

Boolean Constrained Encoding: a new formulation and a case study

Ney Laert Vilar Calazans
Instituto de Informática – PUCRS – Porto Alegre, RS – BRAZIL

e-mail: calazans@brpucrsm.bitnet

Abstract1

This paper provides a new, generalized approach to the problem
of encoding information as vectors of binary digits. We furnish
a formal definition for the Boolean constrained encoding problem,
and show that this definition encompasses many particular encoding
problems found in VLSI design, at various description abstraction
levels. Our approach can capture equivalence and/or compatibil-
ity classes in the original symbol set to encode, by allowing symbols
codes to be cubes of a Boolean space, instead of the usual minterms.
Besides, we introduce a unified framework to represent encoding
constraints which is more general than previous efforts. The frame-
work is based upon a new definition of the pseudo-dichotomy con-
cept, and is adequate to guide the solution of encoding problems
through the satisfaction of constraints extracted from the original
problem statement. An encoding problem case study is presented,
the state assignment of synchronous finite state machines with the
simultaneous consideration of state minimization. The practical
comparison with well-established approaches to solve this problem
in two separate steps, shows that our solution is competitive with
other published results. However, the case study is primarily in-
tended to show the feasibility of the Boolean constrained encoding
problem formulation.

1 Introduction
Encoding is a fundamental step of numerous problems in computer

science, computer design and VLSI design problems. The optimal so-
lution of any such problem depends on the satisfaction of a set of
constraints as well as on objective optimization criteria, all of which
must be defined in terms of the original problem statement. Encoding
is basically a translation process, where a set of symbols is mapped
into a set of Boolean vectors. Many of the general approaches to en-
coding in VLSI design appeared as a by-product of solutions to the
state assignment problem for finite state machines (FSMs). Most so-
lutions to this problem assume encodings that are injective functions
(one-to-one mappings) from the state set into a set of Boolean vectors
of a given fixed length [9, 10]. Although the use of injective functions
be useful for the state assignment problem alone [4], it represents a
severe limitation if more powerful encoding strategies are required.
For example, suppose that the set of symbols to be encoded has a
structure that allows the identification of equivalence classes in it.
In order to capture this characteristic, we must allow encodings that
are not injective, so that every symbol in an equivalence class can be
mapped into a unique Boolean vector. A more complicated case arises
when the set of symbols contains compatibility classes. Here, the en-
codings must be allowed to be both non-injective and non-functional,
so that the intersection of overlapping classes is related to more than
one Boolean vector. Since equivalence and compatibility classes are
so commonly found in the structure of VLSI design problems, it is
useful to consider them in the scope of encoding problems.

In this paper, we propose a general approach to constrained en-
coding problems. In Section 2, we introduce the needed basic def-
initions and the Boolean Constrained Encoding (BCE) problem, a
formal statement which encompasses previously proposed formula-
tions [9, 10], and which additionally allows that compatibility classes
present in the symbol set be captured in the encoding process. Aim-
ing at the construction of more powerful resolution methods for en-
coding problems, we propose a unified framework for representing
encoding constraints in Section 3. This framework is based on a
new statement of the well-known concept of (pseudo-)dichotomies.
Several publications have reported the use of dichotomies to model
the state assignment problem in both asynchronous and synchronous
[11, 3] FSMs, together with their use to solve other encoding problems
such as two-way network partitioning and two-layer via minimization
[10]. Our definition stresses the relationship between the concept
and the underlying algebra of switching functions, and is also more
comprehensive than that in previous approaches. The main goal of
the framework is to provide a unique representation for constraints
found in a comprehensive class of encoding problems, and which are
related to several aspects of VLSI design, such as area and/or delay
optimization and testability enhancement. The solution of practical
problems as instances of the BCE problem depends on how easily the

1Work started during doctoral program at the Université Catholique de Lou-
vain, in Louvain-la-Neuve, Belgium. Financially supported by the Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq), Brazil, under schol-
arship grant 205411/88-6.

former can be mapped to the latter. Section 4 presents a discussion
on how to express classes of constraints commonly found in encoding
problems using the pseudo-dichotomy framework. Other constraint
classes found less often in the scope of these problems are analyzed as
well, since they will be useful in the search for encodings intended to
represent compatibility classes arising in the symbol set. The utility
of this mapping process is that the framework represents the origi-
nal problem in a standard form, amenable to treatment by common
constraint satisfaction algorithms. Section 5 illustrates the BCE prob-
lem resolution process based on the unified framework through a case
study, the state assignment of synchronous FSMs with the simulta-
neous consideration of state minimization. Section 5 also introduces
a computer program implementation for solving the case study prob-
lem, and presents benchmark results. Finally, Section 6 lists a set of
conclusions, and points directions for future work.

2 Basic Definitions and the BCE Problem
Definition 2.1 (Partition) Given two sets S and T , a binary re-
lation 〈S, T, π〉 is a partition of T iff it is onto and one-to-one.
The image π(s) of an element s of S is a block of partition π.

Let S be a set specified as a Cartesian product S =
0
×

i=n−1
Si

and L be a set of integers between 0 and r − 1, with an associated
lattice structure 〈L,∨,∧, 0, r−1〉 under the operations ∨ and ∧, with
least element 0 and greatest element r − 1. Assume also that B =
{0, 1}.

Definition 2.2 (Lattice exponentiation function) Let x denote
the vector (xn−1, . . . , x1, x0) of variables taking values on S; given
a variable xi ∈ x and a subset Ci ⊂ Si, we define the lattice

exponentiation function as the discrete complete function x
(Ci)
i

:
Si −→ L, where

x
(Ci)
i

=

{
r − 1 iff xi ∈ Ci
0 otherwise.

