
PaDReH - A Framework for the Design and Implementation
of Dynamically and Partially Reconfigurable Systems

Ewerson Carvalho
ecarvalho@inf.pucrs.br

Ney Calazans
ecarvalho@inf.pucrs.br

Eduardo Brião
briao@inf.pucrs.br

Fernando Moraes
moraes@inf.pucrs.br

Pontifícia Universidade Católica do Rio Grande do Sul (FACIN-PUCRS)
Av. Ipiranga, 6681 - Prédio 30 / Bloco 4 - 90619-900 - Porto Alegre – RS – BRASIL

ABSTRACT
Dynamically and Partially Reconfigurable Systems (DRSs) are
those where any portion of the hardware behavior can be altered
at application execution time. These systems have the potential to
provide hardware with flexibility similar to that of software, while
leading to better performance and smaller system size. However,
the widespread acceptance of DRSs depends on adequate support
to design and implement them. This work proposes a framework
for DRS design and implementation named PADReH. The
approach is compared to other propositions available in the
literature. The first steps of the framework implementation are
described, involving methods and tools to control the hardware
reconfiguration process and the generation of partial bitstreams.
The main contribution of the work is to provide means to
systematically reduce the lack of support currently hampering the
adoption of DRSs as a mainstream technology.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced
architectures, algorithms implemented in hardware, VLSI (very
large scale integration).

General Terms
Design, Experimentation, Theory.

Keywords
Dynamically and partially reconfigurable systems;
reconfiguration control, partial bitstream generation, run-time
reconfiguration.

1. INTRODUCTION
It is possible to notice an increasing interest on reconfigurable
computing [1]. The potential flexibility provided by
reconfigurable hardware has the potential to increase the lifetime
of products. Similar to software systems that constantly receive
updates, hardware implemented with reconfigurable devices can
put this strategy to good use to preserve product utility for longer

time. In addition, the time available to execute design flow
continually decreases because of market pressures. The use of
reconfigurable technology, coupled to the massive reuse of
intellectual property can reduce System-on-Chip (SoC) design
time [2], decreasing the time-to-market of technological products.
One attractive feature of using reconfigurable computing is the
possibility to implement a whole system in less silicon than its
nominal minimal requirement, developing the concept of virtual
hardware [3]. The use of DRS design techniques has potential to
save resources while reducing the system area overhead. This
happens because they allow that parts of the systems not needed
in some time interval be removed from the hardware to make
room for another part of the system, required at that same interval.
On the other hand, potential drawbacks of DRSs are the
performance penalty induced by the often long reconfiguration
times and the area overhead to implement the hardware
responsible for controlling the reconfiguration process.
The deployment of DRSs however requires support that is not yet
available [1]. This support comprises tools to enable the design
and verification of DRSs and adequate infrastructure for enabling
the design and runtime control of these systems. The above items
must be integrated through the use of adequate methods that take
into account the specificities of DRSs. Such methods are not
themselves available in a widespread way. The main objective of
the present work is to propose and describe PADReH, a
framework to provide support for the hardware implementation of
DRSs.
The rest of this paper is organized as follows. Section 2 presents a
survey of previous DRS frameworks propositions. Section 3
describes the main features of the PADReH framework, while
Sections 4 and 5 discuss the implementation of parts of the
framework. Section 6 discusses DRS applications and presents a
case study employed in the validation of the proposed tools and
infrastructure. Next, Section 7 describes practical results of using
the framework for implementing the case study of Section 6,
while Section 8 presents some conclusions and directions for
future work.

2. RELATED WORKS
Several approaches have been proposed to organize the design,
implementation and maintenance of reconfigurable systems. This
Section reviews several relevant propositions in this theme.
The Brass project proposes SCORE (Stream Computations for
Reconfigurable Execution) [4], a computation model based on the
organization of reconfigurable systems around the virtualization
of three main hardware concepts: paged reconfigurable hardware,
page communication through the use of streams, and storage.
The Janus framework [5] targets the development of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI'04, September 7-11, 2004, Pernambuco, Brazil.
Copyright 2004 ACM 1-58113-947-0/04/0009...$5.00.

