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ABSTRACT 
Dynamically and Partially Reconfigurable Systems (DRSs) are 
those where any portion of the hardware behavior can be altered 
at application execution time. These systems have the potential to 
provide hardware with flexibility similar to that of software, while 
leading to better performance and smaller system size. However, 
the widespread acceptance of DRSs depends on adequate support 
to design and implement them. This work proposes a framework 
for DRS design and implementation named PADReH. The 
approach is compared to other propositions available in the 
literature. The first steps of the framework implementation are 
described, involving methods and tools to control the hardware 
reconfiguration process and the generation of partial bitstreams. 
The main contribution of the work is to provide means to 
systematically reduce the lack of support currently hampering the 
adoption of DRSs as a mainstream technology.  

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced 
architectures, algorithms implemented in hardware, VLSI (very 
large scale integration). 

General Terms 
Design, Experimentation, Theory. 

Keywords 
Dynamically and partially reconfigurable systems; 
reconfiguration control, partial bitstream generation, run-time 
reconfiguration. 

1. INTRODUCTION 
It is possible to notice an increasing interest on reconfigurable 
computing [1]. The potential flexibility provided by 
reconfigurable hardware has the potential to increase the lifetime 
of products. Similar to software systems that constantly receive 
updates, hardware implemented with reconfigurable devices can 
put this strategy to good use to preserve product utility for longer 

time. In addition, the time available to execute design flow 
continually decreases because of market pressures. The use of 
reconfigurable technology, coupled to the massive reuse of 
intellectual property can reduce System-on-Chip (SoC) design 
time [2], decreasing the time-to-market of technological products. 
One attractive feature of using reconfigurable computing is the 
possibility to implement a whole system in less silicon than its 
nominal minimal requirement, developing the concept of virtual 
hardware [3]. The use of DRS design techniques has potential to 
save resources while reducing the system area overhead. This 
happens because they allow that parts of the systems not needed 
in some time interval be removed from the hardware to make 
room for another part of the system, required at that same interval. 
On the other hand, potential drawbacks of DRSs are the 
performance penalty induced by the often long reconfiguration 
times and the area overhead to implement the hardware 
responsible for controlling the reconfiguration process. 
The deployment of DRSs however requires support that is not yet 
available [1]. This support comprises tools to enable the design 
and verification of DRSs and adequate infrastructure for enabling 
the design and runtime control of these systems. The above items 
must be integrated through the use of adequate methods that take 
into account the specificities of DRSs. Such methods are not 
themselves available in a widespread way. The main objective of 
the present work is to propose and describe PADReH, a 
framework to provide support for the hardware implementation of 
DRSs. 
The rest of this paper is organized as follows. Section 2 presents a 
survey of previous DRS frameworks propositions. Section 3 
describes the main features of the PADReH framework, while 
Sections 4 and 5 discuss the implementation of parts of the 
framework. Section 6 discusses DRS applications and presents a 
case study employed in the validation of the proposed tools and 
infrastructure. Next, Section 7 describes practical results of using 
the framework for implementing the case study of Section 6, 
while Section 8 presents some conclusions and directions for 
future work. 

2. RELATED WORKS 
Several approaches have been proposed to organize the design, 
implementation and maintenance of reconfigurable systems. This 
Section reviews several relevant propositions in this theme. 
The Brass project proposes SCORE (Stream Computations for 
Reconfigurable Execution) [4], a computation model based on the 
organization of reconfigurable systems around the virtualization 
of three main hardware concepts: paged reconfigurable hardware, 
page communication through the use of streams, and storage. 
The Janus framework [5] targets the development of 
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reconfigurable systems composed by stages implemented either in 
software and hardware and based on JHDL, a set of classes built 
upon Java. 
Edwards and Green [6] present an integrated run-time 
environment to support partially and dynamically reconfigurable 
systems based on the discontinued Xilinx XC6200 FPGA family. 
They propose FSS (FPGA Support System), a system to support 
loading and unloading of hardware tasks on FPGAs. The software 
applications are developed in C++ and hardware tasks are 
described in VHDL. 
The Model-Integrated Development Environment for Adaptive 
Computing (MIDE) project [7] has as goal to develop high-level 
system design tools for implementing dynamically reconfigurable 
systems using adaptive computing technology. MIDE provides 
tools that allow designers to construct and exercise graphical 
models of the systems, used to create executable computational 
structures (software and hardware), and a runtime environment. 
The system is aimed at embedded systems of weapons like missile 
guiding systems and uses DSP processors coupled to Virtex 
Xilinx FPGAs. 
The design environment CHAMPION [8] provides automatic 
retiming to match paths through the dataflow and performs multi-
FPGA design partitioning, without knowledge of the specific 
architecture implementation. 
Einsenring et al. [9] proposes a run-time reconfiguration of FPGA 
computing resources, where system behavior and architecture are 
represented as a problem graph, and an architecture graph, 
respectively. Tool support is provided to map the nodes in the 
problem graph to nodes in the architecture graph, assign problem 
graph nodes to FPGA configurations, and schedule the execution 
order of problem graph objects and configurations. 
The Synthesis and Partitioning for Adaptive Reconfigurable 
Computing Systems (SPARCS) [10] takes a design specification 
at the behavioral level in the form of a task graph, divides and 
schedules the tasks on the target architecture and maps the tasks 
to individual FPGAs in multi-FPGA systems. 

