
Evaluation of Algorithms for Low Energy

Mapping onto NoCs

César A. M. Marcon, Edson I. Moreno, Ney L. V. Calazans and Fernando G. Moraes

Faculty of Informatics - Pontifícia Universidade Católica do Rio Grande do Sul

Porto Alegre, RS – Brazil

e-mail: {marcon, emoreno, calazans, moraes}@inf.pucrs.br

Abstract—Systems on Chip (SoCs) congregate multiple modules

and advanced interconnection schemes, such as networks on

chip (NoCs). One relevant problem in SoC design is module

mapping onto a NoC targeting low energy. To date, few works

are available on design and evaluation of mapping algorithms.

The main goal of this work is to propose some algorithms and

evaluate its results and performance with regard to low energy

NoC mappings. These include exhaustive and stochastic search

methods and heuristic approaches, and some combinations. The

use of combined approaches compared to pure stochastic algo-

rithms provides average reductions above 98% in execution

time, while keeping energy saving within at most 5% of the best

results. In addition, one heuristic provided average reductions in

execution time above 90% when compared to pure stochastic

algorithms, and obtained better energy saving than combined

approaches.

I. INTRODUCTION

A NoC is an intra-chip communication infrastructure, composed

by routers interconnected by communication channels. In direct

NoC topologies, each router connects to a module and both are

placed inside a limited region called tile. NoCs are seen as prom-

ising communication resources for implementing future SoCs.

Consider an application composed by n modules, such as DSPs,

other processors and memories, implemented as a SoC. Assume

this SoC employs a NoC as communication infrastructure. The

module mapping problem consists in finding a mapping of each

module to a tile to optimize a cost function (e.g. energy con-

sumption, performance). Generally, this mapping problem al-

lows n! possible solutions. Given future SoCs with hundreds of

tiles [1], exhaustive search of the solution space is unfeasible.

Thus, the optimal implementation of such SoCs requires more

efficient mapping approaches.

The main goal of this work is to evaluate algorithms for the

module-mapping problem, having energy consumption as cost

function, given that communication can highly affect it [2]. The

evaluated algorithms include from exhaustive and stochastic

search to heuristic approaches, plus some combinations of these.

The remaining of this paper is organized as follows. Section II

presents the problem definition. Section III discusses related

work. Section IV shows how to model application and architec-

ture, while sketching the algorithms. Section V shows results and

Section VI presents some conclusions and future work.

II. PROBLEM FORMULATION

Definition 1: A Communication Weight Graph (CWG) is a di-

rected graph CWG = <M, C>, where M = {m1, m2,…, mn} repre-

sents the set of modules, corresponding to the set of CWG verti-

ces, and C = {(mi, mj, Wij) | (mi, mj) ∈ M} denotes the set of

communications between modules, corresponding to the set of

CWG edges. The edge weight Wij in (mi, mj, Wij) represents the

total data amount in bits, sent from mi to mj.

Definition 2: A Communication Resource Graph (CRG) is a

directed graph CRG = <Γ, L>, where Γ = {τ1, τ2,…, τp} denotes

the set of tiles, corresponding to the set of CRG vertices.

L = {(τi, τj) | τi, τj ∈ Γ} designates the set of routing paths from

tile τi to tile τj, corresponding to the set of CRG edges. The num-

ber of NoC tiles is denoted by p.

CWG represents the communication weight, i.e. the number of

phits
1
 transmitted between application modules. CRG represents

the communication resources of the target architecture.

III. RELATED WORK

Table I reviews some of relevant works on the module mapping

problem. Column Basic element shows if application behavior is

modeled through modules or tasks interrelation. Column Model

exposes the variety of application models to represent the quan-

tity
2
 and/or the order

3
 of computation and/or communication.

Column Algorithm also exposes a great range of possibilities.