reconfigurable systems composed by stages implemented either in
software and hardware and based on JHDL, a set of classes built
upon Java.
Edwards and Green [6] present an integrated run-time
environment to support partially and dynamically reconfigurable
systems based on the discontinued Xilinx XC6200 FPGA family.
They propose FSS (FPGA Support System), a system to support
loading and unloading of hardware tasks on FPGAs. The software
applications are developed in C++ and hardware tasks are
described in VHDL.
The Model-Integrated Development Environment for Adaptive
Computing (MIDE) project [7] has as goal to develop high-level
system design tools for implementing dynamically reconfigurable
systems using adaptive computing technology. MIDE provides
tools that allow designers to construct and exercise graphical
models of the systems, used to create executable computational
structures (software and hardware), and a runtime environment.
The system is aimed at embedded systems of weapons like missile
guiding systems and uses DSP processors coupled to Virtex
Xilinx FPGAs.
The design environment CHAMPION [8] provides automatic
retiming to match paths through the dataflow and performs multi-
FPGA design partitioning, without knowledge of the specific
architecture implementation.
Einsenring et al. [9] proposes a run-time reconfiguration of FPGA
computing resources, where system behavior and architecture are
represented as a problem graph, and an architecture graph,
respectively. Tool support is provided to map the nodes in the
problem graph to nodes in the architecture graph, assign problem
graph nodes to FPGA configurations, and schedule the execution
order of problem graph objects and configurations.
The Synthesis and Partitioning for Adaptive Reconfigurable
Computing Systems (SPARCS) [10] takes a design specification
at the behavioral level in the form of a task graph, divides and
schedules the tasks on the target architecture and maps the tasks
to individual FPGAs in multi-FPGA systems.

3. PADReH FRAMEWORK FOR DRS
PADReH is a framework to design and implement DRSs. This
framework is intended to enable obtaining advantages from the
use of dynamic and partial reconfigurable hardware technology.
The general characteristics of this framework are as follows.
First, PADReH is initially addressed to deal only with the DRS
hardware design flow only. This is the same decision followed by
SPARCS, Einsenring et al. approach, and CHAMPION, but
distinct from the choice in Janus and MIDE. The reasoning
behind the decision is that most of the complexity of DRSs lies on
the hardware side, and it is necessary to extensively experiment
with hardware concepts before delving into software implications
of DRS.
Second, PADReH is targeted to support partial and dynamic
reconfiguration of single FPGAs. This is justified by the fact that
current FPGAs are already capable of embedding entire complex
systems, and that FPGA advances are fast enough for this to stay
valid in the long term. This choice is the same for the systems
MIDE and the one proposed by Edwards et al., and addressing it
is planned by Einsenring et al. The opposite approach, suggested
by CHAMPION, SPARCS and currently supported by Einsenring
et al., DRSs implemented in multiple FPGAs, is useful for low-

end applications. This occurs once multiple FPGAs typically
present reduced performance and cost1, while single FPGA DRSs
are adequate for high-end applications.
Third, regarding the underlying implementation technologies,
PADReH advocates the use of higher level abstractions for design
capture and validation through the use of languages like SystemC.
Also, initial development of back-end DRS support employs
Xilinx Virtex families FPGAs devices (Virtex, Virtex2 and
Virtex2-Pro). The justification for these choices is the emerging
of SystemC as a de facto standard for addressing hardware
modeling at abstraction levels above RTL, and the fact that Virtex
FPGA families are the only commercial devices to support
System-on-Chip integration capability. These choices can be
compared to the use of Khoros by the CHAMPION system,
JAVA by Janus, and C++/VHDL in the approach of Edwards et
al. On the support device side, most reviewed systems claim to
use or to be considering the use of Virtex families.

3.1 The PADReH System Structure
The PADReH system is composed by three module sets, as
depicted in Figure 1.
The first module set is named Design Capture and Functional
Validation. It is responsible for the description and validation of
DRSs at high abstraction levels and translation from these to the
Register Transfer Level (RTL) of abstraction.
Next, the Partitioning and Scheduling module set is responsible
for the generation of files that describe the DRS behavior. These
files are usually represented in a hardware description language
(HDL). The same files are transmitted to the module set Physical
Synthesis and Reconfiguration Infrastructure. This module set is
responsible for the generation of configuration files implemented
as total and partial bitstreams, along with the spatial and temporal
system partitioning, as defined in the second module set. It is also
responsible for inserting the parameterized configuration
controller module in the system, according to the specific DRS
characteristics. The generation of the physical interconnection
implementation (e.g. bus or network-on-chip) among cores of the
DRS is also performed in this module set.
The shaded area in Figure 1 represents the parts of the framework
that are currently supported through the use of automated methods
and tools. Other parts of PADReH have been specified and are
currently conducted by combinations of manual application of the
method and/or with the help of commercial tools. The next two
Sections describe respectively the methods developed for
bitstreams generation and for runtime reconfiguration control of
DRSs.

