
Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

CoCentric™
SystemC Compiler
Behavioral User Guide
Version 2000.11-SCC1, March 2001

ii

Copyright Notice and Proprietary Information
Copyright  2000 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number
__________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks
Synopsys, the Synopsys logo, AMPS, Arcadia, CMOS-CBA, COSSAP, Cyclone, DelayMill, DesignPower, DesignSource,
DesignWare, dont_use, EPIC, ExpressModel, Formality, in-Sync, Logic Automation, Logic Modeling, Memory Architect,
ModelAccess, ModelTools, PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, RailMill, Silicon Architects,
SmartLicense, SmartModel, SmartModels, SNUG, SOLV-IT!, SolvNET, Stream Driven Simulator, Synopsys Eagle
Design Automation, Synopsys Eaglei, Synthetic Designs, TestBench Manager, and TimeMill are registered trademarks
of Synopsys, Inc.

Trademarks
ACE, BCView, Behavioral Compiler, BOA, BRT, CBA, CBAII, CBA Design System, CBA-Frame, Cedar, CoCentric,
DAVIS, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design
Compiler, DesignTime, Direct RTL, Direct Silicon Access, dont_touch, dont_touch_network, DW8051, DWPCI, ECL
Compiler, ECO Compiler, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Compiler II, FPGA Express, Frame
Compiler, General Purpose Post-Processor, GPP, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer,
Liberty, Library Compiler, Logic Model, MAX, ModelSource, Module Compiler, MS-3200, MS-3400, Nanometer Design
Experts, Nanometer IC Design, Nanometer Ready, Odyssey, PowerCODE, PowerGate, Power Compiler, ProFPGA,
ProMA, Protocol Compiler, RMM, RoadRunner, RTL Analyzer, Schematic Compiler, Scirocco, Shadow Debugger,
SmartModel Library, Source-Level Design, SWIFT, Synopsys EagleV, Test Compiler, Test Compiler Plus, Test Manager,
TestGen, TestSim, TetraMAX, TimeTracker, Timing Annotator, Trace-On-Demand, VCS, VCS Express, VCSi, VERA,
VHDL Compiler, VHDL System Simulator, Visualyze, VMC, and VSS are trademarks of Synopsys, Inc.

Service Marks
TAP-in is a service mark of Synopsys, Inc.

All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Document Order Number: 37444-000 JB
CoCentric™ SystemC Compiler Behavioral User Guide, v2000.11-SCC1

iii

Contents

What’s New in This Release . xxviii

About This Guide. xxx

Customer Support . xxxiii

1. Introduction to SystemC Compiler Behavioral Synthesis

Understanding What SystemC Compiler Does 1-3

Synthesis With SystemC Compiler . 1-4

Timing . 1-6

Scheduling . 1-7

Allocating Hardware. 1-9

Creating an FSM and Data Path . 1-10

Pipelining Loops . 1-11

Inferring Memories . 1-11

Libraries and Other Inputs. 1-12

Behavioral Description . 1-13

Technology Library. 1-13

Synthetic Library . 1-14

iv

Outputs From SystemC Compiler . 1-14

2. Using SystemC Compiler

Usage and Commands . 2-3

Defining Libraries . 2-5

Compiling and Elaborating the Source Code 2-5

Preparing to Use BCView . 2-5

Using the compile_systemc Command 2-6

Elaborating a Design With a Single Behavioral Module. 2-7

Elaborating a Hierarchical Design With Multiple Behavioral

Modules . 2-7

Elaborating a Design With Multiple Files 2-8

Assigning Timing and Area Design Constraints 2-8

Setting the Clock Period . 2-8

Setting Other Initial Constraints . 2-9

Checking the Design . 2-10

Running Check Design . 2-10

Changing the Code . 2-10

Estimating Time and Area . 2-11

Reporting Timing and Area Estimates . 2-12

Saving the Timed Design. 2-12

Scheduling the Design and Allocating Resources. 2-13

Scheduling for Smallest Area. 2-13

Changing the Effort Level . 2-14

Setting Schedule Constraints . 2-14

v

Using BCView to Analyze Scheduling Errors. 2-15

Analyzing Scheduling Results . 2-15

Generating Summary Reports. 2-16

Removing Designs from SystemC Compiler Memory 2-16

Resuming Synthesis From a Saved .db File 2-17

Writing the RTL Files . 2-18

Writing the RTL .db File . 2-19

Writing a Synthesizable RTL HDL File. 2-20

Writing an RTL Simulation File . 2-21

Specifying VHDL Packages . 2-23

Specifying Verilog Include Files . 2-23

Compiling and Writing a Gate-Level Netlist. 2-24

Preparing for Place and Route . 2-24

Preparing for Physical Compiler . 2-25
Preparing RTL for Physical Synthesis 2-25
Preparing Gate-Level for Physical Synthesis 2-26

3. Timing and Area Estimation

Understanding Clock Cycle, I/O, and Operation Relationships. . . . 3-2

Operation Delay and Clock Cycle . 3-2

I/O Protocol . 3-3

Operations and Clock Cycles. 3-5

Setting Your Timing Environment . 3-7

Setting Clocks . 3-7

Setting Input Delays. 3-8

vi

Setting Operating Conditions . 3-9
Listing Libraries . 3-9
Listing Operating Conditions . 3-10