Column Objective function shows that energy and latency are the

most evaluated requirements. Column Benchmark exposes that

synthetic and embedded applications have been preferred for

evaluation. Column Topology summarizes that NoC 2D mesh is

also preferred. Finally, column Maximum size (tiles) shows that

the majority of target architectures have less than 100 tiles.

Following the reviewed works trend, this paper analyzes map-

ping algorithms with respect to the energy consumption of 2D

mesh NoCs with XY routing algorithm. Applications were de-

scribed with communication quantity, using a communication

weight model (CWM) [3].

IV. MAPPING ALGORITHMS

This work uses the CAFES framework [18], since it supports

application modeling (e.g. CWM), mapping algorithms and syn-

1 Phit is the physical unit information sent in a channel.
2 Quantity information allows modeling e.g. the number of bits

transmitted in a single communication.
3 Order can be partial or total. When order is partial, it is called de-

pendence. Dependence allows knowing e.g. all messages that a

given message depends on. A total ordering enables to know e.g. the

exact instant of time a given task will be executed.

thetic application generation. Based on the target architecture

and the description of an application partitioned in modules,

CAFES also allows obtaining the CRG and CWG, which are

inputs to mapping algorithms.

TABLE I. ACCOUNT OF RELATED WORK IN MAPPING ALGORITHMS AND APPLICATION MODELS FOR NOC COMMUNICATION ARCHITECTURES

Application Mapping NoC
²W ork
(Year) Basic

element
Model Algorithm Objective function

Benchmark
Topology

Max size
(tiles)

[3] / (2005) module communication dependence and quantity exhaustive and SA energy embedded and synthetic mesh 100

[4] / (2005) module communication quantity branch-and-bound energy and bandwidth video, audio and synthetic mesh 169

[5] / (2004) module communication quantity branch-and-bound bandwidth mesh and torus 65

[6] / (2005) module
communication dependence and

quantity, and computation quantity
exhaustive and SA energy and latency embedded and synthetic mesh 120

[7] / (2005) module communication quantity and total ordering tabu search energy and latency embedded and synthetic mesh, folded-torus and fat tree 16

[8] / (2004) module communication quantity genetic energy and latency embedded and synthetic mesh 25

[9] / (2004) module communication quantity genetic thermal balance codec tile-based NoCs 100

[10] / (2006) task computation dependence and quantity exhaustive area and latency multiprocessors and synthetic mesh 9

[11] / (2003) task computation dependence and quantity genetic latency synthetic mesh 15

[12] / (2004) module communication quantity integer linear programming energy video and synthetic mesh 16

[13] / (2003) task computation dependence and quantity genetic energy embedded and synthetic - 5

[14] / (2005) module communication quantity greedy and stochastic energy and latency video
mesh, torus, butterfly, clos and

hypercube
16

[15] / (2005) module communication quantity branch-and-bound energy synthetic mesh 40

[16] / (2004) task computation dependence and quantity greedy energy and deadline synthetic mesh 16

[17] / (2005) module communication quantity greedy and tabu search
latency, energy, QoS area

and critical constraints
video

mesh, torus, butterfly, clos and
hypercube

16

[18] / (2005) module communication quantity greedy
energy, bandwidth and

latency
embedded and multimedia mesh 16

Mapping algorithms are divided in two parts: (i) an internal part,

which is target architecture and application model dependent;

and (ii) an external part that generates mappings and calls the

internal part to compute the mapping cost. Four basic external

algorithms are evaluated for solving the module-mapping prob-

lem: exhaustive search (ES), simulated annealing (SA), tabu

search (TS) and two greedy heuristics proposed here: Largest

Communication First (LCF) and Incremental (GI). From these,

the Authors derived three mixed approaches: SA and TS with

seed mapping generated by LCF (HSO and HT, respectively),

and a version of SA with a single iteration loop (HSM), using

LCF seed mapping. Since ES has a trivial formulation, it is not

discussed here.