Definitions 2.3 (Cube function) A cube function or simply a
cube is a discrete complete function c : S −→ L, where the values

c(x) are computed by the expression c(x) = l∧
∧0

i=n−1
x
(Ci)
i

, with

l ∈ L and Ci ∈ Si.
The lattice element l is called the weight of the cube. If c(x)

is such that for all Ci, |Ci |= 1, then c(x) is a minterm. Given

two cubes, c(x) = l ∧
∧0

i=n−1
x
(Ci)
i

, l ∈ L,Ci ∈ Si, and d(x) =

m ∧
∧0

i=n−1
x
(Di)
i

, m ∈ L,Di ∈ Si, their supercube is a cube

defined as p(x) = (l ∧m) ∧
∧0

i=n−1
x
(Ci∪Di)
i

.

The supercube definition is immediately extendible to sets of
cubes with cardinality bigger than two. The cubes c(x) and d(x)
are disjoint if there is no v ∈ S for which c(v) = l and d(v) = m,
or if l = 0 or m = 0. The size of a cube c(x) is |{x | c(x) = l}|, if
l �= 0, otherwise the size is 0. The satisfying set of c is the set of
Boolean vectors {x | c(x) = l}, if l �= 0, otherwise it is the empty
set. Every element in this set is said to satisfy the cube function
c. A switching cube function is a cube whose domain is S = Bn

and whose codomain is L = B, for some integer n.

The usual definition of cube as a product of literals is a limited
interpretation of the formal concept of satisfying set of a cube [2].
The most important of the definitions is that of encoding.

Definitions 2.4 (Encoding or Assignment) Given a positive in-
teger n, an assignment or encoding of a set S is a mapping or
complete function e : S −→ P(Bn), where P(Bn) stands for the
powerset (the set of all subsets) of Bn. The integer n is called the
length of the assignment. For every s ∈ S, the image e(s) is called
the code of s. Two codes e(s), e(t) are disjoint iff e(s) ∩ e(t) = ∅,
otherwise the codes are intersecting. An assignment that is an
injection and where codes are pairwise disjoint is an injective en-
coding, in which case ∀(s, t ∈ S), s �= t =⇒ e(s) ∩ e(t) = ∅. Any
assignment that is not injective is called non-injective.

A cube assignment or cube encoding of S is an assignment
e of S where every code e(s) is the satisfying set of some cube, i.e.
there is a switching cube c(x) over Bn such that c(x) = 1 ⇔ x ∈
e(s). Let the codes of a cube assignment e be represented as three-
valued vectors v = vn−1 . . . v0, and the cardinality of S be q. The
three-valued column vectors obtained by selecting all elements vi for
some i, over all codes e(s), s ∈ S, have the form (vi,0 . . . vi,q−1)T ,
and are called columns of the encoding. The exponent T nota-
tion indicates the transpose of the row vector, expressing the usual
vertical interpretation of the term column.

A functional assignment or functional encoding of S is an
assignment where every code is a singleton. A functional assign-
ment is redefined as a function e : S −→ Bn, without loss of gener-
ality. We call assignments that are not functional non-functional.

The concept of assignment is limited here to fixed-length codes.
We may thus refer to the encoding length also as the code length.
In the rest of this paper, we restrict attention to cube or to the more
restrictive functional encodings. Correspondingly, Boolean codes will
be represented as either Boolean tuples or as three-valued vectors. We
adopt herein the simplified notation x = xn−1 . . . x1x0 to represent
a tuple of the set Bn, and call it a Boolean vector.

Definition 2.5 (Discrete function satisfaction) Let f : S −→ L
be a discrete function and fe : Bp −→ Bq be a general switching
function. We say that fe satisfies f under the two assignments
ϕ : S −→ Bp and ψ : L −→ Bq if these assignments are such that
∀(s ∈ S) f(s) = l =⇒ fe(ϕ(s)) = ψ(l).

We may now state the BCE problem. Our approach is to as-
sociate the columns of an encoding to constraints, which imply the
well-known and efficient column-based encoding strategy [12].

Problem Statement 2.1 (Boolean Constrained Encoding)
Consider the sets S = {s0, . . . , sn−1} and C = {f0, . . . , fm−1},
where the elements fi ∈ C are switching functions fi : Bn −→ B.
Associate with each fi a positive real number c(fi) and a discrete

function gi such that gi : (Bk)n −→ B. We call the elements of
S symbols, and the elements of C encoding constraints on the
symbols of S. The number c(fi) is the gain of fi, while gi is the
encoding constraint satisfaction function of fi. A constraint
fi is satisfied by a set E ⊆ (Bk)n iff there is an element e ∈ E
such that gi(e) = 1. The satisfaction of a constraint fi by E is
indicated here, with a little notational abuse by gi(E) = 1. The
Boolean constrained encoding problem consists in finding a func-
tion h : S −→ P(Bk), where P(Bk) is the powerset of Bk, and such
that k is minimized, and the gain c(h) is maximized, where c(h) is
defined as

c(h) =

m−1∑
i=0

c(fi).gi(×n−1
j=0 (h(sj)))

Function h is denominated an encoding function or simply an
encoding, while the k is called the encoding length.

Example 2.1 (Input assignment) Consider the approach pro-
posed in [4], that solves the state assignment problem by approxi-
mating it as an input assignment problem, i.e. by respecting the face
embedding constraints generated by symbolic minimization only, and
not considering output constraints nor any other constraints. Let us
express this problem as an instance of the BCE problem.

