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Preface FIX ME!

This preface includes the following sections:

• What’s New in This Release

• About This Guide

• Customer Support
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Preface

What’s New in This Release

Information about new features, enhancements, and changes;
known problems and limitations; and resolved Synopsys Technical
Action Requests (STARs) is available in the SystemC Compiler
Release Notes in SolvNet.

To see the SystemC Compiler Release Notes,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNet.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

3. Click Release Notes in the Main Navigation section, find the
U-2003.06 Release Notes, then open the CoCentric SystemC
Compiler Release Notes.
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About This Guide

About This Guide

The CoCentric SystemC Compiler RTL User and Modeling Guide
describes how to use SystemC Compiler for RTL synthesis. It also
describes how to develop or refine a SystemC RTL model for
synthesis with SystemC Compiler.

For information about SystemC, see the Open SystemC Community
Web site at http://www.systemc.org.

Audience

The CoCentric SystemC Compiler RTL User and Modeling Guide is
for designers with a basic knowledge of the SystemC Class Library,
RTL design, and the C or C++ language and development
environment.

Familiarity with one or more of the following Synopsys tools is
helpful:

• Synopsys Design Compiler

• Synopsys HDL Compiler for VHDL

• Synopsys HDL Compiler (Presto Verilog)

• Synopsys Scirocco VHDL Simulator

• Synopsys Verilog Compiled Simulator (VCS)
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Related Publications

For additional information about SystemC Compiler, see

• Synopsys Online Documentation (SOLD), which is included with
the software for CD users or is available to download through the
Synopsys Electronic Software Transfer (EST) system

• Documentation on the Web, which is available through SolvNet
at http://solvnet.synopsys.com

• The Synopsys MediaDocs Shop, from which you can order
printed copies of Synopsys documents, at
http://mediadocs.synopsys.com

You might also want to refer to the following documentation:

• The CoCentric SystemC Compiler Behavioral User and Modeling
Guide, which provides information about how to synthesize a
refined SystemC hardware behavioral module into an RTL or a
gate-level netlist. It also describes how to develop or refine a
behavioral SystemC model for synthesis with SystemC Compiler.

• The CoCentric System Studio HDL CoSim User Guide, which
provides information about cosimulating a system with mixed
SystemC and HDL modules.

• The CoCentric SystemC Compiler Quick Reference, which
provides a list of command with their options and a list of
variables that affect the SystemC Compiler tool behavior.

• The SystemC documentation, available from the Open SystemC
Community Web site at http://www.systemc.org.
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Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys
syntax, such as object_name. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Courier bold Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

[ ] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one
of three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term
by the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
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Customer Support

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center. Customer training is available through the Synopsys
Customer Education Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services, including software downloads, documentation on the Web,
and “Enter a Call With the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

If you need help using SolvNet, click SolvNet Help in the Support
Resources section.
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Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required) and click “Enter a Call With the Support
Center.”

• Send an e-mail message to support_center@synopsys.com.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.
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1
Using SystemC Compiler for RTL Synthesis1

The CoCentric SystemC Compiler tool synthesizes a SystemC
description with a behavioral module, RTL modules, or a mixed
RTL-behavioral module into an HDL RTL module or a gate-level
netlist. After synthesis, you can use the HDL RTL description or the
netlist as input to other Synopsys products such as the Design
Compiler and Physical Compiler tools.

This chapter describes the RTL synthesis process and the
commands you typically use, in the following sections:

• Synthesis With SystemC Compiler

• RTL Design for Synthesis Overview

• Inputs and Outputs for RTL Synthesis

• Synthesizing a SystemC Design in a Single File

• Synthesizing a Design With Multiple RTL Files
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• Synthesizing a Design With Integrated Behavioral and RTL
Modules

• Passing Parameters to a Module

• Synthesizing a Design With an Instantiated HDL Model

• Synthesizing a Design With an Instantiated DesignWare
Component
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Synthesis With SystemC Compiler

SystemC Compiler is a tool that can accept RTL and behavioral
SystemC descriptions and perform behavioral or RTL synthesis, as
required, to create a gate-level netlist. You can also use SystemC
Compiler to create an RTL HDL description for simulation or to use
with other HDL tools in your flow. Figure 1-1 shows the behavioral
and RTL synthesis paths to gate-level netlists.

Figure 1-1 Behavioral Synthesis Compared to RTL Synthesis
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Choosing the Right Abstraction for Synthesis

You can implement a hardware module by using RTL or
behavioral-level synthesis. An RTL model describes registers in your
design and the combinational logic between them. You specify the
functionality of your system as a finite state machine (FSM) and a
datapath. Because register updates are tied to a clock, the model is
cycle accurate, both at the interfaces and internally. Internal cycle
accuracy means that you specify the clock cycle in which each
operation is performed.

A behavioral model is an algorithmic description like a software
program. Unlike a pure software program, however, the I/O behavior
of the model is described in a cycle-accurate fashion. Therefore, wait
statements are inserted into the algorithmic description to clearly
delineate clock cycle boundaries and when I/O happens. Unlike RTL
descriptions, the behavior is described algorithmically rather than in
terms of an FSM and a datapath.

Evaluate each design module by module, and consider each
module’s attributes, described in the following sections, to determine
whether RTL or behavioral synthesis is applicable.

Identifying Attributes Suitable for RTL Synthesis

Look for the following design attributes when identifying a hardware
module that is suitable for RTL synthesis with SystemC Compiler:

• The design is asynchronous.

• It is easier to conceive the design as an FSM and a datapath than
as an algorithm—for example, it is a microprocessor.
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• The design is very high performance, and the designer, therefore,
needs complete control over the architecture.

• The design contains complex memory such as SDRAM or
RAMBUS.

Identifying Attributes Suitable for Behavioral Synthesis

Look for the following design attributes when identifying a hardware
module that is suitable for behavioral synthesis with SystemC
Compiler:

• It is easier to conceive the design as an algorithm than as an
FSM and a datapath—for example, it is a fast Fourier transform,
filter, an inverse quantization, or a digital signal processor.

• The design has a complex control flow—for example, it is a
network processor.

• The design has memory accesses, and you need to synthesize
access to synchronous memory.

For information about behavioral synthesis and modeling, see the
CoCentric SystemC Compiler Behavioral User and Modeling Guide.
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RTL Design for Synthesis Overview

A pure C/C++ model of your hardware describes only what the
hardware is intended to do, without providing information about the
hardware structure or architecture. Starting with a C/C++ model, first
modify the design to create the hardware structure. To do this,

• Define the I/O ports for the hardware module

• Specify the internal structure as modules

• Specify the internal communication between the modules

For each block in the design, you start with a functional-level
SystemC model and change it into an RTL model for synthesis with
SystemC Compiler. To modify the high-level model into an RTL
model for synthesis, you

• Define the I/O in a cycle-accurate fashion

• Separate the control logic and datapath

• Determine the data-path architecture

• Define an explicit FSM for the control logic

A high-level SystemC model can contain abstract ports, which are
types that are not readily translated to hardware. For each abstract
port, define a port or a set of ports to replace each terminal of the
abstract port, and replace all accesses to the abstract ports or
terminals with accesses to the newly defined ports. For information
about abstract ports, see the http://www.systemc.org web site.

Further information on designing for synthesis is provided in
“Modifying Data for Synthesis” on page 3-8 and “Recommendations
About Modification for Synthesis” on page 3-20.



1-7

Inputs and Outputs for RTL Synthesis

Inputs and Outputs for RTL Synthesis

SystemC Compiler requires a SystemC RTL description and
libraries defining the components and technology that will be used to
implement the hardware. Figure 1-2 shows the flow into and out of
SystemC Compiler.

Figure 1-2 SystemC Compiler Input and Output Flow for RTL
Synthesis
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RTL Description

Write the SystemC RTL description, using the SystemC Class
Library according to the guidelines in Chapter 2, “Creating SystemC
Modules for Synthesis,” Chapter 3, “Using the Synthesizable
Subset,” and Chapter 4, “RTL Coding Guidelines.”

The RTL description is independent of the technology. Using
SystemC Compiler, you can change the target technology library
without modifying the RTL description.

The example designs used in this manual are described in Appendix
B, “Examples.” The files for these examples are available in the
SystemC Compiler installation in the $SYNOPSYS/doc/syn/ccsc/
ccsc_examples directory.

Technology Library

A technology library is provided by ASIC vendors in Synopsys .db
database format. It provides the area, timing, wire load models, and
operating conditions. You provide the path to your chosen
technology library for your design by defining the target_library
variable in dc_shell.

Sample technology libraries are provided in the SystemC Compiler
installation at $SYNOPSYS/libraries/syn.

Synthetic Library

The DesignWare synthetic library is a technology-independent
library of logic components such as adders and multipliers. SystemC
Compiler maps your design operators to the synthetic library logical
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components. You provide the path to your chosen synthetic libraries
for your design by defining the synthetic_library variable in
dc_shell.

The DesignWare synthetic libraries are provided in the SystemC
Compiler installation at $SYNOPSYS/libraries/syn. The synthetic
libraries have names such as standard.sldb, dw01.sldb, and
dw02.sldb. For information about the DesignWare libraries, see the
DesignWare online documentation.

Outputs From SystemC Compiler

SystemC Compiler generates an elaborated .db file for input into the
Design Compiler tool. It also generates RTL HDL files that can be
used in HDL-based flows.

Synthesizing a SystemC Design in a Single File

Figure 1-3 illustrates the primary commands you use to perform
synthesis of a SystemC RTL design in a single file with SystemC
Compiler and compile the design into gates (using Design
Compiler). The diagram also shows the inputs you provide and the
outputs produced at various stages.
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Figure 1-3 Single RTL Module Command Flow

The commands used in this chapter show the typical options you
use. For a full description of a command and all its options, see the
Synopsys online man pages. How to access and use man pages is
described in Appendix A in the CoCentric SystemC Compiler
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Starting SystemC Compiler

SystemC Compiler is integrated into Design Compiler. Enter the
SystemC Compiler commands at the dc_shell prompt or use the
include command to run a script that contains the commands. To
start dc_shell or dc_shell-t, enter the following at a UNIX prompt:

unix% dc_shell

or

unix% dc_shell-t

If this is the first time you are using SystemC Compiler, see Appendix
A in the CoCentric SystemC Compiler Behavioral User and Modeling
Guide for information about setting up your environment, entering
commands, and using scripts.

Elaborating Your Design

Use the compile_systemc command to read your SystemC
source code and check it for compliance with synthesis policy, C++
syntax, and C++ semantics. If there are no errors, it produces an
internal database ready for synthesis. This process is called analysis
and elaboration.

The compile_systemc command, using the default settings for
options, does the following:

• Checks C++ syntax and semantics

• Replaces source code arithmetic operators with DesignWare
components
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• Performs optimizations such as constant propagation, constant
folding, dead code elimination, function inlining, and algebraic
simplification

• For a behavioral module, performs the necessary elaboration
steps to prepare the SystemC description for timing analysis,
scheduling, and logic synthesis

• For a mixed RTL-behavioral module, creates a behavioral
submodule that contains all the behavioral processes

The compile_systemc command and the other SystemC
Compiler commands respond with a 1 if no errors were encountered
or a 0 if an error was encountered. It also displays explanatory
messages for errors and warnings.

Analyzing and Elaborating a Design With the
compile_systemc Command

If your design has one or more modules with one or more RTL
processes, use the compile_systemc command with the -rtl
option to elaborate the design. For example, to elaborate the count
zeros sequential design, enter

dc_shell> compile_systemc -rtl count_zeros_cseq.cc

Use the compile_systemc command without the -rtl option to
elaborate a design with a behavioral module or a mixed
RTL-behavioral module. Behavioral synthesis and elaboration of a
mixed RTL-behavioral module are described in the CoCentric
SystemC Compiler Behavioral User and Modeling Guide.

For information about issuing C++ compiler preprocessor options
with the compile_systemc command, see Appendix A in the
CoCentric SystemC Compiler Behavioral User and Modeling Guide.
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Creating an Elaborated .db File for Synthesis

To create an internal database of your SystemC RTL module for
synthesis with Design Compiler, enter

dc_shell> compile_systemc -rtl -format db
design_name.cc

The -format option arguments are db, verilog, and vhdl. The
default is db. You can also specify an argument list with a
combination of the arguments. For example,

dc_shell> compile_systemc -rtl
    -format {db, verilog} design_name.cc

To write out an elaborated database as a .db file, for example to use
with Physical Compiler, use the write command with the -output
option.

Enter

dc_shell> write
-hierarchy
-output ./WORK/design_name_elab.db

This command writes the elaborated .db file into the ./WORK
directory.

Creating an RTL HDL Description

In certain cases, you might want to convert a SystemC RTL
description into a Verilog or VHDL RTL description.
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Creating a Verilog Netlist. To create a Verilog netlist of your
SystemC RTL design,

1. Execute the compile_systemc command with the following
options:

dc_shell> compile_systemc -rtl
-format verilog

    design_name.cc

When you execute the compile_systemc command with the
-format verilog option, SystemC Compiler creates a
separate Verilog .v file in the current working directory for each
module named module_name.v.

2. To analyze and elaborate the Verilog module_name.v file created
in step 1 with HDL Compiler, enter

dc_shell> analyze
-format verilog
module_name.v

dc_shell> elaborate module_name

The analyze command translates the Verilog file into an internal
database format, and the elaborate command creates and
optimizes the circuit that corresponds to the RTL description.

Creating a VHDL Netlist. To compile and create a VHDL netlist of
your SystemC RTL design,

1. Execute the compile_systemc command with the following
option:

dc_shell> compile_systemc -rtl
-format vhdl

    design_module.cc
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When you execute the compile_systemc command with the
-format vhdl option, SystemC Compiler creates a separate
VHDL .vhd file in the current working directory for each module
named module_name.vhd.

2. To use the HDL Compiler tool to analyze and elaborate the VHDL
design_name.vhd file created in step 1, enter

dc_shell> analyze
-format vhdl
module_name.vhd

dc_shell> elaborate module_name

The analyze command translates the VHDL file into an internal
database format, and the elaborate command creates and
optimizes the circuit that corresponds to the RTL description.

The design_module.vhd file contains a Library statement and
Use statements to define the standard VHDL libraries used by
the design.

Creating a Single HDL Netlist for Multiple RTL Modules. By
default, SystemC Compiler creates a separate RTL file for each RTL
module synthesized with the compile_systemc command. To
direct SystemC Compiler to create a single HDL file with multiple
RTL modules, use the compile_systemc command with the
-single option.

For example,

dc_shell> compile_systemc -rtl
-format verilog
-single  design_name.cc
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Designating an HDL File Name. By default, SystemC Compiler
creates an HDL file named module_name.v or module_name.vhd.
To direct SystemC Compiler to create the HDL file with a different
name, use the compile_systemc command with the -output
option.

For example,

dc_shell> compile_systemc -rtl
-format verilog

 -output ./my_new_name.v
    design_name.cc

Designating a Directory and Library for the Design

By default, SystemC Compiler writes the intermediate files it creates
while executing the compile_systemc command to the WORK
library. By default, the WORK library is mapped to the current
working directory.

To map the WORK library or a design library you create to a physical
UNIX directory other than the default current working directory, use
the define_design_lib command. You need to create the
directory before you can map a library to it.

To create a WORK directory and map the WORK library to it so
SystemC Compiler writes the intermediate files into the WORK
directory instead of the current working directory, enter

dc_shell> mkdir ./WORK
dc_shell> define_design_lib WORK

-path ./WORK
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To create a new library named my_design_library and a new
directory named my_design_lib for the intermediate files, enter

dc_shell> mkdir /usr/design_libs/my_design_lib
dc_shell> define_design_lib my_design_library

-path /usr/design_libs/my_design_lib

After you create a new library and map it to a directory, you can
designate a design library during synthesis other than the default
WORK library for the design by using the compile_systemc
command -library option.

For example,

dc_shell> compile_systemc  -library my_design_library
-rtl -format db design_name.cc

You can also use the compile_systemc command -work option
instead of the -library option. The -work option is an alias for the
-library option.

Setting the Clock Period

If your design has a clock port, use the create_clock command to
set the clock period for the clock port. The clock period uses the
same unit that is defined in the target technology library.

For example, to create a clock for the port in your design named clk
with a period of 10 units, enter

dc_shell> create_clock clk -period 10

You can set other optimization and design constraints before
performing logic synthesis with the compile command. For
information about optimization and design constraints for logic
synthesis, see the Design Compiler documentation.
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Compiling and Writing the Gate-Level Netlist

Use the compile command to create the gate-level netlist. This
command performs logic synthesis and optimization of the current
design.

dc_shell> compile
    -map_effort low | medium | high

Use the following command to write the gate-level netlist in .db
format:

dc_shell> write
    -hierarchy
    -output my_netlist.db

For verification at the gate level, write a Verilog or VHDL gate-level
netlist file by entering the following command:

dc_shell> write
    -format verilog
    -hierarchy
   -output my_netlist.v

or

dc_shell> write
    -format vhdl
    -hierarchy
   -output my_netlist.vhd

Generating Summary Reports

To generate summary reports of a design after it is compiled to
gates, use one or both of the following commands:

dc_shell> report_area
dc_shell> report_timing
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Synthesizing a Design With Multiple RTL Files

Figure 1-4 illustrates the primary commands you use to perform
synthesis of a design with multiple RTL SystemC files and compile
the design into gates. The diagram also shows the inputs you
provide and the outputs SystemC Compiler can provide.

Figure 1-4 Command Flow for Multiple RTL Files

compile_systemc

RTL SystemC descriptions

Gate-level netlistcompile

Target and

libraries
synthetic

SystemC Compiler With
Design Compiler

OutputsCommandsInputs

Gate-level netlist

 .db file

HDL file

link

create_clock

current_design

RTL HDL  files

Elaborated .db  filesSelect top level as



1-20

Chapter 1: Using SystemC Compiler for RTL Synthesis

Analyzing and Elaborating Multiple RTL Files

If your design is hierarchical and has multiple RTL files, use the
compile_systemc command to elaborate each file separately, and
then use the link command to link the internal databases before
compiling the design to gates.

To create internal database files of your separate SystemC RTL files
for synthesis,

• Analyze and elaborate each file in your design, using the
following command:

dc_shell> compile_systemc -rtl -format db
module1_name.cc

dc_shell> compile_systemc -rtl -format db
module2_name.cc

dc_shell> compile_systemc -rtl -format db
top_module_name.cc

The compile_systemc command with the -rtl -format db
options creates a separate internal database for each file.

If you want to compile your entire design to gates, the current
design must be the top-level RTL module that instantiates all
other RTL modules. To ensure that the current design in
SystemC Compiler memory is the top-level RTL module, execute
the compile_systemc command with the file containing the top
RTL module last. Or you can use the current_design
command to make the top-level module the current design. For
example, to change the current design to my_design_abc, enter

dc_shell> current_design my_design_abc
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Setting the Clock Period

Use the create_clock command to set the clock period if your
design contains a clock port. If your design does not have a clock
port, you can skip this command. Enter

dc_shell> create_clock -name clk -period 10

The clock period uses the same unit that is defined in the target
technology library.

You can set other optimization and design constraints before
performing logic synthesis with the compile command. For
information about optimization and design constraints for logic
synthesis, see the Design Compiler documentation.

Linking the .db Files

After analyzing and elaborating the modules in your design and
before compiling the design to gates, use the link command to
connect all the library components and subdesigns that your design
references. Enter

dc_shell> link

The link command removes existing links to all library components
and subdesigns before it starts the linking process. If you do not
enter the link command to manually link the design references, the
compile command performs linking but does not remove existing
links.



1-22

Chapter 1: Using SystemC Compiler for RTL Synthesis

Compiling and Writing the Gate-Level Netlist

Use the compile command to create the gate-level netlist of the
hierarchical RTL design. This command performs logic synthesis
and optimization of the current design.

dc_shell> compile
    -map_effort low | medium | high

Use the following command to write the gate-level netlist in .db
format:

dc_shell> write
    -hierarchy
    -output top_module_netlist.db

Synthesizing a Design With Integrated Behavioral and
RTL Modules

To perform synthesis of a design with integrated RTL and behavioral
modules, synthesize the RTL and behavioral modules to gates
before linking the integrated design, using the following steps:

1. Create the gate-level internal databases of your SystemC RTL
modules, as described in “Synthesizing a Design With Multiple
RTL Files” on page 1-19.

2. Create the gate-level internal databases of your SystemC
behavioral modules, as described in the CoCentric SystemC
Compiler Behavioral User and Modeling Guide.

If your design has more than one behavioral module, instantiate
the multiple behavioral modules in an RTL module.
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3. Analyze and elaborate the top-level RTL module that combines
the RTL and behavioral modules. Enter

dc_shell> compile_systemc -rtl -rtl_format db all_top.h

4. Use the read command to read in the RTL and behavioral
modules (.db files) that you previously compiled to gates, if the
RTL and behavioral databases are not already in memory. Enter

dc_shell> read rtl_gates.db
dc_shell> read behavioral_gates.db

5. Use the link command to link the RTL, behavioral, and library
.db into a single design.

dc_shell> link

6. Compile the integrated hierarchical RTL and behavioral design to
gates and write the gate-level netlist, as described in “Compiling
and Writing the Gate-Level Netlist” on page 1-22.

Elaborating a mixed RTL-behavioral module is described in the
CoCentric SystemC Compiler Behavioral User and Modeling Guide.

Passing Parameters to a Module

When you have an RTL module with one or more parameters, you
can pass the parameter values from the command line with the
compile_systemc command -param option. If the file
module_top.cc, for example, has the following parameterized
module definitions

// a, b, and c are parameters
M1 (const sc_module_name &name_,
         int a, int b, int c);

// d is a parameter
M2 (const sc_module_name &name_,
         int d);
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You can pass parameter values by position to module_top.cc by
entering

dc_shell> compile_systemc -rtl -param "M1 (5, 6, 7);M2 (8);"
 module_top.cc

This creates M1 with a = 5, b = 6, and c = 7 and M2 with d = 8.

Do not enter the module name, because it is not used for synthesis.

For more information about creating parameterized modules and
setting default parameter values, see “Defining a Constructor With
the SC_HAS_PROCESS Macro” on page 2-18.