3. PADReH FRAMEWORK FOR DRS 
PADReH is a framework to design and implement DRSs. This 
framework is intended to enable obtaining advantages from the 
use of dynamic and partial reconfigurable hardware technology. 
The general characteristics of this framework are as follows. 
First, PADReH is initially addressed to deal only with the DRS 
hardware design flow only. This is the same decision followed by 
SPARCS, Einsenring et al. approach, and CHAMPION, but 
distinct from the choice in Janus and MIDE. The reasoning 
behind the decision is that most of the complexity of DRSs lies on 
the hardware side, and it is necessary to extensively experiment 
with hardware concepts before delving into software implications 
of DRS. 
Second, PADReH is targeted to support partial and dynamic 
reconfiguration of single FPGAs. This is justified by the fact that 
current FPGAs are already capable of embedding entire complex 
systems, and that FPGA advances are fast enough for this to stay 
valid in the long term. This choice is the same for the systems 
MIDE and the one proposed by Edwards et al., and addressing it 
is planned by Einsenring et al. The opposite approach, suggested 
by CHAMPION, SPARCS and currently supported by Einsenring 
et al.,   DRSs implemented in multiple FPGAs, is useful for low-

end applications. This occurs once multiple FPGAs typically 
present reduced performance and cost1, while single FPGA DRSs 
are adequate for high-end applications. 
Third, regarding the underlying implementation technologies, 
PADReH advocates the use of higher level abstractions for design 
capture and validation through the use of languages like SystemC. 
Also, initial development of back-end DRS support employs 
Xilinx Virtex families FPGAs devices (Virtex, Virtex2 and 
Virtex2-Pro). The justification for these choices is the emerging 
of SystemC as a de facto standard for addressing hardware 
modeling at abstraction levels above RTL, and the fact that Virtex 
FPGA families are the only commercial devices to support 
System-on-Chip integration capability. These choices can be 
compared to the use of Khoros by the CHAMPION system, 
JAVA by Janus, and C++/VHDL in the approach of Edwards et 
al. On the support device side, most reviewed systems claim to 
use or to be considering the use of Virtex families. 

3.1 The PADReH System Structure 
The PADReH system is composed by three module sets, as 
depicted in Figure 1. 
The first module set is named Design Capture and Functional 
Validation. It is responsible for the description and validation of 
DRSs at high abstraction levels and translation from these to the 
Register Transfer Level (RTL) of abstraction. 
Next, the Partitioning and Scheduling module set is responsible 
for the generation of files that describe the DRS behavior. These 
files are usually represented in a hardware description language 
(HDL). The same files are transmitted to the module set Physical 
Synthesis and Reconfiguration Infrastructure. This module set is 
responsible for the generation of configuration files implemented 
as total and partial bitstreams, along with the spatial and temporal 
system partitioning, as defined in the second module set. It is also 
responsible for inserting the parameterized configuration 
controller module in the system, according to the specific DRS 
characteristics. The generation of the physical interconnection 
implementation (e.g. bus or network-on-chip) among cores of the 
DRS is also performed in this module set. 
The shaded area in Figure 1 represents the parts of the framework 
that are currently supported through the use of automated methods 
and tools. Other parts of PADReH have been specified and are 
currently conducted by combinations of manual application of the 
method and/or with the help of commercial tools. The next two 
Sections describe respectively the methods developed for 
bitstreams generation and for runtime reconfiguration control of 
DRSs. 