The set of symbols S is the set of states of an FSM, to be en-
coded. The set of encoding constraints C on the other hand, must be
computed from the face embedding constraints obtained by symbolic
minimization. Consider, for instance, the FSM A = 〈I,Q,O, δ, λ〉
where I = O = B, T = {a, b, c, d}, and where δ (the transition
function) and λ (the output function) are given by the flow table in
Figure 2.1, where also appears the grouping of entries obtained by
symbolic minimization.

Figure 1: Flow table and input constraints for FSM A

 0 1

 a d,1 c,0
 b d,- a,0
 c d,0 a,0
 d c,1 b,1

To each grouping corresponds a face embedding constraint. These
are associated to the present states of each entry group in the Figure
[4]. We have thus six constraints, but only four distinct ones, which
are ({a, b}, {c, d}), ({a}, {b, c, d}), ({b, c}, {a, d}), ({d}, {a, b, c}).

Remember the interpretation of these constraints [4]: two symbols
in opposite sides of a constraint must have codes differing in at least
one column of the final encoding. The encoding constraints in the

form of switching functions are then: f0 = abcd ∨ abcd, f1 = abcd ∨
abcd, f2 = abcd ∨ abcd, and f3 = abcd ∨ abcd. Indeed, suppose
that states are encoded in the order abcd. To separate states c, d
from states a, b (according to the first constraint), we need to have

an encoding column that is either (0011)T or (1100)T in the solution.
If a function fi evaluate to 1, the constraint is respected. Then, the
set C of the BCE problem is simply the set of all fis.

Now, consider the modeling of the fi gains c(fi) and the satis-
faction functions gi. To compute the gains, we observe that some
constraints are repeated in the cube table obtained by symbolic mini-
mization. We thus assign to each encoding constraint fi a value c(fi)
that is equal to the number of times the face embedding associated
with fi appears in the symbolically minimized cube table. This choice
is justified by the fact that each entry set in the symbolically min-
imized cube table is associated with one row in the final minimized
two-level implementation [12]. Then, satisfying a constraint guaran-
tees that all groupings associated with this constraint can be per-
formed in the final implementation. If not all constraints are finally
satisfied, we had better choose to satisfy constraints that are repeated
many times, since this will hopefully lead to a greater percentage of
groupings from all those predicted by symbolic minimization.

The constraint satisfaction function gi, in this example, has an
expression which is identical to the corresponding function fi, but
defined over a larger domain. This is a consequence of the fact that
face embedding constraints are satisfied by a single encoding column
of the result. However, this does not account for the general case. In
some problems, a constraint is satisfied if the corresponding function
fi is respected in every column of the constraint, like code compat-
ibility constraints [2] or output constraints [3]. There are also cases
where the fi need to be satisfied in a specific number of encoding
columns [5]. That is why the domain of the satisfaction functions gi
are all possible encodings of length k. Given this mapping, the state
assignment problem can be reduced to the general BCE problem, and
we need to look for an optimum encoding h of the state set Q, such
that k is the minimum possible and c(h) is maximum.

Let us now give general interpretations for the elements in the
BCE problem statement. S is a set of symbols to be encoded accord-
ing to the constraints in C. The encoding constraints fi, on the other
hand, map a Boolean vector with the same cardinality as the set of
symbols into a binary digit. The most frequent interpretation for this
function is that it tells whether or not a bit column participates in
the satisfaction of the encoding constraint. To each fi the problem
statement associates gi, a function that characterizes the encoding
constraint. It is through gi that the behavior of the distinct encod-
ing constraint classes can be accounted for. The encoding constraint
satisfaction function gi tells if the encoding constraint fi is satisfied
or not by every possible functional encoding of k bits.

The encoding function h is the solution of the problem. It asso-
ciates a set of binary k-tuples with each symbol in S, unlike previous
propositions [9, 10], which associated a single k-tuple with each sym-
bol. This is the major generalization of the statement, that allows
non-injective and/or non-functional encodings to be obtained.

The multiplier inside the summation in the expression for c(h),

i.e. the expression gi(×n−1
j=0

(h(sj))), evaluates to 1 iff the constraint

fi is satisfied by the final encoding. Otherwise, it evaluates to 0.
Finding function h is an NP-hard problem, since BCE is a gener-

alization of the state encoding problem [2]. The solution of the BCE
problem in the general case is not unique. In most practical instances
of the Boolean constrained encoding problem, the optimum solution
is found only when considering a trade-off between the goals of min-
imizing k and maximizing the gain c(h). Besides, for h to exist, the
set of constraints C must be feasible. Constraint set feasibility is not
treated here, and is also a very complex problem.

All proposals we could find in the available literature on encoding
in VLSI design choose to solve restricted versions of the BCE problem.
All such restricted versions can be put into two major classes [12].

Definitions 2.6 (Complete and partial constrained encoding)
Choose to satisfy all encoding constraints unconditionally, thus
maximizing c(h). At the same time, look for an encoding that min-
imizes k. This restricted version is called Complete (Boolean)
Constrained Encoding (CBCE). Another restricted version of the
Boolean constrained encoding problem is obtained as follows: estab-
lish a value for k (often the minimum possible), looking then for an
encoding with length k that maximizes c(h). This problem is called
Partial (Boolean) Constrained Encoding (PBCE).