Limitations for Passing Parameters

When you pass module parameters with the -param option, each
parameter value must be a constant.

Names of Parameterized Modules

SystemC Compiler creates a unique module for each distinct module
parameterization, and the parameter values are propagated into the
module. It appends the parameter values to the module name during
elaboration to create a unique module name. For example,

dc_shell> compile_systemc -rtl -param "M1 (5, 6, 7);M2 (8);"
     module_top.cc

This command creates the following module names:

M1_5_6_7
M2_8
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When you also use the -format verilog option, the following
Verilog file names are created:

M1_5_6_7.v
M2_8.v

If the module contains a loop that creates more than one instance of
a module, SystemC Compiler appends the loop iteration count to the
module instance name to create a unique name.

For a particular situation, you can direct SystemC Compiler not to
rename the modules with the compile_systemc command
-dont_rename option. For example,

dc_shell> compile_systemc -rtl -param "M1 (5, 6, 7);M2 (8);"
-dont_rename "M1, M2"

    module_top.cc

This command creates the following module names without
appending the parameter values to the module name:

M1 M2

If you use the -format verilog option, the Verilog file names
created are the following:

M1.v
M2.v
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Synthesizing a Design With an Instantiated HDL Model

To instantiate a Verilog or VHDL model in your SystemC RTL design,
create a dummy SystemC module with the same module name and
port names as those of the HDL model that you want to instantiate.
This provides the SystemC design with the interface to your HDL
model. The module and port names are case-sensitive and must
exactly match the HDL names.

You do not need to describe the module’s function in the dummy
module, because Design Compiler replaces it with the actual HDL
internal database .db file. You can treat the SystemC and HDL
models separately and then link them together with the link
command.

Example 1-1 shows a dummy module for the simple HDL model. An
instance of the simple module named m_pSimple is created in the
SystemC inst module.

Example 1-1 Instantiating an HDL .db in a SystemC Design
/****simple.h****/
#include <systemc.h>
// Dummy module for the VHDL .db
SC_MODULE(simple){
   sc_in<sc_logic> a;
   sc_in<sc_lv<2> > b;
   sc_out<sc_logic> z;
   SC_CTOR(simple){ }
};
/****inst.cpp****/
#include <systemc.h>
#include "simple.h"
SC_MODULE(inst){
   sc_in<sc_logic> pi_a;
   sc_in<sc_lv<2> > pi_b;
   sc_out<sc_logic> po_z;

   simple *m_pSimple;
   ... // Functionality of inst.

   SC_CTOR(inst){
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      m_pSimple = new simple("simple_systemc_wrapper");
      m_pSimple->a(pi_a);
      m_pSimple->b(pi_b);
      m_pSimple->z(po_z);
   }
};

You need to use the analyze, elaborate, and compile
commands with the HDL model before you use the
compile_systemc command with the SystemC design. Then use
the link command to link the internal databases before compiling
the design to gates.

To create internal database files of your separate HDL and SystemC
RTL models and synthesize the design to gates, enter

/* Elaborate the HDL design into memory */
dc_shell> analyze -format [vhdl simple.vhd
          | verilog simple.v]
dc_shell> elaborate simple
dc_shell> compile
/* Elaborate the SystemC design into memory */
dc_shell> compile_systemc  -rtl inst.rtl.cpp
dc_shell> current_design = inst
/* Link the SystemC and HDL designs */
dc_shell> link
dc_shell> compile

Depending on your design, you can compile the HDL and SystemC
modules separately before linking them.

You can set other optimization and design constraints before
performing logic synthesis with the compile command. For
information about optimization and design constraints for logic
synthesis, see the Design Compiler documentation.
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Synthesizing a Design With an Instantiated DesignWare
Component

Instantiating a DesignWare component in your SystemC RTL design
is similar to instantiating an HDL model. You need to create a dummy
SystemC module with the same module name and port names as
those of the DesignWare component that you want to instantiate.
This provides the SystemC design with the interface to the
DesignWare component. The module and port names are
case-sensitive and must exactly match the DesignWare component
names.

You do not need to describe the module’s function in the dummy
module, because Design Compiler replaces it with the DesignWare
equivalent from the technology library during synthesis.

If the DesignWare component has a parameterized port width, you
can specify the port width as a constructor parameter, as described
in “Passing Parameters to a Module” on page 1-23. Example 1-2
shows a dummy module for the DW01_add component with a
constructor parameter to pass the port width.

Example 1-2 Dummy SystemC Module For a DesignWare Component
/****dw01_add.h****/
#include "systemc.h"

/*
 *   This dummy header matches the pinout
 *   of the DW01_add block.
 *   This module does not require functionality
 *   for synthesis; you need to provide the
 *   DW01_add functionality for simulation.
 */

SC_MODULE(DW01_add) {
    sc_in< sc_uint<8> > A, B;
    sc_in<bool> CI;
    sc_out< sc_uint<8> > SUM;
    sc_out< bool > CO;
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    SC_HAS_PROCESS(DW01_add);

    DW01_add(sc_module_name &_name, sc_uint<5> width) {   }
};

Example 1-3 shows creating an instance of the DW01_add module
named DWAdder in the SystemC adder module. A constructor
parameter specifies a bit-width of 8 for the DesignWare component.

Example 1-3 Instantiating a DesignWare Component in a SystemC Module
/****adder.h****/
#include "systemc.h"
#include "dw01_add.h"

SC_MODULE(adder) {
  sc_in<bool>  clk, reset;
  sc_in< bool >       carry;
  sc_in< sc_uint<8> > data1;
  sc_in< sc_uint<8> > data2;

  sc_out< sc_uint<8> > dataOut;

  DW01_add *DWAdder;

  sc_signal<bool> open;

  SC_CTOR(adder) {
    DWAdder = new DW01_add("DWAdder", 8);
    DWAdder->A(data1);
    DWAdder->B(data2);
    DWAdder->CI(carry);
    DWAdder->SUM(dataOut);
    DWAdder->CO(open);
  }
};

You need to use the compile_systemc command with the
-dont_rename option for the SystemC design before using the
analyze and elaborate commands with the intermediate HDL
model of the DesignWare component. Then use the link command
to link the internal databases before compiling the design to gates.
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To create internal databases of the SystemC RTL model and
synthesize the design to gates,

/* Elaborate the SystemC design into memory
 * and create an intermediate HDL file */
dc_shell> compile_systemc  -rtl -format [verilog | vhdl]

-dont_rename "DW01_add" adder.h
/* Elaborate the HDL design into memory */
dc_shell> analyze -format [vhdl simple.vhd
          | verilog simple.v]
dc_shell> elaborate simple
/* Link the SystemC and HDL designs */
dc_shell> link
dc_shell> compile

Implementing functions with DesignWare components is described
in “Specifying Preserved Functions and Implementing DesignWare
Components” on page 2-43.
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Creating SystemC Modules for Synthesis 2

This chapter explains the SystemC and C/C++ language elements
that are important for RTL synthesis with SystemC Compiler. It
contains the following sections:

• Defining Modules and Processes

• Creating a Module

• Creating a Module With a Single SC_METHOD Process

• Creating a Module With Multiple SC_METHOD Processes

• Creating a Hierarchical RTL Module

• Creating an Integrated RTL and Behavioral Module

• Specifying Preserved Functions and Implementing DesignWare
Components
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Defining Modules and Processes

This modeling guide explains how to develop SystemC RTL modules
for synthesis with SystemC Compiler. It assumes that you are
knowledgeable about the C/C++ language and the SystemC Class
Library available from the Open SystemC Community Web site at
http://www.systemc.org.

Modules

The basic building block in SystemC is the module. A SystemC
module is a container in which processes and other modules are
instantiated. For synthesis with SystemC Compiler, modules are
either RTL or behavioral. A typical module can have

• Single or multiple RTL processes to specify combinational or
sequential logic

• Single or multiple behavioral processes

• Multiple instantiated modules to specify hierarchy

• One or more member functions that are called from within an
instantiated process

Figure 2-1 illustrates a module with several RTL processes. The
processes within a module are concurrent, and they execute
whenever one of their sensitive inputs changes.
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Figure 2-1 Module

Processes

SystemC provides processes for describing the parallel behavior of
hardware systems. This means processes execute concurrently,
rather than sequentially like C++ functions. The code within a
process, however, executes sequentially.

You can declare more than one process in a module, but processes
cannot contain other processes or modules.

Registering a Process

Defining a process is similar to defining a C++ function. You declare
a process as a member function of a module class and register it as
a process in the module’s constructor, which is described in
“Creating a Process in a Module” on page 2-11. When you register
a process, it is recognized as a SystemC process rather than as an
ordinary member function.

Module

RTL
process

RTL
process

RTL
process

Ports

Signals
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You can register multiple processes, but it is an error to register more
than one instance of the same process. To create multiple instances
of the same process, enclose the process in a module and
instantiate the module multiple times.

Triggering Execution of a Process

You define a sensitivity list that identifies which input ports and
signals trigger the execution of the code within a process. You can
define level-sensitive inputs to specify combinational logic or
edge-sensitive inputs to specify sequential logic, which is described
in “Defining the Sensitivity List” on page 2-12.

Reading and Writing in a Process

A process can read from and write to ports, signals, and internal
variables, as described in “Reading and Writing Ports and Signals”
on page 2-28.

Processes use signals to communicate with each other. One
process can cause another process to execute by assigning a new
value to a signal that connects them. Do not use data variables for
communication between processes, because the processes execute
in random order and it can cause nondeterminism (order
dependencies) during simulation.

Types of Processes

SystemC provides three process types—SC_METHOD,
SC_CTHREAD, and SC_THREAD—that execute whenever their
sensitive inputs change. A process has a sensitivity list that identifies
which inputs trigger the code within the process to execute when the
value on one of its sensitive inputs changes.
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For simulation and testbenches, you can use any of the process
types.

SC_METHOD Process. The SC_METHOD process is used to
describe a hierarchical design or RTL hardware. It is level sensitive,
meaning it is sensitive to changes in the signal values, or it is edge
sensitive, meaning it is sensitive to particular transitions (edges) of
the signal, and it executes when one of its sensitive inputs changes.

SC_CTHREAD Process. The SC_CTHREAD clocked thread
process is sensitive to one edge of one clock. Use a clocked thread
process to describe functionality for behavioral synthesis with
SystemC Compiler.

The SC_CTHREAD process models the behavior of a sequential
logic circuit with nonregistered inputs and registered outputs. A
registered output comes directly from a register (flip-flop) in the
synthesized circuit.

For information about creating behavioral processes, see the
CoCentric SystemC Compiler Behavioral User and Modeling Guide.

Thread Process. The SC_THREAD process is not used for
synthesis. For more information about the SC_THREAD process,
see the SystemC documentation at the Open SystemC Community
Web site http://www.systemc.org.
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Creating a Module

As a recommended coding practice, describe a module by using a
separate header file (module_name.h) and an implementation file
(module_name.cpp or module_name.cc).

Module Header File

Each module header file contains

• Port declarations

• Internal signal variable declarations

• Internal data variable declarations

• Process declarations

• Member function declarations

• A module constructor

Module Syntax

Declare a module by using the syntax shown in bold in the following
example:

#include "systemc.h"
SC_MODULE (module_name) {

//Module port declarations
//Signal variable declarations
//Data variable declarations
//Member function declarations
//Method process declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
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};

SC_MODULE and SC_CTOR are C++ macros defined in the
SystemC Class library.

Module Ports

Each module has any number of ports that determine the direction
of data into or out of the module, as shown in Figure 2-2.

Figure 2-2 Module Ports

A port is a data member of SC_MODULE. You can declare any
number of sc_in, sc_out, and sc_inout ports.

Note:
The compile_systemc -rtl -format verilog command
converts an sc_inout port to a Verilog out port, not an inout port.
You can read from and write to a Verilog out port. Verilog inout
ports have restrictions for synthesis, as described in the HDL
Compiler (Verilog Presto) Reference Manual.

Process

Process

Process

Module

Portssc_in

sc_in_clk

sc_out
sc_in

sc_in sc_out

sc_inout sc_inout
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For VHDL, the compile_systemc -rtl -format vhdl
command treats an sc_inout port as a VHDL inout port. It treats
an sc_out port as an out port and a signal or an out port,
depending on the situation.

Port Syntax

Declare ports by using the syntax shown in bold in the following
example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_data_type> port_name;
sc_out<port_data_type> port_name;
sc_inout<port_data_type> port_name;
sc_in<port_data_type> port_name;

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};

Port Data Types

Ports connect to signals and have a data type associated with them.
For synthesis, declare each port as one of the synthesizable data
types described in “Converting to a Synthesizable Subset” on
page 3-2.

Signals

Modules use ports to communicate with other modules. In
hierarchical modules, use signals to communicate between the
instantiated modules. Use internal signals for peer-to-peer
communication between processes within the same module, as
shown in Figure 2-3.
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Figure 2-3 Processes and Signals

Signal Syntax

Declare signals by using the syntax shown in bold in the following
example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_type> port_name;
sc_out<port_type> port_name;
sc_in<port_type>port_name;

//Internal signal variable declarations
sc_signal<signal_type> signal_name;
sc_signal<signal_type> signal1, signal2;

//Data variable declarations
//Process declarations
//Member function declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};

Process

Process

Process

Module

Portssc_in

sc_in_clk

sc_out
sc_in

sc_in sc_out

sc_inout sc_inout

Signals
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Signal Data Types

A signal’s bit-width is determined by its corresponding data type.
Specify the data type as any of the synthesizable SystemC or C++
data types listed in “Converting to a Synthesizable Subset” on
page 3-2. Signals and the ports they connect must have the same
data types.

Data Member Variables

Inside a module, you can define data member variables of any
synthesizable SystemC or C++ type. These variables can be used
for internal storage in the module. Recommendations about using
data member variables for synthesis are provided in “Data Members
of a Module” on page 3-18. Declare internal data variables by using
the syntax shown in bold in the following example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_type> port_name;
sc_out<port_type> port_name;
sc_in port_name;

//Internal signal variable declarations
sc_signal<signal_type> signal_name;

//Data member variable declarations
int count_val;        //Internal counter
sc_int<8> mem[1024];  //Array of sc_int

//Process declarations
//Member function declaration

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};
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Note:
Do not use data variables for peer-to-peer communication in a
module. This can cause pre-synthesis and post-synthesis
simulation mismatches and nondeterminism (order dependency)
in your design.

Assigning to Data Members in the Constructor

You can make assignments to data members from within the
constructor. These assignments are treated as constants for
synthesis. You cannot reassign the data members within any
process in the module.

Creating a Process in a Module

You declare a process as a member function of a module class and
register it as a process in the module’s constructor. You must declare
a process with a return type of void and no arguments, as shown in
bold in Example 2-1.

To register a function as an SC_METHOD process, use the
SC_METHOD macro that is defined in the SystemC class library.
The SC_METHOD macro takes one argument, the name of the
process.
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Example 2-1 Creating a Method Process in a Module
SC_MODULE(my_module){

// Ports
sc_in<int> a;
sc_in<bool> b;
sc_out<int> x;
sc_out<int> y;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
// process declaration
void my_method_proc();
// module constructor
SC_CTOR(my_module) {

// register process
SC_METHOD(my_method_proc);
// Define the sensitivity list

}
};

Defining the Sensitivity List

An SC_METHOD process reacts to a set of signals called its
sensitivity list. You can use the sensitive(), sensitive_pos(), or
sensitive_neg() functions or the sensitive, sensitive_pos, or
sensitive_neg streams in the sensitivity declaration list.

Defining a Level-Sensitive Process

For combinational logic, define a sensitivity list that includes all input
ports, inout ports, and signals used as inputs to the process. Use the
sensitive() method to define the level-sensitive inputs. Example 2-2
shows in bold a stream-type declaration and a function-type
declaration. Specify any number of sensitive inputs for the
stream-type declaration, and specify only one sensitive input for the
function-type declaration. You can call the sensitive function multiple
times with different inputs.
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Example 2-2 Defining a Level-Sensitive Sensitivity List
SC_MODULE(my_module){

// Ports
sc_in<int> a;
sc_in<bool> b;
sc_out<int> x;
sc_out<int> y;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
sc_signal<int> e;
// process declaration
void my_method_proc();
// module constructor
SC_CTOR(my_module) {

// register process
SC_METHOD(my_method_proc);
// declare level-sensitive sensitivity list
sensitive << a << c << d; // Stream declaration
sensitive(b);  //Function declaration
sensitive(e);  //Function declaration

}
};

Incomplete Sensitivity Lists

To eliminate the risk of pre-synthesis and post-synthesis simulation
mismatches, include all the inputs to the combinational logic process
in the sensitivity list of the method process. Example 2-3 shows an
incomplete sensitivity list.

Example 2-3 Incomplete Sensitivity List
  //method process
  void comb_proc () {
      out_x = in_a & in_b & in_c;
  }

  SC_CTOR( comb_logic_complete ) {
    // Register method process
    SC_METHOD( comb_proc);
    sensitive << in_a << in_b;  // missing in_c
  }



2-14

Chapter 2: Creating SystemC Modules for Synthesis

SystemC Compiler issues a warning if your sensitivity list is
incomplete, but it proceeds to build a 3-input AND gate for the
description in Example 2-3. When you simulate this description,
however, out_x is not recalculated when in_c changes, because in_c
is not in the sensitivity list. The simulated behavior, therefore, is not
that of a 3-input AND gate.

Defining an Edge-Sensitive Process

For sequential logic, define a sensitivity list of the input ports and
signals that trigger the process. Use the sensitive_pos(), the
sensitive_neg(), or both the sensitive_pos() and sensitive_neg()
methods to define the edge-sensitive inputs that trigger the process.
Declare ports and the edge-sensitive inputs as type sc_in<bool>.

For edge-sensitive inputs, SystemC Compiler tests for the rising or
falling edge of the signal. It infers flip-flops for variables that are
assigned values in the process.

Define the sensitivity list by using either the function or the stream
syntax. Example 2-4 shows in bold an example of a stream-type
declaration for two inputs and a function-type declaration for the
clock input.
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Example 2-4 Defining an Edge-Sensitive Sensitivity List
SC_MODULE(my_module){

// Ports
sc_in<int> a;
sc_in<bool> b;
sc_in<bool> clock;
sc_out<int> x;
sc_out<int> y;
sc_in<bool> reset, set;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
// process declaration
void my_method_proc();
// module constructor
SC_CTOR(my_module) {

// register process
SC_METHOD(my_method_proc);
// declare sensitivity list
sensitive_pos (clock); //Function delaration
sensitive_neg << reset << set; // Stream declaration

}
};

Limitations for Sensitivity Lists

When you define a sensitivity list, adhere to the following limitations:

• You cannot specify both edge-sensitive and level-sensitive inputs
in the same process for synthesis.

• You cannot declare an sc_logic type for the clock or other
edge-sensitive inputs. You can declare only an sc_in<bool> data
type.

Member Functions

You can declare member functions in a module that are not
processes. This type of member function is not registered as a
process in the module’s constructor. It can be called from a process.
Member functions can contain any synthesizable C++ or SystemC
statement allowed in an SC_METHOD process.
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A member function that is not a process can return any
synthesizable data type.

Implementing the Module

In the module implementation file, define the functionality of each
SC_METHOD process and member function. Example 2-5 shows a
minimal implementation file.

Example 2-5 Module Implementation File
#include "systemc.h"
#include "my_module.h"
void my_module::my_method_proc() {
   // describe process functionality as C++ code
}

Module Constructor

For each module, you need to create a constructor, which is used for
synthesis to

• Register processes

• Define a sensitivity list for each SC_METHOD process

• Define optional parameters for the module

• Make optional assignments to data members, which are treated
as constants for synthesis

Defining a Constructor With the SC_CTOR Macro

The SC_CTOR macro provides a simple way to define a constructor
with a single argument, which is the name of the module. You need
to define the SC_CTOR in the header file, not in the implementation
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file. Within the constructor’s body, you register each process for the
module. For synthesis, other statements are not allowed in the
SC_CTOR constructor.

Example 2-6 shows in bold a constructor defined with an SC_CTOR
macro.

Example 2-6 Module Constructor
// my_module.h header file
SC_MODULE (my_module) {

// Declare ports
sc_in<bool> reset;
sc_in<sc_int<8> > data_in;
sc_in_clk clk;
sc_out<sc_int<16> > real_out;
sc_out<sc_int<16> > imaginary_out;

// Declare internal variables and signals

// Declare processes in the module
void my_method_proc();

// Constructor
SC_CTOR (my_module){

// Register processes
...
// Define the sensitivity lists
...

}
};

Registering a Process

To register a function as a process, use the SC_METHOD macro for
an RTL process and the SC_CTHREAD macro for a behavioral
process. These macros are defined in the SystemC library.

The SC_METHOD macro takes a single argument, the name of a
process to register. In addition, you need to define one or more
sensitivity lists for each process.
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Example 2-7 shows in bold a module with an SC_CTOR constructor
that registers an SC_METHOD process and defines two sensitivity
lists for the process.

Example 2-7 Registering a Process and Defining a Sensitivity
List

SC_MODULE(my_module){
// Ports
sc_in<int> a;
sc_in<bool> b;
sc_in<bool> clock;
sc_out<int> x;
sc_out<int> y;
sc_in<bool> reset, set;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
// process declaration
void my_method_proc();
// module constructor
SC_CTOR(my_module) {

// register process
SC_METHOD(my_method_proc);
// declare sensitivity lists
sensitive_pos (clock); //Function delaration
sensitive_neg << reset << set; // Stream declaration

}
};

Defining a Constructor With the SC_HAS_PROCESS
Macro

You can use the SC_HAS_PROCESS macro, introduced in
SystemC 2.0, instead of the SC_CTOR macro to define a
constructor with standard C++ syntax and any number of
parameters. You might want to define a constructor with multiple
parameters, for example, to specify values when instantiating the
module, to pass a unique identification to a block, or to change the
number of iterations performed for a certain algorithm.
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Using the SC_HAS_PROCESS macro, you can define the
constructor in the header file or in the implementation file. Moving the
constructor definition into the implementation lets you hide some of
the module’s functionality when providing an IP to an end user.

