectivity reduces the energy gain saving. Real application 

modules connect to just a small fraction of other SoC modules. 

Thus, the lower connectivity ranges are closest to real cases. 



Concerning variation of the communication weight, Figure 4 

describes the behavior of all non-exhaustive search algorithms 

for a small to medium NoC (7x7). Weight varies randomly 

within narrow and wide ranges (from [1, 10] up to [1, 10
4
]). To 

obtain worst-case energy gain figures, connectivity is 100% (see 

why in Figure 3). Although this situation is unrealistic, 100% 

connectivity helps evaluating mapping algorithms limits, due to 

the needed amount of computation for calling cost functions. All 

algorithms but LCF obtained energy savings mostly above 10%. 
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Figure 4 - Energy gain w.r.t. communication weight 
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Figure 5 - Algorithm execution time w.r.t communication weight 
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Figure 6 - Energy gain with respect to communication weight 

Figure 5 and Figure 6 depict the execution time and energy sav-

ings for the same NoC with connectivity ranging from 5% to 

15%. It is clear that the execution time of all algorithms depends 

little on the communication weight. On the other hand, the best 

performing mixed approach (HSM) and GI have distinct behav-

iors. From this result alone, it is possible to infer that HSM is 

better in scenarios exchanging large packets, and GI for small 

packet scenarios. The HSM and GI execution time are respec-

tively 3 and 2 orders smaller than stochastic approaches. 

VI. CONCLUSIONS AND FUTURE WORK 

A significant set of NoC mapping algorithms based on CWM 

targeting low energy was developed and evaluated. Exhaustive 

search is unfeasible for all but very small NoCs. Thus, using 

mapping algorithms that approximate the optimum solution is 

mandatory. Additionally, stochastic algorithms are very time 

consuming for large NoC sizes, what contributes for the adoption 

of heuristic solutions and mixed approaches. The GI heuristic 

showed good results, and LCF combined with stochastic ap-

proaches led to a good compromise between execution time and 

energy saving. Of all mixed approaches, combining LCF with a 

single-loop implementation of SA (HSM) and GI are the best 

ones, since they do not significantly degenerate energy gains and 

display execution time reductions of orders of magnitude. Fur-

ther work includes extending the evaluation of the algorithms for 

other models such as CDM, CDCM, ACPM and ECWG [18]. 
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