3 A Unified Constraint Framework
Encoding constraints were modeled in Problem Statement 2.1 as

switching functions of n variables. This choice is general enough to
represent most kinds of constraints found in encoding problems at sev-
eral levels of abstraction in VLSI descriptions. The widely accepted
definition of (pseudo-)dichotomies is not as general as the definition
of encoding constraints, and that is one of the reasons why we provide
a more general definition of the former. On the other hand, the func-
tions gi account for the satisfaction of the constraints fi across an

arbitrary set of columns of the encoding. This justifies the proposal
of a framework considering the effect of constraints that influence the
composition of more than one column of the final encoding.

3.1 The Pseudo-Dichotomy Concept
Pseudo-dichotomies had originally little or no algebraic structure

associated to it. No addition or product of dichotomies can be defined,
although ad hoc operations for combining and splitting them, as well
as concepts like compatibility and covering between dichotomies have
found their way in previous publications [11, 3]. Our definition links
the concept to well-defined algebraic structures, allowing a more for-
mal and thorough treatment of its applications. A pseudo-dichotomy
is a concept useful to model single constraints in Boolean encoding
problems. In general, these constraints consist on indications to make
the codes of symbols disjoint or intersecting. Two-block partitions are
adequate to model such a behavior. A two-block partition is inter-
preted as an indication to make bits on one block distinct from the
bits in the other block, thus making the codes of symbols in distinct
blocks disjoint. However, the partition definition implies that all el-
ements of the symbol set be contained in some block. This can be
relaxed by taking partitions of subsets of the symbol set. On the
other hand, the rules to use such partition-like structures may also
vary from one problem to another.

We propose pseudo-dichotomies as algebraic structures composed
by a two-block partition-like entity, to model the symbol separation
characteristic of the constraint, and a general switching function to
tell how to satisfy the requirements of specific constraints with a given
symbol separation characteristic.

Definitions 3.1 (Pseudo-dichotomy) Let S = {s0, . . . , sn−1} be
a set, the elements of which are called symbols, and B = {0, 1}. A
pseudo-dichotomy (PD) of S is an algebraic structure ∂ = 〈p, t〉
where p is the graph of a binary relation 〈B, S, p〉, with p : B −→ S,
such that p(0)∩p(1) = ∅, and t is a switching function t : Bn −→ B.
Function t is called the satisfaction function of ∂. The sets p(0)
and p(1) are called the 0–side and the 1–side of ∂, respectively.
A dichotomy of S is a PD ∂ = 〈p, t〉 such that p(0) ∪ p(1) = S.
The binary relation with graph p is, in this case, a partition. A
seed pseudo-dichotomy (SPD) is a PD ∂ = 〈p, t〉 where either
| p(0) | = 1 or | p(1) | = 1.

Given a Boolean vector x = xn−1 . . . x0, a PD ∂ is satisfied by
x iff t(xn−1, . . . , x0) = 1. A flexible pseudo-dichotomy is a PD
where ∀xn−1 . . . x0 ∈ Bn, t(xn−1, . . . , x0) = t(xn−1, . . . , x0).

A fixed pseudo-dichotomy (FPD) is a PD ∂ = 〈p, t〉 where the
satisfaction function t is the cube function whose three-valued cube
switching representation [2] for each position xi is 0 if si ∈ p(0), is
1 if si ∈ p(1), and is - otherwise.

Two PDs ∂1 = 〈p1, t1〉, ∂2 = 〈p2, t2〉 of S are compatible
iff there is at least one Boolean vector x = xn−1 . . . x0 such that
t1(x) = t2(x) = 1. A set of PDs is compatible if every two PDs
in it are compatible. The PD ∂1 covers ∂2 iff ∀x ∈ Bn, t2(x) =
1 ⇒ t1(x) = 1. A set of PDs ∆ covers a PD ∂ iff it contains a PD
that covers ∂.

We represent PDs using the value vector [2] notation, which we
employ to characterize binary relation graphs, instead of discrete func-
tions only. Given a PD ∂ = 〈p, t〉 on the set of symbols S, ∂ may be
described by the value vector [p(0) p(1)], which contains the images
of the elements 0 and 1 by the binary relation whose graph is p.

As an illustration, the face embedding constraints of Example 2.1
can be represented by the following set of PDs:

∂1 = 〈p1 = [{c, d}{a, b}], f0 = abcd ∨ abcd〉;
∂2 = 〈p2 = [{b, c, d}{a}], f1 = abcd ∨ abcd〉;
∂3 = 〈p3 = [{a, d}{b, c}], f2 = abcd ∨ abcd〉;
∂4 = 〈p4 = [{a, b, c}{d}], f3 = abcd ∨ abcd〉.

The structure of the satisfaction functions ti is determined by the
kind of constraint, face embedding or input constraints in this case.
In a dichotomy ∂ = 〈p, t〉, p is the graph of a partition of S. In a PD,
p is the graph of a partition of a subset of S.

3.1.1 Generality of the PD Definition
The constraints a cube encoding of a set of symbols must satisfy are
relationships among the symbols. They must be expressed as condi-
tions to be respected among the symbols in some subset of columns
of the encoding. PDs were defined to model each of these columns.

Given a generic PD ∂ = 〈p, t〉 of a set S, the domain of a sat-
isfaction function t is the set of all binary assignments of length 1
to symbols in S. Function t evaluates to 1 for every binary assign-
ment that satisfies the PD, otherwise it evaluates to 0. In this way,
PDs with a same binary relation p can be satisfied in different ways, if
their satisfaction functions t are distinct. Thus, t allows that different
kinds of constraints be accounted for.

The satisfaction function is not present in previous definitions of
the PD concept. Actually, the first published applications have dealt

with just one kind of constraint at a time [11]. As the need to manip-
ulate other constraint kinds arose, the proposal of ad hoc frameworks
took place to deal with the anomalous behavior of the new constraints
[3]. Breaking the PD concept into an encoding part p and a satisfac-
tion part t is a more general approach. Also, the consideration of
new constraint kinds using our PD definition is straightforward. It
suffices to define the conditions under which such a constraint is sat-
isfied, generating a new type of function t.