Defining the Constructor Parameters. When you use the
SC_HAS_PROCESSES macro to define a constructor, do not define
a return type for the constructor. Define the first argument of the
constructor as an sc_module_name or a char * type. You need to
define the module name parameter even though it is not used for
synthesis.

You can then define any number of integral parameter arguments. A
parameter can have a default value, which you assign in the
constructor. The module receives parameter values when you
instantiate it or pass values with the compile_systemc command.
Inside the module, the parameters are constant values.

Example 2-8 shows a constructor with parameters. The related code
is highlighted in bold.

Example 2-8 Module Constructor With Parameters
/****parm2.h****/
#include "systemc.h"

SC_MODULE(parm2) {
  sc_in_clk clk;
  sc_in<bool> reset;
  sc_in< sc_uint<8> > data1, data2;
  sc_out< sc_uint<16> > data_out;

SC_HAS_PROCESS(parm2);

  void mult1();

  bool const_var1;
  sc_uint<9> const_var2;
  // Constructor with parameters without default values
parm2( const sc_module_name& name_,

         bool const1, sc_uint<9> const2 );
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};
/****parm2.cc****/
#include "parm2.h"
parm2::parm2(const sc_module_name& name_,

bool const1, sc_uint<9> const2){
const_var1 = const1;
const_var2 = const2;
SC_METHOD(mult1);
sensitive_pos << clk << reset;

}
void parm2::mult1() {
  if (reset.read() == 1) {
    data_out.write(4);
  } else {
    sc_uint<16> tmp1 = (data1.read() * data2.read());
    sc_uint<10> tmp2 = const_var1 + const_var2;
    sc_uint<16> tmp3 = tmp1 + tmp2;
    data_out.write(tmp3);
  }
}

Instantiating a Module With Parameters. When you instantiate a
module that has parameters, pass the constructor parameters by
position. The passed parameters must be constant values at compile
time. Example 2-9 shows instantiation of the parm1 module in the
use_parms module. The related code is highlighted in bold.

Example 2-9 Instantiating a Module With Parameters
/****use_parms.h****/
#include "systemc.h"
#include "parm2.h"
SC_MODULE(use_parms){

parm2 *parm;
parm = new parm2("my_name", 1, 6);

  ...
};

You can also pass parameter values to a module from the command
line with the compile_systemc command -param option, as
described in “Passing Parameters to a Module” on page 1-23.
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Setting and Using Default Parameter Values. It is recommended
that you initialize all parameters by assigning default values.

Example 2-10 shows in bold a constructor with two parameters that
are assigned default values of 0 and 7. The parameter default values
are used unless you instantiate the module with parameter values or
you pass parameter values with the compile_systemc command
-param option.

Example 2-10 Module Constructor With Parameter Default
Values

/****parm2a.h****/
#include "systemc.h"

SC_MODULE(parm2a) {
  sc_in_clk clk;
  sc_in<bool> reset;
  sc_in< sc_uint<8> > data1, data2;
  sc_out< sc_uint<16> > data_out;
SC_HAS_PROCESS(parm2a);

  void mult1();
  bool const_var1;
  sc_uint<9> const_var2;

  // Parameters with default values
parm2a( const sc_module_name& name_,

bool const1 = 0, sc_uint<9> const2 = 7 );
};
/****parm2a.cc****/
#include "parm2a.h"

parm2a::parm2a(const sc_module_name& name_,
bool const1, sc_uint<9> const2){

const_var1 = const1;
const_var2 = const2;

  SC_METHOD(mult1);
  sensitive_pos << clk << reset;
}

void parm2a::mult1() {
  if (reset.read() == 1) {
    data_out.write(4);
  } else {
    sc_uint<16> tmp1 = (data1.read() * data2.read());
    sc_uint<10> tmp2 = const_var1 + const_var2;
    sc_uint<16> tmp3 = tmp1 + tmp2;
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    data_out.write(tmp3);
  }
}

If a module defines default parameter values of 0 and 7 as in
Example 2-10, when you instantiate the module without parameter
values or use the compile_systemc command without the -parm
option, the default values are used.

For example,

dc_shell> compile_systemc -rtl -format verilog parm2a.cc

This command uses the default values 0 and 7.

When you provide parameter values, it overrides the default values.
For example,

dc_shell> compile_systemc -rtl -format verilog
-param "parm2a(1,6);" parm2a.cc

This command uses the values 1 and 6.

You can also specify a partial parameter list. Any parameter not
specified with the -param option uses the default values. For
example,

dc_shell> compile_systemc -rtl -format verilog
-param "parm2a(1);" parm2a.cc

This command uses the values 1 and 7 because the default value of
const2 is 7.

Parameters are passed by position, and default parameter values
are substituted only for the missing trailing arguments. Arrange the
parameter list so the parameters that are most likely to take
user-specified values are specified first.
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Initializing in the Constructor. To make it easier to create
sensitivity lists, assign to signals, and perform other repetitive
initialization tasks, you can include loops in the constructor.

Use simple assignments for initialization. All for loops used in a
constructor must be unrollable. Do not use a data member as a loop
counter variable.

Creating a Sensitivity List With a Loop. Example 2-11 shows a
module that uses loops to create the sensitivity list in two processes.

Example 2-11 Loop to Define Sensitivity List
/****sens_loop.h****/
#include "systemc.h"

#define DESIGN sens_loop

SC_MODULE(sens_loop) {
  sc_in_clk clk;
  sc_in<bool> reset;
  sc_in< sc_uint<8> > data[4];
  sc_out< sc_uint<16> > data_out[2];

  SC_HAS_PROCESS(sens_loop);

  sc_signal< sc_uint<8> > int_indata[4];
  sc_signal< sc_uint<16> > int_outdata[2];

  void mult_reg();
  void read_inputs();
  void assign_outputs();

  sens_loop( const sc_module_name& name_,
             int const1 = 4, int const2 = 2);
};
/****sens_loop.cpp****/
#include "sens_loop.h"

sens_loop::sens_loop( const sc_module_name& name_,
                      int const1, int const2) {

  SC_METHOD(mult_reg);
  sensitive_pos << clk;

  SC_METHOD(read_inputs);
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  for(int i = 0; i < const1; i++){
   /* synopsys unroll */
   sensitive << data[i];
  }
  SC_METHOD(assign_outputs);
  for(int i = 0; i < const2; i++) {

/* synopsys unroll */
    sensitive << int_outdata[i];
  }
}

void sens_loop::mult_reg() {
  sc_uint<16> tmp1 = data[0].read() * data[1].read();
  sc_uint<16> tmp2 = data[2].read() * data[3].read();
  int_outdata[0] = tmp1;
  int_outdata[1] = tmp2;
}

void sens_loop::read_inputs() {
  for(int i =0; i < const1; i++){

/* synopsys unroll */
    int_indata[i] = data[i].read();
  }
}

void sens_loop::assign_outputs() {
  for(int i = 0; i< const2; i++){

/* synopsys unroll */
    data_out[i].write(int_outdata[i].read());
  }
}
#include "systemc.h"

#define DESIGN sens_loop

SC_MODULE(sens_loop) {
  sc_in_clk clk;
  sc_in<bool> reset;
  sc_in< sc_uint<8> > data[4];
  sc_out< sc_uint<16> > data_out[2];

  SC_HAS_PROCESS(sens_loop);

  sc_signal< sc_uint<8> > int_indata[4];
  sc_signal< sc_uint<16> > int_outdata[2];

  void mult_reg();
  void read_inputs();
  void assign_outputs();

  sens_loop( const sc_module_name& name_,
             int const1 = 4, int const2 = 2);
};
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#include "sens_loop.h"

sens_loop::sens_loop( const sc_module_name& name_,
                      int const1, int const2) {

  SC_METHOD(mult_reg);
  sensitive_pos << clk;

  SC_METHOD(read_inputs);
  for(int i = 0; i < const1; i++){
   /* synopsys unroll */
   sensitive << data[i];
  }
  SC_METHOD(assign_outputs);
  for(int i = 0; i < const2; i++) {

/* synopsys unroll */
    sensitive << int_outdata[i];
  }
}

void sens_loop::mult_reg() {
  sc_uint<16> tmp1 = data[0].read() * data[1].read();
  sc_uint<16> tmp2 = data[2].read() * data[3].read();
  int_outdata[0] = tmp1;
  int_outdata[1] = tmp2;
}

void sens_loop::read_inputs() {
  for(int i =0; i < const1; i++){

/* synopsys unroll */
    int_indata[i] = data[i].read();
  }
}

void sens_loop::assign_outputs() {
  for(int i = 0; i< const2; i++){

/* synopsys unroll */
    data_out[i].write(int_outdata[i].read());
  }
}

Instantiating Multiple Modules With a Loop. Example 2-12
defines an asynchronous reset D flip-flop. The has_loop_inst module
instantiates back-to-back pairs of the D flip-flop, which are typically
called synchronizers. The TMP signal is an intermediate node that
connects between each flip-flop pair.
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This example uses the NUM_INSTS macro to set the parameter that
defines the number of pairs to instantiate and the width of the IN and
OUT ports. This value is set to a default of 4.

Example 2-12 Instantiating Multiple Modules With a Loop
/****loopinst.h****/
#include "systemc.h"

// This module defines a typical asynchronous
// reset D flip-flop, which is sensitive to
// the positive clock edge.

SC_MODULE(dff_pos_module) {
  sc_in<bool>in_data;
  sc_out<bool> out_q;
  sc_in_clkclock;
  sc_in<bool>reset;

  void dff_pos_function() {
      if (reset){

      out_q = 0;
      }else{
          out_q = in_data;
      }
  }

  SC_CTOR(dff_pos_module) {
     SC_METHOD(dff_pos_function);
     sensitive_pos << clock << reset;
  }
};

// This loop instantiates two-level
// (back-to-back) D flip-flops, which
// is often called synthronizers.
// The signal TMP is an intermediate node that
// connects between the two D flip-flops.

SC_MODULE(has_loop_inst) {

   // By default, the number of instances and
   // the IN and OUT port widths are set to 4.
   // Specify a different number of instances
   // in the synthesis script or the Makefile.
   #ifndef NUM_INSTS
      #define NUM_INSTS 4
   #endif

    sc_in<bool>   clock;
    sc_in<bool>   reset;
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    sc_in<bool>   IN [NUM_INSTS];
    sc_out<bool>  OUT [NUM_INSTS];

    SC_HAS_PROCESS(has_loop_inst);

    sc_signal<bool> TMP [NUM_INSTS];

    dff_pos_module   *dff_instance_a [NUM_INSTS];
    dff_pos_module   *dff_instance_b [NUM_INSTS];

    has_loop_inst(const sc_module_name& name_,
                  int const1 = NUM_INSTS);
};
/****loopinst.cc****/
#include "systemc.h"
#include "loopinst.h"

has_loop_inst::has_loop_inst
       (const sc_module_name& name_,
        int const1) {

  #ifndef SYN
     char *dffname_a [NUM_INSTS] =
           {"dff1a", "dff2a", "dff3a", "dff4a"};
     char *dffname_b [NUM_INSTS] =
           {"dff1b", "dff2b", "dff3b", "dff4b"};
  #endif

  char *name1, *name2;

  for (int i=0; i<const1; i++) {  // snps unroll
    #ifndef SYN
       name1 = dffname_a [i];
       name2 = dffname_b [i];
    #endif

    // Instantiate the first column of D flip-flops.
    dff_instance_a [i] = new dff_pos_module(name1);
    (*dff_instance_a [i]) (IN[i], TMP[i], clock, reset);

    // Instantiate the second column of D flip-flops.
    dff_instance_b [i] = new dff_pos_module(name2);
    (*dff_instance_b [i]) (TMP[i], OUT[i], clock, reset);
  }
}
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Limitation of Using Constructor Parameters. Because of C++
restrictions, you cannot define a constructor parameter to

• Specify the bit-width of data types

• Change anything defined outside the constructor, such as
memory size, the number of ports, or function prototypes

SystemC Compiler has the following restrictions for using a
constructor defined with the SC_HAS_PROCESSES macro:

• A parameter cannot be a struct type.

• Use only simple data member assignment statements in the
constructor.

• Use only unrollable for loops.

Reading and Writing Ports and Signals

In the module implementation description, you can read from or write
to a port or a signal by using the read and write methods or by
assignment. An sc_out port and an sc_inout port have read() and
write() methods to allow you to read from or write to the port. An
sc_in port has only a read() method.

When you read from or write to a port or a signal, a recommended
coding practice is to use the read() and write() methods to distinguish
port and signals from variable assignments. The read() and write()
methods perform any necessary data conversion. Use the
assignment operator for variables. Example 2-13 shows in bold how
to use the read and write methods for ports and signals, and it shows
assignment operators for variables.
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Example 2-13 Using Assignment and read() and write() Methods
// read method
address = into.read();      // get address
// assignment
temp1 = address; // save address
data_tmp = memory[address];  // get data from memory
// write method
outof.write(data_tmp);     // write out
// assignment
temp2 = data_tmp;
// save data_tmp
//...

Reading and Writing Bits of Ports and Signals

You read or write all bits of a port or signal. You cannot read or write
the individual bits, regardless of the type. To do a bit-select on a port
or signal, read the value into a temporary variable and do a bit-select
on the temporary variable. Example 2-14 shows in bold how to read
from or write bits to a temporary variable.

Example 2-14 Reading and Writing Bits of a Variable
//...
sc_signal <sc_int<8> > a;
sc_int<8> b;
bool c;
b = a.read();
c = b[0];

// c = a[0]; // Will not work in SystemC

Example 2-14 reads the value of signal a into temporary variable b
and writes bit 0 of b into variable c. You cannot read a bit from signal
a, because this operation is not allowed in SystemC.
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Signal and Port Assignments

When you assign a value to a signal or a port, the value on the right
side of the assignment statement is not transferred to the left side
until the next simulation delta cycle (see the SystemC
documentation for SystemC simulation semantics). This means the
signal values seen by other processes are not updated immediately,
but deferred.

Example 2-15 shows a serial register implementation with signal
assignment, and Figure 2-4 shows the resulting schematic.

Example 2-15 Signal Assignment
#include "systemc.h"

SC_MODULE(rtl_nb) {
  sc_in<bool> clk;
  sc_in<bool> data;
  sc_inout<bool> regc, regd;

  void reg_proc() {
    regc.write(data.read());
    regd.write(regc.read());
  }

  SC_CTOR(rtl_nb) {
    SC_METHOD(reg_proc);
    sensitive_pos << clk;
  }
};

Figure 2-4 Signal Assignment Schematic
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Variable Assignment

When you assign a value to a variable, SystemC Compiler considers
that the value on the right side is transferred immediately to the left
side of the assignment statement.

Example 2-16 includes a variable assignment, in which the
implementation assigns the value of data to rega and regb, as the
resulting schematic in Figure 2-5 indicates.

Note:
This example is only an illustration of variable assignment. You
can write the same behavior more efficiently by removing the
rega_v and regb_v variables and writing the ports directly.

Example 2-16 Variable Assignment
#include "systemc.h"

SC_MODULE(rtl_b) {
  sc_in<bool> clk;
  sc_in<bool> data;
  sc_out<bool> rega, regb;

  bool rega_v, regb_v;

  void reg_proc() {
    rega_v = data.read();
    regb_v = rega_v;
    rega.write(rega_v);
    regb.write(regb_v);
  }

  SC_CTOR(rtl_b) {
    SC_METHOD(reg_proc);
    sensitive_pos << clk;
  }
};
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Figure 2-5 Variable Assignment Schematic

Creating a Module With a Single SC_METHOD Process

Example 2-17 is an RTL description of a count zeros circuit that
contains one SC_METHOD process, control_proc( ), and two
member functions, legal( ) and zeros( ). The circuit determines in one
cycle if an 8-bit value on the input port is valid (having no more than
one sequence of zeros) and how many zeros the value contains. The
circuit produces two outputs, the number of zeros found and an error
indication. Figure 2-6 illustrates the module and its ports. The design
description and the complete set of files are available in the SystemC
Compiler installation in $SYNOPSYS/doc/syn/ccsc/ccsc_examples.

Example 2-17 Count Zeros Combinational Version
/****count_zeros_comb.h file***/
#include "systemc.h"

SC_MODULE(count_zeros_comb) {
  sc_in<sc_uint<8> >  in;
  sc_out<sc_uint<4> >  out;
  sc_out<bool> error;

  bool legal(sc_uint<8> x);
  sc_uint<4> zeros(sc_uint<8> x);
  void control_proc();

  SC_CTOR(count_zeros_comb) {
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    SC_METHOD(control_proc);
    sensitive << in;
  }
};

/****count_zeros_comb.cpp file****/
#include "count_zeros_comb.h"

void count_zeros_comb::control_proc() {
  sc_uint<4> tmp_out;
  bool is_legal = legal(in.read());
  error.write(is_legal != 1);
  is_legal ? tmp_out = zeros(in.read()) : tmp_out = 0;
  out.write(tmp_out);
}

bool count_zeros_comb::legal(sc_uint<8> x) {
  bool is_legal = 1;
  bool seenZero = 0;
  bool seenTrailing = 0;
  for (int i=0; i <=7; ++i) {
    if ((seenTrailing == 1) && (x[i] == 0)) {
      is_legal = 0;
      break;
    } else if ((seenZero == 1) && (x[i] == 1)) {
      seenTrailing = 1;
    } else if (x[i] == 0) {
      seenZero = 1;
    }
  }
  return is_legal;
}

sc_uint<4> count_zeros_comb::zeros(sc_uint<8> x) {
  int count = 0;
  for (int i=0; i <= 7; ++i) {
    if (x[i] == 0)
      ++count;
  }
  return count;
}
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Figure 2-6 Count Zeros Combinational Module

To synthesize a design similar to this example, use the commands in
“Synthesizing a SystemC Design in a Single File” on page 1-9.

Creating a Module With Multiple SC_METHOD
Processes

Example 2-18 is a sequential description of the count zeros circuit
described in “Creating a Module With a Single SC_METHOD
Process” on page 2-32. The complete set of files is available in the
SystemC Compiler installation in $SYNOPSYS/doc/syn/ccsc/
ccsc_examples.

In this sequential version, there are three SC_METHOD processes
and several signals for communication between the processes, as
shown in Figure 2-7. The comb_logic( ) and output_assign( )
processes are level-sensitive, and the seq_logic( ) process is
sensitive to the positive edge of the clk and reset inputs. The
set_defaults( ) member function is called at the beginning of the
comb_logic( ) process.

This example does not show typical simulation-specific code you
might include for debugging purposes.

count_zeros_combo

out

error

in control
proc
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Figure 2-7 Count Zeros Sequential Module

Example 2-18 Count Zeros Sequential Version
/****count_zeros_seq.h file****/
#include "systemc.h"

#define ZEROS_WIDTH 4
#define MAX_BIT_READ 7

SC_MODULE(count_zeros_seq) {
  sc_in<bool> data, reset, read, clk;
  sc_out<bool> is_legal, data_ready;
  sc_out<sc_uint<ZEROS_WIDTH> > zeros;

sc_signal<bool> new_data_ready, new_is_legal, new_seenZero, new_seenTrailing;
  sc_signal<bool> seenZero, seenTrailing;
  sc_signal<bool> is_legal_s, data_ready_s;
  sc_signal<sc_uint<ZEROS_WIDTH> > new_zeros, zeros_s;
  sc_signal<sc_uint<ZEROS_WIDTH - 1> > bits_seen, new_bits_seen;

  // Processes
  void comb_logic();
  void seq_logic();
  void assign_outputs();

  // Helper functions
  void set_defaults();

count_zeros
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output
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data
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reset
clk
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  SC_CTOR(count_zeros_seq) {
    SC_METHOD(comb_logic);
    sensitive << data << read << is_legal_s << data_ready_s;
    sensitive << seenTrailing << seenZero << zeros_s << bits_seen;

    SC_METHOD(seq_logic);
    sensitive_pos << clk << reset;

    SC_METHOD(assign_outputs);
    sensitive << is_legal_s << data_ready_s << zeros_s;
  }
};

/****count_zeros_seq.cpp file****/
#include "count_zeros_seq.h"

/*
 *  SC_METHOD: comb_logic()
 *    finds a singular run of zeros and counts them
 */
void count_zeros_seq::comb_logic() {
  set_defaults();
  if (read.read()) {
    if (seenTrailing && (data.read() == 0)) {
      new_is_legal = false;
      new_zeros = 0;
      new_data_ready = true;
    } else if (seenZero && (data.read() == 1)) {
      new_seenTrailing = true;
    } else if (data.read() == 0) {
      new_seenZero = true;
      new_zeros = zeros_s.read() + 1;
    }

    if (bits_seen.read() == MAX_BIT_READ){
      new_data_ready = true;
    }else{
      new_bits_seen = bits_seen.read() + 1;
    }
  }
}

/*
 *  SC_METHOD: seq_logic()
 *    All registers have asynchronous resets
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 */
void count_zeros_seq::seq_logic() {
  if (reset) {
    zeros_s = 0;
    bits_seen = 0;
    seenZero = false;
    seenTrailing = false;
    is_legal_s = true;
    data_ready_s = false;
  } else {
    zeros_s = new_zeros;
    bits_seen = new_bits_seen;
    seenZero = new_seenZero;
    seenTrailing = new_seenTrailing;
    is_legal_s = new_is_legal;
    data_ready_s = new_data_ready;
  }
}

/*
 *  SC_METHOD: assign_outputs()
 *  Zero time assignments of signals to their associated outputs
 */
void count_zeros_seq::assign_outputs() {
  zeros = zeros_s;
  is_legal = is_legal_s;
  data_ready = data_ready_s;
}

/*
 *   method: set_defaults()
 *     sets the default values of the new_* signals for the comb_logic
 *     process.
 */
void count_zeros_seq::set_defaults() {
  new_is_legal = is_legal_s;
  new_seenZero = seenZero;
  new_seenTrailing = seenTrailing;
  new_zeros = zeros_s;
  new_bits_seen = bits_seen;
  new_data_ready = data_ready_s;
}

To synthesize a design similar to this example, use the commands in
“Synthesizing a SystemC Design in a Single File” on page 1-9.
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Creating a Hierarchical RTL Module

You can create a hierarchical module with multiple instantiated
modules. The lower-level modules can contain either SC_METHOD
processes or an SC_CTHREAD behavioral process. The design
description and the complete set of files are available in the SystemC
Compiler installation in $SYNOPSYS/doc/syn/ccsc/ccsc_examples.