1 For example, the cost of ten million-gate FPGAs is typically much

smaller than the cost of a single 10-million-gate FPGA.

Abstract Levels
Validation

(e.g. GTKWave)

Refinement and
Translation

Functional
Validation

(e.g. ActiveHDL
ModelSim)

Hardware
Partitioning

Space-time
Scheduling

Configuration
Controller

Parameterization

Bitstreams
Generation

Run-time
(Re)Configuration

Control

Interconnection
Generation

System
Specification at
Abstract Levels
(e.g. SystemC)

System Description
at the Register
Transfer Level

(e.g. VHDL, Verilog)

Graph with
Configuration Temporal

Dependences
(scheduling)

Partitioned
System

Description
(e.g. HDLs)

Total and Partial
Bitstreams

Design Capture and Functional Validation

Partitioning and Scheduling

Physical Synthesis and Reconfiguration Infrastructure

Figure 1 - PADReH framework design, verification and
implementation flow for DRS.

4. BITSTREAMS GENERATION
In most FPGA devices, the entire chip is configured using one
complete set of configuration data, called bitstream. Bitstreams
contain the information required to set the state of FPGA
configurable resources (e.g. switches and lookup tables) thus

implementing the designed circuit.
To partially reconfigure an FPGA, it is necessary to create partial
bitstreams, and to have available FPGA architectures that
explicitly support the partial loading of configuration data
contained in these files. Partial bitstreams take less time to be
loaded in the FPGA. Another potential advantage is that,
depending on the FPGA architecture, parts of the device not
suffering the reconfiguration process may continue to operate
normally during the partial reconfiguration.

4.1 Bitstream Manipulation Approaches
The generation of partial bitstreams is a crucial task for the kind
of DRS addressed in this work. The production of partial
bitstreams with current FPGA tools is basically a manual,
complex and error-prone process. Some tools and techniques to
automate the generation of partial bitstreams can already be found
on the research literature. Examples are JbitsDiff [11], Jbits [12],
PARBIT [13] and JPG [14]. Most of these tools and techniques
allow difference based manipulations where just very small,
localized portions of the FPGA are changed at any given moment
[15] (in this sense, PARBIT is an exception). Through of using
these techniques, it is difficult or even unfeasible to implement
complex dynamic IP cores (e.g. image filters, processors, etc).
The more complex problem of module based partial
reconfiguration is much less exploited in the literature. Module
based reconfiguration allows substituting arbitrarily sized regions
of the FPGA and imply the need to precisely define an interface
between reconfigurable areas and the rest of the device, formed
by either other reconfigurable areas or fixed areas. The PADReH
framework addresses module based partial reconfiguration.

4.2 IP Cores Communication in DRS
Some reconfigurable IP cores communication have been
proposed. In the context of initial development of the PADReH
framework, Palma et al. suggested a method to generate the
interconnection among partial bitstreams using a bus-based
structure [16]. The method is partially automated, but suffered
from limitations due to difficulty to more precisely control the
routing in Xilinx FPGA designs. Another technique for
interconnecting dynamically replaceable cores in FPGAs has been
proposed by Xilinx itself [15]. This technique was adopted and
adapted to the PADReH framework needs.

4.3 PADReH Bitstreams Generation
The technique proposed in [15] is based on the Xilinx Modular
Design flow. This design flow establishes a set of steps to
generate partial bitstreams. Besides, it allows implementing
dynamic IP cores (partial bitstreams) at a more abstract level than
other bitstream generation tools. The designer may start from
HDL descriptions of reconfigurable modules, elaborate some
flooplanning constraints and from this set of data automate the
generation of partial bitstreams. In this technique, for IP cores that
communicate with each other, a special Xilinx library component
called bus macro. This component enables the interconnection of
signals across the boundary of reconfigurable and fixed areas or
between a pair of reconfigurable areas. The bus macro is
composed by eight tristate buffers that create a bidirectional 4-
wire interface between modules. Figure 2 shows the structure of a
bus macro. Note that each side of the bus macro may control the
flow of data in the interface. A control protocol must be agreed

upon by both sides to avoid the possibility of bus conflicts.

3
Module A Module B

0

0

1

2

1 2 3 4 5 6 ...