3.2 Constraint Classes
The encoding problems cited in this work can be expressed by

a few constraint classes: local constraints, which can be input con-
straints or distance-2 constraints; and global constraints, subdivided
into output dominance, output disjunctive and compatibility con-
straints.

Local constraints express conditions that must be met in one or a
subset of columns of the encoding. Input constraints were presented in
Example 2.1. We note an encoding constraint by a pair ({si}, {sj}),
where {si} is the set of symbols whose codes must belong to the
satisfying set of a cube that do not contain the codes of any symbol
inside {sj}. If {si} ∪ {sj} = S, the constraint is called full. If
the cardinality of either {si} or {sj} is 1 the constraint is called
elementary. To satisfy one such constraint one encoding column
suffices. Distance-2 constraints were proposed in [5] to guarantee fully
stuck-at testable state assignment for FSMs. One such constraint is
satisfied only if a Hamming distance of 2 is obtained between the codes
of the symbols involved in it. This implies that at least two columns
of the encoding have to be considered to achieve their satisfaction.
We note such a constraint by a pair {[si], [sj]} for two symbols si
and sj that must be encoded with distance 2.

Global constraints must be verified by every column of the encod-
ing. Given two symbols, s1 and s2, and an encoding e, s1 dominates
s2 iff in every column where e(s2) is different from 0 it assumes the
same value as e(s1). This is what a dominance constraint between two
symbols states, and we note it by (s1, s2). A disjunctive constraint,
on the other hand, involves three symbols, s1, s2 and s3, where one
of them, e.g. s1 is required to have a code that is the Boolean disjunc-
tion of the codes of the other two symbols, which is noted (s1, s2s3).
Dominance and disjunctive constraints are found in the context of
output encoding of combinational circuits, as well as in the state as-
signment of FSMs. A compatibility constraint between s1 and s2
states that in no column of e one of e(s1), e(s2) can be 0 while the
other is 1, noted {s1, s2}. This constraint has been identified in [2]
and derives from the consideration of the state minimization problem
during encoding.

3.3 The PD Unified Framework
We propose the organization of PDs into a framework capable of

representing all conditions to be attained by the encoding.

Definition 3.2 (PD framework) Consider an algebraic structure
F = 〈Fl, Fg〉, where Fl is a set of pairs, where each pair has as
first element a PD on a set S of symbols and as second element a
positive integer, i.e. Fl = {(∂i, ci)}. Fg is a set of PDs on S. An
encoding Ξ of S satisfies F iff each ∂i in Fl is satisfied by at least
as many columns of Ξ as ci and each element in Fg is satisfied
by every column of Ξ. If an encoding that satisfies F exists, F is
called a PD framework of S, and Fl and Fg are called the local
part and the global part of F, respectively.

From the definition of PD framework we see that the local part
expresses conditions that need to occur in some subset of columns of
an encoding Ξ of S, while the global part collects conditions that need
to be verified by every column of Ξ. The definition is not dependent
upon the specific problem we are trying to solve, being applicable to
a wide range of problems. Assuming that we do not consider PDs
where the satisfaction function t(x) = 0 for every Boolean vector x,
a special case of algebraic structure F = 〈Fl, Fg〉, where Fg = ∅, is
always a PD framework, because an encoding can always be found
that satisfies the local part alone. The reason for this is that PDs
in the local part need to be satisfied always in one finite number of
columns of the encoding. Thus, we can simply add columns to the
encoding until all PDs are satisfied.

Since a PD framework is defined only if an encoding that satisfies it
exists, establishing the framework is a task dependent on a constraint
feasibility analysis, which in turn depends on the specific encoding
problem at hand.

4 Mapping Constraints into PDs
Some works have suggested general formulations for constrained

encoding problems [9, 10]. Constrained encoding can benefit from the
identification of compatibility classes inside the starting symbol set.
Most of the works do not allow identifying these classes, since they
rely upon encoding functions h that are injective and whose images
are subsets of P(Bk) containing singletons only. Our approach does
not model the BCE problem in its full extent either. However, it is
less restrictive than any other method found in the literature.

4.1 Representing Local Constraints
The input constraints generated by symbolic minimization have

the form of full input constraints [4]. For instance, let S =

{a, b, c, d, e, f, g, h, i} be the state set of some finite state machine, and
let the pair ({a, b, c}, {d, e, f, g, h, i}) be one such full input constraint
extracted from a symbolically minimized cube table of some FSM. To
model this constraint with PDs, we may choose ∂ = 〈p, t〉 such that
p = [{d, e, f, g, h, i}, {a, b, c}] and t evaluating to 1 only for columns
separating the codes of every two states in opposite sides of the PD.

In this case, t is the disjunction of the two minterms abcdefghi and

abcdefghi. Cubes having xi if si ∈ p(1) are called direct cubes of t,
while the ones having xi are the reverse cubes of t. This PD is sat-
isfied iff one of the two column encodings 111000000T or 000111111T

appears in an encoding Ξ. It is clear that it takes one single column
of Ξ to satisfy this PD alone. This is sufficient, but not necessary to
satisfy the full input constraint. To alleviate the restrictions imposed
on Ξ, we may instead use the corresponding elementary input con-
straints in φ. In the example, the full input constraint would produce
the SPDs [{d}, {a, b, c}], [{e}, {a, b, c}], [{f}, {a, b, c}], [{g}, {a, b, c}],
[{h}, {a, b, c}] and [{i}, {a, b, c}]. These SPDs may each be satisfied
separately, along several columns of the encoding. The satisfaction
function t is defined in the same way it was defined for the full in-
put constraint, and is the disjunction of a set of cubes which can
be satisfied with more code possibilities than the original satisfaction
function.