The Basics of Hierarchical Module Creation

To create a hierarchical module,

1. Create data members in the top-level module that are pointers to
the instantiated modules.

2. Allocate the instantiated modules inside the constructor of the
top-level module, giving each instance a unique name.

3. Bind the ports of the instantiated modules to the ports or signals
of the top-level module. Use either binding by position or binding
by name coding style.

Example 2-19 shows the partial source code of two modules, fir_fsm
and fir_data, instantiated in the fir_top module. The relevant code is
highlighted in bold.

Example 2-19 Hierarchical Module With Multiple RTL Modules
/****fir_top.h****/
#include <systemc.h>
#include "fir_fsm.h"
#include "fir_data.h"

SC_MODULE(fir_top) {

  sc_in_clk         CLK;
  sc_in<bool>       RESET;
  sc_in<bool>       IN_VALID;
  sc_in<int>        SAMPLE;
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  sc_out<bool>      OUTPUT_DATA_READY;
  sc_out<int>       RESULT;

  sc_signal<unsigned> state_out; //Communication between
//two peer modules

  // Create data members - pointers to instantiated
  // modules
fir_fsm  *fir_fsm1;
fir_data *fir_data1;

  SC_CTOR(fir_top) {
// Create new instance of fir_fsm module
fir_fsm1 = new fir_fsm("FirFSM");

 // Binding by name
fir_fsm1->clock(CLK);
fir_fsm1->reset(RESET);
fir_fsm1->in_valid(IN_VALID);
fir_fsm1->state_out(state_out);

// Binding by position alternative
//fir_fsm1 (CLK, RESET, IN_VALID, state_out);

// Create new instance
// of fir_data module and bind by name
fir_data1 = new fir_data("FirData");
fir_data1->reset(RESET);
fir_data1->state_out(state_out);
fir_data1->sample(SAMPLE);
fir_data1->result(RESULT);
fir_data1->output_data_ready(OUTPUT_DATA_READY);
fir_data1->clk(CLK);
  ...

    }
};

/****fir_fsm.h****/
SC_MODULE(fir_fsm) {

  sc_in<bool>      clock;
  sc_in<bool>      reset;
  sc_in<bool>      in_valid;
  sc_out<unsigned> state_out;

...

/****fir_data.h****/
SC_MODULE(fir_data) {

  sc_in<bool>      clk;
  sc_in<bool>      reset;
  sc_in<unsigned>  state_out;
  sc_in<int>       sample;
  sc_out<int>      result;
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  sc_out<bool>     output_data_ready;
...

Creating an Integrated RTL and Behavioral Module

Creating an integrated RTL and behavioral module is similar to
creating a hierarchical RTL module. Example 2-20 shows an
integrated module, all_top, that contains an instance of the
hierarchical RTL fir_rtl module in Example 2-19 on page 2-38 and an
instance of a behavioral version fir_beh of the FIR filter shown in
Example 2-21 on page 2-41. The design description and complete
set of files are available in the SystemC Compiler installation in
$SYNOPSYS/doc/syn/ccsc/ccsc_examples.

Example 2-20 FIR Top-Level Integrated Module
/****all_top.h file****/

#include <systemc.h>

#include "fir_rtl.h"
#include "fir_beh.h"

SC_MODULE(all_top) {

  sc_in<bool>       reset;
  sc_in<bool>       input_valid;

  sc_in<int>        sample;

  sc_out<int>       sample_out_rtl;
  sc_out<bool>      output_ready_rtl;
  sc_out<int>       sample_out_syn;
  sc_out<bool>      output_ready_syn;

  sc_in<bool>       clk1;

 // Instantiates RTL and behavioral models
  fir_rtl *fir_rtl1;
  fir_beh *fir_beh1;

  SC_CTOR(all_top) {

      fir_rtl1 = new fir_rtl("firTOP");
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      fir_rtl1->reset(reset);
      fir_rtl1->in_valid(input_valid);
      fir_rtl1->sample(sample);
      fir_rtl1->result(sample_out_rtl);
      fir_rtl1->output_data_ready(output_ready_rtl);
      fir_rtl1->clk(clk1);

      fir_beh1 = new fir_beh("FIR");
      fir_beh1->reset(reset);
      fir_beh1->input_valid(input_valid);
      fir_beh1->sample(sample);
      fir_beh1->result(sample_out_syn);
      fir_beh1->output_data_ready(output_ready_syn);
      fir_beh1->CLK(clk1);
      };
}

Example 2-21 FIR Behavioral Module
/****fir_beh.h file****/

C_MODULE(fir_beh) {
  sc_in<bool>  reset;
  sc_in<bool>  input_valid;
  sc_in<int>   sample;
  sc_out<bool> output_data_ready;
  sc_out<int>  result;
  sc_in_clk    CLK;

  SC_CTOR(fir_beh){
      SC_CTHREAD(entry, CLK.pos());
      watching(reset.delayed() == true);
  }
  void entry();
};

/****fir_beh.cpp file****/

include <systemc.h>
#include "fir_beh.h"
#include "fir_const.h"

void fir_beh::entry() {

  sc_int<8>  sample_tmp;
  sc_int<17> pro;
  sc_int<19> acc;
  sc_int<8> shift[16];
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  // reset watching
  for (int i=0; i<=15; i++){
    // synopsys unroll
    shift[i] = 0;
  }
  result.write(0);
  output_data_ready.write(false);
  wait();

  // main functionality
  fir_loop:while(1) {

    output_data_ready.write(false);
    wait_until(input_valid.delayed() == true);

    sample_tmp = sample.read();
    acc = sample_tmp*coefs[0];

    for(int i=14; i>=0; i--) {
      // synopsys unroll
      acc += shift[i]*coefs[i+1];
    }

    for(int i=14; i>=0; i--) {
      // synopsys unroll
      shift[i+1] = shift[i];
    }
    shift[0] = sample_tmp;
    // write output values
    result.write(acc);
    output_data_ready.write(true);
    wait();
  }
}

To synthesize a design similar to this example, use the commands in
“Synthesizing a Design With Integrated Behavioral and RTL
Modules” on page 1-22.



2-43

Specifying Preserved Functions and Implementing DesignWare Components

Specifying Preserved Functions and Implementing
DesignWare Components

Functions increase the readability of your source code. By default,
SystemC Compiler inlines functions, which makes the HDL created
by SystemC Compiler difficult to understand. To improve the
readability of the generated HDL, you can direct SystemC Compiler
to preserve a function instead of creating inline code. Or you can
direct SystemC Compiler to map a function to a synthetic library
operator to be implemented by a DesignWare component.

Note:
SystemC Compiler version U-2003.06 supports these features
only for the RTL Verilog flow, not the VHDL flow.

Defining a Preserved Function

To preserve a function, insert the preserve_function compiler
directive in your code as the first line in the function body.
Example 2-22 shows a preserved function that passes two input
parameters and returns a single output.

Example 2-22 Preserved Function With a Single Output Return Value
...
sc_uint<8> gpf_modulus(sc_uint<8> A, sc_uint<8> B){
// synopsys preserve_function

  return A % B;
}

The function parameters and return types can be any synthesizable
type (Table 3-3 on page 3-11) or a struct of synthesizable types. You
can read and write module variables, ports, and signals without
passing them as function parameters.
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You can define one or more outputs for a preserved function.
Depending on your design requirements, you can return one output
and pass the other outputs as nonconstant references
(Example 2-23), or pass all outputs as nonconstant references with
a void return (Example 2-24).

Example 2-23 Preserved Function With a Return Value and a Passed
Reference

...
sc_int<8> foo (sc_int<8> a, sc_int<8> b,

sc_int<8> &div_num) {
  // synopsys preserve_function

  sc_int<8> mod_num;

  if (b==0) {
    if (a>0)
      div_num = 127;
    else
      div_num = -128;
    mod_num = a;
  }
  else {
    div_num = a/b;
    mod_num = a%b;
  }
  return (mod_num);
}

Example 2-24 Preserved Function With a Void Return and Multiple Passed
References

...
void data::foo (sc_int<8> a, sc_int<8> b,

sc_int<8> &mod_num,
sc_int<8> &div_num) {

  // synopsys preserve_function

  if (b==0) {
    if (a>0)
      div_num = 127;
    else
      div_num = -128;
    mod_num = a;
  }
  else {
    div_num = a/b;
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    mod_num = a%b;
  }
}

When you use reference parameters, you need to ensure that you
are not creating an alias by mistake. You create an alias by passing
the same object by reference to different parameters. An alias
between two outputs creates a short circuit between the outputs.

For example, this problem occurs in the following:

//Definition
void abc(int a, const int& b, int& c) {
   /* synopsys map_to_operator XXX_OP */
   ...
}

void xyz () {
   //function call that causes alias
   abc(x, y, y);
   ...
}

In the above example, parameters b and c are bound to the same y
variable, causing an error.

Another more subtle alias can result from the following function call:

abc(x, a[i], a[j]);

In the above function call, a potential alias occurs, based on the
value of i and j. In such a situation, use a temporary variable to avoid
the problem; for example,

abc(x, a[i], temp);
a[j] = temp;
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Verilog HDL From a Preserved Function

When you execute the compile_systemc command with the
-output verilog option for a design with a preserved function,
SystemC Compiler creates a Verilog output parameter for a nonvoid
return type and any nonconstant reference parameters. It creates
Verilog input parameters for constant reference parameters and all
other parameters. Inout parameters are not supported.

SystemC Compiler creates a Verilog function or task for a preserved
function. It creates a Verilog function if the preserved function meets
the following criteria:

• Has a single output returned by the function and no other output
parameters

• Is used in an expression

• Has at least one input parameter

• Does not read from or write to a signal or port

• Does not call another function that fails to meet the above criteria

Example 2-25 shows the Verilog HDL created by SystemC Compiler
from the SystemC code in Example 2-22. Because the function
meets the above criteria, a Verilog function is created.

Example 2-25 Verilog HDL Function From a Preserved Function
...
function [7:0] gpf_modulus;
    input [7:0] A;
    input [7:0] B;
    begin
        gpf_modulus = A % B;
    end
    endfunction
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Otherwise, SystemC Compiler creates a Verilog task for the
preserved function.

Example 2-26 shows the Verilog HDL created by SystemC Compiler
from the SystemC code in Example 2-23. Because the function has
two outputs (a return and a nonconstant reference), a task is
created.

Example 2-26 Verilog HDL Task From a Preserved Function
...
task foo;
    output signed [7:0] foo_RETURN_PORT;
    input signed [7:0] a;
    input signed [7:0] b;
    output signed [7:0] div_num;
    reg signed [7:0] mod_num;
    reg signed [7:0] __tmp181;
    begin
        if (b == 8'sb00000000)
        begin
            if (a > 8'sb00000000)
                div_num = 8'sb01111111;
            else
                div_num = -128;
            mod_num = a;
        end
        else
        begin
            __tmp181 = a / b;
            div_num = __tmp181;
            mod_num = a % b;
        end
        foo_RETURN_PORT = mod_num;
    end
    endtask

Mapping a Function to a Synthetic Operator

You can direct SystemC Compiler to map a function to a synthetic
library operator to be implemented by a DesignWare component. To
map to a function to a specified synthetic operator, insert the
map_to_operator compiler directive as the first line in the function
body.
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Example 2-27 shows code that instructs SystemC Compiler to use a
square root (SQRT_TC_OP) synthetic operator for synthesis. In this
example, the SQRT_TC_OP operator has an input port A and
returns the output on the default return port named Z.

Example 2-27 Specifying a Synthetic Operator
...
sc_uint<8> example::dw_sqrt(sc_int<16> A ) {
  // synopsys map_to_operator SQRT_TC_OP

#ifdef SIM
  double temp_d;
  sc_uint<8> temp;

  temp_d = sqrt(fabs(double(A)));
  root = temp_d;
#endif
}

You do not need to describe the component’s functionality for
synthesis. After you execute the SystemC Compiler
compile_systemc command, this function is replaced by the
SQRT_TC_OP operator, provided that it exists in a synthetic library
specified in your synthetic library path.

The function body is ignored for synthesis. For simulation, you can
describe the functionality and enclose it in #ifdef and #endif
directives to indicate the code is excluded for synthesis.

Your function inputs and outputs and their names must match the
synthetic operator ports, which are case-sensitive. Use the
report_synlib command to generate a synthetic library report
showing the synthetic operator ports and their names.

The function parameters and return types can be any synthesizable
type (see Table 3-3 on page 3-11).
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You can define more than one output for a DesignWare component.
For example, you can return one output and pass the other outputs
as nonconstant references, as shown in Example 2-28.

Example 2-28 A map_to_operator Function With a Return and a Reference
Parameter

...
sc_int<8>  data::foo (sc_int<8> A, sc_int<8> B,

sc_int<8> &QUOTIENT) {

  // synopsys map_to_operator DIV_TC_OP
  // synopsys return_port_name REMAINDER

  sc_int<8> mod_num;
  if (B==0) {
    if (A>0)
      QUOTIENT = 127;
    else
      QUOTIENT = -128;
    mod_num = A;
  }
  else {
    QUOTIENT = A/B;
    mod_num = A%B;
  }
  return mod_num;
}

You can also pass all outputs as nonconstant references with a void
return, as shown in Example 2-29.

Example 2-29 A map_to_operator Function With Multiple Reference
Parameters

void data::foo (sc_int<8> A, sc_int<8> B,
sc_int<8> &REMAINDER,
sc_int<8> &QUOTIENT) {

    // synopsys map_to_operator DIV_TC_OP

  if (B==0) {
    if (A>0)
      QUOTIENT = 127;
    else
      QUOTIENT = -128;
    REMAINDER = A;
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  }
  else {
    QUOTIENT = A/B;
    REMAINDER = A%B;
  }
}

When mapping an output port with a nonvoid return, use the
return_port_name compiler directive to specify the output port
you want returned by the function, as shown in Example 2-28.
Otherwise, it returns the default return port named Z.

Verilog HDL From a Function Mapped to a DesignWare
Component

When you use the compile_systemc command with the -output
verilog option, the function body is converted to Verilog, but it is
ignored for synthesis.

SystemC Compiler creates a Verilog function or task for a function
that is mapped to a DesignWare component, using the same criteria
described in “Verilog HDL From a Preserved Function” on
page 2-46.
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This chapter explains the subsets of the SystemC and C/C++
language elements and data types that are used for RTL synthesis
with SystemC Compiler. It contains the following sections:

• Converting to a Synthesizable Subset

• Modifying Data for Synthesis

• Recommendations About Modification for Synthesis
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Converting to a Synthesizable Subset

To prepare for synthesis, you need to convert all nonsynthesizable
code into synthesizable code. This is required only for functionality
that is to be synthesized, and not for the testbench or the software
part of the system.

Although you can use any SystemC class or C++ construct for
simulation and other stages of the design process, only a subset of
the language can be used for synthesis. SystemC Compiler does not
recognize nonsynthesizable constructs, and it displays an error
message if it encounters any of these constructs in your code. You
can use #ifdef and #endif to comment out code that is needed only
for simulation. For example, you can exclude trace and print
statements with these compiler directives.

Excluding Nonsynthesizable Code

SystemC Compiler provides compiler directives you can use in your
code

• To include synthesis-specific directives

• To exclude or comment out nonsynthesizable and
simulation-specific code so it does not interfere with synthesis

You can isolate nonsynthesizable code or simulation-specific code
with a compiler directive, either the C language #ifdef and #endif
(recommended) or a comment starting with the words synopsys
and synthesis_off. Example 3-1 shows compiler directives in
bold that exclude simulation code for simulation or synthesis.
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Example 3-1 Excluding Simulation-Only and Synthesis-Only
Code

    //C directive  (recommended style)
#ifdef SIM
...//Simulation-only code
#endif

    //SystemC Compiler directive
    //(using #ifdef instead is recommended)

/* synopsys synthesis_off */
... //Simulation-only code
/* synopsys synthesis_on */

For this example, if the symbol SIM is defined, the additional code is
compiled with the intent of doing a simulation.

You can define the SIM symbol with a #define directive, or you can
provide it in the compiler command line for simulation purposes.

SystemC and C++ Synthesizable Subsets

The synthesizable subsets of SystemC and C++ are provided in the
sections that follow. Wherever possible, a recommended corrective
action is indicated for converting nonsynthesizable constructs into
synthesizable constructs. For many nonsynthesizable constructs,
there is no obvious recommendation for converting them into
synthesizable constructs or there are numerous ways to convert
them. In such cases, a recommended corrective action is not
indicated. Familiarize yourself with the synthesizable subset, and
use it as much as possible in your pure C/C++ or high-level SystemC
models to minimize the modification effort for synthesis.

You can use any SystemC or C++ construct for a testbench. You do
not need to restrict your code to the synthesizable subset in the
testbench.
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Nonsynthesizable SystemC Constructs

SystemC Compiler does not support the SystemC constructs listed
in Table 3-1 for RTL synthesis.

Table 3-1 Nonsynthesizable SystemC Constructs for RTL
Synthesis

Category Construct Comment Corrective action

Thread process SC_THREAD Used for modeling a
testbench, simulation, and
modeling at the behavioral
level.

CTHREAD
process

SC_CTHREAD Used for simulation and
modeling at the behavioral
level.

Main function sc_main() Used for simulation.

Clock
generation

sc_start() Used for simulation. Use only in
sc_main( ).

Communication sc_interface,
sc_port,
sc_mutex,
sc_fifo

Used for modeling
communication.

Comment out for
synthesis.

Global watching watching() Not supported for RTL
synthesis.

Local watching W_BEGIN,
W_END,
W_DO,
W_ESCAPE

Not supported.

Synchronization Master-slave
library of
SystemC

Used for synchronization of
events.

Comment out for
synthesis.

Tracing sc_trace,
sc_create*
trace_file

Creates waveforms of
signals, channels, and
variables for simulation.

Comment out for
synthesis.
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Nonsynthesizable C/C++ Constructs

SystemC Compiler does not support the C and C++ constructs listed
in Table 3-2 for RTL synthesis.

Table 3-2 Nonsynthesizable C/C++ Constructs

Category Construct Comment Corrective action

Local class
declaration

Not allowed. Replace.

Nested class
declaration

Not allowed. Replace.

Derived class Only SystemC modules and
processes are supported.

Replace.

Dynamic
storage
allocation

malloc(),
free(), new,
new[],
delete,
delete[]

malloc(), free(), new, new[],
delete, and delete[] are not
supported. The new construct is
allowed only to instantiate a
module to create hierarchy.

Use static memory
allocation.

Exception
handling

try, catch,
throw

Not allowed. Comment out.

Recursive
function call

Not allowed. Replace with
iteration.

Function
overloading

Not allowed (except the classes
overloaded by SystemC).

Replace with unique
function calls.

C++ built-in
functions

Math library, I/O library, file I/O,
and similar built-in C++
functions not allowed.

Replace with
synthesizable
functions or remove.

Virtual function Not allowed. Replace with a
nonvirtual function.
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Inheritance Not allowed. Create an
independent
SC_MODULE.

Multiple
inheritance

Not allowed. Create independent
modules.

Member access
control
specifiers

public,
protected,
private,
friend

Allowed in code but ignored for
synthesis. All member access is
public.

Accessingstruct
members with
the (->) operator

-> operator Not allowed, except for module
instantiation.

Replace with access
using the period (.)
operator.

Static member Not allowed. Replace with
nonstatic member
variable.

Dereference
operator

* and &
operators

Not allowed. Replace
dereferencing with
array accessing.

for loop comma
operator

, operator The comma operator is not
allowed in a for loop definition.

Remove the comma
operators.

Unbounded
loop

Not allowed. Replace with a
bounded loop, such
as a for loop.

Out-of-bound
array access

Not allowed. Replace with
in-bound array
access.

Operator
overloading

Not allowed (except the classes
overloaded by SystemC).

Replace overloading
with unique function
calls.

Table 3-2 Nonsynthesizable C/C++ Constructs (Continued)

Category Construct Comment Corrective action
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Operator, sizeof sizeof Not allowed. Determine size
statically for use in
synthesis.

Pointer * Pointers are allowed only in
hierarchical modules to
instantiate other modules.

Replace all other
pointers with access
to array elements or
individual elements.

Pointer type
conversions

Not allowed. Do not use pointers.
Use explicit variable
reference.

this pointer this Not allowed. Replace.

Reference, C++ & Allowed only for passing
parameters to functions.

Replace in all other
cases.

Reference
conversion

Reference conversion is
supported for implicit
conversion of signals only.

Replace in all other
cases.

Static variable Not allowed in functions.

User-defined
template class

Only SystemC templates
classes such as sc_int<> are
supported.

Replace.

Explicit
user-defined
type conversion

The C++ built-in types and
SystemC types are supported
only for explicit conversion.

Replace in all other
cases.

Type casting at
runtime

Not allowed. Replace.

Type
identification at
runtime

Not allowed. Replace.

Unconditional
branching

goto Not allowed. Replace.

Table 3-2 Nonsynthesizable C/C++ Constructs (Continued)

Category Construct Comment Corrective action
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Modifying Data for Synthesis

A pure C/C++ model or a high-level SystemC model typically uses
native C++ types or aggregates (structures) of such types. Native
C++ types such as int, char, bool, and long have fixed, platform-
dependent widths, which are often not the correct width for efficient
hardware. For example, you might need only a 6-bit integer for a
particular operation, instead of the native C++ 32-bit integer. In
addition, C++ does not support four-valued logic vectors, operations
such as concatenation, and other features that are needed to
efficiently describe hardware operations.

SystemC provides a set of limited-precision and arbitrary-precision
data types that allows you to create integers, bit vectors, and logic
vectors of any length. SystemC also supports all common operations
on these data types.

Unions Not allowed. Replace with structs.

Global variable Not supported for synthesis. Replace with local
variables.

Member
variable

Member variables accessed by
two or more SC_METHOD
processes are not supported.
However, access to member
variables by only one process is
supported.

Use signals instead of
variables for
communication
between processes.

Volatile variable Not allowed. Use only nonvolatile
variables.