3
Module A Module BModule A Module B

0

0

1

2

1 2 3 4 5 6 ...

Figure 2 - Bus macro with typical placement in the FPGA.

For each DRS implementation, the FPGA must be initialized with
a total bitstream, followed by successive reconfigurations with
partial bitstreams. The next Section describes how the PADReH
framework treats the configuration/reconfiguration process in
more detail.
Although the Modular Design flow provides the necessary means
to enable module based reconfiguration, the flow is not as
automated as it could be. This makes the whole process error-
prone. Four major issues that could be enhanced in the flow were
identified:
• Several specific logic synthesis scripts must be produced in

the flow. Xilinx provides only hints on how these must be
written and formatted;

• One physical synthesis complex script must be generated for
each partial and total bitstream manipulated during the flow.
Again, these are not fully specified by the FPGA vendor;

• Bus macros must be explicitly inserted by the DRS designer
in HDL files;

• A set of constraints must be manually generated and inserted
in a constraints file, in order to correctly generate partial and
total bitstreams.

To reduce the risk of errors during the application of the Modular
Design flow, a tool named MDLauncher (i.e. Modular Design
Launcher) has been proposed and developed [17]. MDLauncher
reduces design time and decreases the amount of errors during
design and implementation of DRSs. The user creates the top
module and the partial modules and input these using the
MDLauncher GUI. The tool will automatically perform all steps
of Modular Design flow, solving two of the issues mentioned
above through scripts template personalization. MDLauncher is
integrated with the Leonardo Spectrum tool, used for logic
synthesis and Xilinx ISE tool flow for physical synthesis.

5. CONFIGURATION CONTROL
A configuration controller commands which reconfigurable IP
core(s) must be inserted on the reconfigurable device at any
moment, and which must be removed. It executes tasks similar to
those of a loader of an operating system. This module is
responsible for loading configurations to execute on the
reconfigurable hardware, according to a defined task scheduling.
The PADReH framework supports the control of the

configuration process by using a fixed hardware module that
automates the management of the partial bitstreams described in
the previous Section. This hardware module, named RSCM, must
be present in every DRS implemented with the framework.

5.1 The RSCM Controller
The Reconfigurable System Configuration Manager (RSCM) is
really a model to implement configuration controllers [18]. Its
general structure is detailed in Figure 3.

Self-
Configuration

Configuration Memory

Memory Access
Controller

Configuration
Scheduler

Central
Configuration

Control
Reconfiguration Monitor

Device
configuration
port

Configuration
Interface

R
ec

on
fig

ur
ab

le

A
re

a
1

R
ec

on
fig

ur
ab

le

A
re

a
2

R
ec

on
fig

ur
ab

le

Á
re

a
3

R
ec

on
fig

ur
ab

le

A
re

a
n ...

Figure 3 - RSCM model and its usage in the implementation

of DRSs. The gray modules are components of the RSCM
controller. The other modules in picture are part of the

dynamic reconfigurable system. The Memory is only module
outside of the FPGA.

The Configuration Memory (CM) stores all partial bitstreams used
at runtime by the system. Considering the large amount of space
to store bitstreams, and the scarcity of storage in current FPGAs,
the Configuration Memory is a partially implemented outside the
reconfigurable device.
The Self-Configuration (SC) module controls the configuration
process. It has an interface with the CM module, to send control
signals requesting configuration data. The Configuration Interface
(CI) module formats configuration data to the FPGA. The Central
Configuration Control (CCC) interface receives requests to start
the configuration process, and provides results of the process in
the form of status signals. The SC module may contain logic to
control the relocation of partial bitstreams. CI is responsible for
receiving configuration data from SC and sending it to the FPGA
configuration port.
The Reconfiguration Monitor (RM) detects situations where
reconfigurations need to be performed, the so-called
reconfiguration events, and notifies CCC, which acts
appropriately.
The Central Configuration Control (CCC) manages all control
flow between other modules of the RSCM system. It applies the
configuration scheduling stored on the Configuration Scheduler
(CS) module. CCC receives requests from RM and requests
services to the CS and SC modules.
The Configuration Scheduler (CS) module is responsible to
determine which bitstream is the next to be configured. This
module receives service requests from the CCC. It stores a data
structure with information about configurations dependence,
called Table of Dependencies and Descriptors (TDD).