A. Simulated Annealing (SA) Algorithm

SA is a stochastic approach implementing the external mapping

algorithm with two nested loops. The external loop implements a

global search technique, and the internal loop implements a local

refinement. The internal loop optimizes mappings provided by

the external one, successively swapping two random modules

and storing the best mapping thus obtained. Best mapping is de-

fined as the mapping with lowest energy consumption when

compared to previously computed mappings. To avoid local

minima, searches that start from swaps that do not save energy

can be accepted depending on a temperature parameter. Larger

temperatures imply greater probability to accept worse map-

pings. After each execution of the internal loop, temperature is

decremented. The final best mapping from the internal loop is

compared to the global best mapping and the best energy saving

is stored as a new best mapping. The external loop randomly

swaps several modules to search for widely different mappings.

B. Tabu Search (TS)

Like SA, TS is a stochastic approach implementing the external

mapping algorithm with two nested loops. The internal loop ran-

domly searches pairs of modules, looking for a swap that results

in less energy consumption. A swap list with all distinct pairs of

swappable modules optimizes the search. E.g., if the list contains

a pair (Rx, Ry), it will not contain the pair (Ry, Rx). The search

process accesses the swap list randomly. If a swap saves more

energy than a previous one, the swap list index of this pair is

stored. When the internal loop finishes, if an energy saving pair

was found, it is inserted into a tabu list, removed from the swap

list, and the current mapping is modified with this swap. If not,

no action is taken and a new internal loop is performed.

C. Largest Communication First (LCF)

LCF is a greedy heuristic proposed here, where the most com-

municating modules are mapped first. The amount of communi-

cation is computed for each module using a balance between

communication weight (associated to CWG edges) and the num-

ber of tiles with which each module communicates. Here, mod-

ules are placed from the center to the borders of the communica-

tion infrastructure.

Six steps constitute LCF: (i) creation of a list containing the NoC

router types that associates module communication needs with

router communication capacity; (ii) conversion of CWG to an

undirected graph, combining the weight of opposed parallel

edges. This increases performance of the algorithm, while keep-

ing its accuracy; (iii) associating modules to routers, considering

communication weight and amount of modules with which the

module communicates; (iv) creation of a communication list

based on the undirected graph. The list is ordered decreasingly,

according to the amount of communication between pairs of

modules; (v) using the communication list to assign modules to

router types, creating an assignment list, considering module

communication requirement and router availability; (vi) mapping

creation, considering the assignment list and the place of each

router type. This guarantees that modules placed at the center of

the NoC are those with largest communication demands.

D. Greedy Incremental (GI) Algorithm

GI is also a 2-nested loops algorithm. Given a predefined ran-

domly generated initial mapping, the external loop fixes a place

to be the pivot of evaluation. The internal loop performs swaps

using as decision criterion the largest obtained energy saving.

Five steps compose the GI algorithm: (i) CWG conversion, equal

to step (ii) of LCF. (ii) Initial mapping definition. (iii) Choosing

a NoC position to be the pivot for internal loop evaluation. The

pivot place changes incrementally each time the external loop is

executed. The first pivot position is the top-left corner of the

NoC and the last is the bottom-right corner of the NoC. (iv) In-

ternal loop execution defining which swap leads to the best en-

ergy saving. It operates by incrementally computing savings

achieved by swapping the chosen position module with each

module in one of the remaining positions. These places include

only those not yet chosen by the external loop as pivots. When

the algorithm attains the end of the internal loop, it has achieved

the most energy saving alternative among all possibilities evalu-

ated up to here. (v) If there is a pair of NoC positions leading to a

better mapping, this step swaps them. Otherwise nothing occurs.

After the action, the algorithm discards the pivot from considera-

tion. Next, execution resumes to step (iii), to define another

pivot. The algorithm stops when there are no more pivots avail-

able. The greedy nature of the algorithm is defined by the discard

policy described when discussing step (iv).