Table 3-2 Nonsynthesizable C/C++ Constructs (Continued)

Category Construct Comment Corrective action
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To modify a SystemC model for synthesis, you need to evaluate all
variable declarations, formal parameters, and return types of all
functions to determine the appropriate data type and the appropriate
widths of each data type. The following sections provide
recommendations about the appropriate data type to use and when.
Selecting the data widths is a design decision, and it is typically a
tradeoff between the cost of hardware and the required precision.
This decision is, therefore, up to you.

Synthesizable Data Types

C++ is a strongly typed language. Every constant, port, signal,
variable, function return type, and parameter is declared as a data
type, such as bool or sc_int<n>. Therefore, it is important that you
use the correct data types in expressions.

Nonsynthesizable Data Types

All SystemC and C++ data types, except the following types, can be
used for RTL synthesis:

• Floating-point types such as float and double

• Fixed-point types sc_fixed, sc_ufixed, sc_fix, and sc_ufix

• Access types such as pointers

• File types such as FILE

• I/O streams such as stdout and cout
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Recommended Data Types for Synthesis

For best synthesis, use appropriate data types and bit-widths so
SystemC Compiler does not build unnecessary hardware.

The following are some general recommendations about data type
selection:

• For a single-bit variable, use the native C++ type bool.

• For variables with a width of 64 bits or less, use the sc_int or
sc_uint data type. Use sc_uint for all logic and unsigned
arithmetic operations. Use sc_int for signed arithmetic operations
as well as for logic operations. These types produce the fastest
simulation runtimes of the SystemC types.

• For variables larger than 64 bits, use sc_bigint or sc_biguint if you
want to do arithmetic operations with these variables.

• Use sc_logic or sc_lv only when you need to model three-state
signals or buses. When you use these data types, avoid
comparison with X and Z values in your synthesizable code,
because such comparisons are not synthesizable. Examples of
three-state inference are provided in “Three-State Inference” on
page 4-47.

• Use native C++ integer types for loop counters.
Recommendations about loops are provided in “Loops” on
page 4-53.

• Use the native C++ data types with caution, because their size is
platform dependent. For example, on most platforms, a char is 8
bits wide, a short is 16 bits wide, and both an int and a long are
32 bits wide. An int, however, can be 16, 32, or 64 bits wide.
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To restrict bit size for synthesis, use the recommended SystemC
data types summarized in Table 3-3 in place of the equivalent C++
native type. For example, change an int type to an sc_int<n> type.

Table 3-3 Synthesizable Data Types

SystemC and C++ type Description

sc_bit A single-bit true or false value. Supported but not
recommended. Use the bool data type.

sc_bv<n> An arbitrary-length bit vector. Use sc_uint<n> when
possible.

sc_logic A single-bit 0, 1, X, or Z.

sc_lv<n> An arbitrary-length logic vector.

sc_int<n> Fixed-precision integers with a maximum size of 64
bits and 64 bits of precision during operations.

sc_uint<n> Fixed-precision integers with a maximum size of 64
bits and 64 bits of precision during operations,
unsigned.

sc_bigint<n> Arbitrary-precision integers recommended for sizes
over 64 bits and unlimited precision.

sc_biguint<n> Arbitrary-precision integers recommended for sizes
over 64 bits and unlimited precision, unsigned.

bool A single-bit true or false value.

int A signed integer, typically 32 or 64 bits, depending
on the platform.

unsigned int An unsigned integer, typically 32 or 64 bits,
depending on the platform.

long A signed integer, typically 32 bits or longer,
depending on the platform.

unsigned long An unsigned integer, typically 32 bits or longer,
depending on the platform.
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SystemC to VHDL Data Type Conversion

The compile_systemc command with the -rtl -format vhdl
option converts the SystemC data types to VHDL data types, as
listed in Table 3-4.

char 8-bit signed character, platform-dependent.

unsigned char 8-bit unsigned character, platform-dependent.

short A signed short integer, typically 16 bits, depending
on the platform.

unsigned short An unsigned short integer, typically 16 bits,
depending on the platform.

struct A user-defined aggregate of synthesizable data
types.

enum A user-defined enumerated data type associated
with an integer constant.

Table 3-4 SystemC to VHDL Data Type Conversion

SystemC data type VHDL data type

bool std_logic

sc_int signed

sc_uint unsigned

Table 3-3 Synthesizable Data Types (Continued)

SystemC and C++ type Description
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Using SystemC Data Types

Use the SystemC data type operators to access individual bits of a
value.

Fixed-Precision and Arbitrary-Precision Data Type
Operators

Table 3-5 lists the operators available for the SystemC sc_int and
sc_uint fixed-precision and sc_bigint and sc_biguint arbitrary-
precision integer data types.

Note:
The reduction and_reduce(), or_reduce(), and xor_reduce()
operators are not available for the fixed- and arbitrary-precision
data types.

Table 3-5 SystemC Integer Data Type Operators

Operators

Bitwise &(and), |(or), ^(xor), and ~(not)

Bitwise <<(shift left) and >>(shift right)

Assignment =, &=, |=, ^=, +=, -=, *=, /=, and %=

Equality ==, !=

Relational <, <=, >, and >=

Autoincrement ++ and autodecrement --

Bit selection [x]

Part selection range (x,y)

Concatenation (x,y)

Type conversion: to_uint( ) and to_int( )
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Concatenating Variables

Variables must be of the same SystemC data type to use the
concatenation operator (,). SystemC Compiler reports an error if
your code concatenates variables of different SystemC data types.
For example, the following code produces an error, because the data
type of the parity variable is not the same as the data types of a and
b:

    ...
    sc_uint<16> a = 0;
    sc_uint<15> b = 0;
    bool parity;
    sc_uint<32> c = 0;
    ...
    c = (a, b, parity);
    ...

To correct this coding error, you must use the same data types of
variables b, parity, and c. For example,

    ...
    sc_uint<16> a = 0;
    sc_uint<15> b = 0;
    sc_uint<1> parity;
    sc_uint<32> c = 0;
    ...
    c = (a, b, parity);
    ...

Or you can cast the parity variable type. For example,

    ...
    sc_uint<16> a = 0;
    sc_uint<15> b = 0;
    bool parity;
    sc_uint<32> c = 0;
    ...
    c = (a, b, sc_uint<1>(parity))
    ...
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The equality operator (=) has a higher precedence than the
concatenation operator (,). Enclose concatenation operations in an
expression within parentheses to ensure that the expression is
evaluated correctly. For example, in the following expression, a = b is
evaluated before b and c are concatenated:

    a = b, c;

To ensure that b and c are concatenated before the result is assigned
to c, enclose (b, c) within parentheses, as follows:

    a = (b, c);

Using a Variable to Read and Write Bits

You can read or write all bits of a port or signal. You cannot read or
write the individual bits, regardless of the data type, because this
operation is not allowed in SystemC.

To do a bit-select on a port or signal, read the value into a temporary
variable and do a bit-select on the temporary variable. Example 3-2
shows reading from a port into a temporary variable and writing
selected bits to an output port.

Example 3-2 Reading and Writing Bits With a Variable
#include "systemc.h"

SC_MODULE(bit_range) {
   sc_in<sc_int<8> > in;
   sc_out<sc_int<5> > out;

   sc_int<8> var_i;
   sc_signal<sc_int<5> > sig_i;

   void entry() {
     var_i = in.read();
     sig_i = var_i.range(6,2);
     out.write(var_i.range(1,5));
   }

   SC_CTOR(bit_range) {
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     SC_METHOD(entry);
     sensitive << in;
   }
};

Example 3-2 reads the value of port in into temporary variable var_i
and writes bits 2 through 6 of var_i into signal sig_i. Then it writes bits
1 through 5 to port out.

Using Constants

SystemC Compiler supports constant variables local to a function. It
supports static constants only at the global level. Example 3-3 shows
some examples of using constants in your design.

Example 3-3 Defining a Bit-Width at the Global Level
#include <systemc.h>

// The keyword static is allowed only for
// constants in the global namespace.
static const sc_uint<8> my_array1[2] = {1,2};
#define BITWIDTH1 4
#define BITWIDTH2 8

SC_MODULE(rtl_const) {

  sc_in<sc_uint<BITWIDTH1> >  addr;
  sc_out<sc_uint<BITWIDTH2> > data1;
  sc_out<sc_uint<BITWIDTH2> > data2;

  sc_uint<8> my_array2[2];

  void my() {
    const sc_uint<8> my_array2[2] = {3,4};
    const int const2 = 4;

    data1 = my_array1[0];
    data2 = my_array2[addr.read()];
  }

  SC_CTOR(rtl_const) {
    SC_METHOD(my);
    sensitive << addr;
  }
};
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Using Enumerated Data Types

SystemC Compiler supports enumerated (enum) data types and
interprets an enum data type the same way a C++ compiler
interprets it. Example 3-4 shows an enum data type definition.

Example 3-4 Enumerated Data Type
enum command_t{
    NONE,
    RED,
    GREEN,
    YELLOW
};

Using Aggregate Data Types

To group data types into a convenient aggregate type, define them
as a struct type (Example 3-5 or Example 3-6). You need to use all
synthesizable data types in a struct in order for it to be synthesizable.
SystemC Compiler splits the struct type into individual elements for
synthesis.

For synthesis, do not nest a struct inside a struct, and do not include
an array in the struct.

Example 3-5 Aggregate struct Data Type
struct package {
    sc_uint<8> command;
    sc_uint<8> address;
    sc_uint<12> data;
}

Example 3-6 Aggregate typedef Data Type
typedef struct {
    sc_uint<8> command;
    sc_uint<8> address;
    sc_uint<12> data;
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} package_s;
package_s package;

Data Members of a Module

Do not use data members for interprocess communication, because
it can lead to nondeterminism (order dependencies) during
simulation and can cause mismatches between the results of
pre-synthesis and post-synthesis simulation. Instead of a data
member for interprocess communication, use an sc_signal for this
purpose.

Example 3-7 shows (in bold) a data member variable named count
that is incorrectly used to communicate between the do_count( ) and
outregs( ) processes. A value is written to the count variable in the
do_count( ) process, and a value is read from the same variable in
the outregs( ) process. The order in which the two processes execute
cannot be predicted—therefore, you cannot determine whether
writing to the count variable is happening before or after count
increments.

Example 3-7 Incorrect Use of a Data Member Variable for
Interprocess Communication

/****mem_var_bad.h****/
#include "systemc.h"
SC_MODULE(counter) {
  sc_in<bool> clk;
  sc_in<bool> reset_z;
  sc_out<sc_uint<4> > count_out;
sc_uint<4> count;             // Member Variable

  SC_CTOR(counter) {
    SC_METHOD(do_count);
    sensitive_pos << clk;
    sensitive_neg << reset_z;

    SC_METHOD(outregs);
    sensitive_pos << clk;
    sensitive_neg << reset_z;
  }
  void do_count() {
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    if (reset.read() == 0) {
count = 0;

    }else{
count++;

    }
  }
  void outregs() {
    if (reset.read() == 0){

count_out.write(0);
    }else{

count_out.write(count);
    }
  }

};

To eliminate the nondeterminism of count in Example 3-7, change
count to an sc_signal, as shown in bold in Example 3-8. Notice that
the only change in the code is the type declaration of count.

Example 3-8 Correct Use of a Signal for Interprocess
Communication

/****mem_var_good.h****/
#include "systemc.h"

SC_MODULE(counter) {
  sc_in<bool> clk;
  sc_in<bool> reset_z;
  sc_out<sc_uint<4> > count_out;

  // Signal for interprocess communication
sc_signal<sc_uint<4> > count;

  SC_CTOR(counter) {
    SC_METHOD(do_count);
    sensitive_pos << clk;
    sensitive_neg << reset_z;

    SC_METHOD(outregs);
    sensitive_pos << clk;
    sensitive_neg << reset_z;
  }
  void do_count() {
    if (reset_z.read() == 0){
      count = 0;
    }else{
      count.read() +1;
    }
  }
  void outregs() {
    if (reset_z.read() == 0){
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      count_out.write(0);
    }else{
      count_out.write(count);
    }
  }

};

Assigning to Data Members in the Constructor

You can make assignments to data members from within the
constructor. These assignments are treated as constants for
synthesis.

Recommendations About Modification for Synthesis

The following practices are recommended during modification for
synthesis:

• After each modification step, reverify your design to ensure that
you did not introduce errors during that step.

• Although it is recommended that you thoroughly define for
synthesis at each modification stage, you might prefer a different
technique. For example, during data modification, you can
change one data type at a time and evaluate the impact on
synthesizability and the quality of results with SystemC Compiler.
Similarly, you might want to replace one nonsynthesizable
construct with a synthesizable construct and reverify the design
before replacing the next nonsynthesizable construct.
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RTL Coding Guidelines 4

This chapter provides SystemC RTL coding guidelines. The
examples in this chapter use the lsi_10k sample target library
provided in the $SYNOPSYS/libraries/syn directory.

 It contains the following sections:

• Register Inference

• Multibit Inference

• Multiplexer Inference

• Three-State Inference

• Loops

• State Machines
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Register Inference

Register inference allows you to use sequential logic in your designs
and keep your designs technology independent. A register is an
array of 1-bit memory devices. A latch is a level-sensitive memory
device, and a flip-flop is an edge-triggered memory device. Use the
coding guidelines in this section to control flip-flop and latch
inference.

As a recommended design practice, whenever you infer registers,
make certain that the clock and data inputs to the registers can be
directly controlled from the ports of the design. This ensures that you
can initialize your design easily during simulation as well as in the
actual circuit. You can, of course, infer registers with a set and a
reset, which makes the task of register initialization easier and is
highly recommended.

Flip-Flop Inference

SystemC Compiler can infer D flip-flops, JK flip-flops, and toggle
flip-flops. The following sections provide details about each of these
flip-flop types.

Simple D Flip-Flop

To infer a simple D flip-flop, make the SC_METHOD process
sensitive to only one edge of the clock signal. To infer a
rising-edge-triggered flip-flop, make the process sensitive to the
positive edge of the clock, and make the process sensitive to the
negative edge to infer a falling-edge-triggered flip-flop.
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SystemC Compiler creates flip-flops for all the variables that are
assigned values in the process. Example 4-1 is a common
SC_METHOD process description that infers a flip-flop. Figure 4-1
shows the inferred flip-flop.

Example 4-1 Inferring a Rising-Edge-Triggered Flip-Flop
/* Rising-edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff1) {
  sc_in<bool> in_data;
  sc_out<bool> out_q;
  sc_in<bool> clock;    // clock port

  // Method for D-flip-flop
  void do_dff_pos ();

  // Constructor
  SC_CTOR (dff1) {
    SC_METHOD (do_dff_pos);
    sensitive_pos << clock;
  }
};

void dff1::do_dff_pos(){
  out_q.write(in_data.read());
}

Figure 4-1 Inferred Rising-Edge-Triggered Flip-Flop
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D Flip-Flop With an Active-High Asynchronous Set or
Reset

To infer a D flip-flop with an asynchronous set or reset, include edge
expressions for the clock and the asynchronous signals in the
sensitivity list of the SC_METHOD process constructor. Specify the
asynchronous signal conditions with an if statement in the
SC_METHOD process definition. Example 4-2 shows a typical
asynchronous specification. Specify the asynchronous branch
conditions before you specify the synchronous branch conditions.

Example 4-2 is the SystemC description for a D flip-flop with an
active-high asynchronous reset. Figure 4-2 shows the inferred
flip-flop.

Example 4-2 D Flip-Flop With an Active-High Asynchronous
Reset

/* Rising-edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff3) {
  sc_in<bool> in_data, reset;
  sc_out<bool> out_q;
  sc_in<bool> clock;    // clock port

  void do_dff_pos ();

  // Constructor
  SC_CTOR (dff3) {
    SC_METHOD (do_dff_pos);
    sensitive_pos << clock << reset;
  }
};

void dff3::do_dff_pos () {
   if (reset.read()){
     out_q.write(0);
   }else{
     out_q.write(in_data.read());
   }
}
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Figure 4-2 D Flip-Flop With an Active-High Asynchronous
Reset

D Flip-Flop With an Active-Low Asynchronous Set
or Reset

Example 4-3 is a SystemC description for a D flip-flop with an
active-low asynchronous reset. Figure 4-3 shows the inferred
flip-flop.

Example 4-3 D Flip-Flop With an Active-Low Asynchronous
Reset

/* Rising-edge-triggered DFF
   with active-low reset */

#include "systemc.h"

SC_MODULE (dff3a) {
  sc_in<bool> in_data, reset;
  sc_out<bool> out_q;
  sc_in<bool> clock;    // clock port

  void do_dff_pos ();

  // Constructor
  SC_CTOR (dff3a) {
    SC_METHOD (do_dff_pos);
    sensitive_pos << clock;
    sensitive_neg << reset;
  }
};

void dff3a::do_dff_pos () {
   if (reset.read() == 0){
     out_q.write(0);
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   }else{
     out_q.write(in_data.read());
   }
}

Figure 4-3 D Flip-Flop With an Active-Low Asynchronous
Reset

D Flip-Flop With Active-High Asynchronous Set and
Reset

Example 4-4 is a SystemC description for a D flip-flop with
active-high asynchronous set and reset. Figure 4-4 shows the
inferred flip-flop.

An implied priority exists between set and reset, and reset has
priority. This priority is not guaranteed, because it can be
implemented differently in various technology libraries. To ensure the
correct behavior, assign a high value to either the set or reset at one
time, but not to both at the same time.

Example 4-4 Flip-Flop With Asynchronous Set and Reset
/* Rising-edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff4) {
  sc_in<bool> in_data, reset, set;
  sc_out<bool> out_q;
  sc_in<bool> clock;    // clock port
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  void do_dff_pos ();

  // Constructor
  SC_CTOR (dff4) {
    SC_METHOD (do_dff_pos);
    sensitive_pos << clock << reset << set;
  }
};

void dff4::do_dff_pos () {
   if (reset.read()){
     out_q.write(0);
   }else if (set.read()){
     out_q.write(1);
   }else{
     out_q.write(in_data.read());
   }
}

Figure 4-4 Flip-Flop With Asynchronous Set and Reset

D Flip-Flop With Synchronous Set or Reset

The previous examples illustrated how to infer a D flip-flop with
asynchronous controls—one way to initialize or control the state of a
sequential device. You can also synchronously reset or set a flip-flop.

If the target technology library does not have a D flip-flop with a
synchronous reset, a D flip-flop with synchronous reset logic as the
input to the D pin of the flip-flop is inferred. If the reset (or set) logic
is not directly in front of the D pin of the flip-flop, initialization
problems can occur during gate-level simulation of the design.
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To specify a synchronous set or reset input, do not include it in the
sensitivity list. Describe the synchronous set or reset test and action
in an if statement. Example 4-5 is a SystemC description for a D
flip-flop with synchronous reset. Figure 4-5 shows the inferred
flip-flop.

Example 4-5 D Flip-Flop With Synchronous Reset
/* Rising-edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff5) {
  sc_in<bool> in_data, reset;
  sc_out<bool> out_q;
  sc_in<bool> clock;    // clock port

  // Method for D-flip-flop
  void dff ();

  // Constructor
  SC_CTOR (dff5) {
    SC_METHOD (dff);
    sensitive_pos << clock;
  }
};

void dff5::dff()
{
  if (reset.read()){
    out_q.write(0);
  }else{
    out_q.write(in_data.read());
  }
}

Figure 4-5 D Flip-Flop With Synchronous Reset
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Inferring JK Flip-Flops

Use a switch…case statement to infer JK flip-flops.

JK Flip-Flop With Synchronous Set and Reset. Example 4-6
shows the SystemC code that implements the JK flip-flop truth table
in Table 4-1. In the JK flip-flop, the J and K signals are similar to
active-high synchronous set and reset. Figure 4-6 shows the inferred
flip-flop.

Example 4-6 JK Flip-Flop
/* Rising-edge-triggered JK FF */

#include "systemc.h"

SC_MODULE (jkff1) {
  sc_in<bool> j, k;
  sc_inout<bool> q;  // inout to read q for toggle
  sc_in<bool> clk;   // clock port

  // Method for D-flip-flop
  void jk_flop ();

 // Constructor
  SC_CTOR (jkff1) {
    SC_METHOD (jk_flop);
    sensitive_pos << clk;
  }
};

Table 4-1 Rising-Edge-Triggered JK Flip-Flop Truth Table

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising

X X Falling Qn

 Qn
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void jkff1::jk_flop() {
    sc_uint<2> temp;         //temp to create vector
    temp[1] = j.read( );
    temp[0] = k.read( );
    switch(temp) {
    case 0x1: q.write(0);     // write a zero
      break;
    case 0x2: q.write(1);     // write a 1
      break;
    case 0x3:                 // toggle
      q.write(!q.read());
      break;
    default: break;          // no change
    }
}

Figure 4-6 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset. Example 4-7 is
a SystemC description for a JK flip-flop with an active-low
asynchronous set and reset. To specify an asynchronous set or
reset, specify the signal in the sensitivity list as shown in
Example 4-7. Figure 4-7 shows the inferred flip-flop.

Example 4-7 JK Flip-Flop With Asynchronous Set and Reset
/* Rising-edge-triggered JKFF */

#include "systemc.h"

SC_MODULE (jkff2) {
  sc_in<bool> j, k, set, reset;
  sc_inout<bool> q;   // inout to read q for toggle
  sc_in<bool> clk;    // clock port

  // Method for D-flip-flop
  void jk_flop ();
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  // Constructor
  SC_CTOR (jkff2) {
    SC_METHOD (jk_flop);
    sensitive_pos << clk;
    sensitive_neg << set << reset;
  }
};
void jkff2::jk_flop() {
      sc_uint<2> temp;  //temp to create vector
      if (reset.read()==0){
           q.write(0);  // reset
      }else if (set.read()==0){
           q.write(1);  // set
      }else {
           temp[1] = j.read();
           temp[0] = k.read();
           switch(temp) {
             case 0x1: q.write(0);  // write zero
               break;
             case 0x2: q.write(1);  // write a 1
               break;
             case 0x3:              // toggle
               q.write(!q.read());
               break;
             default: break;        // no change
           }
      }
}

Figure 4-7 JK Flip-Flop With Asynchronous Set and Reset
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Inferring Toggle Flip-Flops

This section describes the toggle flip-flop with an asynchronous set
and the toggle flip-flop with an asynchronous reset.