Setting Wire Loads . 3-12

Timing the Design . 3-13

Timing Through the Components . 3-13

Computing the Clock Cycle Margin . 3-14

Interpreting the Timing and Area Resource Report. 3-17

Evaluating the Resource Estimate Report 3-17

Looking at Parallel Paths . 3-19

Area Estimates . 3-21

4. Scheduling and Scheduling Constraints

Scheduling for Synthesis. 4-2

Operation Scheduling . 4-3

Resource Sharing . 4-4

Inferred Registers . 4-5

Register Sharing . 4-6

Controller (FSM) Generation . 4-7

Controlling Synthesis . 4-10

Selecting an I/O Scheduling Mode . 4-10

Cycle-Fixed I/O Scheduling Mode . 4-12

Using Cycle-Fixed I/O Scheduling Mode 4-12

Superstate-Fixed I/O Scheduling Mode. 4-14

Using Superstate-Fixed I/O Scheduling Mode. 4-15

Comparing the I/O Scheduling Modes. 4-16

vii

Performing Scheduling . 4-18

Scheduling Objectives . 4-18

Using Timing-Constrained Scheduling. 4-18

Using Resource-Driven Scheduling . 4-19

Analyzing the Scheduling Report . 4-20

Schedule Summary Report . 4-20

Schedule Report of Operations . 4-22

Schedule Report of Variables . 4-26

Schedule Report of the FSM . 4-28

Adding Scheduling Constraints . 4-31

Matching Cells to Operations and Loops 4-31

Naming Conventions . 4-31

Using Line Labels . 4-32

Using Find . 4-33

Reporting Hierarchy . 4-34

Constraining Loops and Operations . 4-37
Constraining Between Two Operations 4-37
Constraining a Loop . 4-38
Constraining Nested Loops . 4-39
Placing Constraints Across Loop Boundaries 4-41
Using the Set Cycles Commands and Options 4-42

Pipelining a Loop . 4-44
Restrictions and Limitations For Pipelining Loops 4-47
Determining the Initiation Interval. 4-47
Pipelining a Loop With Handshake Signals 4-50

Determining Current Scheduling Constraints. 4-53

viii

Removing Scheduling Constraints. 4-54

Constraining Resource Allocations . 4-55

Setting Common Resources . 4-55

Setting Exclusive Registers . 4-57

5. Optimizing Latency and Area

Exploring Architectures and Improving the Quality of Results 5-2

Looking at Architectural Tradeoffs . 5-2

Architectural Exploration Guidelines . 5-6

Controlling Operation and Implementation Selection 5-7

Operation Chaining . 5-8

Operation Chaining With Bitwise Timing 5-8

Determining Operation Chaining . 5-10

Controlling Operation Chaining . 5-11

Controlling Margin Calculation . 5-12

Removing Unnecessary Registers . 5-18

Using Multicycle Operations . 5-19

Reporting Multicycle Operations . 5-20

Increased Latency of Multicycle Operations 5-21

Replacing Multicycle Components. 5-23

Using Preserved Functions . 5-23

When to Preserve Functions . 5-24

Determining Which Functions to Preserve. 5-24

Creating Preserved Functions . 5-25

Preserving a Function . 5-27

ix

Using a Precompiled Netlist for a Preserved Function. 5-28
Compiling Preserved Functions . 5-29

Using Preserved Functions for Behavioral Synthesis 5-31

Limitations of Preserved Functions . 5-33
Bit-Width Restrictions . 5-33
Hierarchy . 5-33
Sequential Logic. 5-34

Using DesignWare Components . 5-34

Listing DesignWare Components . 5-35

Finding and Implementing Pipelined Components 5-37

6. Analyzing Designs With BCView

Using BCView . 6-2

Preparing Designs for BCView . 6-2

Starting BCView. 6-3

Removing BCView Analysis Information 6-3

Using BCView Windows . 6-3

Recommended Usage for BCView . 6-8

Examining Scheduling Errors . 6-9

Identifying Errors to Analyze . 6-9

Using the Scheduling Error Analyzer . 6-10
Viewing the Selection Inspector Window 6-11
Determining the Operations That Bound the Error. 6-12
Examining the Graphic Information 6-13
Fixing the Code and Rescheduling 6-21

Evaluating the Architecture Generated by SystemC Compiler 6-21

x

Reviewing FSM Operation . 6-22
Stepping Through the FSM . 6-23
Reviewing State Transitions and Actions 6-24

Evaluating the Scheduled Design . 6-26
Understanding the Reservation Table Window 6-26
Viewing Resources, Latencies, and Operation Sharing 6-31
Viewing Clocks, Chaining, and Combinational Delay. 6-36
Examining Paths . 6-38
Reviewing Register Use . 6-42
Viewing Loops . 6-44
Identifying Constraints and Data Dependencies 6-49

Exploring Architectural Improvements. 6-51

Reducing Latency . 6-51
Identifying Multicycle Operations . 6-51
Identifying Chaining Opportunities . 6-53
Viewing Clock-Cycle Utilization . 6-54

Reducing Area . 6-55

Reviewing Critical Paths . 6-61

Viewing the Design Summary . 6-61

7. Using Register Files and Memories for Arrays

Comparing Array Implementations . 7-2

Comparing Arrays, Register Files, and Memories 7-3

Array Implementation Recommendations 7-6

Mapping Arrays to Register Files . 7-6

Mapping All Arrays to Register Files . 7-6

Mapping Specific Arrays to Register Files 7-7

xi

Understanding the Effects of Mapping to Register Files 7-8

Reporting Array Access Conflicts . 7-8

Allowing Multiple Accesses in the Same Cycle 7-10

Identifying Register File Operations. 7-13

Finding Array Operation Cells . 7-14

Mapping Arrays to Memory . 7-15

Preparing to Use Memories . 7-15
Using Memory in Your Design . 7-17
Getting Memory and Library Information 7-18

Using Asynchronous Memories . 7-24

Allowing for Vendor Memory Timing . 7-25
Setting Memory Input Delay for Vendor Memory Timing . . . 7-26
Setting Memory Output Delay for the Vendor Timing
Specifications . 7-27

Constraining Read and Write Operations on Memory 7-28
Reporting Conflicting Memory Accesses 7-29
Using the ignore_memory_precedences Command 7-31
Using the ignore_memory_loop_precedences Command . . 7-32

Generating Memory Wrappers . 7-34

Understanding the Memory Wrapper Generator Tool 7-34

Using the Memory Wrapper Generator Tool 7-35

Creating a Memory Wrapper for a Vendor Memory 7-39
Defining the Memory Type and Properties 7-40
Assigning Memory Pins to the Wrapper Logical Ports 7-46
Defining the Memory Wrapper Properties 7-52
Reviewing the Memory Wrapper . 7-56
Editing the Waveform Values . 7-56

xii

Adding Registers to the Memory Wrapper 7-58
Adding Custom Logic to the Memory Wrapper 7-59
Viewing and Editing the Wrapper Properties 7-61
Saving the Memory Wrapper Files . 7-64