Distance-2 constraints are represented by PDs in the same way as
input constraints. The fact that they require satisfaction in exactly
two columns of the encoding is accounted for through the local part
of the framework, where the integer associated to input constraints is
1, while for distance-2 constraints it is 2.

4.2 Representing Global Constraints
Given two symbols a and b, a dominance constraint (a, b) can be

translated into one single SPD ∂ = 〈p, t〉, where p = [{a}, {b}], with

the satisfaction function t = a ∨ b.
Given three symbols a, b and c, a disjunctive constraint (a, bc) can

be expressed by three distinct SPDs ∂1 = 〈p1 = [{a}, {b}], t1 = a∨b〉,
∂2 = 〈p2 = [{a}, {c}], t2 = a ∨ c〉, ∂3 = 〈p3 = [{b, c}, {a}], t3 =
bc ∨ a〉.

A compatibility constraint {a, b} is modeled by one pseudo-

dichotomy ∂ = 〈p = [{a}, {b}], t = ab ∨ ab〉.
5 A Case Study

Traditionally, state minimization (SM) and state assignment (SA)
are separate procedures of sequential logic synthesis, but using such
a serial strategy may prevent the obtainment of optimal state assign-
ments [7]. To illustrate encodings where the symbol set may contain
compatibility classes, we have chosen the problem of assigning codes
to states of an FSM such that state minimization is taken into ac-
count during the encoding process, in what we call a simultaneous
strategy. No theoretical findings on the relationship between the SM
and SA problems has been provided in previous works [1, 8]. The
method in [8] is feasible only for very small machines. The method
proposed in [1] is reasonably efficient for machines with no less than
30 states, but its results are poorer than those obtained with a serial
strategy proposed in the same work.

5.1 Relationship between SM and SA
In [2], a formal relationship between the SM and SA problems was

established, generating the results summarized below. Formal proofs
can be found in [2] and are omitted here due to lack of space.

Theorem 5.1 (Closed cover encoding) Let A = 〈I, S,O, δ, λ〉 be
an FSM and κ be a closed cover of compatibles [6] of A. Build a
functional injective encoding ε : κ −→ Bn, with n ≥ �log2 |κ |� and
then build the encoding e : S −→ P(Bn), such that ∀s ∈ S, e(s) =
{ε(k) |k ∈ κ, s ∈ k}. Then, e is a valid state encoding of A.

Theorem 5.1 shows that it is possible to build valid encodings for
the states of an FSM such that their length depends on the cardinal-
ity of the closed cover of state compatibility classes, and not on the
cardinality of the set of states. It also states that we may use non-
injective, non-functional encodings to capture the state compatibility
class structure of the set S, if any exists.

Theorem 5.2 (Incompatibility constraints non-violation)
Given a finite state machine A = 〈I, S,O, δ, λ〉, if two states s, t ∈ S
are incompatible, any valid state encoding that respects the whole
set of full input constraints generated by symbolic minimization of
a cube table describing A assigns disjoint codes to s and t.

Theorem 5.3 (Closure constraints violation) Given an FSM
A = 〈I, S,O, δ, λ〉, if two states s, t ∈ S are conditionally com-
patible, any encoding that respects the whole set of full input con-
straints generated by symbolic minimization of a cube table of A,
assigns disjoint codes to s and t.

The last two Theorems relate the SA input constraints with con-
straints arising from the SM problem. The first of them guarantees
that all codes that have to be disjoint because of their incompat-
ibility, are made disjoint by simply satisfying all input constraints
obtained by symbolic minimization. The last Theorem, on the other
hand, shows the undesirable effect arising from the satisfaction of all

input constraints obtained by symbolic minimization, which is the
assignment of disjoint codes to some otherwise compatible pairs of
states. To avoid this effect during the encoding of states, we propose
an original method of relaxation for the input constraints.

Method 5.1 (Input constraints relaxation) Let
A = 〈I, S,O, δ, λ〉 be an FSM, with θ being the a set of compati-
bility constraints of A, and φ a set of elementary input constraints of
S. Then,

1 for each pair ({si}, sk) ∈ φ do
2 if ∃(sl, sk) ∈ θ or (sk, sl) ∈ θ, such that sl ∈ {si}
3 then, eliminate sl from {si} in ({si}, sk) ∈ φ;
4 if the resulting set {si} = ∅
5 then, eliminate ({si}, sk) from φ;

The objective of the relaxation method for input constraints is to
avoid encoding conditionally compatible states with disjoint codes.
The correctness of the procedure is established by the following The-
orem and Corollary.

Theorem 5.4 (Input constraints relaxation) Given a finite
state machine A = 〈I, S,O, δ, λ〉, the set of all compatibility con-
straints θ of A, and a set of elementary input constraints φ of S,
suppose that φ is the result of the decomposition of all full face em-
bedding constraints arising from symbolic minimization. Apply the
input constraints relaxation method to φ, obtaining a set of relaxed
input constraints φ′. Then, any state encoding Ξ′ of A that respects
all relaxed input constraints in φ′ and all compatibility constraints
in θ, is a valid state assignment of A.

Corollary 5.1 (Bounds Preservation) The input constraints re-
laxation method does not increase the upper bound on the row cardi-
nality of the encoded cube table predicted by symbolic minimization.