Toggle Flip-Flop With Asynchronous Set. Example 4-8 is a
description for a toggle flip-flop with asynchronous set. The
asynchronous set signal is specified in the sensitivity list. Figure 4-8
shows the flip-flop.

Example 4-8 Toggle Flip-Flop With Asynchronous Set
#include "systemc.h"

SC_MODULE( tff1 ) {
  sc_in<bool> set, clk;
  sc_inout<bool> q;    // inout to read q for toggle

  void t_async_set_fcn ();

 SC_CTOR( tff1 ) {
    SC_METHOD( t_async_set_fcn);
    sensitive_pos << clk << set;
  }
};

void tff1::t_async_set_fcn () {
  if (set.read()){
    q.write(1);
  }else{
    q.write(!q.read());
  }
}

Figure 4-8 Toggle Flip-Flop With Asynchronous Set
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Toggle Flip-Flop With Asynchronous Reset. Example 4-9 is a
SystemC description for a toggle flip-flop with asynchronous reset.
The asynchronous reset signal is specified in the sensitivity list.
Figure 4-9 shows the inferred flip-flop.

Example 4-9 Toggle Flip-Flop With Asynchronous Reset
#include "systemc.h"

SC_MODULE( tff2 ) {
  sc_in<bool> reset, clk;
  sc_inout<bool> q;  // to read q for toggle

  void t_async_reset_fcn();

 SC_CTOR( tff2 ) {
    SC_METHOD( t_async_reset_fcn);
    sensitive_pos << clk << reset;
  }
};

void tff2::t_async_reset_fcn () {
      if (reset.read()){

  q.write(0);
      }else{

  q.write(!q.read());
      }
}

Figure 4-9 Toggle Flip-Flop With Asynchronous Reset
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Latch Inference

In simulation, a signal or a variable holds its value until that value is
reassigned. A latch implements the ability to hold a state in
hardware. SystemC Compiler supports inference of set/reset (SR)
and delay (D) latches.

You can unintentionally infer latches from your SystemC code, which
can add unnecessary hardware. SystemC Compiler infers a D latch
when your description has an incomplete assignment in an if…else
or switch…case statement. To avoid creating a latch, specify all
conditions in if…else and switch…case statements and assign all
variables in each branch.

Inferring a D Latch From an If Statement

An if statement infers a D latch when there is no else clause, as
shown in Example 4-10. The SystemC code specifies a value for
output out_q only when the clock has a logic 1 value, and it does not
specify a value when the clock has a logic 0 value. As a result, output
out_q becomes a latched value. Figure 4-10 shows the schematic of
the inferred latch.

Example 4-10 D Latch Inference Using an if Statement
#include "systemc.h"

SC_MODULE( d_latch1 ) {
  sc_in<bool> in_data;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  // Method process
  void d_latch_fcn () {
    if (clock.read())
       {out_q.write(in_data.read());}
  }

  // Constructor
  SC_CTOR( d_latch1 ) {
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    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock;
  }
};

Figure 4-10 D Latch Inferred From an if Statement

Inferring an SR Latch. SR latches are difficult to test, so use them
with caution. If you use SR latches, verify that the inputs are hazard
free and do not generate glitches. During synthesis, SystemC
Compiler does not ensure that the logic driving the inputs is hazard
free.

Example 4-11 is the SystemC code that implements the truth table
in Table 4-2 for an SR latch. Figure 4-11 shows the inferred SR latch.

Output y is unstable when both inputs are at a logic 0 value, so you
need to include a check in the SystemC code to detect this condition
during simulation. SystemC Compiler does check for these
conditions.

Table 4-2 Truth Table for the SR Latch (NAND Type)

set reset Q

0 0 Not stable

0 1 1

1 0 0

1 1 Q
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Example 4-11 SR Latch
/***sr_latch.cc***/

#include "systemc.h"

SC_MODULE( sr_latch ) {
  sc_in<bool> RESET, SET;
  sc_out<bool> Q;

  void sr_latch_fcn () {
    if (RESET.read() == 0){
      Q.write(0);
    }else if (SET.read() == 0){
      Q.write(1);
    }
  }

  SC_CTOR( sr_latch ) {
    SC_METHOD( sr_latch_fcn);
    sensitive << RESET << SET;
  }
};

Figure 4-11 SR Latch

Avoiding Latch Inference. To avoid latch inference, assign a value
to a signal for all cases in a conditional statement. Example 4-12
shows addition of an else clause to avoid the latch inferred by the if
statement in Example 4-10, and Figure 4-12 shows the resulting
schematic.
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Example 4-12 Adding an Else Clause to Avoid Latch Inference
#include "systemc.h"

SC_MODULE( d_latch1a ) {
  sc_in<bool> in_data;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  // Method process
  void d_latch_fcn () {
    if (clock.read()){
       out_q.write(in_data.read());
    }else{
       out_q.write(false);
    }
  }

  // Constructor
  SC_CTOR( d_latch1a ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock;
  }
};

Figure 4-12 Avoiding Latch Inference by Adding Else Clause

You can also avoid latch inference by assigning a default value to the
output port. Example 4-13 shows the setting of a default value to
avoid the latch inferred by the if statement in Example 4-10, and
Figure 4-13 shows the resulting schematic.
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Example 4-13 Setting a Default Value to Avoid Latch Inference
#include "systemc.h"

SC_MODULE( d_latch1b ) {
  sc_in<bool> in_data;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  // Method process
  void d_latch_fcn () {
    out_q.write(1);     // set a default
    if (clock.read())
       {out_q.write(in_data.read());}
  }

  // Constructor
  SC_CTOR( d_latch1b ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock;
  }
};

Figure 4-13 Avoiding Latch Inference by Setting a Default Value

Inferring a Latch From a Switch Statement

Example 4-14 shows a switch statement that infers D latches
because it does not provide assignments to the out port for all
possible values of the in_i input. Figure 4-14 shows the inferred
latches.
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Example 4-14 Latch Inference From a switch Statement
#include "systemc.h"

SC_MODULE( d_latch2 ) {
  sc_in<unsigned char> in_i;
  sc_out<unsigned char> out;

  // Method process
  void d_latch_fcn () {
    switch (in_i.read()) {
    case 0: out.write(0x01); break;
    case 1: out.write(0x02); break;
    case 2: out.write(0x04); break;
    case 3: out.write(0x10); break;
    case 4: out.write(0x20); break;
    case 5: out.write(0x40); break;
    }
  }

  // Constructor
  SC_CTOR( d_latch2 ) {
    SC_METHOD( d_latch_fcn);
    sensitive (in_i);
  }
};
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Figure 4-14 Latch Inference From a switch Statement
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To avoid latch inference caused by the incomplete switch statement
in Example 4-14, add a default case statement, as shown in
Example 4-15. Figure 4-15 shows the resulting schematic.

Example 4-15 Avoiding Latch Inference From a switch
Statement

#include "systemc.h"

SC_MODULE( d_latch2a ) {
  sc_in<unsigned char> in_i;
  sc_out<unsigned char> out;

  // Method process
  void d_latch_fcn () {
    switch (in_i.read()) {
    case 0: out.write(0x01); break;
    case 1: out.write(0x02); break;
    case 2: out.write(0x04); break;
    case 3: out.write(0x10); break;
    case 4: out.write(0x20); break;
    case 5: out.write(0x40); break;
    default: out.write(0x01);
    }
  }

  // Constructor
  SC_CTOR( d_latch2a ) {
    SC_METHOD( d_latch_fcn);
    sensitive (in_i);
  }
};
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Figure 4-15 Avoiding Latch Inference by Adding a Default
Case to a switch Statement

You can also avoid latch inference caused by the incomplete switch
statement in Example 4-14 by writing a default value to the output
port, as shown in Example 4-16. Figure 4-16 shows the resulting
schematic.
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Example 4-16 Set a Default Value to Avoid Latch Inference From a
switch Statement

#include "systemc.h"

SC_MODULE( d_latch2b ) {
  sc_in<unsigned char> in_i;
  sc_out<unsigned char> out;

  // Method process
  void d_latch_fcn () {
    out.write(1);  // Set default value
    switch (in_i.read()) {
    case 0: out.write(0x01); break;
    case 1: out.write(0x02); break;
    case 2: out.write(0x04); break;
    case 3: out.write(0x10); break;
    case 4: out.write(0x20); break;
    case 5: out.write(0x40); break;
    }
  }

  // Constructor
  SC_CTOR( d_latch2b ) {
    SC_METHOD( d_latch_fcn);
    sensitive (in_i);
  }
};
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Figure 4-16 Avoiding Latch Inference by Setting a Default Case
Before a switch Statement

Priority Encoding

Switch…case and if…else conditional statements are priority-
encoded in simulation. Priority-encoded hardware is rarely needed,
and it can add unnecessary gates and time to the synthesized
design.
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SystemC Compiler defaults to priority-encoded logic for a switch
statement when

• You do not define all the cases in a switch statement

• All the cases are not mutually exclusive

In addition to defining a default case (Example 4-15 on page 4-21)
and setting a default value (Example 4-16 on page 4-23), you can
instruct SystemC Compiler that other cases are not necessary for a
switch statement by adding the full_case compiler directive in
your code. Example 4-17 uses the full_case directive, and
Figure 4-17 shows the resulting schematic.

Example 4-17 Using the full_case Compiler Directive With a
switch Statement

#include "systemc.h"

SC_MODULE( d_latch2c ) {
  sc_in<unsigned char> in_i;
  sc_out<unsigned char> out;

  // Method process
  void d_latch_fcn () {
    switch (in_i.read()) {
    // synopsys full_case
    case 0: out.write(0x01); break;
    case 1: out.write(0x02); break;
    case 2: out.write(0x04); break;
    case 3: out.write(0x10); break;
    case 4: out.write(0x20); break;
    case 5: out.write(0x40); break;
    }
  }

  // Constructor
  SC_CTOR( d_latch2c ) {
    SC_METHOD( d_latch_fcn);
    sensitive (in_i);
  }
};



4-26

Chapter 4: RTL Coding Guidelines

Figure 4-17 Using the full_case Compiler Directive With a
switch Statement

Active-Low Set and Reset

To instruct SystemC Compiler to implement all the signals in a group
as active-low, add a check to the SystemC code to ensure that the
group of signals has only one active-low signal at a given time.
SystemC Compiler does not produce any logic to check this
assertion.

Example 4-18 shows a latch with an active-low set and reset.
Figure 4-18 shows the resulting schematic.



4-27

Register Inference

Example 4-18 Latch With Active-Low Set and Reset
#include "systemc.h"

SC_MODULE( d_latch6a ) {
  sc_in<bool> in_data, set, reset;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  void d_latch_fcn (){
    infer_latch: {
      if (reset.read() == 0){
        out_q.write(0);
      }else if (set.read() == 0){
        out_q.write(1);
      }else if (clock.read()){
        out_q.write(in_data.read());
      }
    }
  }
  // Constructor
  SC_CTOR( d_latch6a ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock << set << reset;
  }
};

Figure 4-18 Latch With Active-Low Set and Reset

Active-High Set and Reset

To instruct SystemC Compiler to implement all the signals in a group
as active-high, add a check to the SystemC code to ensure that the
group of signals has only one active-high signal at a given time.
SystemC Compiler does not produce any logic to check this
assertion.
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Example 4-19 shows a latch with the set and reset specified as
active-high. Figure 4-19 shows the resulting schematic.

Example 4-19 Latch With Active-High Set and Reset
#include "systemc.h"

SC_MODULE( d_latch7a ) {
  sc_in<bool> in_data, set, reset;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  void d_latch_fcn (){
    infer_latch: {
      if (reset.read()){
        out_q.write(0);
      }else if (set.read()){
        out_q.write(1);
      }else if (clock.read()){
        out_q.write(in_data.read());
      }
    }
  }
  // Constructor
  SC_CTOR( d_latch7a ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock << set << reset;
  }
};

Figure 4-19 Latch With Active-High Set and Reset
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D Latch With an Asynchronous Set and Reset

Example 4-20 is a SystemC description for a D latch with an
active-low asynchronous set and reset. Figure 4-20 shows the
inferred latch.

Example 4-20 D Latch With Asynchronous Set and Reset
#include "systemc.h"

SC_MODULE( d_latch6 ) {
  sc_in<bool> in_data, set, reset;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  void d_latch_fcn (){
      if (reset.read() == 0){
        out_q.write(0);
      }else if (set.read() == 0){
        out_q.write(1);
      }else if (clock.read()){
        out_q.write(in_data.read());
      }
  }
  // Constructor
  SC_CTOR( d_latch6 ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock << set << reset;
  }
};

Figure 4-20 Latch With Asynchronous Set and Reset
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D Latch With an Asynchronous Set

Example 4-21 is a SystemC description for a D latch with an
asynchronous set. Figure 4-21 shows the inferred latch.

Example 4-21 D Latch With Asynchronous Set
#include "systemc.h"

SC_MODULE( d_latch4 ) {
  sc_in<bool> in_data, set;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  void d_latch_fcn () {
    if (set.read() == 0){
      out_q.write( 1 );
    }else if (clock.read()){
      out_q.write(in_data.read());
    }
  }

  // Constructor
  SC_CTOR( d_latch4 ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock << set;
  }
};

Figure 4-21 Latch With Asynchronous Set
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D Latch With an Asynchronous Reset

Example 4-22 is a SystemC description for a D latch with an
asynchronous reset. Figure 4-22 shows the inferred latch.

Example 4-22 D Latch With Asynchronous Reset
#include "systemc.h"

SC_MODULE( d_latch5 ) {
  sc_in<bool> in_data, reset;
  sc_in<bool> clock;
  sc_out<bool> out_q;

  void d_latch_fcn () {
    if (reset.read() == 0){
      out_q.write(0);
    }else if (clock.read()){
      out_q.write(in_data.read());
    }
  }
  // Constructor
  SC_CTOR( d_latch5 ) {
    SC_METHOD( d_latch_fcn);
    sensitive << in_data << clock << reset;
  }
};

Figure 4-22 Latch With Asynchronous Reset
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Understanding the Limitations of Register Inference

SystemC Compiler cannot infer the following components:

• Flip-flops and latches with three-state outputs

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

You can instantiate these components in your SystemC description.
SystemC Compiler interprets these flip-flops and latches as black
boxes.

Instantiating a Component as a Black Box

To instantiate a flip-flop or a latch as a black box in your SystemC
RTL netlist, create a dummy SystemC module with the same module
name and port names as those of the cell in the technology library
that you want to instantiate. The module and port names are
case-sensitive and must exactly match the cell names. You do not
need to describe the module’s function, because Design Compiler
replaces it with the actual library cell.

Example 4-23 shows a dummy module for the or2c1 cell from the
tc6a_cbacore sample technology library. An instance of the or2c1
module named my_gate is created in the gate module.
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Example 4-23 Instantiating a Register That Cannot Be Inferred
/****gate.h****/

/*****************************************
 *  This example shows how to instantiate
 *  an or2c1 gate from the tc6a_cbacore
 *  library in a SystemC RTL netlist.
 *****************************************/
#include "systemc.h"

SC_MODULE(or2c1) {
  sc_in<bool>  A, B;
  sc_out<bool> Y;

  SC_CTOR(or2c1) {}
};

SC_MODULE(gate) {
  sc_in<bool>         clk, reset;
  sc_in<sc_uint<8> >  data;
  sc_out<bool>        match;

  sc_signal<bool> a_match, b_match;

  /*
   *   RTL processes
   */
  void match_a();
  void match_b();

  /*
   *   Pointer for block allocation
   */
  or2c1 *my_gate;

  SC_CTOR(gate) {
    /*
     *   Instantiate and hook up the gate
     */
    my_gate = new or2c1("my_gate");
    my_gate->A(a_match);
    my_gate->B(b_match);
    my_gate->Y(match);

    SC_METHOD(match_a);
    sensitive_pos << clk;
    sensitive_neg << reset;

    SC_METHOD(match_b);
    sensitive_pos << clk;
    sensitive_neg << reset;
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  }
};

/****gate.cc****/
#include "gate.h"

void gate::match_a() {
  if (reset.read() == 0) {
    a_match = 0;
  } else {
    if (data.read() == 3) {
      a_match = 1;
    } else {
      a_match = 0;
    }
  }
}

void gate::match_b() {
  if (reset.read() == 0) {
    b_match = 0;
  } else {
    if (data.read() == 7) {
      b_match = 1;
    } else {
      b_match = 0;
    }
  }
}

To perform RTL synthesis and instantiate the or2c1 cell,

1. Elaborate the gate module that contains the dummy or2c1
module.

dc_shell>  compile_systemc -rtl -format db gate.cc

2. Remove the dummy module.

dc_shell> remove_design or2c1

3. Set the current design to be the gate module.

dc_shell> current_design gate

4. Remove the current links, and create new links for the design.
This links the or2c1 cell from the technology library.
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dc_shell> link

5. Instruct Design Compiler not to touch the my_gate instantiation
of the or2c1 cell in the design.

dc_shell> set_dont_touch find(cell, my_gate)

6. Compile the design to gates.

dc_shell> compile

Multibit Inference

A multibit component (MBC), such as a 16-bit register, reduces the
area and power in a design. The primary benefit of MBCs is to create
a more uniform structure for layout during place and route.

Multibit inference allows you to map registers, multiplexers, and
three-state cells to regularly structured logic or multibit library cells.
Multibit library cells (macro cells, such as 16-bit banked flip-flops)
have these advantages:

• Smaller area and delay, due to shared transistors (as in select or
set/reset logic) and optimized transistor-level layout. With
single-bit components, the select or set/reset logic is repeated in
each single-bit component.

• Reduced clock skew in sequential gates, because the clock
paths are balanced internally in the hard macro implementing the
MBC.

• Lower power consumption by the clock in sequential banked
components, due to reduced capacitance driven by the clock net.

• Better performance, due to the optimized layout within the MBC.
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• Improved regular layout of the datapath.

To direct SystemC Compiler to infer multibit components,

• Add the infer_multibit or dont_infer_ multibit
compiler directive (see “Multibit Inference Compiler Directives”
on page A-3) to individual ports or signals in the SystemC
description.

• Or define the dc_shell hdlin_infer_multibit variable,
which specifies that multibit inference is allowed for the entire
design. The allowed values for hdlin_infer_multibit are
default_all, default_none, and never. See the
hdlin_infer_multibit man page for additional information.

Inferring Multibit

Example 4-24 shows inference of a 2-bit multiplexer, resulting in the
schematic in Figure 4-23.

Example 4-24 Inferring a 2-Bit 4-to-1 Multiplexer
#include "systemc.h"

SC_MODULE( infer_multibit ) {

  sc_in<sc_uint<2> > a;
  sc_in<sc_int<2> > w;
  sc_in<sc_int<2> > x;
  sc_in<sc_int<2> > y;
  sc_in<sc_int<2> > z;

  sc_out<sc_int<2> > b1; // synopsys infer_multibit "b1"

  void f1 ();

  SC_CTOR( infer_multibit ) {
    SC_METHOD( f1);
    sensitive << a << w << x << y << z;
  }
};

void infer_multibit:: f1 ()
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{
  switch (a.read ()) {
  case 3:
    b1.write(w);
    break;
  case 2:
    b1.write(x);
    break;
  case 1:
    b1.write(y);
    break;
  case 0:
    b1.write(z);
    break;
  }
}

Figure 4-23 Inferring a 2-Bit 4-to-1 Multiplexer
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Preventing Multibit Inference

Example 4-25 shows restriction of the description to prevent
inference of a 2-bit multiplexer. This restriction results in the
schematic in Figure 4-24.

Example 4-25 Preventing Inference of a 2-Bit 4-to-1 Multiplexer
#include "systemc.h"

SC_MODULE( infer_multibit2 ) {

  sc_in<sc_uint<2> > a;
  sc_in<sc_int<2> > w;
  sc_in<sc_int<2> > x;
  sc_in<sc_int<2> > y;
  sc_in<sc_int<2> > z;

  sc_out<sc_int<2> > b2; // synopsys dont_infer_multibit "b2"

  void f1 ();

  SC_CTOR( infer_multibit2 ) {
    SC_METHOD( f1);
    sensitive << a << w << x << y << z;
  }
};

void infer_multibit2:: f1 ()
{
  switch (a.read ()) {
  case 3:
    b2.write(w);
    break;
  case 2:
    b2.write(x);
    break;
  case 1:
    b2.write(y);
    break;
  case 0:
    b2.write(z);
    break;
  }
}
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Figure 4-24 Preventing Inference of a 2-Bit 4-to-1 Multiplexer

Multiplexer Inference

SystemC Compiler can infer a generic multiplexer cell (MUX_OP)
from switch statements and if-then-else statements in your SystemC
description. SystemC Compiler maps inferred MUX_OPs to
multiplexer cells in the target technology library.

The size of the inferred MUX_OP depends on the number of unique
cases in the switch statement. If you want to use the multiplexer
inference feature, the target technology library must contain at least
a 2-to-1 multiplexer.

MUX_OPs are hierarchical cells similar to Synopsys DesignWare
components. SystemC Compiler passes the multiplexer inference
information to Design Compiler, and Design Compiler determines
the MUX_OP implementation during logic synthesis, based on the



4-40

Chapter 4: RTL Coding Guidelines

design constraints. For information about how Design Compiler
maps MUX_OPs to multiplexers in the target technology library, see
the Design Compiler Reference Manual: Optimization and Timing
Analysis.

Inferring Multiplexers From a Block of Code

Use the infer_mux compiler directive to instruct SystemC
Compiler to infer MUX_OPs for all switch statements inside a block
of code. In Example 4-26, the infer_mux compiler directive is
attached to the code block labeled tt, which contains two switch
statements. The code block can contain any number of switch
statements.

SystemC Compiler infers a MUX_OP for each case in the switch
statement. The first switch statement has four unique cases and
infers a 4-to-1 MUX_OP. The second switch statement has two
unique cases and infers a 2-to-1 MUX_OP. Figure 4-25 shows the
inferred multiplexers.