Using Generated Vendor Memory Wrappers
With SystemC Compiler . 7-66

Creating a Memory Wrapper for an Exploratory Memory 7-67
Defining the Memory Type and Properties 7-68
Assigning Pins to the Memory Logical Ports 7-73
Defining the Exploratory Memory Wrapper Properties. 7-75
Reviewing and Editing the Exploratory Memory Wrapper . . 7-78
Saving the Exploratory Memory Wrapper Files 7-78

Generating a Memory Wrapper Testbench 7-79

8. Advanced Techniques

Using Multiple Files to Describe a Design. 8-2

Using #include . 8-2

Using Precompiled Netlists . 8-2

Speculative Execution . 8-4

Setting a Specific Implementation for Components 8-6

Externalize a Cell . 8-8

Appendix A. Setting Up SystemC Compiler

Defining Environment Variables and Paths A-2

Defining Libraries and Other Variables . A-3

Starting the SystemC Compiler Command Interface A-4

xiii

Creating a command.log File . A-4

Recording Your Command Session. A-5

Issuing SystemC Compiler Commands. A-5

Listing SystemC Compiler Variables . A-6

Using Scripts . A-6

Creating Scripts . A-6

Script Example. A-7
Using the Script . A-8

Using UNIX Shell Commands . A-9

Using compile_systemc Command Preprocessor Options A-9

Starting BCView . A-11

Starting BCView From dc_shell . A-11

Starting BCView From a UNIX Shell . A-12

Using BCView in Your Script . A-12

Opening BCView Windows . A-13

Starting the Memory Wrapper Tool . A-14

Getting Command, Variable, and Error Help A-15

System Prompt . A-15

SystemC Compiler Command Prompt. A-15

Appendix B. Complex Number Multiplier Example Files

Complex Number Multiplier Source Code . B-2

Command Script . B-4

Reports Created During Synthesis . B-6

xiv

Estimated Resources. B-6

Schedule Report . B-9

Area Report . B-11

Timing Report . B-12

Report Resource . B-14

xv

Figures

Figure 1-1 Behavioral Synthesis Compared to RTL Synthesis 1-3

Figure 1-2 Structure of the Circuit Generated by SystemC Compiler

During Behavioral Synthesis. 1-5

Figure 1-3 Scheduling Into Specific Clock Cycles 1-7

Figure 1-4 Allocation of Resources . 1-9

Figure 1-5 An Algorithm and the Created Data Path and FSM 1-10

Figure 1-6 SystemC Compiler Input and Output Flow 1-12

Figure 2-1 SystemC Compiler Commands Use in the Flow. 2-4

Figure 3-1 Timing Diagram of the Complex Multiplier I/O

Protocol. 3-4

Figure 3-2 Operations of the Complex Multiplier 3-6

Figure 3-3 Typical Timing Path. 3-15

Figure 3-4 Estimated Resources Report (Partial) 3-18

Figure 3-5 Parallel Paths in the Estimated Resources Report

(Partial) . 3-20

Figure 4-1 Scheduling Into Specific Clock Cycles 4-2

xvi

Figure 4-2 Operation Scheduling . 4-3

Figure 4-3 Resource Allocation Reservation Table 4-4

Figure 4-4 Register Allocation Reservation Table 4-7

Figure 4-5 Shared Component. 4-8

Figure 4-6 Shared Register . 4-8

Figure 4-7 FSM Control Signals. 4-9

Figure 4-8 Synthesized Design Representation. 4-9

Figure 4-9 Behavioral Code and I/O Operation 4-11

Figure 4-10 Cycle-Fixed I/O Mode . 4-12

Figure 4-11 Superstate-Fixed I/O Mode. 4-15

Figure 4-12 Source Code and I/O Scheduling Mode Simulation 4-17

Figure 4-13 Resources With Loops . 4-40

Figure 4-14 Nonpipelined Loop . 4-44

Figure 4-15 Pipelined Loop . 4-45

Figure 4-16 Invalid Loop Initiation Value . 4-48

Figure 4-17 Valid Loop Initiation Value. 4-48

Figure 4-18 Invalid Memory and I/O Access 4-49

Figure 4-19 Valid Memory and I/O Access. 4-50

Figure 4-20 Handshake Signal Preventing Loop Pipelining. 4-50

Figure 4-21 Pipelined Loop With Handshake Signal 4-51

Figure 4-22 Exit From a Pipelined Loop. 4-52

Figure 5-1 Architectural Exploration. 5-3

Figure 5-2 Bitwise Timing for Operation Chaining 5-9

Figure 5-3 Chained Operations in the Estimated Resources

xvii

Report (Partial) . 5-10

Figure 5-4 Typical Timing Path. 5-13

Figure 5-5 Chaining Operation Timing . 5-15

Figure 5-6 Multicycle Operation . 5-19

Figure 5-7 Multicycle Operations in Conditional Statements 5-22

Figure 5-8 Flow for Preserving Functions . 5-27

Figure 5-9 Command Flow With Preserved Functions 5-32

Figure 6-1 BCView Windows . 6-5

Figure 6-2 BCView Recommended Usage 6-8

Figure 6-3 Selection Inspector With Error Information 6-11

Figure 6-4 Scheduling Error Analyzer With Bounding Operations . . 6-12

Figure 6-5 Scheduling Error Analyzer Paths and Clock Cycles 6-13

Figure 6-6 Expanded Derived Edge. 6-17

Figure 6-7 Selection Inspector Window With Edge Information. . . . 6-18

Figure 6-8 Code Browser With Behavioral Code 6-20

Figure 6-9 FSM Viewer With States and Transitions 6-22

Figure 6-10 Selected Transition With Conditions and Actions 6-25

Figure 6-11 Reservation Table Window . 6-27

Figure 6-12 Reservation Table Toolbar Buttons 6-30

Figure 6-13 Resource Utilization in Reservation Table 6-32

Figure 6-14 Resource Delay in Reservation Table. 6-33

Figure 6-15 Operation Delay in Reservation Table 6-34

Figure 6-16 Operation Delay Detail in Selection Inspector 6-34

Figure 6-17 Shared Resources in Reservation Table 6-35

xviii

Figure 6-18 Operation Delays in Clock Cycles 6-37

Figure 6-19 Derived Edge Example . 6-39

Figure 6-20 Registers in the Reservation Table 6-42

Figure 6-21 Loops in the Reservation Table 6-44