                                                                 
1 For example, the cost of ten million-gate FPGAs is typically much 

smaller than the cost of a single 10-million-gate FPGA. 
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Figure 1 - PADReH framework design, verification and 
implementation flow for DRS. 

4. BITSTREAMS GENERATION 
In most FPGA devices, the entire chip is configured using one 
complete set of configuration data, called bitstream. Bitstreams 
contain the information required to set the state of FPGA 
configurable resources (e.g. switches and lookup tables) thus 

implementing the designed circuit. 
To partially reconfigure an FPGA, it is necessary to create partial 
bitstreams, and to have available FPGA architectures that 
explicitly support the partial loading of configuration data 
contained in these files. Partial bitstreams take less time to be 
loaded in the FPGA. Another potential advantage is that, 
depending on the FPGA architecture, parts of the device not 
suffering the reconfiguration process may continue to operate 
normally during the partial reconfiguration. 

4.1 Bitstream Manipulation Approaches 
The generation of partial bitstreams is a crucial task for the kind 
of DRS addressed in this work. The production of partial 
bitstreams with current FPGA tools is basically a manual, 
complex and error-prone process. Some tools and techniques to 
automate the generation of partial bitstreams can already be found 
on the research literature. Examples are JbitsDiff [11], Jbits [12], 
PARBIT [13] and JPG [14]. Most of these tools and techniques 
allow difference based manipulations where just very small, 
localized portions of the FPGA are changed at any given moment 
[15] (in this sense, PARBIT is an exception). Through of using 
these techniques, it is difficult or even unfeasible to implement 
complex dynamic IP cores (e.g. image filters, processors, etc). 
The more complex problem of module based partial 
reconfiguration is much less exploited in the literature. Module 
based reconfiguration allows substituting arbitrarily sized regions 
of the FPGA and imply the need to precisely define an interface 
between reconfigurable areas and the rest of the device, formed 
by either other reconfigurable areas or fixed areas. The PADReH 
framework addresses module based partial reconfiguration. 

4.2 IP Cores Communication in DRS 
Some reconfigurable IP cores communication have been 
proposed. In the context of initial development of the PADReH 
framework, Palma et al. suggested a method to generate the 
interconnection among partial bitstreams using a bus-based 
structure [16]. The method is partially automated, but suffered 
from limitations due to difficulty to more precisely control the 
routing in Xilinx FPGA designs. Another technique for 
interconnecting dynamically replaceable cores in FPGAs has been 
proposed by Xilinx itself [15]. This technique was adopted and 
adapted to the PADReH framework needs.  

4.3 PADReH Bitstreams Generation 
The technique proposed in [15] is based on the Xilinx Modular 
Design flow. This design flow establishes a set of steps to 
generate partial bitstreams. Besides, it allows implementing 
dynamic IP cores (partial bitstreams) at a more abstract level than 
other bitstream generation tools. The designer may start from 
HDL descriptions of reconfigurable modules, elaborate some 
flooplanning constraints and from this set of data automate the 
generation of partial bitstreams. In this technique, for IP cores that 
communicate with each other, a special Xilinx library component 
called bus macro. This component enables the interconnection of 
signals across the boundary of reconfigurable and fixed areas or 
between a pair of reconfigurable areas. The bus macro is 
composed by eight tristate buffers that create a bidirectional 4-
wire interface between modules. Figure 2 shows the structure of a 
bus macro. Note that each side of the bus macro may control the 
flow of data in the interface. A control protocol must be agreed 



upon by both sides to avoid the possibility of bus conflicts. 
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Figure 2 - Bus macro with typical placement in the FPGA. 

For each DRS implementation, the FPGA must be initialized with 
a total bitstream, followed by successive reconfigurations with 
partial bitstreams. The next Section describes how the PADReH 
framework treats the configuration/reconfiguration process in 
more detail. 
Although the Modular Design flow provides the necessary means 
to enable module based reconfiguration, the flow is not as 
automated as it could be. This makes the whole process error-
prone. Four major issues that could be enhanced in the flow were 
identified: 
• Several specific logic synthesis scripts must be produced in 

the flow. Xilinx provides only hints on how these must be 
written and formatted; 

• One physical synthesis complex script must be generated for 
each partial and total bitstream manipulated during the flow. 
Again, these are not fully specified by the FPGA vendor; 

• Bus macros must be explicitly inserted by the DRS designer 
in HDL files; 

• A set of constraints must be manually generated and inserted 
in a constraints file, in order to correctly generate partial and 
total bitstreams. 