Example 4-26 Multiplexer Inference From a Block of Code
#include "systemc.h"

SC_MODULE( infer_mux_blk ) {
  sc_in<sc_uint<2> > a;
  sc_in<sc_uint<1> > b;
  sc_in<sc_int<2> > w, x, y, z;
  sc_out<sc_int<2> > b2, b3;

  void f2 ();

  SC_CTOR( infer_mux_blk ) {

    SC_METHOD( f2);
    sensitive << a <<b << w << x << y << z;
  }
};

//  infer mux for all switch statements in block ’tt’
void infer_mux_blk:: f2 ()
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{
  // synopsys infer_mux "tt"
  tt: {
    switch (a.read ()) {
    case 3:
      b2.write(w);
      break;
    case 2:
      b2.write(x);
      break;
    case 1:
      b2.write(y);
      break;
    case 0:
      b2.write(z);
      break;
    }
    switch (b.read ()) {
    case 1:
      b3.write(y);
      break;
    case 0:
      b3.write(z);
      break;
    }
  }
}
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Figure 4-25 Inferring a Multiplexer for a Block

Preventing Multiplexer Inference

Example 4-27 shows the code from Example 4-26 without the
infer_mux compiler directive, and Figure 4-26 shows the resulting
schematic.

Example 4-27 No Multiplexer Inference From a Block of Code
#include "systemc.h"

SC_MODULE( infer_mux_blk ) {
  sc_in<sc_uint<2> > a;
  sc_in<sc_uint<1> > b;
  sc_in<sc_int<2> > w, x, y, z;
  sc_out<sc_int<2> > b2, b3;

  void f2 ();
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  SC_CTOR( infer_mux_blk ) {

    SC_METHOD( f2);
    sensitive << a <<b << w << x << y << z;
  }
};

/*  Do not use the infer mux for all switch
    statements in block ’tt’ */

void infer_mux_blk:: f2 ()
{
  tt: {
    switch (a.read ()) {
    case 3:
      b2.write(w);
      break;
    case 2:
      b2.write(x);
      break;
    case 1:
      b2.write(y);
      break;
    case 0:
      b2.write(z);
      break;
    }
    switch (b.read ()) {
    case 1:
      b3.write(y);
      break;
    case 0:
      b3.write(z);
      break;
    }
  }
}
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Figure 4-26 Block of Code Without Multiplexer Inference

Inferring a Multiplexer From a Specific Switch
Statement

You can also specify the infer_mux compiler directive from a single
switch statement by placing the compiler directive as the first line
inside the switch statement, as shown in Example 4-28. This switch
statement reads four unique values, and SystemC Compiler infers a
4-to-1 MUX_OP. Figure 4-27 shows the inferred multiplexer.
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Example 4-28 Multiplexer Inference From a Specific switch
Statement

#include "systemc.h"

SC_MODULE( infer_mux_blk3 ) {
  sc_in<sc_uint<2> > a;
  sc_in<sc_uint<1> > b;
  sc_in<sc_int<2> > w, x, y, z;
  sc_out<sc_int<2> > b2, b3;

  void f2 ();

  SC_CTOR( infer_mux_blk3 ) {

    SC_METHOD( f2);
    sensitive << a <<b << w << x << y << z;
  }
};

/*  Infer mux for only the first switch statement
    in block ’tt’ */
void infer_mux_blk3:: f2 ()
{
  tt: {
    switch (a.read ()) { //synopsys infer_mux
    case 3:
      b2.write(w);
      break;
    case 2:
      b2.write(x);
      break;
    case 1:
      b2.write(y);
      break;
    case 0:
      b2.write(z);
      break;
    }
    switch (b.read ()) {
    case 1:
      b3.write(y);
      break;
    case 0:
      b3.write(z);
      break;
    }
  }
}
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Figure 4-27 Inferring a Multiplexer From a Specific switch
Statement

Understanding the Limitations of Multiplexer Inference

SystemC Compiler does not infer MUX_OPs for

• if...else statements

• switch statements in while loops
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SystemC Compiler infers MUX_OPs for incompletely specified
switch statements, but the resulting logic might not be optimal.
SystemC Compiler considers the following types of switch
statements incompletely specified:

• A switch statement that has a missing case statement branch

• A switch statement that contains an if statement

• A switch statement that contains other switch statements

Three-State Inference

A three-state driver is inferred when you assign the value Z to a
variable. The value Z represents the high-impedance state. You can
assign high-impedance values to single-bit or bused variables. The
assignment must occur in a conditional statement (if or switch) or
with the conditional operator (?:). Note that only the sc_logic and
sc_lv data types support the value Z.

Simple Three-State Inference

Example 4-29 is a SystemC description for a simple three-state
driver. Figure 4-28 shows the schematic the code generates.

Example 4-29 Three-State Buffer Inference From a Block of
Code

// simple three-state buffer inference
#include "systemc.h"
SC_MODULE( tristate_ex1 ) {
  sc_in<bool> control;
  sc_in<sc_logic> data;
  sc_out<sc_logic> ts_out;

  // Method for three-state driver
  void tristate_fcn () {
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    if (control.read()){
      ts_out.write(data.read());
    }else{
      ts_out.write(’Z’);
    }
  }

  // Constructor
  SC_CTOR( tristate_ex1 ) {
    SC_METHOD( tristate_fcn);
    sensitive << control << data;
  }
};

Figure 4-28 Schematic of a Simple Three-State Driver

Example 4-30 shows a different coding style for three-state
inference. In this case, SystemC Compiler infers a single three-state
driver. Figure 4-29 shows the schematic the code generates.

Example 4-30 Inferring One Three-State Driver
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE( tristate_ex2 ) {
  sc_in<bool> in_sela, in_selb;
  sc_in<sc_logic> in_a, in_b;
  sc_out<sc_logic> out_1;

  // Method for single three-state driver
  void tristate_fcn () {
    out_1.write(’Z’);  //default value
    if (in_sela.read()){
      out_1.write(in_a.read());
    }else if (in_selb.read()){
      out_1.write(in_b.read());
    }
  }

  // Constructor
  SC_CTOR( tristate_ex2 ) {
    SC_METHOD( tristate_fcn);
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    sensitive << in_sela <<in_selb << in_a << in_b;
  }
};

Figure 4-29 Three-State Driver With Gated Data

Three-State Driver for Bus

To infer a three-state driver to resolve bus contention, use a port of
type sc_out_rv, as shown in Example 4-31. Figure 4-30 shows the
resulting schematic.

Example 4-31 Three-State Driver for Bus
// Three-state buffer inference
// with resolved logic output
#include "systemc.h"

SC_MODULE( tristate_ex3 ) {
  sc_in<bool> in_sela, in_selb;
  sc_in<sc_logic> in_a, in_b;
  sc_out_rv<1> out_1;

  // Method for first three-state driver
  void tristate_a();

  // Method for second three-state driver
  void tristate_b();

  // Constructor
  SC_CTOR( tristate_ex3 ) {
    SC_METHOD( tristate_a);
    sensitive << in_sela << in_a;
    SC_METHOD( tristate_b);
    sensitive << in_selb << in_b;
  }
};
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void tristate_ex3::tristate_a() {
    if (in_sela.read()){
      out_1.write(in_a.read());
    }else{
      out_1.write("Z");
    }
}

void tristate_ex3::tristate_b() {
    if (in_selb.read()){
      out_1.write(in_b.read());
   }else{
      out_1.write("Z");
   }
}

Figure 4-30 Three-State Bus Driver Schematic

Registered Three-State Drivers

When a variable is registered in the same process in which it is
inferred as three-state, SystemC Compiler also registers the enable
pin of the three-state gate. Example 4-32 is an example of this type
of code. Figure 4-31 shows the schematic generated by the code.

Example 4-32 Three-State Driver With Registered Enable
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE( tristate_ex4 ) {
  sc_in<bool> control;
  sc_in<sc_logic> data;
  sc_out<sc_logic> ts_out;
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  sc_in_clk clk;

  // Method for three-state driver
  void tristate_fcn () {
    if (control.read()){
      ts_out.write(data.read());
    }else{
      ts_out.write(’Z’);
    }
  }

  // Constructor
  SC_CTOR( tristate_ex4 ) {
    SC_METHOD( tristate_fcn);
    sensitive_pos << clk; // note inferred seq logic
  }
};

Figure 4-31 Three-State Driver With Registered Enable

To avoid registering the enable pin, separate the three-state driver
inference from the sequential logic inference, using two
SC_METHOD processes. Example 4-33 uses two methods to
instantiate a three-state gate, with a flip-flop only on the input. Note
that the sc_signal temp is used to communicate between the two
SC_METHOD processes. Figure 4-32 shows the schematic the
code generates.
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Example 4-33 Three-State Driver Without Registered Enable
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE( tristate_ex5 ) {
  sc_in<bool> control;
  sc_in<sc_logic> data;
  sc_out<sc_logic> ts_out;
  sc_in_clk clk;

  sc_signal<sc_logic> temp;

  // Method for three-state driver
  void tristate_fcn () {
    if (control.read()){
      ts_out.write(temp);
    }else{
      ts_out.write(’Z’);
    }
  }

  // Method for sequential logic
  void flop () {
    temp = data.read();
  }

  // Constructor
  SC_CTOR( tristate_ex5 ) {
    SC_METHOD( tristate_fcn);
    sensitive << control << temp ;
    SC_METHOD( flop );
    sensitive_pos << clk;
  }
};

Figure 4-32 Three-State Driver Without Registered Enable
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Understanding the Limitations of Three-State Inference

The value of Z is valid only for the sc_logic and sc_lv data types. You
can use the Z value in the following ways:

• Variable assignment

• Function call argument

• Return value

You cannot use the Z value in an expression, except for comparison
with Z. Be careful when using expressions that compare with the Z
value. SystemC Compiler always evaluates these expressions to
false, and the pre-synthesis and post-synthesis simulation results
might differ. For this reason, SystemC Compiler issues a warning
when it synthesizes such comparisons. The following example
shows incorrect use of the Z value in an expression:

OUT_VAL = (’Z’ && IN_VAL);

The following example shows correct use of the Z value:

IN_VAL =  ’Z’;

Loops

SystemC Compiler supports for loops, while loops, and do-while
loops for synthesis. For RTL synthesis, SystemC Compiler keeps all
loops rolled, but they are automatically unrolled by Design Compiler.
Therefore, all loops must be unrollable.
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Loop Unrolling Criteria

To make a loop unrollable, adhere to the following criteria for creating
loops:

• A loop index must be an integer type. Valid types are char, short,
int, long, sc_int, sc_bigint, and the unsigned version of these
types.

• The loop index initial value must resolve to a constant at compile
time.

• The loop index initial assignment cannot be in a conditional
branch that may or may not be executed.

• The valid loop index operations are add, subtract, increment, and
decrement.

• The valid loop condition test relational operators are <, <=, >, >=,
and !=. The equality operator == is not useful for a loop condition
test and is not supported for synthesis.

• The loop condition test limit must be a constant value or an
expression that resolves to a constant at compile time.

• Loops cannot contain switch statements that have a continue
statement.

• The loop condition cannot be null or empty.
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Unrolled Loop

An unrolled loop replicates the code body of each loop iteration.
Unrolled loops can cause longer runtimes. Figure 4-33 shows a
representation of a rolled and an unrolled for loop. For RTL
synthesis, all loops are unrolled.

Figure 4-33 Rolled and Unrolled for Loops

rolled_loop:
  for (int i=0; i<=7; i++) {
      c[i] = a[i] + b[i];
      ...
  } // end rolled_loop

 c[0] = a[0] + b[0]

 c[1] = a[1] + b[1]

 c[2] = a[2] + b[2]

 c[3] = a[3] + b[3]

 c[4] = a[4] + b[4]

 c[5] = a[5] + b[5]

 c[6] = a[6] + b[6]

 c[7] = a[7] + b[7]

c[i] = a[i] + b[i]

counter for i

Rolled loop Unrolled loop
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for Loop Comma Operator

The comma (,) operator in the for loop definition in Example 4-34 is
not supported for synthesis.

Example 4-34 Comma (,) Operator Is Not Supported in a
for Loop

for (i=0, j=0; i < 6; i++, j++)

Dead Loops

A dead loop is a loop that never executes, and SystemC Compiler
issues an error message if your code contains a dead loop.
Example 4-35 shows a dead loop.

Example 4-35 Dead Loop
for (int i = 0; i > 0; i++) { ... }

Infinite Loops

SystemC Compiler issues an error message if your code contains an
infinite loop. Example 4-36 shows various infinite loops.

Example 4-36 Infinite Loops
for (int i = 1; i <= 127; i = i + 0) { ... }

for (char i = 0; i <= 127; i++) { ... }

for (char i = 0; i <= 127; i += 74) { ... }
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State Machines

Explicitly describe state machines for RTL synthesis. Figure 4-34
shows a Mealy state machine structure.

Figure 4-34 Mealy State Machine

The diagram in Figure 4-34 has one sequential element—the state
vector—and two combinational elements, the output logic and the
next-state logic. Although the output logic and the next-state logic
are separate in this diagram, you can merge them into one logic
block in which gates can be shared for a smaller design area.

The output logic is always a function of the current state (state
vector) and optionally a function of the inputs. If inputs are included
in the output logic, the state machine is a Mealy state machine. If
inputs are not included, the state machine is a Moore state machine.

The next-state logic is always a function of the current state (state
vector) and optionally a function of the inputs.

Inputs Outputs

Output
logic

State

vector
clk

Next-state
logic
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The common implementations of state machines are

• An SC_METHOD process for updating the state vector and a
single common SC_METHOD process for both the output and
the next-state logic

• An SC_METHOD process for the state vector, an SC_METHOD
process for the output logic, and a separate SC_METHOD
process for the next-state logic

• A Moore machine with a single process for computing and
updating the next-state vector and outputs

Figure 4-35 shows a state diagram that represents a state machine,
where a and b are outputs.

Figure 4-35 Finite State Machine State Diagram

S1

S2

input1==0

input1==1

input2==0 input2==1

S0

b = 0
a = 0/1

b = 1
a = 0

b = 0
a = 0
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State Machine With a Common Computation Process

Example 4-37 shows the state machine represented in Figure 4-35
with a common SC_METHOD process for computing the output and
next-state logic.

Example 4-37 State Machine With Common Computation
Process

/**ex_fsm_a.h**/
SC_MODULE(ex_fsm_a){

  sc_in_clk clk;
  sc_in<bool> rst, input1, input2;
  sc_out<bool> a, b;

  sc_signal<state_t> state, next_state;

  void ns_logic();
  void update_state();

  SC_CTOR(ex_fsm_a){
    SC_METHOD(update_state);

sensitive_pos << clk;
    SC_METHOD(ns_logic);
    sensitive << state << input1 << input2;
    }
  };

/**ex_fsm_a.cpp**/
#include "systemc.h"
#include "fsm_types.h"
#include "ex_fsm_a.h"

void ex_fsm_a::update_state()  {
  if (rst.read() == true){
      state = S0;
  }else{
      state = next_state;
  }
}

void ex_fsm_a::ns_logic()  {
// Determine next state
  switch(state)  {
    case S0:
         b.write(0);
         if (input1.read() || input2.read()){
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            a.write(1);
         }else{
            a.write(0);
         }if (input1.read() == 1){
            next_state = S1;
         }else{
            next_state = S0;

     }
         break;
    case S1:
         a.write(0);
         b.write(1);
         if (input2.read() == 1){
            next_state = S2;
         }else{
            next_state = S0;

     }
         break;
    case S2:
         a.write(0);
         b.write(0);
         next_state = S0;
         break;
    default:
         a.write(0);
         b.write(0);
         next_state = S0;
         break;
  }
}

State Machine With Separate Computation Processes

Example 4-38 shows the state machine represented in Figure 4-35
with separate SC_METHOD processes for computing the output and
next-state logic.

Example 4-38 State Machine With Separate Processes
/**ex_fsm_b.h**/
SC_MODULE(ex_fsm_b){

  sc_in_clk clk;
  sc_in<bool> rst, input1, input2;
  sc_out<bool> a, b;

  sc_signal<state_t> state, next_state;

  void ns_logic();
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  void output_logic();
  void update_state();

  SC_CTOR(ex_fsm_b){
    SC_METHOD(update_state);
    sensitive_pos << clk;
    SC_METHOD(ns_logic);
    sensitive << state << input1 << input2;
    SC_METHOD(output_logic);
    sensitive << state << input1 << input2;
  }
};

/**ex_fsm_b.cpp**/
#include "systemc.h"
#include "fsm_types.h"
#include "ex_fsm_b.h"

void ex_fsm_b::update_state()  {
    if (rst.read() == true){
      state = S0;
    }else{
      state = next_state;
    }
}

void ex_fsm_b::ns_logic()  {

// Determine next state
  switch(state)  {
    case S0:
         if (input1.read())
            next_state = S1;
         else
            next_state = S0;
         break;
    case S1:
         if (input2.read())
            next_state = S2;
         else
            next_state = S0;
         break;
    case S2:
         next_state = S0;
         break;
    default:
         next_state = S0;
         break;
  }
}

void ex_fsm_b::output_logic(){
// determine outputs
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  a.write(state == S0 && (input1.read() || input2.read() ) );
  b.write(state == S1);
}

Moore State Machine

Example 4-39 shows a Moore state machine with a single
SC_METHOD process for computing and updating the output and
next-state logic.

Example 4-39 Moore State Machine
/**ex_fsm_c.h**/
SC_MODULE(ex_fsm_c){

  sc_in_clk clk;
  sc_in<bool> rst, input1, input2;
  sc_out<bool> a, b;

  sc_signal<state_t> state;

  void update_state();

  SC_CTOR(ex_fsm_c){
    SC_METHOD(update_state);
    sensitive_pos << clk;
  }
};
/**ex_fsm_c.cpp**/
#include "systemc.h"
#include "fsm_types.h"
#include "ex_fsm_c.h"

void ex_fsm_c::update_state()  {
  if (rst.read() == true) {
    b.write(0);
    a.write(0);
    state = S0;
  } else {
    switch(state) {
    case S0:
      b.write(0);
      if (input1.read() || input2.read())

a.write(1);
      else

a.write(0);
      if (input1.read() == 1)

state = S1;
      break;
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    case S1:
      a.write(0);
      b.write(1);
      if(input2.read() == 1)

state = S2;
      break;
    case S2:
      a.write(0);
      b.write(0);
      state = S0;
      break;
    }
  }
}

Defining a State Vector Variable

You can use the state_vector compiler directive to label a
variable in your SystemC description as the state vector for a finite
state machine. This allows SystemC Compiler to extract the labeled
state vector from the SystemC description to use in reports and other
output. For details about using this compiler directive, see “State
Vector Compiler Directive” on page A-6.
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A
Compiler Directives A

This appendix provides a list of the compiler directives you can use
for RTL synthesis with SystemC Compiler. It contains the following
sections:

• Synthesis Compiler Directives

• C/C++ Compiler Directives
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Synthesis Compiler Directives

To specify a compiler directive (also known as a pragma) in your
SystemC code, insert a comment in which the first word is
synopsys. You can use either a multiple-line comment enclosed in
/* and */ characters or a single-line comment beginning with two
slash (//) characters.

Table A-1 lists the compiler directives.

Table A-1 SystemC Compiler Compiler Directives

Compiler directive Details

/* synopsys line_label string */ page A-3

/* synopsys infer_multibit signal_name_list */ page A-3

/* synopsys dont_infer_multibit signal_name_list */ page A-3

/* synopsys infer_mux signal_name_list */
/* synopsys infer_mux  */

page A-4

/* synopsys dont_infer_mux signal_name_list */ page A-4

/* synopsys unroll */ page A-5

/* synopsys full_case */ page A-5

/* synopsys parallel_case */ page A-6

/* synopsys state_vector string  */ page A-6

/* synopsys enum */ page A-8

/*synopsys synthesis_off */ and
/* synopsys synthesis_on */

page A-8
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Line Label Compiler Directive

Use the line_label compiler directive to label a loop or a line of
code. In SystemC Compiler-generated reports, the label is reflected
in the report hierarchy. You can also use a label with a command that
sets contingencies, such as the set_cycles command. For
example,

my_module2 :: entry {
    // Synopsys compiler directive
while (true) { //synopsys line_label reset_loop2
  ...
  wait();
  ...
  wait();
}

}

Instead of the line_label compiler directive, you can use the
C/C++ line label, described in “C/C++ Line Label” on page A-9.

Multibit Inference Compiler Directives

To infer multibit implementation for individual ports or signals, add
the infer_multibit compiler directive to individual port or signal
declarations in the SystemC description, using the following syntax:

sc_out<sc_int<n> > port_name; /*synopsys infer_multibit "port_name"*/

Example 4-24 on page 4-36 is a code example that uses this
compiler directive.
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To prevent multibit inference for individual ports or signals, add the
dont_infer_multibit compiler directive to individual port or
signal declarations in the SystemC description, using the following
syntax:

sc_out<sc_int<n> > port_name; /*synopsys dont_infer_multibit
"port_name"*/

Example 4-25 on page 4-38 shows a code example that uses this
compiler directive.

Multiplexer Inference Compiler Directives

To infer a multiplexer for a switch…case statement, add the
infer_mux compiler directive as the first line of code in the switch
statement, using the following syntax:

switch (var) {
  //synopsys infer_mux
  ...
}

Example 4-28 on page 4-45 shows a code example that uses this
compiler directive.

To infer a multiplexer for one or more switch…case statements within
a block of code, add a line label to the block of code and use the
infer_mux compiler directive, using the following syntax:

//synopsys infer_mux "label_1"

label_1: switch (var) {
   ...
}

Example 4-26 on page 4-40 shows a code example that uses this
compiler directive.
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Loop Unrolling Compiler Directive

Loops are unrolled by default for RTL synthesis with SystemC
Compiler. Therefore, the unroll compiler directive used for
behavioral synthesis with SystemC Compiler is not necessary, and it
is ignored for RTL synthesis.

switch…case Compiler Directives

You can create multiple branching paths in logic with a switch…case
statement.