Figure 6-22 Loop Information Tips . 6-46

Figure 6-23 Loop Details in Selection Inspector 6-47

Figure 6-24 Loop Operations Zoomed View 6-48

Figure 6-25 Clock Cycle Utilization . 6-54

Figure 6-26 Little Resource Sharing . 6-56

Figure 6-27 Shared Resources . 6-57

Figure 6-28 Shareable Resources That Are Not Shared 6-58

Figure 6-29 Forced Resource Sharing. 6-60

Figure 6-30 Design Summary in Selection Inspector Window 6-62

Figure 7-1 Array Generation . 7-2

Figure 7-2 Register File Architecture . 7-3

Figure 7-3 Dual-Port Memory Operations . 7-4

Figure 7-4 Multiple Accesses in the Same Cycle That May

Conflict . 7-12

Figure 7-5 Asynchronous Memory With Registered Input 7-24

Figure 7-6 Manually Adding Registers to an Asynchronous

Memory. 7-25

Figure 7-7 Memory Access Time Specification 7-25

Figure 7-8 Pipelined Memory Accesses. 7-29

Figure 7-9 Invalid Schedule With Loop Carry Dependency 7-32

xix

Figure 7-10 Empty Memory Wrapper Window 7-36

Figure 7-11 Completed Memory Wrapper . 7-37

Figure 7-12 Memory Selection Dialog Box. 7-40

Figure 7-13 Memory Selection from a DB File Dialog Box. 7-41

Figure 7-14 Memory Definition Dialog Box . 7-42

Figure 7-15 Completed Memory Definition . 7-45

Figure 7-16 Memory Pin Definition Dialog Box 7-47

Figure 7-17 Completed Memory Pin Definition 7-49

Figure 7-18 Completed Wrapper Properties Dialog Box 7-51

Figure 7-19 Wrapper Summary . 7-54

Figure 7-20 Memory Wrapper Displayed in Main Window. 7-55

Figure 7-21 Read Port Protocol Waveforms 7-57

Figure 7-22 Manually Adding Registers to an Asynchronous

Memory. 7-59

Figure 7-23 Code Editor Dialog Box With Default Code 7-60

Figure 7-24 Properties Dialog Boxes . 7-63

Figure 7-25 Export Wrapper Dialog Box . 7-65

Figure 7-26 Exploratory Memory Selection Dialog Box 7-68

Figure 7-27 Exploratory Memory Definition Dialog Box 7-69

Figure 7-28 Completed Exploratory Memory Definition 7-71

Figure 7-29 Exploratory Memory Pin Definition Dialog Box 7-72

Figure 7-30 Exploratory Wrapper Properties Dialog Box 7-74

Figure 7-31 Exploratory Memory Wrapper Summary 7-76

Figure 7-32 Exploratory Memory Wrapper in Main Window 7-77

xx

Figure 8-1 Externalize a Cell . 8-8

xxi

Tables

Table 6-1 Edges Representing Constraints 6-14

Table 6-2 Reservation Table Symbols . 6-28

Table 7-1 Comparing Arrays, Register Files, and Memories 7-5

xxii

xxiii

Examples

Example 3-1 Complex Multiplier I/O Protocol. 3-3

Example 3-2 Complex Multiplier Arithmetic Operations 3-5

Example 3-3 Report Clock . 3-7

Example 3-4 Listing Libraries . 3-10

Example 3-5 Library Report (Partial) . 3-11

Example 3-6 Wire Load Model (Partial) . 3-12

Example 3-7 Timing Report (Partial) . 3-14

Example 3-8 Clock Margin in the Resource Estimate Report 3-16

Example 3-9 Estimated Resource Report . 3-21

Example 4-1 Schedule Report Summary . 4-21

Example 4-2 Report Schedule Operations. 4-24

Example 4-3 Report Schedule Variables . 4-27

Example 4-4 Report Schedule Abstract FSM 4-29

Example 4-5 Report Hierarchy Before Scheduling. 4-35

Example 4-6 Report Hierarchy After Scheduling 4-36

Example 4-7 Constraining Between Two Operations. 4-38

xxiv

Example 4-8 Constraining a Loop . 4-38

Example 4-9 Nested Loops With Operations 4-39

Example 4-10 Passing a Constraint Between Loops 4-42

Example 4-11 Pipelined Loop Timing Summary (Partial). 4-46

Example 4-12 Commands for Minimum Resource-Driven

Scheduling . 4-56

Example 4-13 Commands for Maximum Resource-Driven

Scheduling . 4-56

Example 4-14 Commands for Forced Maximum Resource-Driven

Scheduling . 4-57

Example 5-1 Clock Margin in the Resource Estimate Report 5-14

Example 5-2 Multicycle Report (Partial) . 5-21

Example 5-3 Creating a Preserved Function 5-26

Example 5-4 Defining a Preserved Function in a Separate File. . . . 5-26

Example 5-5 Using the read_preserved_function_netlist

Command . 5-28

Example 5-6 Using the compile_preserved_functions Command . . 5-30

Example 5-7 Using DesignWare Components. 5-35

Example 5-8 Reporting DesignWare Components 5-36

Example 5-9 Listing Pipelined Components 5-38

Example 6-1 HLS-52 Error Message . 6-10

Example 7-1 Defining a Register File for a Specific Array 7-7

Example 7-2 Report of Array Conflicts . 7-9

Example 7-3 Accesses That May or May Not Conflict 7-11

xxv

Example 7-4 Declaring a Local Memory Resource 7-18

Example 7-5 Report of Synthetic Memory Wrapper. 7-19

Example 7-6 Report of a Synthetic Library 7-22

Example 7-7 Report of Memories Used in a Design 7-23

Example 7-8 Set Memory Input Delay . 7-27

Example 7-9 Report Nonconflicting Memory Accesses 7-30

Example 7-10 Memory Array Definition . 7-66

Example 8-1 Executing Without Speculative Execution. 8-5

Example 8-2 Executing With Speculative Execution 8-6

Example A-1 SystemC Compiler Command Script A-7

Example A-2 Using BCView in a Script . A-12

Example B-1 Complex Multiplier Source Code. B-2

Example B-2 Command Script for Complex Number Multiplier B-4

Example B-3 Report Resource Estimates . B-6

Example B-4 Schedule Report . B-9

Example B-5 Report Area. B-11

Example B-6 Report Timing . B-12

Example B-7 Report Resources . B-14

xxvi

xxvii

Preface FIX ME!