E. Mixed Approaches (HSO, HT, HSM)

The initial mapping used in stochastic algorithms influences the

search for optimal mappings. Since LCF is the fastest presented

approach and obtains figures better than random mappings (See

Section V), it is a potentially good generator of seed mappings.

Three approaches help enhancing stochastic algorithms with

LCF: (i) First, HSO mixes LCF and SA. While SA external loop

randomly swaps several modules to produce widely different

mappings, HSO mappings are produced only once by LCF.

Thus, HSO performs refinement by swapping modules in the

internal loop, looking for local minima. The last mapping result-

ing from the internal loop execution is input for the next internal

loop. (ii) Second, HT mixes LCF and TS. Similar to HSO, the

random seed mapping generation inside TS is replaced by an

LCF-generated mapping. The remaining of TS is unaltered. (iii)

Third, HSM mixes LCF and SA. It differs from HSO since the

external loop is performed just once, which may lead to worse

mappings, but drastically reduces execution time.

V. EXPERIMENTATION

Mapping algorithms were compared w.r.t. execution time and

energy saving. For each mapping, the energy consumed in the

NoC is estimated by applying a method defined in [3]. To com-

pare the quality of mappings, random methods were employed.

A. Experiments Description

A set of experiments with varying degree of connectivity, com-

munication weight, NoC size, and NoC occupation was con-

ducted in CAFES to compare the algorithms described in Section

IV. A subset of relevant results is discussed here. Four sets of

experiments were conducted, widely varying one given aspect

while keeping others fixed or varying within a narrow range. In

one set of experiments, the NoC size varied from 2x3 up to

17x17, keeping connectivity at 20%, occupation at 100% and

varying communication weight randomly between 10 to 50 phits.

In another, a 7x7 NoC had its communication weight varied in

intervals between 1-10 phits to 1-10
4
 phits. Similar choices apply

to the NoC occupation experiment and the connectivity experi-

ment sets. All algorithms, except eventually ES, were performed

for each experiment set, with some results discussed next.

B. Results and Evaluation

NoC size variation is the most relevant aspect of algorithms for

future SoCs, assuming good execution time and reasonable en-

ergy savings are obtained. This is indeed true for the NoC map-

ping problem. Considering NoC size variation, Figure 1 and

Figure 2 depict the execution time and the energy gain for all

approaches. Here, energy gain means the optimization of the

energy consumption. All applications have 20% connectivity,

random communication weight between 10-50 phits and 100%

occupation. It is important to highlight that the results showed

here for SA and TS are average values, obtained varying pa-

rameters like initial temperature and stop criterion.

3625328

62

8625

13094

37343

65422

103125
174078

232844

7271921

563062

1875

25015

3302734

1319703

1750

7421

46422

76157
125125 163203

320797

1932859
1145344

720516

47

125

437

813

1312
2234

3343

7703

76235

35813

16859

641
391

235
141

31

15

688

1468

8375

4703

2688

29250

134385063

16

2266

375

922

682469

278718

81031

1

10

100

1000

10000

100000

1000000

10000000

Number of tiles

T
im
e
 (
m
s
)

ES

SA

TS

HT

HSO

HSM

LCF

GI

LCF

HSM

GI

HSO

SA, TS, HT
ES

6 9 25 49 64 81 100 121 169 210 289 361
Figure 1 – Mapping execution time results

25,12

22,11

16,10

33,55

25,85

15,21

19,29

22,77

16,04

12,36

17,11

14,57

10,66

19,55

40,43

30.9

27,67

23,08

19,94

18,05

15,02

13,39

27,99

22.6

14,09

17,24

10,42
9,54

7,78

6,19 5,42

38,20

21,82

26,91

23,68

20,09

10,95

5

9

13

17

21

25

29

33

37

41

Number of tiles

E
n
e
rg
y
 s
a
v
in
g
(%
) SA

TS

HSO

HSM

HT

LCF

GI

6 9 25 49 64 81 100 121 16

9

21 28

9

361

LCF

HSM, SA

HSO

HT, TS

GI

Figure 2 – Energy gain w.r.t. number of tiles compared to random mapping

Figure 3 illustrates how the connectivity of application modules

affects the energy gain of mapping algorithms for a large NoC

(14x15). Here, the communication weight is randomly set be-

tween 10-50 phits and the occupation is fixed at 100%.