To reduce the risk of errors during the application of the Modular 
Design flow, a tool named MDLauncher (i.e. Modular Design 
Launcher) has been proposed and developed [17]. MDLauncher 
reduces design time and decreases the amount of errors during 
design and implementation of DRSs. The user creates the top 
module and the partial modules and input these using the 
MDLauncher GUI. The tool will automatically perform all steps 
of Modular Design flow, solving two of the issues mentioned 
above through scripts template personalization. MDLauncher is 
integrated with the Leonardo Spectrum tool, used for logic 
synthesis and Xilinx ISE tool flow for physical synthesis. 

5. CONFIGURATION CONTROL 
A configuration controller commands which reconfigurable IP 
core(s) must be inserted on the reconfigurable device at any 
moment, and which must be removed. It executes tasks similar to 
those of a loader of an operating system. This module is 
responsible for loading configurations to execute on the 
reconfigurable hardware, according to a defined task scheduling. 
The PADReH framework supports the control of the 

configuration process by using a fixed hardware module that 
automates the management of the partial bitstreams described in 
the previous Section. This hardware module, named RSCM, must 
be present in every DRS implemented with the framework. 

5.1 The RSCM Controller 
The Reconfigurable System Configuration Manager (RSCM) is 
really a model to implement configuration controllers [18]. Its 
general structure is detailed in Figure 3. 
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Figure 3 - RSCM model and its usage in the implementation 

of DRSs. The gray modules are components of the RSCM 
controller. The other modules in picture are part of the 

dynamic reconfigurable system. The Memory is only module 
outside of the FPGA. 

The Configuration Memory (CM) stores all partial bitstreams used 
at runtime by the system. Considering the large amount of space 
to store bitstreams, and the scarcity of storage in current FPGAs, 
the Configuration Memory is a partially implemented outside the 
reconfigurable device.  
The Self-Configuration (SC) module controls the configuration 
process. It has an interface with the CM module, to send control 
signals requesting configuration data. The Configuration Interface 
(CI) module formats configuration data to the FPGA. The Central 
Configuration Control (CCC) interface receives requests to start 
the configuration process, and provides results of the process in 
the form of status signals. The SC module may contain logic to 
control the relocation of partial bitstreams. CI is responsible for 
receiving configuration data from SC and sending it to the FPGA 
configuration port. 
The Reconfiguration Monitor (RM) detects situations where 
reconfigurations need to be performed, the so-called 
reconfiguration events, and notifies CCC, which acts 
appropriately. 
The Central Configuration Control (CCC) manages all control 
flow between other modules of the RSCM system. It applies the 
configuration scheduling stored on the Configuration Scheduler 
(CS) module. CCC receives requests from RM and requests 
services to the CS and SC modules. 
The Configuration Scheduler (CS) module is responsible to 
determine which bitstream is the next to be configured. This 
module receives service requests from the CCC. It stores a data 
structure with information about configurations dependence, 
called Table of Dependencies and Descriptors (TDD). 



In this context of the PADReH framework, the RSCM model is 
implemented in hardware, but since the model is generic, it could 
as well be implemented in software or as mixed 
hardware/software versions. Since the implemented controller is 
part of the hardware and lies inside the reconfigurable device 
containing the rest of the system, the device is capable of 
performing its own reconfiguration without resource to external 
controlling devices. More implementation details may be obtained 
in [18]. 

6. APPLICATIONS IMPLEMENTED ON 
DRSS 
Several application fields may benefit from the use of DRSs. The 
authors are currently investigating the use of these systems in 
network intrusion detection applications. Network intrusion 
detection requires that a huge amount of data processing be 
performed using a set of rules that are changed as a function of 
the network instantaneous traffic pattern. Rapid switching of rules 
and very high throughput prevent the use of software-only 
solutions. This is an ongoing work.  
Possibly, the most intuitive form of DRS is one where the 
instruction set of a processor is dynamically augmented through 
the use of reconfigurable hardware. Such components are 
generically known as reconfigurable processors. As a proof of 
concept for the PADReH framework, the rest of this Section 
presents a system named R8NR, implemented by the authors and 
composed by a processor with N attached reconfigurable 
coprocessors. 