This preface includes the following sections:

• What’s New in This Release

• About This Guide

• Customer Support

xxviii

What’s New in This Release

This section describes the new features, enhancements, and
changes included in SystemC Compiler version 2000.11-SCC1.
Unless otherwise noted, you can find additional information about
these changes later in this book.

New Features

SystemC Compiler version 2000.11-SCC1 includes the following new
features:

• The write_rtl command generates either a synthesizable RTL
model or an RTL model optimized for simulation. This command
provides a single interface to generate RTL models that replaces
setting several dc_shell variables and using the write command.

• Using either the write_rtl or write command, you can write
an RTL SystemC model optimized for simulation.

For information about these commands, see “Writing the RTL Files”
on page 2-18.

Enhancements

SystemC Compiler version 2000.11-SCC1 includes the following
enhancements:

• Synthesizable RTL models now contain operators such as +,
which are used instead of instantiations of Synopsys DesignWare
components like DW01_add. Substitutions are made when

xxix

possible. This eliminates the dependency on Synopsys-specific
components for synthesizable RTL models, unless the behavioral
description specifies them.

• The memory wrapper generation tool now allows you to specify
a memory write latency in addition to a read latency.

You can now customize the address and data bus waveforms. In
previous versions of the memory wrapper generation tool,
address and data bus waveforms were fixed to the first cycle.

For information about this enhancement, see “Editing the
Waveform Values” on page 7-56.

Known Limitations and Resolved STARs

Information about known problems and limitations, as well as about
resolved Synopsys Technical Action Requests (STARs), is available
in the CoCentric SystemC Compiler Release Note in SolvNET.

To see the CoCentric SystemC Compiler Release Note,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNET.

2. If prompted, enter your name and password. If you do not have
a SOLV-IT! user name and password, you can obtain them at
http://www.synopsys.com/registration.

3. Click Release Notes, then open the CoCentric SystemC Compiler
Release Note.

xxx

About This Guide

The CoCentric™ SystemC Compiler Behavioral User Guide explains
how to synthesize a SystemC behavioral description of a hardware
module into an RTL description or gate-level netlist using the
CoCentric SystemC Compiler.

Audience

The CoCentric™ SystemC Compiler Behavioral User Guide is for
system and hardware designers and electronic engineers who are
familiar with the SystemC Class Library and the C or C++ language
and development environment.

Familiarity with one or more of the following Synopsys tools is
advantageous but not required:

• Synopsys Behavioral Compiler

• Synopsys Design Compiler

• Synopsys Scirocco VHDL Simulator

• Synopsys Verilog Compiled Simulator (VCS)

xxxi

Related Publications

In addition to the CoCentric™ SystemC Compiler Behavioral User
Guide, see the following manuals:

• The CoCentric™ SystemC Compiler Behavioral Modeling Guide,
which provides information about how to develop or refine a
SystemC behavioral model for synthesis with SystemC Compiler

• The SystemC HDL Cosimulation User Guide, which provides
information about cosimulating a system with mixed SystemC and
HDL modules

• The CoCentric™ SystemC Compiler Quick Reference, which
provides a list of commands with their options and a list of
variables.

For additional information about SystemC Compiler and other
Synopsys products, see

• Synopsys Online Documentation (SOLD), which is included with
the software

• Documentation on the Web, which is available through SolvNET
on the Synopsys Web page at http://www.synopsys.com

• The Synopsys Print Shop, from which you can order printed
copies of Synopsys documents, at http://docs.synopsys.com

You can also refer to the documentation for the following related
Synopsys products:

• Design Compiler

• Scirocco VHDL Simulator

• Verilog Compiled Simulator

xxxii

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys
syntax, such as object_name. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Courier bold Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one
of three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term
by the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.

xxxiii

Customer Support

Customer support is available through SOLV-IT! and through
contacting the Synopsys Technical Support Center.

Accessing SOLV-IT!

SOLV-IT! is the Synopsys electronic knowledge base, which contains
information about Synopsys and its tools and is updated daily.

To access SOLV-IT!,

1. Go to the SolvNET Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password.

If you do not have a SOLV-IT! user name and password, you can
obtain them at http://www.synopsys.com/registration.

If you need help using SOLV-IT!, click SolvNET Help in the column
on the left side of the SolvNET Web page.

xxxiv

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (SOLV-IT! user name and password
required), then clicking “Enter a Call.”

• Send an e-mail message to support_center@synopsys.com.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.

Training

For SystemC and SystemC Compiler training and private workshops,
contact the Synopsys Customer Education Center in one of the
following ways:

• Go to the Synopsys Web page at http://www.synopsys.com/
services/education.

• Telephone (800) 793-3448.

1-1

Introduction to SystemC Compiler Behavioral Synthesis

1
Introduction to SystemC Compiler Behavioral
Synthesis 1

CoCentric™ SystemC Compiler synthesizes a SystemC behavioral
hardware module into RTL or a gate-level netlist, and it can synthesize
a SystemC RTL module into a gate-level netlist. After synthesis, you
can use other Synopsys tools for test insertion, power optimization,
and other tasks to complete the physical design.

For information about setting up your environment to use SystemC
Compiler, see Appendix A, “Setting Up SystemC Compiler.”

This chapter describes the synthesis process, the inputs required by
SystemC Compiler, and the outputs it produces in the following
sections:

• Understanding What SystemC Compiler Does

• Libraries and Other Inputs

1-2

Introduction to SystemC Compiler Behavioral Synthesis

• Outputs From SystemC Compiler

1-3

Introduction to SystemC Compiler Behavioral Synthesis

Understanding What SystemC Compiler Does

SystemC Compiler is a tool that can accept both behavioral and RTL
SystemC descriptions and performs behavioral or RTL synthesis, as
required, to create a gate-level netlist. You can also use SystemC
Compiler to create an HDL description for simulation or to use with
other HDL tools in your flow. Figure 1-1 shows behavioral and RTL
synthesis paths to gate-level netlists.