6,5

32,7

20,4

11,8

8,3

3,64,75,3

7,4

10,3

19,3

7,8
9,2

11,5

15,9

25,6

9,9

14,9

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

2-10% 10-20% 20-30% 30-40% 40-50% 50-60%

Connectivity range (%)

E
n
e
rg
y
 g
a
in
 (
%
)

SA

TS

LCF

HSM

HT

GI

Figure 3 – Energy gain with respect to connectivity degree

Each point in the plot represents the energy gain achieved with

one algorithm in each connectivity range. Clearly, increasing

connectivity reduces the energy gain saving. Real application

modules connect to just a small fraction of other SoC modules.

Thus, the lower connectivity ranges are closest to real cases.

Concerning variation of the communication weight, Figure 4

describes the behavior of all non-exhaustive search algorithms

for a small to medium NoC (7x7). Weight varies randomly

within narrow and wide ranges (from [1, 10] up to [1, 10
4
]). To

obtain worst-case energy gain figures, connectivity is 100% (see

why in Figure 3). Although this situation is unrealistic, 100%

connectivity helps evaluating mapping algorithms limits, due to

the needed amount of computation for calling cost functions. All

algorithms but LCF obtained energy savings mostly above 10%.

12,4

5,3

10,6

12,7

13,5

13,0

12,2

12,9

11,4

12,1

12,4

11,6

12,5

6,3

7,16,9

9,6

10,4
10,8

5

6

7

8

9

10

11

12

13

14

[1, 10] [1, 100] [1, 1000] [1, 10000]

Communication weight range

E
n
e
rg
y
 s
a
v
in
g
 (
%
)

SA

TS

HSO

HSM

HT

LCF

GI

Figure 4 - Energy gain w.r.t. communication weight

1455014577,814659,214828,4

14103,213997,414040,814144

253,2243,6246,8250,2

14146,8 14140,6 14143,8 14243,6

53
65,6

52,8 50

209,4215,6199,8203

10

100

1000

10000

100000

[1,10] [1,100] [1,1000] [1,10000]

Communication weight range

T
im
e
 (
m
s
)

SA

TS

HSM

HT

LCF

GI

Figure 5 - Algorithm execution time w.r.t communication weight

36,35

46,8647,41

46,40 46,3845,94

48,06
47,95

44,86
45,23

30,81

41,23

46,66 47,87

48,60

47,77

29,31

30,5930,41

28,64

40,44

42,37

42,48 40,89

25,00

30,00

35,00

40,00

45,00

50,00

[1,10] [1,100] [1,1000] [1,10000]

Communication weight range

E
n
e
rg
y
 g
a
in
 (
%
)

SA

TS

HSM

HT

LCF

GI

Figure 6 - Energy gain with respect to communication weight

Figure 5 and Figure 6 depict the execution time and energy sav-

ings for the same NoC with connectivity ranging from 5% to

15%. It is clear that the execution time of all algorithms depends

little on the communication weight. On the other hand, the best

performing mixed approach (HSM) and GI have distinct behav-

iors. From this result alone, it is possible to infer that HSM is

better in scenarios exchanging large packets, and GI for small

packet scenarios. The HSM and GI execution time are respec-

tively 3 and 2 orders smaller than stochastic approaches.