6.1 R8NR – A Reconfigurable Processor 
The R8R processor is based on the R8 processor, a 16-bit load-
store 40-instruction RISC-like processor [19]. The original R8 
processor was transformed into the R8R processor by the addition 
of five new instructions intended to give support to the use of 
partially reconfigurable coprocessors. The R8R processor was 
wrapped to provide communication with the local memory, the 
system bus, the RSCM and the reconfigurable regions. 
The coprocessors are configured on demand, under control of the 
software that executes on the R8R processor. During the 
execution of the system, the R8R selects, at each moment, one 
specific coprocessor with which it operates. This selection is sent 
to the RSCM controller that according to the allocation state of 
reconfigurable areas verifies if the coprocessor is already present 
in the hardware, reconfiguring some unselected area, if needed. 
After this, the RSCM notifies the processor that the selected 
coprocessor is ready. From now on, the software can request 
coprocessor services. The signal exchange protocol that 
implements the R8NR inner working is explained next. 
For this case study, three coprocessors were implemented. The 
first, SQRT, computes the square root. MULTI coprocessor 
executes a multiplication and DIV coprocessor executes a 
division. 

7. CASE STUDY INITIAL QUANTITATIVE 
RESULTS 
The system described in Section 6 has been completely 
prototyped and is operational in two versions, with one (R81R) 
and two reconfigurable regions (R82R), respectively. A 
V2MB1000 prototyping platform from Insight-Memec was used. 

This platform contains a million-gate XC2V1000 Xilinx FPGA, 
memory and I/O resources.  
One of the gains of using the approach proposed here is that using 
a configuration controller internal to the FPGA device leads to a 
better performance in configuration time. For example, using an 
implementation of the RSCM running at 24MHz, the time to 
reconfigure a bitstream with Ncw words is given 
by: )748(884 nsNcwnsTr ×+= . 

This leads to a total time to reconfigure a million-gate FPGA in 
95,43 ms and 10 ms to reconfigure each coprocessor mentioned in 
the previous Section. 

7.1 Coprocessor Execution Time 
To compare execution times, software implementations 

of each coprocessor were used. The results are illustrated in 
the graph of Figure 4. For the multiplication coprocessor, 
the execution of more than 750 consecutive operations will 
execute faster in hardware than in software, considering the 
reconfiguration time overhead. For division and square root the 
respective break-even points occur for 260 and 200 operations. 
The determination of this break-even point is important to 
establish when using DRSs becomes advantageous. Example 
applications where these results can be applied are digital filters 
where a great number of multiply-accumulate operations execute 
over a data set. 

 
Figure 4 - Coprocessors execution time versus number of 
performed operations. The _hw suffix regards hardware 

implementations, while _sw regards software 
implementations. Each partial bitstream is configured in 

approximately 10ms by RSCM. 

7.2 Area Consumption 
The preliminary version of the PADReH framework was used to 
design and prototype the R81R and the R82R case studies. The 
more complex system, R82R occupied 14.89% of the million-gate 
XC2V1000 FPGA or less than 150,000 equivalent gates. The 
RSCM accounts for 7,5% of these gates only, or 1,13% of the 
FPGA resources. 

8. CONCLUSIONS AND FUTURE WORK 
This work proposed a framework to support the design, validation 
and implementation of Dynamically and Partially Reconfigurable 



Systems, DRSs. PADReH employs a set of state-of-the-art 
technologies to enable the implementation of DRSs. These 
include the use of modern enabling VLSI target devices, higher 
level recently proposed abstraction levels for design capture, and 
a set of methods and tools to automate the process.  
The framework is currently under implementation using a bottom-
up approach. The infrastructure to implement DRSs is already 
operational as demonstrated by the discussion of the case studies 
design, implementation and prototyping.  
Future works include the refinement of the implementation 
infrastructure, comprising completing and improving the Physical 
Synthesis and Reconfiguration Infrastructure module set of Figure 
1, and addressing the upper abstraction levels of the framework. 
One immediate work is to enhance the bitstream generation 
process, by automating the issues identified in Section and not yet 
addressed. In the case of the reconfiguration control process, it is 
necessary to improve RSCM performance and provide support in 
it for the relocation of bitstreams. 
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