Figure 1-1 Behavioral Synthesis Compared to RTL Synthesis

Behavioral
 code

Gate
 level
netlist

RTL
code

Gate
 level
netlist

Behavioral Synthesis RTL Synthesis

Behavioral
synthesis

optional
RTL

Write

Logic
synthesis

Logic
synthesis

1-4

Introduction to SystemC Compiler Behavioral Synthesis

Synthesis With SystemC Compiler

This guide explains how to do behavioral synthesis with SystemC
Compiler. For information about doing RTL synthesis with SystemC
Compiler, see the CoCentric™ SystemC Compiler RTL User and
Modeling Guide.

SystemC Compiler synthesizes hardware from a behavioral
description by

• Timing all operations, based on a technology library

• Scheduling operations, I/O, and memory accesses into clock
cycles

• Allocating hardware by assigning variables and signals to
registers and assigning operations to synthetic components

• Creating a finite state machine (FSM) and memory interface
control logic

• Pipelining loops for higher throughput, which typically increases
the size of the ASIC

• Inferring memory for arrays

• Chaining and multicycling operations

1-5

Introduction to SystemC Compiler Behavioral Synthesis

SystemC Compiler generates a design that consists of an FSM, a
data path, and memory, as shown in Figure 1-2.

Figure 1-2 Structure of the Circuit Generated by SystemC Compiler During
Behavioral Synthesis

State

O

M
M

R

Output

EnableClk

Input

Input

Data Path

0 00 0 0110110010110101
1 00 0 0111100001010101
0 10 0 0011111010101011
1 10 0 0010101011111001
0 01 0 1101010111010101
1 01 0 0000000011010101
0 11 0 0111111110010111

Memory

Data

Logic

State

Control FSM

Status

optional

External
input

Memory

+

1-6

Introduction to SystemC Compiler Behavioral Synthesis

Timing

During timing, SystemC Compiler determines the delay through each
component that is used in the design shows the critical paths in the
design. To accurately determine timing, it uses

• ASIC vendor libraries

• Wire load models

• Operating conditions

• DesignWare component libraries

The timing estimates that are created are used during scheduling and
allocation to determine an appropriate architecture. Timing is
described in more detail in “Timing and Area Estimation” in Chapter 3.

1-7

Introduction to SystemC Compiler Behavioral Synthesis

Scheduling

During scheduling, SystemC Compiler schedules I/O operations,
arithmetic operations, and memory accesses into specific clock
cycles, as shown in Figure 1-3.

Figure 1-3 Scheduling Into Specific Clock Cycles

wait_until(start.delayed() == true);
A = port1.read() * port2.read();
B = port3.read() * port4.read();
C = A + B;
if (C < 0) {...}

port1

port2

port3

port4
*

A

B

C

OperationCycle

1

2

3

4

*

*

+

<

Schedule read inputs

5

I/O Arithmetic operations Scheduled operations

Behavioral code

+ <

*

1-8

Introduction to SystemC Compiler Behavioral Synthesis

SystemC Compiler objectives during scheduling are to

• Satisfy the data and control dependencies between operations

• Ensure that the scheduling constraints of latency, throughput, and
clock period are met

• Facilitate maximum resource sharing by distributing operations
over the allowed number of cycles

• Allow for maximum register sharing by producing and consuming
variables intelligently

The scheduling mode defines how SystemC Compiler handles I/O
operations. You control the scheduling mode to be either cycle-fixed
or superstate-fixed. In cycle-fixed scheduling mode, the I/O
operations are left in the exact clock cycle specified in the behavioral
description. In superstate-fixed scheduling mode, SystemC Compiler
preserves the relative order of I/O operations defined in the behavioral
description, but it can insert clock cycles between I/O operations.
Scheduling modes are described in Chapter 4, “Scheduling and
Scheduling Constraints.”

1-9

Introduction to SystemC Compiler Behavioral Synthesis

Allocating Hardware

After the design is scheduled into clock cycles, data values are
assigned to specific registers, and operations are allocated to specific
hardware resources. To achieve the best overall hardware cost,
SystemC Compiler calculates whether sharing a resource and adding
multiplexers is more expensive than duplicating the resources during
allocation. Figure 1-4 shows allocation of hardware for a set of
constraints. The allocatation uses one multiplier, one adder, and one
comparator to execute the operations

Figure 1-4 Allocation of Resources

Allocation Multiplier

*

*

+

<

Hardware resources

Adder ComparatorOperationCycle

1

2

3

4

*

*

+

<

read inputs

5

Scheduled operations

1-10

Introduction to SystemC Compiler Behavioral Synthesis

Creating an FSM and Data Path

Data path operations are specified explicitly in the behavioral
description, and FSM actions are implied from the control statements
such as if, while, and loop statements. Figure 1-5 shows a simple
algorithm and the data path and FSM that SystemC Compiler creates.

Figure 1-5 An Algorithm and the Created Data Path and FSM

Algorithm Data Path

FSM

R = 1;

while (I > 1){

 R = R * I;

 I = I - 1;

}

*

>1

-1

>
R

>
I

I

1

R = 1

R = R * I
I = I - 1

1-11

Introduction to SystemC Compiler Behavioral Synthesis

Pipelining Loops

You can increase the throughput of your design by pipelining loops.
During scheduling, SystemC Compiler generates the required loop
pipelining controls in the FSM. By pipelining loops, your design can
execute more operation per time unit, however the resulting ASIC
implementation is usually larger. Pipelining loops is described in
“Pipelining a Loop” on page 4-44.

Inferring Memories

You can map an array to a memory and use a simple array access
statement in the behavioral description to access the memory.
SystemC Compiler automatically schedules memory accesses and
generates the control for memory access. Data dependencies
between memory read and write and other operations in the data flow
are respected. Use memory inferencing to explore the tradeoffs of
different memory architectures. Inferring memories and register files
is described in Chapter 7, “Using Register Files and Memories for
Arrays.”