In this context of the PADReH framework, the RSCM model is
implemented in hardware, but since the model is generic, it could
as well be implemented in software or as mixed
hardware/software versions. Since the implemented controller is
part of the hardware and lies inside the reconfigurable device
containing the rest of the system, the device is capable of
performing its own reconfiguration without resource to external
controlling devices. More implementation details may be obtained
in [18].

6. APPLICATIONS IMPLEMENTED ON
DRSS
Several application fields may benefit from the use of DRSs. The
authors are currently investigating the use of these systems in
network intrusion detection applications. Network intrusion
detection requires that a huge amount of data processing be
performed using a set of rules that are changed as a function of
the network instantaneous traffic pattern. Rapid switching of rules
and very high throughput prevent the use of software-only
solutions. This is an ongoing work.
Possibly, the most intuitive form of DRS is one where the
instruction set of a processor is dynamically augmented through
the use of reconfigurable hardware. Such components are
generically known as reconfigurable processors. As a proof of
concept for the PADReH framework, the rest of this Section
presents a system named R8NR, implemented by the authors and
composed by a processor with N attached reconfigurable
coprocessors.

6.1 R8NR – A Reconfigurable Processor
The R8R processor is based on the R8 processor, a 16-bit load-
store 40-instruction RISC-like processor [19]. The original R8
processor was transformed into the R8R processor by the addition
of five new instructions intended to give support to the use of
partially reconfigurable coprocessors. The R8R processor was
wrapped to provide communication with the local memory, the
system bus, the RSCM and the reconfigurable regions.
The coprocessors are configured on demand, under control of the
software that executes on the R8R processor. During the
execution of the system, the R8R selects, at each moment, one
specific coprocessor with which it operates. This selection is sent
to the RSCM controller that according to the allocation state of
reconfigurable areas verifies if the coprocessor is already present
in the hardware, reconfiguring some unselected area, if needed.
After this, the RSCM notifies the processor that the selected
coprocessor is ready. From now on, the software can request
coprocessor services. The signal exchange protocol that
implements the R8NR inner working is explained next.
For this case study, three coprocessors were implemented. The
first, SQRT, computes the square root. MULTI coprocessor
executes a multiplication and DIV coprocessor executes a
division.

7. CASE STUDY INITIAL QUANTITATIVE
RESULTS
The system described in Section 6 has been completely
prototyped and is operational in two versions, with one (R81R)
and two reconfigurable regions (R82R), respectively. A
V2MB1000 prototyping platform from Insight-Memec was used.

This platform contains a million-gate XC2V1000 Xilinx FPGA,
memory and I/O resources.
One of the gains of using the approach proposed here is that using
a configuration controller internal to the FPGA device leads to a
better performance in configuration time. For example, using an
implementation of the RSCM running at 24MHz, the time to
reconfigure a bitstream with Ncw words is given
by:)748(884 nsNcwnsTr ×+= .

This leads to a total time to reconfigure a million-gate FPGA in
95,43 ms and 10 ms to reconfigure each coprocessor mentioned in
the previous Section.

7.1 Coprocessor Execution Time
To compare execution times, software implementations

of each coprocessor were used. The results are illustrated in
the graph of Figure 4. For the multiplication coprocessor,
the execution of more than 750 consecutive operations will
execute faster in hardware than in software, considering the
reconfiguration time overhead. For division and square root the
respective break-even points occur for 260 and 200 operations.
The determination of this break-even point is important to
establish when using DRSs becomes advantageous. Example
applications where these results can be applied are digital filters
where a great number of multiply-accumulate operations execute
over a data set.

Figure 4 - Coprocessors execution time versus number of
performed operations. The _hw suffix regards hardware

implementations, while _sw regards software
implementations. Each partial bitstream is configured in

approximately 10ms by RSCM.

7.2 Area Consumption
The preliminary version of the PADReH framework was used to
design and prototype the R81R and the R82R case studies. The
more complex system, R82R occupied 14.89% of the million-gate
XC2V1000 FPGA or less than 150,000 equivalent gates. The
RSCM accounts for 7,5% of these gates only, or 1,13% of the
FPGA resources.

