
Congestion-Aware Task Mapping in NoC-based MPSoCs with Dynamic
Workload

Ewerson Carvalho Ney Calazans Fernando Moraes
PUCRS - FACIN - Av. Ipiranga 6681- Porto Alegre - 90619-900 - Brasil

{ecarvalho, calazans, moraes}@inf.pucrs.br

Applications running in heterogeneous MPSoCs, as mul-
timedia and networking, normally contain a dynamic work-
load of tasks. This implies a varying number of tasks simul-
taneously running, with their number possibly exceeding the
available resources. This may require the execution of task
mapping at run time, to meet real-time constraints.

Most works in the literature propose the use of static
mapping [1][2], where the best placement of tasks is defined
at design time. Consequently, such methods are not appropri-
ate for dynamical workloads. Task migration [3][4] has also
been used in heterogeneous MPSoCs to optimize the per-
formance at run-time. It consists either in relocating tasks
when a performance bottleneck is detected, or to distribute
the workload more homogeneously among the MPSoC proc-
essors. Differently from task migration, dynamic mapping
can insert new tasks into the system at run time.

This work investigates the performance of different map-
ping algorithms in NoC-based MPSoCs with dynamic work-
load. The main cost function in mapping algorithms is to
optimize the occupation of the NoC links. It is possible to
achieve performance gains if the mapping algorithm is able
to minimize NoC congestion.

Without loss of generality, heterogeneous MPSoC archi-
tectures may be represented, as a set of processing nodes that
interact via a communication network. Processing nodes may
support either hardware or software task execution. Hardware
tasks execute in reconfigurable logic (reconfigurable areas)
or dedicated IPs. If reconfigurable logic is used, the hardware
presents flexibility similar to software. It becomes possible to
load the hardware tasks on-the-fly using dynamic reconfigu-
ration. Software tasks execute in instruction set processor,
ISPs.

The number of tasks may exceed the MPSoC resources.
One processor (the Manager Processor, MP) may be reserved
to manage the system resources When the MPSoC starts its
execution, only the initially needed tasks are allocated into
the system.

New tasks are allocated when a given task tries to com-
municate with a task not yet present. The MP is responsible
for resource control, task binding, task mapping, task reloca-
tion/migration and to control the reconfiguration process.
Once tasks start their execution, communication requests are
first transmitted to the MP. If the destination is not present, it
is necessary that the MP execute a dynamic mapping heuris-
tic. Five such heuristics are evaluated here to map tasks at
run-time. All discussion of heuristics assume a 2D mesh NoC
infrastructure using XY routing.

The first free (FF) method is the reference mapping, used
for comparison purposes only. This approach selects the first
free node able to execute the requested task (task binding),

searching from the NoC address (0,0) on. Clearly, there is no
congestion cost evaluation.

Nearest Neighbor (NN) mapping is similar to the FF
strategy, also with no congestion cost evaluation. The NN
mapping starts searching a free node able to execute the re-
quested task (task binding) around the node address which
makes the request. The search procedure tests all n-hops
neighbors of the current node n varying between 1 to the
maximum possible.

Minimum Maximum Channel Load (MMC) congestion-
aware mapping heuristic tries to reduce the maximum occu-
pation of the NoC links. The goal of this heuristic is to avoid
congestions in the NoC, and consequently improve the over-
all performance. MMC computes the cost of each mapping k
according to Equation 1.
 lyjlxiratecost jilk <≤<≤= 0;0|)max(),((1)

The ratel(i,j) denotes the total rate of each NoC link, and lx
and ly are the NoC dimensions. The selected mapping is the
one that has the minimum cost.

Minimum Average Channel Load (MAC) congestion-
aware heuristic aims at reducing the average occupation of
the NoC links. This heuristic is similar to the MMC, replac-
ing the max function by the avg (average) function. While
the MMC heuristic minimizes the peak link usage, the MAC
heuristic tries to homogenously distributes the communica-
tion load into the NoC. Equation 2 presents the MAC cost
function. Links not used for communication (ratel(i,j)=0) are
not considered in the heuristic. The selected mapping is the
one that has the minimum cost.

lyjlxiraterateavgcost
jiljilk <≤<≤>∀= 0;0|0)(
),(),(

(2)

MMC and MAC consider all links of the NoC while
mapping a new slave task. If a given task does not increase
the total cost, any mapping may be accepted. To overcome
this problem, the Path Load (PL) congestion-aware heuristic
considers only the links that will be used by the task being
mapped. PL computes the cost of each mapping k according
to Equation 3.
 ∑∑ +=),(),(ijcjick rateratecost (3)

Where ratec(i,j) and ratec(j,i) are the rates in the individual
channels from the master to the new slave and the rates of the
channels in the opposite direction. This is due to the asym-
metric nature of the XY routing algorithm.