Full Case

If you do not specify all possible branches of a switch…case
statement but you know that one or more branches can never occur,
you can declare a switch statement as full case with the full_case
compiler directive. For example,

  switch(state)  { //synopsys full_case
    case S0:
         if (input1.read())
            next_state = S1;
         else
            next_state = S0;
         break;
    case S1:
         if (input2.read())
            next_state = S2;
         else
            next_state = S0;
         break;
    case S2:
         next_state = S0;
         break;
    default:
         next_state = S0;
         break;
  }
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Example 4-17 on page 4-25 shows a code example that uses this
compiler directive.

Parallel Case

SystemC Compiler automatically determines whether a switch
statement is full or parallel.

All cases of a switch statement are, by definition, mutually exclusive
(parallel) in C/C++. Because of this, the parallel_case compiler
directive used by Design Compiler and other Synopsys tools is
redundant. No cases overlap, by design, and a priority encoder is not
necessary, so SystemC Compiler synthesizes a multiplexer.

State Vector Compiler Directive

The state_vector directive allows you to define the state vector
of a finite state machine (and its encoding) in a SystemC description.
It labels a variable in a SystemC description as the state vector for a
finite state machine.

The syntax for the state_vector directive is

// synopsys state_vector vector_name

where vector_name is the variable for the state vector. This
declaration allows SystemC Compiler to extract the labeled state
vector from the SystemC description. Example A-1 shows one way
to use the state_vector directive.
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Note:
Do not define two state_vector directives in one module.
Although SystemC Compiler does not issue an error message, it
recognizes only the first state_vector directive and ignores
the second.

Example A-1 Using the state_vector Compiler Directive
#include "systemc.h"
SC_MODULE( state_vector) {
  sc_in<sc_uint<2> > in1;
  sc_in_clk clock;
  sc_out<sc_uint<2> > out;

  sc_signal<sc_uint<2> > state;//snps state_vector state
  sc_signal<sc_uint<2> > next_state;

  void f1 ();
  void f2 ();
  void state_register ();

  SC_CTOR( state_vector ) {
    SC_METHOD( f1);
    sensitive (in1);
    sensitive (state);
    SC_METHOD( f2);
    sensitive (state);
    SC_METHOD(state_register);
    sensitive_pos << clock;
  }
};

void state_vector:: f1 ()
{
  switch (state.read ().to_uint ()) {
  case 0:
    next_state = (in1.read () +1) % 4;
    break;
  case 1:
    next_state = (in1.read ()+2) % 4;
    break;
  case 2:
    next_state = (in1.read ()+4) % 4;
    break;
  case 3:
    next_state = (in1.read ()+8) % 4;
    break;
  }
}
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void state_vector:: state_register ()
{
  state = next_state;
}

void state_vector:: f2 ()
{
  out = state;
}

Enumerated Data Type Compiler Directive

The enum compiler directive is not used by SystemC Compiler. Use
the C/C++ enum construct instead, as described in “Using
Enumerated Data Types” on page 3-17.

Synthesis Off and On

The synthesis_off and synthesis_on compiler directives can
be used to isolate simulation-specific code and prevent the code
from being interpreted for synthesis. For example,

/* synopsys synthesis_off */
... //Simulation-only code
/* synopsys synthesis_on */

Use the C language #ifdef directive, described in “C/C++ Conditional
Compilation” on page A-9, instead of the synthesis_off and
synthesis_on directives.
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C/C++ Compiler Directives

You can use C/C++ compiler directives instead of or in addition to the
equivalent synopsys compiler directives.

C/C++ Line Label

Use the C line label instead of the line_label compiler directive.
For example,

my_module1 :: entry {
// C-style line label
reset_loop1: while (true) {
  ...
  wait();
  ...
  wait();

    }
}

C/C++ Conditional Compilation

Use the C/C++ language #if, #ifdef, #ifndef, #elif, #else, and #endif
conditional compilation directives to isolate blocks of code and
prevent them from inclusion during synthesis or simulation.

For example,

    //C directive
#ifdef SIM
...//Simulation-only code
#else
...//Synthesis-only code
#endif
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This appendix describes several examples that demonstrate the
basic concepts of RTL synthesis with SystemC Compiler. The files
for these examples are available in the SystemC Compiler
installation in the $SYNOPSYS/doc/syn/ccsc/ccsc_examples
directory.

This appendix describes the following examples:

• Count Zeros Combinational Version

• Count Zeros Sequential Version

• FIR RTL Version

• FIR RTL and Behavioral Integrated Version

• Drink Machine
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Count Zeros Combinational Version

This circuit is a combinational specification of a design problem. The
circuit is given an 8-bit value, and it determines

• That the value contains exactly one sequence of zeros

• That the number of zeros in the sequence (if any)

The circuit must complete this computation in a single clock cycle.
The input to the circuit is an 8-bit value. The circuit produces two
outputs, the number of zeros found and an error indication.

A valid value contains only one sequence of zeros. If more than one
sequence of zeros is detected, the value is invalid. A value consisting
of all ones is a valid value. If a value is invalid, the count of zeros is
set to zero and an error is indicated.

RTL description files are available in $SYNOPSYS/doc/syn/ccsc/
ccsc_examples/count_zeros/count_zeros_comb. Table B-1
provides a list of the files.

Table B-1 RTL Count Zeros Combinational Files

File name File description

readme_czero_combo.txt Description of the count zeros combination version.

count_zeros_comb.h,
count_zeros_comb.cc

RTL model. The RTL description has one SC_METHOD
process and two member functions (legal and zeros).

count_zero_run_rtl.scr RTL synthesis to gates command script.
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Count Zeros Sequential Version

The sequential implementation of the count zeros design is slightly
different from the specification in the combinational version. The
circuit now accepts the 8-bit string serially, 1 bit per clock cycle, using
the data and clk inputs. The other two inputs are

• The reset input, which resets the circuit by calling the defaults
member function

• The read input, which causes the circuit to begin accepting data

The three outputs from the circuit are

• The is_legal output, which is true if the data is a valid value

• The data_ready output, which is true when all 8 bits are
processed or at the first invalid bit

• The zeros output, which is the integer value of zeros if the
is_legal output is true

RTL description files are available in $SYNOPSYS/doc/syn/ccsc/
ccsc_examples/count_zeros/count_zeros_seq. Table B-2 provides a
list of the files.

Table B-2 RTL Count Zeros Sequential Files

File name File description

readme_czero_seq.txt Description of the count zeros sequential version.

count_zeros_seq.h,
count_zeros_cseq.cc

RTL model. The RTL description has three SC_METHOD
processes.

count_zero_seq_run_rtl.scr RTL synthesis to gates command script.
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FIR RTL Version

The FIR filter design is a hierarchical RTL module (fir_rtl) that
contains the FSM module (fir_fsm) and a data module (fir_data).
Figure B-1 illustrates the modules, the port binding, and their
interconnecting signals.

RTL description files are available in $SYNOPSYS/doc/syn/ccsc/
ccsc_examples/fir/fir_rtl. Table B-3 provides a list of the files.

Figure B-1 FIR RTL Modules

Table B-3 FIR RTL Files

File name File description

readme_fir_rtl.txt Description of the FIR RTL version.

fir_rtl.h, fir_rtl.cpp RTL model, which instantiates the FSM and data modules.

fir_fsm.h, fir_fsm.cpp FIR FSM module.

fir_data.h, fir_data.cpp FIR data module.

fir_const_rtl.h FIR constant coefficients.

fir_rtl_run.scr RTL synthesis to gates command script.

fir_rtl

RESET
IN_VALID

SAMPLE

CLK

RESULT

OUTPUT_DATA_READY

fir_fsm1 st
at

e_
ou

t
sample
reset
in_valid

clk

result

output_data_readyfir_data1
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FIR RTL and Behavioral Integrated Version

The FIR integrated RTL and behavioral design top-level module
(all_top) contains both a behavioral module (fir_beh) and the
hierarchical RTL module (fir_rtl). The inputs (sample, reset, in_valid,
and clk) feed into both the RTL and behavioral modules. Figure B-2
illustrates the modules and the port bindings.

RTL and behavioral integrated description files are available in
$SYNOPSYS/doc/syn/ccsc/ccsc_examples/fir/fir_integrated.
Table B-4 provides a list of the files.

Figure B-2 FIR RTL and Behavioral Integrated Modules

all_top

reset
in_valid

sample

clk

sample_out_rtl

output_ready_rtl
fir_rtl

sample_out_syn

output_ready_syn

result

RESULT

Behavioral

RTL

fir_beh
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Table B-4 FIR RTL Files

File name File description

readme_fir_int.txt Description of the FIR RTL version.

all_top.h Instantiations of RTL and behavioral FIR modules.

fir_beh.h, fir_beh.cpp Behavioral model.

fir_rtl.h, fir_rtl.cpp RTL model, which instantiates the FSM and data modules.

fir_fsm.h, fir_fsm.cpp FIR FSM module.

fir_data.h, fir_data.cpp FIR data module.

fir_const.h FIR constant coefficients.

fir_const_rtl.h FIR constant coefficients.

all_run.scr Synthesis to gates command script.
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Drink Machine

The drink machine circuit is a vending machine that dispenses
drinks. It contains a state machine that counts money as input. The
drink machine waits for a deposit of 35 cents and signals the vending
machine to dispense a drink. If change is owed, the machine returns
it when it dispenses the drink.

RTL description files are available in $SYNOPSYS/doc/syn/ccsc/
ccsc_examples/drink_machine. Table B-5 provides a list of the files.

Table B-5 RTL Drink Machine Files

File name File description

readme_drink.txt Description of the drink machine.

drink_machine.h,
drink_machine.cc

RTL model. The RTL description has two SC_METHOD
processes.

drink.scr RTL synthesis to gates command script.
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combinational logic 2-12
comma operator, for loops 4-56
command
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entry 1-11
dc_shell 1-11
scripts 1-11

order 1-10
command flow 1-10

hierarchical RTL module 1-19
instantiated DesignWare component 1-28
instantiated HDL 1-26
integrated RTL and behavioral 1-22
multiple RTL module 1-19
single RTL module 1-9
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analyze 1-14, 1-15
compile 1-18

gate-level netlist 1-22
compile_systemc 1-11, 1-20, 1-22

errors 1-12
single or separate RTL netlist 1-15, 1-16
Verilog netlist 1-14
VHDL netlist 1-14

create_clock 1-17, 1-21
current_design 1-20
define_design_lib 1-16
elaborate 1-12, 1-14, 1-15
include 1-11
link 1-20, 1-21
read 1-23
report_area 1-18
report_timing 1-18
write 1-13

elaborated .db 1-13
gate-level netlist 1-18
HDL simulation file 1-18

compile command 1-18
compile_systemc command 1-11

errors 1-12
hierarchial design 1-20
integrated RTL and behavioral design 1-22
multiple RTL modules 1-20
single or separate RTL netlist 1-15, 1-16
Verilog netlist 1-14

VHDL netlist 1-14
compiler directives A-2

#elif, #else, #endif A-9
#if, #ifdef, #ifndef A-9
C/C++ A-9
dont_infer_multibit 4-36
full_case A-5
infer_multibit 4-36, A-3
infer_mux A-4
line_label A-3, A-9
map_to_operator 2-47
parallel_case A-6
preserve_function 2-43
return_port_name 2-50
state_vector 4-63, A-6
synthesis_off A-8
synthesis_on A-8
unroll A-5
using #ifdef 3-2
using synthesis_off 3-2

compiling gate-level netlist 1-18, 1-22
component

DesignWare 2-47
constructor

initializing with loops 2-23
module 2-16
with arguments 2-18

constructs
nonsynthesizable C/C++ 3-5
nonsynthesizable SystemC 3-4

control logic 1-6
count zeros combinational example 2-32, B-2
count zeros sequential example 2-34, B-3
create_clock command 1-17, 1-21
creating

HDL netlist 1-13
hierarchical module 2-38
hierarchical RTL module B-4
integrated RTL and behavioral 2-40, B-5
module 2-6
multiple modules 2-38
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process 2-11
current_design command 1-20

D
D flip-flop

simple 4-2
with asynchronous set or reset 4-4
with synchronous set or reset 4-7

D latch
inferring 4-14
with low asynchronous set or reset 4-29

data
synthesis recommendation 3-20
synthesizable 3-8
synthesizable C/C++ 3-3
synthesizable SystemC 3-3

data member
of a module 3-18
variables 2-10

data types
aggregate 3-17
enumerated 3-17
nonsynthesizable 3-9
ports 2-8
recommended for synthesis 3-10, 3-11
signal 2-10
synthesizable 3-9
SystemC operators 3-13
VHDL 3-12

database
behavioral 1-22
creating .db file 1-13
hierarchical design 1-20
multiple RTL module design 1-20
RTL 1-22
RTL and behavioral 1-23

datapath 1-6
dc_shell

command entry 1-11
starting 1-11

dead loop 4-56
default parameter value 2-21
define_design_lib command 1-16
defining

control logic 1-6
datapath 1-6
FSM 1-6
level-sensitive 2-12
module 2-2, 2-6
process 2-11
sensitivity list 2-12

design
behavioral attributes 1-4, 1-5
command order 1-10
RTL attributes 1-4

design for synthesis
chip-level block 1-6
overview 1-6
pure C/C++ 1-6

design library 1-16
DesignWare components 2-47
DesignWare library 1-9
directories

rtl_work 1-13
dont_infer_multibit compiler directive 4-36
drink machine B-7

E
edge-sensitive

clock 2-14
inputs 2-14
process 2-14
sensitivity list 2-14

elaborate command 1-12, 1-14, 1-15
entering commands 1-11
enumerated data type 3-17
examples

count zeros combinational 2-32, B-2
count zeros sequential 2-34, B-3
drink machine B-7
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FIR integrated RTL and behavioral 2-40, B-5
FIR RTL B-4

excluding
nonsynthesizable code 3-2
simulation-only code 3-3

F
files

database .db file 1-13
gate-level netlist 1-9
RTL HDL 1-9
separate RTL netlist 1-15
single RTL netlist 1-15

FIR integrated RTL and behavioral example
2-40, B-5

FIR RTL example B-4
flip-flop

inference 4-2
inferring D with asynchronous set or reset

4-4
inferring D with synchronous set or reset 4-7
inferring JK 4-9
inferring JK with asynchronous set or reset

4-10
inferring JK with synchronous set or reset 4-9
simple D 4-2

for loop
comma operator 4-56

FSM
definition 1-6
description 4-57

full_case compiler directive A-5
functions

member 2-15
preserving 2-43

G
gate-level

writing netlist 1-18, 1-22
writing simulation file 1-18

H
HDL

creating netlist 1-13
RTL file 1-9

hdlin_enable_presto variable 1-14, 1-15
hdlin_infer_multibit variable 4-36
hdlin_unsigned_integers variable 1-14, 1-15
header file

module 2-6
hierarchical design 1-20

command flow 1-19
hierarchical module

creating 2-38
RTL B-4

I
implementation, module 2-16
include command 1-11
incomplete sensitivity list 2-13
infer_multibit compiler directive 4-36, A-3
infer_mux compiler directive A-4
inference

flip-flop 4-2
latch 4-14
multibit 4-35
multiplexer 4-39
register 4-2
three-state 4-47

inferring
D latch 4-14
JK flip-flop 4-9

inout port 2-7
input port 2-7
inputs

edge-sensitive 2-14
level-sensitive 2-12

inputs to SystemC Compiler 1-7
instantiated DesignWare component

command flow 1-28
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instantiated HDL
command flow 1-26

integrated RTL and behavioral 1-22
command flow 1-22
creating 2-40, B-5
synthesis 1-22

J
JK flip-flop

inferring 4-9
with asynchronous set or reset 4-10
with synchronous set or reset 4-9

L
label

C/C++ line label A-9
line_label compiler directive A-3

latch
avoiding 4-14
D with low asynchronous set or reset 4-29
inference 4-14
SR 4-15

level-sensitive 2-12
inputs 2-12
sensitivity list 2-12

library
design 1-16
DesignWare 1-9
synthetic 1-7, 1-8, 1-9
technology 1-7, 1-8
work 1-16

limitations
multiplexer inference 4-46
register inference 4-32
sensitivity lists 2-15
three-state inference 4-53

line_label compiler directive A-3, A-9
link command 1-20, 1-21
logic

combinational 2-12
sequential 2-14

loops 4-53
dead 4-56
unrolled 4-55
unrolling A-5

M
macros

SC_CTHREAD 2-5
SC_CTOR 2-16
SC_HAS_PROCESS 2-18
SC_METHOD 2-5
SC_THREAD 2-4

map_to_operator compiler directive 2-47
member functions 2-15
module

constructor 2-16
constructor arguments 2-18
contents 2-2
creating 2-6
creating multiple 2-38
data members 3-18
defining 2-2
defining parameters 2-18
header file 2-6
implementation 2-16
instantiating with a loop 2-25
parameter passing 1-23
ports 2-7
SC_HAS_PROCESS 2-18
SC_MODULE 2-7
signal communication 2-8
syntax 2-6

multibit inference 4-35
multiple modules

creating 2-38
RTL 1-20

multiplexer inference 4-39
limitations 4-46
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N
netlist

gate_level 1-9
single or separate RTL file 1-15

nonsynthesizable code, excluding 3-2
nonsynthesizable data types 3-9

O
operators

SystemC data type 3-13
output port 2-7
outputs from SystemC Compiler 1-7

P
parallel_case compiler directive A-6
parameter

default value 2-21
defining 2-18
passing values 2-20
passing values from command line 1-23

period, clock 1-17, 1-21
port type

sc_in 2-7
sc_inout 2-7
sc_out 2-7

ports 2-7
assignment 2-30
data types 2-8
read 2-28
read and write 2-28
read bits 2-29, 3-15
sc_in 2-28
sc_inout 2-28
sc_out 2-28
syntax 2-8

pragma
See compiler directives

preserve_function
compiler directive 2-43

process
behavioral 2-4
creating in a module 2-11
edge-sensitive 2-14
execution 2-3
level-sensitive 2-12
read and write 2-4
registering 2-3
RTL 2-4
SC_CTHREAD 2-4, 2-5
SC_METHOD 2-4, 2-5
SC_THREAD 2-4
sensitivity list 2-4, 2-12
trigger 2-4
types 2-4

R
read

from ports 2-4
port 2-28
port bits 2-29, 3-15
ports 2-28
signal bits 2-29, 3-15
signals 2-28

read command 1-23
register

inference 4-2
inference limitations 4-32

registering a process 2-3
report_area command 1-18
report_timing command 1-18
reports

area 1-18
timing 1-18

reset, asynchronous 2-14
return_port_name compiler directive 2-50
rolled and unrolled loops A-5
RTL

design attributes 1-4
design description 1-8
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hierarchical module 1-19, B-4
instantiated DesignWare component 1-28
instantiated HDL 1-26
integrated module 1-22
integrated with behavioral 1-22
model 1-4
process 2-4
synthesis command flow 1-9
synthesis commands for integrated modules

1-22
synthesis commands for multiple modules

1-19
synthesis flow 1-3

RTL and behavioral
integrated module synthesis 1-22

RTL integrated with behavioral 2-40, B-5
rtl_work directory 1-13

S
saving, database .db file 1-13
SC_CTHREAD

macro 2-5
process 2-4, 2-5

SC_CTOR
macro 2-16

SC_HAS_PROCESS
macro 2-18

sc_in port 2-28
sc_in port type 2-7
sc_inout port 2-28
sc_inout port type 2-7
SC_METHOD

macro 2-5
process 2-4, 2-5

SC_MODULE
module 2-7
syntax 2-7

sc_out port 2-28
sc_out port type 2-7
SC_THREAD

macro 2-4
process 2-4

sensitive() 2-12
sensitive_neg() 2-12
sensitive_pos() 2-12
sensitivity list 2-12

defining 2-12
edge-sensitive 2-14
incomplete 2-13
level-sensitive 2-12
limitations 2-15

sequential logic 2-14
signal 2-8

assignment 2-30
communication between processes 2-4
data types 2-10
read 2-28
read and write 2-4
read bits 2-29, 3-15
syntax 2-9

simulation, gate-level HDL file 1-18
simulation-only code, excluding 3-3
source code, RTL 1-8
SR latch 4-15
start dc_shell 1-11
state machine description 4-57
state_vector compiler directive 4-63, A-6
struct 3-17
subset, synthesizable 3-2
synchronous

set or reset D flip-flop 4-7
set or reset JK flip-flop 4-9

synopsys compiler directive A-2
syntax

module 2-6, 2-7
port 2-8
signal 2-9

synthesis
choosing abstraction level 1-4
creating .db file 1-13
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creating .db for behavioral module 1-22
creating .db for hierarchical design 1-20
creating .db for integrated RTL and

behavioral module 1-23
creating .db for multiple RTL modules 1-20
creating .db for RTL module 1-22
creating HDL netlist 1-13
data 3-8
data recommendation 3-20
data types 3-9
defining control logic 1-6
defining datapath 1-6
defining FSM 1-6
excluding nonsynthesizable subset 3-2
modifying functional model 1-6
recommended data types 3-10, 3-11
subset 3-5
synthesizable subset 3-2

synthesis flow 1-3
commands 1-9
commands for integrated modules 1-22
commands for multiple modules 1-19

synthesis_off compiler directive A-8
synthesis_off, using 3-2
synthesis_on compiler directive A-8
synthetic library 1-7, 1-8

location 1-9
synthetic_library variable 1-8
SystemC

data type operators 3-13
nonsynthesizable constructs 3-4
RTL description 1-8
synthesizable subset 3-3

T
target_library variable 1-8
technology library 1-7, 1-8

location 1-8

three-state
inference 4-47
inference limitations 4-53
simple buffer 4-47
with register 4-50

timing report 1-18
triggering a process 2-4
typedef 3-17

U
unroll compiler directive A-5
unrolled loops 4-55
using scripts 1-11

V
variables

assignment 2-31
data members 2-10
hdlin_enable_presto 1-14, 1-15
hdlin_infer_multibit 4-36
hdlin_unsigned_integers 1-14, 1-15
read and write 2-4
synthetic_library 1-8
target_library 1-8

VHDL data type conversion 3-12

W
work library 1-16
write

elaborated .db 1-13
gate-level netlist 1-18, 1-22
gate-level netlist for synthesis 1-18
HDL simulation file 1-18
port 2-28
to ports 2-4
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