1-12

Introduction to SystemC Compiler Behavioral Synthesis

Libraries and Other Inputs

SystemC Compiler requires a SystemC behavioral description
following the coding guidelines described in the CoCentric™
SystemC Compiler Behavioral Modeling Guide, a technology library,
and a synthetic library.

Figure 1-6 shows the flow into and out of SystemC Compiler.

Figure 1-6 SystemC Compiler Input and Output Flow

Technology
Library

Scheduled

Behavioral
Description

Constraints
Script

SystemC Compiler

BCView

Synthetic
Library

Cycle-accurate
HDL

Reports
RTL or
scheduled .db

High-Level
Synthesis

Physical synthesis
or

logic synthesis

GraphicalConstraints

Post-synthesis
verification

analysis

Gate-level
netlist

1-13

Introduction to SystemC Compiler Behavioral Synthesis

Behavioral Description

Write and refine the behavioral hardware description in SystemC
using the SystemC Class Library according to the guidelines in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide.

The behavioral description is independent from the technology and
implementation architecture. Using SystemC Compiler, you can
change the target technology library or constrain the implementation
architecture without modifying the behavioral description. This allows
you to explore various implementation architectures and target
technologies, which is particularly useful for FPGAs.

This manual uses the example designs that are available in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide. The files
for these examples are available in the SystemC Compiler installation
in the $SYNOPSYS/doc/syn/scc directory.

Technology Library

A technology library is provided by an ASIC vendor in Synopsys .db
database format. It provides the area, timing, wire load models, and
operating conditions. You provide the path to your chosen technology
library for your design by defining the target_library variable in
dc_shell.

Sample technology libraries are provided in the SystemC Compiler
installation at $SYNOPSYS/libraries/syn. For the examples in this
manual, the tc6a_cbacore.db sample technology library is defined as
the target library.

1-14

Introduction to SystemC Compiler Behavioral Synthesis

Synthetic Library

The DesignWare synthetic library is a technology-independent library
of logic components. SystemC Compiler maps your design
operations to the synthetic library components. You provide the path
to your chosen synthetic libraries for your design by defining the
synthetic_library variable in dc_shell.

The DesignWare libraries are provided in the SystemC Compiler
installation at $SYNOPSYS/libraries/syn. The synthetic libraries have
names such as standard.sldb, dw01.sldb, dw02.sldb, and so forth.
For information about the DesignWare libraries, see the DesignWare
online documentation.

Outputs From SystemC Compiler

The output from SystemC Compiler is a cycle-true, fully constrained
RTL architecture that includes the FSM control logic and constraints
(such as multicycle constraints and resource sharing constraints)
needed for logic synthesis, as shown in Figure 1-6 on page 1-12.

You can write out the RTL in three styles

• An RTL .db file, which is recommended for compilation to a
gate-level netlist.

• A synthesizable RTL HDL file in Verilog or VHDL, which you can
use for compilation to gates, for verification, or for any other aspect
of the design flow that requires an HDL input.

• An RTL HDL or SystemC file optimized for simulation, which is
recommended for verification.

1-15

Introduction to SystemC Compiler Behavioral Synthesis

SystemC Compiler has a graphical analysis environment called
BCView that you can use to quickly and effectively analyze the
architecture generated by SystemC Compiler and to identify the
causes of common scheduling errors, if they should occur. BCView
is described in Chapter 6, “Analyzing Designs With BCView.”

1-16

Introduction to SystemC Compiler Behavioral Synthesis

2-1

Using SystemC Compiler

2
Using SystemC Compiler 2

This chapter describes the SystemC Compiler commands required
to synthesize a SystemC behavioral description into a gate-level
netlist or an RTL description.

In this chapter, a complex number multiplier design is used to show
the typical command usage. The source code, command script, and
reports generated are available in Appendix B, “Complex Number
Multiplier Example Files.” Other example designs are available in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide, and you
can access the design files in the SystemC Compiler installation at
$SYNOPSYS/doc/syn/scc.

This chapter contains the following sections:

• Usage and Commands

• Defining Libraries

2-2

Using SystemC Compiler

• Compiling and Elaborating the Source Code

• Assigning Timing and Area Design Constraints

• Checking the Design

• Estimating Time and Area

• Scheduling the Design and Allocating Resources

• Generating Summary Reports

• Removing Designs from SystemC Compiler Memory

• Resuming Synthesis From a Saved .db File

• Writing the RTL Files

• Compiling and Writing a Gate-Level Netlist

2-3

Using SystemC Compiler

Usage and Commands

This chapter uses the complex number multiplier example (“Complex
Number Multiplier Source Code” on page B-2) to show how to use
the commands. Figure 2-1 illustrates the primary commands that you
use to perform behavioral synthesis with SystemC Compiler and
compile the design into gates. The diagram also shows the inputs
you provide and the outputs SystemC Compiler can provide.

The commands used in this chapter show the typical options you use.
For a full description of the command and all its options, see the
Synopsys online man pages. Accessing and using man pages is
described in “Getting Command, Variable, and Error Help” on page
A-15.

You do not to need complete this design flow in a single session. Start
the session at the top of the flow. If you stop, reenter the flow at a
later time either at the compile_systemc command, at the
bc_time_design command, or at the schedule command.

Enter the SystemC Compiler commands at the dc_shell prompt or
use the include command to run a script that contains the
commands. To start dc_shell, enter the following at a UNIX prompt:

unix% dc_shell

If this is the first time you are using SystemC Compiler, see Appendix
A, “Setting Up SystemC Compiler” for information about setting up
your environment, entering commands, and using scripts.

2-4

Using SystemC Compiler

Figure 2-1 SystemC Compiler Commands Use in the Flow

compile_systemc

bc_time_design

Behavioral Code

Reports

schedule

Cycle-accurate

RTL .db File

Gate-Level Netlist

compile

Elaborated .db File

bc_check_design

BCView and reports

Target and

libraries

Constraints
Latency

Pipeline

Constraints
Timing

synthetic

SystemC
Compiler

OutputsCommandsInputs

RTL HDL file

Timed .db File

HDL simulation file

Area

Synthesizable

2-5

Using SystemC Compiler

Defining Libraries

Before you use SystemC Compiler, you need to define the target
library, synthetic library, link library, and search path that are
appropriate for your design by setting the target_library,
synthetic_library, link_library, and search_path
variables. For example, to use the tc6a_cbacore library and the
DesignWare libraries, enter

dc_shell> target_library = {"tc6a_cbacore.db"}
dc_shell> synthetic_library = {"dw01.sldb" "dw02.sldb"}
dc_shell> link_library = target_library + synthetic_library
dc_shell> search_path = search_path + "your_library.db"

Other variables you can set are described in “Defining Libraries and
Other Variables” on page A-3.