Figure 1 graphs present the execution time and link occu-
pation (avg, max and min values) for the different mapping
heuristics. Examples use an 8x8 Mesh NoC, to support large
systems, with dozens of processors, expected to become a
reality in a near future. In addition, small NoCs would make

evaluation harder. Graphs are plotted for 13 applications.
The average NoC occupation is higher (± 80%) for the FF

mapping, since no congestion-aware heuristic is used. The
heuristics MAC and MMC have similar average NoC occu-
pation. The NN mapping, a very simple heuristic, and the PL
mapping present the lower NoC occupation. Note that the
execution time of the applications running in the system, for
NN and PL mappings, is smaller, corroborating the fact that
reducing congestion the execution time is also reduced.

Even if two mapping heuristics present similar average
occupation, it is important to analyze the maximum NoC
occupation. The worst behavior is the FF mapping (peak
occupation is 280%). The simple NN mapping leads to a
small value of average occupation (peak occupation is
200%).

The MAC mapping is not effective to avoid congestion.
The reason was advanced before: when a new mapping does
not reduce the average link load, the algorithm selects the
first mapping option available. The MMC has the same defi-
ciency of the MAC, but with smaller values of maximum
NoC occupation. The PL mapping presents the smallest val-
ues for the maximum NoC occupation. This arrives because
this heuristic minimizes, for each mapping, the load added by
the new task, in an opposite way to MAC and MMC which
try to globally minimize system congestion.

Compared to FF, PL reduces 19.3 % the total execution
time in average. Note that the simple NN mapping also re-
duces the execution time (18.7%). The advantage of the PL
mapping is congestion reduction.

The clock-cycle simulation of a small MPSoC implemen-
tation (NoC with Plasma processors) generated the values for
the NoC model, configuration delays, and execution times. A

larger system, with dozens of processors, should be simulated
in order to tune the models, allowing deeper analysis of the
link congestion, the communication delay and the power
consumption.

As mentioned before, multi-task processors increase the
number of the software tasks available in the system. Future
works includes extending the mapping heuristics to multi-
task processors. Since these have a microkernel to manage
tasks execution, processors may send their load, as well the
links loads, to the MP. In this way, the mapping heuristic
could take decisions based in the actual system load, instead
of the load furnished by applications and link load estima-
tions. Finally, if the manager processor knows the actual load
of processors and links, task migration algorithms can be
implemented to ensure QoS to applications.

REFERENCES
[1] Hu, J.; Marculescu, R. Energy- and Performance-Aware Map-

ping for Regular NoC Architectures. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems,
v.24(4), 2005, pp. 551-562.

[2] Marcon, C.; Borin, A.; Susin, A.; Carro, L.; Wagner, F. Time
and Energy Efficient Mapping of Embedded Applications onto
NoCs. In: ASP-DAC, 2005. pp. 33-38.

[3] Nollet, V.; Marescaux, T.; Avasare, P.; Mignolet, J-Y. Central-
ized Run-Time Resource Management in a Network-on-Chip
Containing Reconfigurable Hardware Tiles. In:DATE, 2005,
pp. 234-239.

[4] Bertozzi, S.; Acquaviva, A.; Bertozzi, D.; Poggiali, A. Support-
ing task migration in multi-processor systems-on-chip: a feasi-
bility study. In:DATE, 2006, pp. 1-6.

First Free (FF) Nearest

Neighbor (NN)
Minimum Average
Channel Load (MAC)

Minimum Maximum
Channel Load (MMC)

Path Load (PL) Maximum Channel
Load Comparison

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

FF−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

NN−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

MA−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

MM−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

PL−I

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000

O
cc

up
at

io
n

Time (ms)

FF
NN
MM
MA
PL

Figure 1 - Execution time versus link load (occupation) for the dynamic mapping strategies (initial mapping: clustering),

for 13 applications. The continuous line in the graphs denotes the average link load.