VI. CONCLUSIONS AND FUTURE WORK

A significant set of NoC mapping algorithms based on CWM

targeting low energy was developed and evaluated. Exhaustive

search is unfeasible for all but very small NoCs. Thus, using

mapping algorithms that approximate the optimum solution is

mandatory. Additionally, stochastic algorithms are very time

consuming for large NoC sizes, what contributes for the adoption

of heuristic solutions and mixed approaches. The GI heuristic

showed good results, and LCF combined with stochastic ap-

proaches led to a good compromise between execution time and

energy saving. Of all mixed approaches, combining LCF with a

single-loop implementation of SA (HSM) and GI are the best

ones, since they do not significantly degenerate energy gains and

display execution time reductions of orders of magnitude. Fur-

ther work includes extending the evaluation of the algorithms for

other models such as CDM, CDCM, ACPM and ECWG [18].

REFERENCES

[1] S. Kumar et al. A network on chip architecture and design methodol-
ogy. In: ISVLSI, pp.105-112, Apr. 2002.

[2] I. Kadayif et al. Influence of communication optimizations on on-chip
multi-processor energy. In: SOC Conference, pp.255-256, Sep. 2003.

[3] C. Marcon et al. Time and Energy Efficient Mapping of Embedded
Applications onto NoCs. In: ASP-DAC, Jan. 2005.

[4] J. Hu and R. Marculescu. Energy- and Performance-Aware Mapping
for Regular NoC Architectures. IEEE Transactions on CAD of Inte-
grated Circuits and Systems, v.24, n.4, pp. 551-562, Apr. 2005.

[5] S. Murali and G. De Micheli. Bandwidth-Constrained Mapping of
Cores onto NoC Architectures. In: DATE, pp. 896-901, Feb. 2004.

[6] C. Marcon et al. Exploring NoC Mapping Strategies: An Energy and
Timing Aware Technique. In: DATE, pp. 502-7, Mar. 2005.

[7] M. Kreutz et al. Energy and Latency Evaluation of NoC Topologies. In:
ISCAS, pp. 5866-9, 2005.

[8] G. Ascia et al. Multi-objective Mapping for Mesh-Based NoC Archi-
tectures. In: CODES+ISSS, pp. 182-7, 2004.

[9] W. Hung et al. Thermal-Aware IP Virtualization and Placement for
NoC Architecture. In: ICCD, Oct. 2004.

[10] B. Sethuraman and R. Vemuri. optiMap: A Tool for Automated Gen-
eration of NoC Architectures using Multi-Port Routers for FPGAs.In:
DATE, pp. 947-952, Mar. 2006.

[11] C-E. Rhee et al. Many-to-Many Core-Switch Mapping in 2-D Mesh
NoC Architectures. In: ICCD. pp. 438-43, Oct. 2004.

[12] D. Wu et al. Scheduling and Mapping of Conditional Task Graph for
the Synthesis of Low Power Embedded Systems. IEE Proc. on Comp.
and Digital Techniques, v. 150, n. 5, pp. 262-73, Sept. 2003.

[13] D. Bertozzi et al. NoC Synthesis Flow for Customized Domain Specific
Multiprocessor Systems-on-Chip. IEEE Transactions on Parallel and
Distributed Systems, v. 16, n. 2, pp. 113-29, Feb, 2005.

[14] U. Ogras and R. Marculescu. Energy- and Performance-Driven NoC
Communication Architecture Synthesis Using a Decomposition Ap-
proach. In: DATE, v. 1, pp. 352-7, 2005.

[15] J. Hu and R. Marculescu. Energy-Aware Communication and Task
Scheduling for Network-on-Chip Architectures under Real-Time Con-
straints. In: DATE, pp. 234-9, Feb. 2004.

[16] S. Murali et al. Mapping and Physical Planning of NoC Architectures
with QoS Guarantees. In: ASP-DAC, pp. 27–32, Jan. 2005.

[17] K. Srinivasan and K. Chatha. A Technique for Low Energy Mapping
and Routing in NoC Architectures. In: ISLPED, pp. 387-392, Aug.
2005.

[18] C. Marcon et al. Modeling the Traffic Effect for Application Cores
Mapping Problem onto NoCs. In: VLSI-SoC, 2005.