Theorem 5.4 ensures that after applying the relaxation method it
is still possible to find an encoding that preserves the input/output
behavior of the original machine based on the relaxed constraints.
An interesting result arising from symbolic minimization is that it
generates an upper bound for the row cardinality of a two-level im-
plementation of the combinational part of the initial FSM [4]. One
may question if this bound is still valid after applying relaxation to
these constraints. Corollary 5.1 ensures that this is indeed the case.

5.2 A PD Framework Encoding Method
Using the theoretical findings of the last Section, we propose a

state encoding method considering state minimization. The method
supports the use of all constraint classes mentioned in this work, al-
though the implementation is limited today to considering input and
compatibility constraints only. A PD framework is obtained as fol-
lows. Starting with the input constraints generated by symbolic mini-
mization, we decompose these into elementary input constraints with
removal of duplicated constraints. The method proceeds by relax-
ing the input constraints using for this the constraints derived from
an ordinary state pair compatibility analysis. The relaxed constraint
set, together with the compatibility constraints form a feasible set of
constraints [2], which is mapped into a unified PD framework.

Once the PD framework is established, the solution of our en-
coding problem can be found by any constraint satisfaction method
applicable to the framework. We have developed the ASSTUCE
method, which is in fact a generalization of an existing greedy heuris-
tic technique to generate one encoding column at a time, proposed in
[10]. The original method could not be used, since it is limited to
functional encodings, and we needed to generate cube encodings.

The idea of the ASSTUCE method is to generate one column of
the encoding at a time, so that the column generated satisfies a maxi-
mum number of PDs in the local part of the unified framework, and do
not violate any PD in the global part. After each column generation
step, all satisfied PDs in the local part have the associated integer
value decremented. For each value resulting 0 after this operation
the associated PDs are accordingly eliminated, and column genera-
tion proceeds. There are two possible stop conditions, depending on
what constrained encoding approach is chosen, complete or partial. If
complete constrained encoding is chosen, the method execution stops
only when the local part is empty. Otherwise, execution stops if ei-
ther the local part is empty, or if every incompatible pair of states is
assigned disjoint codes.

The final encoding is the collection of generated bit columns. The

complexity of the ASSTUCE method is bounded by O(n2 + c), where
n is the number of symbols (i.e. states of the FSM) and c is the
number of non-don’t care components in the initial PD matrix, which
is bounded by the product of the number of symbols by the cardinality
of the initial set of PDs, this last being proportional to the number
of constraints.

5.3 Benchmark Results
The ASSTUCE method has been implemented as a computer pro-

gram and compared against a serial strategy where state minimization
is performed using the program STAMINA [6] and state assignment
is done with the program NOVA [12]. The FSM test set used is part
of the MCNC benchmarks. Our prototype implementation do not

FSM
s27
beecount
lion9
ex5
ex7
ex3
bbara
opus
train11
mark1
sse
bbsse
ex2
tma
ex1
tbk
scf
s298

a_area
198
144
102
120
120
144
380
504
85

697
972
972
594

1230
2288
1680

17420
16632

n_area
234
247
136
252
306
324
550
448
153
684
990
990
609
1155
2496
4620
18471
22464

sn_area
216
160
77
96
96
96
380
448
66
646
1023
1023
195
1295
2132
1431
16244
10332

a_time
0.28
0.23
0.43
0.25
0.27
0.18
0.78
1.05
0.37
0.93
1.67
1.62
1.28
5.97
5.37

103.22
603.68

10637.90

n_time
0.10
0.10
0.30
0.50
0.30
0.20
0.20
0.20
0.60
5.10
0.50
0.40
0.50
6.60
6.50
140.7
105.8
828.8

sn_time
0.10
0.10
0.10
0.00
0.10
0.10
0.20
0.10
0.10
4.30
1.10
1.20
1.00
13.50
5.00
24.5
59.8
266.6

a_pt
11
9
6
8
8
8
20
18
5
17
27
27
18
30
44
56
130
308

n_pt
13
13
8
14
17
18
25
16
9
18
30
30
29
33
48
154
141
624

sn_pt
12
10
7
8
8
8
20
16
6
17
31
31
13
37
41
53
124
287

a_cl_f
3
2
4
3
3
4
3
4
4
5
5
5
9
7
5
5
8
14

n_cl_f
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
7
8

sn_cl_f
3
2
2
2
2
2
3
4
2
4
4
4
3
5
5
4
7
8

a_tr
43
50
24
34
38
33
94
139
26
145
196
196
91
241
399
614
1541
3824

n_tr
62
68
35
88
107
103
129
128
47
115
191
191
171
230
422
1423
1469
6783

sn_tr
51
54
24
34
36
35
94
123
24
117
206
206
66
257
330
553
1383
2586

a_spty
78.28
65.28
76.47
71.67
68.33
77.08
75.26
72.42
69.41
79.20
79.84
79.84
84.68
80.41
82.56
63.45
91.15
77.01

n_spty
73.5
72.47
74.26
65.08
65.03
68.21
76.55
71.43
69.28
83.19
80.71
80.71
71.92
80.09
83.09
69.2
92.04
69.81

sn_spty
76.39
66.25
68.83
64.58
62.5
63.54
75.26
72.54
63.64
81.73
79.86
79.86
66.15
80.15
84.52
61.36
91.49
74.96

Table 1: ASSTUCE versus partial encoding serial strategy for FSMs with non-trivial compatible pairs

Prefixes: Suffixes:
a_ : results obtained by running ASSTUCE area : area estimate of the minimized combinational part for the encoded FSM
n_ : results obtained by running NOVA alone pt : number of product terms in the minimized combinational part of the encoded FSM
sn_ : results obtained by running STAMINA + NOVA cl_f : encoding length time : total execution time
 tr : number of transistors in the minimized combinational part of the encoded FSM
 spty : percentual sparsity of the minimized combinational part for the encoded FSM

consider output constraints yet. The program NOVA was accordingly
parameterized to avoid their consideration (with the run-time option
-e ih), to allow a fair comparison. Also, the compared strategies are
solutions to the PBCE problem, but comparisons involving solutions
to the CBCE problem are also available in [2].