8. CONCLUSIONS AND FUTURE WORK
This work proposed a framework to support the design, validation
and implementation of Dynamically and Partially Reconfigurable

Systems, DRSs. PADReH employs a set of state-of-the-art
technologies to enable the implementation of DRSs. These
include the use of modern enabling VLSI target devices, higher
level recently proposed abstraction levels for design capture, and
a set of methods and tools to automate the process.
The framework is currently under implementation using a bottom-
up approach. The infrastructure to implement DRSs is already
operational as demonstrated by the discussion of the case studies
design, implementation and prototyping.
Future works include the refinement of the implementation
infrastructure, comprising completing and improving the Physical
Synthesis and Reconfiguration Infrastructure module set of Figure
1, and addressing the upper abstraction levels of the framework.
One immediate work is to enhance the bitstream generation
process, by automating the issues identified in Section and not yet
addressed. In the case of the reconfiguration control process, it is
necessary to improve RSCM performance and provide support in
it for the relocation of bitstreams.

9. ACKNOWLEDGMENTS
Work partially supported by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq), Brazil, under scholarship grants
130900/2002-8 and 307655/2003-2.

10. REFERENCES
[1] Zhang, X., and Ng, K. W. A review of high-level synthesis

for dynamically reconfigurable FPGAs. Microprocessors
and Microsystems, v. 24, p.199-211. 2000.

[2] Bergamaschi R., and Lee, W. Designing system-on-chip
using cores. In DAC’00, pp. 420-425. USA. 2000.

[3] DeHon, A. Comparing Computing Machines. In Proc. SPIE
Configurable Computing: Technology and Applications. v.
3526, pp. 124-133, 1998.

[4] Caspi, E., DeHon, A., and Wawrzynek, J. A streaming
multithreaded model, In: Third Workshop on Media and
Stream Processors, 2001.

[5] Lehn, D., Hudson, R., and Athanas, P. Framework for
architecture-independent run-time reconfigurable
applications, In: SPIE Proceedings, November, 2000.

[6] Edwards, M., and Green, P. Run-time support for
dynamically reconfigurable computing systems. Journal of
Systems Architecture, v. 49, pp. 267-281. 2003

[7] Bapty, T., Neema, S., Scott, J., Sztipanovits, J., and Asaad,

S. Model-integrated tools for the design of dynamically
reconfigurable systems, Technical Report #ISIS-99-01, ISIS,
Vanderbilt University, 2000.

[8] Natarajan, S., Levine, B., Tan, C., Newport, D., and Bouldin,
D. Automatic Mapping of Khoros-based Applications to
Adaptive Computing Systems. In: MAPLD´99, pp. 101-107,
1999.

[9] Eisenring, M., and Platzner, M. A framework for run-time
reconfigurable systems, Journal of Supercomputing v. 21,
pp. 145-159, 2002.

[10] Ouaiss, I., Govindarajan, S., Srinivasan, V., Kaul, M., and
Vemuri, R. An Integrated Partitioning and Synthesis System
for Dynamically Reconfigurable Multi-FPGA Architectures.
In: RAW’98, 1998.

[11] James-Roxby, P.; Guccione, S. Automated extraction of run-
time parameterisable cores from programmable device
configurations. In: FCCM’00. pp. 153-161, 2000.

[12] Xilinx, Inc. The JBits 3.0 SDK for Virtex-II. 2003. Available
at http://www.xilinx.com/labs/downloads/ jbits/index.htm

[13] Horta, E., Lockwood, J., and Kofuji, S. Using PARBIT to
implement Partial Run-time Reconfigurable Systems. In:
FPL’02, pp 182-191, 2002.

[14] Raghavan, A., and Sutton, P. JPG - a partial bitstream
generation tool to support partial reconfiguration in Virtex
FPGAs. In: IPDPS’02, pp. 155-160, 2002.

[15] Xilinx, Inc. Two Flows for Partial Reconfiguration: Module
Based or Difference Based. Xilinx Application Note
XAPP290, V1.1. 2003.

[16] Palma, J., Mello, A., Möller, L., Moraes, F. and Calazans, N.
Core Communication Interface for FPGAs. In SBCCI’02, pp.
183-188, 2002.

[17] Brião, E. Partial and Dynamic Reconfiguration for
Intellectual Property Cores, MSc Dissertation, PUCRS-
PPGCC–FACIN, Porto Alegre, Brazil, 2004. (In Portuguese)

[18] Carvalho, E. RSCM: Configuration Control for
Reconfigurable Hardware Systems, MSc Dissertation,
PUCRS-PPGCC–FACIN, Porto Alegre, Brazil, 2004. (In
Portuguese)

[19] Moraes, F., and Calazans, N. R8 Processor Architecture and
Organization Specification and Design Guidelines. 2003.
Available at http://www.inf.pucrs.br/~gaph/Projects/R8
/public/R8_arq_spec_eng.pdf