We divided the benchmarks into two groups, according to the pres-
ence or absence of non-trivial compatible state pairs in the original
description. All comparison parameters are extracted from the min-
imized two-level combinational part of the encoded FSM. The pro-
grams NOVA, and ASSTUCE rely on the ESPRESSO program to
perform the combinational part minimization after encoding. The
same statement is true for the input constraints generation step. In
this way, the comparisons reflect the differences arising from the en-
coding strategy alone. The data resulting from comparing ASSTUCE
and the partial encoding serial strategy based on the STAMINA and
NOVA programs is depicted in Table 1, for the benchmarks with at
least one pair of compatible distinct states. Results for the other
machines are discussed in [2].

ASSTUCE and the partial encoding serial strategy based on
NOVA are comparable for most parameters, with the serial strategy
obtaining slightly better area results and ASSTUCE obtaining slightly
sparser machines but with reduced number of transistors in it, and
less product terms. The consequences of these differences is that we
judge the ASSTUCE results more adapted to consider power dissi-
pation issues in big PLAs, because of the combined effect of smaller
areas corresponding to sparser PLAs. Besides, we know that sparser
PLAs favor the use of topological optimization tools during the low
level synthesis of the FSM.

The advantages related to ASSTUCE are a consequence of using
non-functional, non-injective encodings. In this way, cube merging
is facilitated during the logic minimization step, and even if the en-
coding length is increased, the final result may combine smaller areas
with less dissipated power. However, the main issue here is to show
that the formulation of the more general BCE problem does not im-
ply less efficient solutions for encoding problems, which validates the
basic idea of searching for more powerful encoding methods.

6 Conclusions and Future Work
The BCE problem formulation was showed here to be a general

approach to constrained encoding, which nonetheless does not imply
less efficient implementations of encoding algorithms. The original
formal statement for the pseudo-dichotomy concept allows that stan-
dard constraint satisfaction methods based on the discrete functions
theory be applied to solve various VLSI design problems. The en-
coding problem case study showed the limitations of previous generic
problem formulations to constrained encoding and stressed the po-
tential benefits of using our proposal. We expect that this work will
have a major impact on the way encoding problems are solved. Sym-
bols codes generated by our approach are by construction sparser
than those obtained with traditional encoding methods, as a result of
employing non-injective, non-functional encodings. The competitive-
ness of the results obtained so far with our prototype implementation
indicates that we may achieve gains in power dissipation and commu-
nication complexity without compromising the area occupied by the
circuit if more elaborate encoding schemes are developed.

We envisage the evolution of the present work in several directions.
The first of these is to further validate the approach proposed here

by obtaining more examples of encoding problems where the iden-
tification of equivalence and/or compatibility classes is fundamental
to the search of optimal solutions. Second, we are presently doing
research on the application of recently developed techniques for the
manipulation of implicit representations of switching functions with
the use of reduced ordered binary decision diagrams. We are also
considering the application of these techniques to the representation
and satisfaction of our PD framework. Third, we are interested in
overcoming the limitation of using cube encodings. The eventual use
of the Boolean relation concept may help in this task. Finally, we are
considering the application of the formal paradigm developed here to
sequential logic synthesis problems for FPGAs.

References
[1] M. Avedillo et al. “SMAS: a program for concurrent state reduc-

tion and state assignment of finite state machines”. ISCAS’91,
pp. 1781-1784.

[2] N. Calazans. State minimization and state assignment of fi-
nite state machines: their relationship and their impact on the
implementation. PhD thesis, Université Catholique de Louvain,
Belgium, 1993.

[3] M. Ciesielski et al. “A unified approach to input-output encoding
for FSM state assignment”. DAC’91, pp. 176-181.

[4] G. de Micheli et al. “Optimal state assignment for finite state
machines”. ITCAD, pp. 269-284, July 1985.

[5] S. Devadas et al. “A synthesis and optimization procedure for
fully and easily testable sequential machines”. ITCAD, pp. 1100-
1107, October 1989.

[6] G. Hachtel et al. “Exact and heuristic algorithms for the min-
imization of incompletely specified state machines”. EDAC’91,
pp. 184-191.

[7] J. Hartmanis et al. “Some dangers in state reduction of sequen-
tial machines”. Information and Control, pp. 252-260, Septem-
ber 1962.

[8] E. Lee et al. “Concurrent minimization and state assignment of
finite state machines”. International Conference on Systems,
Man and Cybernetics, pp. 248-260, 1984.

[9] B. Lin et al. “A generalized approach to the constrained cubical
embedding problem”. ICCD’89, pp. 400-403.

[10] C. Shi et al. “Efficient constrained encoding for VLSI sequential
logic synthesis”. EURO-DAC’92, pp. 266-271.

[11] J. Tracey. “Internal state assignment for asynchronous sequential
machines”. ITEC, pp. 551-560, August 1966.

[12] T. Villa et al. “NOVA: state assignment of finite state machines
for optimal two-level implementations”. ITCAD, pp. 905-924,
September 1990.