Compiling and Elaborating the Source Code

Before you use SystemC Compiler, simulate your design with a
standard C++ compiler. This ensures that your design is functionally
correct and meets the functional specification. This is also valuable
to detect and correct any C++ syntax and semantic errors.

Preparing to Use BCView

To use BCView for evaluating your design, set the
bc_enable_analysis_info variable to true before you use the
compile_systemc command so SystemC Compiler creates the
additional analysis data. Enter

dc_shell> bc_enable_analysis_info = true

2-6

Using SystemC Compiler

After executing the schedule command, use BCView to determine
scheduling errors or to evaluate your scheduled design. You can later
remove the additional analysis data with the
remove_analysis_info command.

Using the compile_systemc Command

Use the compile_systemc command to read your SystemC source
code and check it for compliance with synthesis policy, C++ syntax,
and C++ semantics. If there are no errors, it produces an internal
database (.db) ready for timing analysis. This process is called
elaboration.

The compile_systemc command, and the other SystemC
Compiler commands, respond with 1 if no errors were encountered
or a 0 if an error was encountered. It also displays explanatory
messages for errors and warnings.

The compile_systemc command performs the following:

• Checks C++ syntax and semantics

• Replaces source code arithmetic operations with DesignWare
components

• Performs optimizations such as constant propagating, constant
folding, dead code elimination, and algebraic simplification

• Performs the necessary elaboration steps to prepare the
SystemC description for timing analysis and scheduling

For information about issuing C++ compiler preprocessor options with
the compile_systemc command, see “Using compile_systemc
Command Preprocessor Options” on page A-9.

2-7

Using SystemC Compiler

Elaborating a Design With a Single Behavioral Module

If your design has a single behavioral module with one or more
behavioral processes, use the compile_systemc command to
elaborate the design. For example, to elaborate the cmult design,
enter

dc_shell> compile_systemc cmult.cc

Elaborating a Hierarchical Design With Multiple
Behavioral Modules

If your design is hierarchical and contains multiple behavioral
modules, you need to use the compile_systemc command to
elaborate each module separately. Then use the link command to
link the internal databases. The top-level module must be an RTL
module that instantiates the behavioral modules. Each behavioral
module can contain one or more processes. (For details about
creating a hierarchical module, see the CoCentric™ SystemC
Compiler Behavioral Modeling Guide or the CoCentric™ SystemC
Compiler RTL User and Modeling Guide.) Enter

dc_shell> compile_systemc beh_module1.cc
dc_shell> compile_systemc beh_module2.cc
dc_shell> compile_systemc -rtl -rtl_format db top_rtl.cc
dc_shell> link

The current design name is taken from the most recently executed
compile_systemc command. In this example, the current design
name is top_rtl. You can elaborate the files in any order. To change
the current design name after you link the elaborated files, enter

dc_shell> current_design new_design_name

2-8

Using SystemC Compiler

The compile_systemc command provides several other options
related to RTL synthesis. For information about these options, see
the CoCentric™ SystemC Compiler RTL User and Modeling Guide.

Elaborating a Design With Multiple Files

If your design has multiple modules that are defined in separate files,
you can use either the #include directive or preserved functions to
bring the external files into the primary design. The commands to use
either method are described in “Using Multiple Files to Describe a
Design” on page 8-2

Assigning Timing and Area Design Constraints

Before timing the design, you can enter constraints that affect timing.
The create_clock command is the only constraint that is required
by SystemC Compiler at this stage.

Setting the Clock Period

Use the create_clock command to mark an existing design port
as the clock and set the clock period, which is specified in the same
unit defined in the target technology library. For example, to mark a
port named clk as a clock port and set the clock period to 20 units,
enter

dc_shell> create_clock clk -period 20

2-9

Using SystemC Compiler

Setting Other Initial Constraints

You do not need to set other design constraints at this stage. You
can, however, set constraints including environmental conditions that
affect delays (for example, the operating conditions and wire load
model). If you do not specify operating conditions and a wire load
model, the target library default values are used. The constraints you
can set are described in “Setting Your Timing Environment” on page
3-7.

2-10

Using SystemC Compiler

Checking the Design

Use the bc_check_design command to check for errors that will
prevent your design from being synthesized with SystemC Compiler.

Before using the bc_check_design command, you need to specify
the clock period for the design so the analysis is accurate (see “Setting
the Clock Period” on page 2-8).

Running Check Design

Run the bc_check_design command to quickly check for SystemC
Compiler scheduling errors. This check determines whether your
module can be scheduled using the selected I/O scheduling mode.

dc_shell> bc_check_design -io_mode mode

The io_mode can be either cycle_fixed or superstate_fixed.
The default io_mode is cycle_fixed. For the complex number
multiplier example, the I/O mode is chosen to be
superstate_fixed mode.

Selecting a scheduling I/O mode is described in “Selecting an I/O
Scheduling Mode” on page 4-10. Finding and fixing scheduling errors
is described in “Using BCView to Analyze Scheduling Errors” on page
2-15.

Changing the Code

If the result of bc_check_design indicates a need to change the
source code, make the necessary changes and repeat the steps from
“Compiling and Elaborating the Source Code” on page 2-5.

2-11

Using SystemC Compiler

Estimating Time and Area

The bc_time_design command estimates the timing and area
used by the design based on the initial design constraints. The Design
Compiler timing engine and the target library default settings are used
for accurate estimation. By default, the calculation is based on the
implementation with the smallest area. Enter

dc_shell> bc_time_design

This command annotates the current design with the timing and area
data for later use by the schedule command.

To change the default behavior of the bc_time_design command,
use the -fastest option. Enter

dc_shell> bc_time_design -fastest

The -fastest option uses the fastest available implementation for
each synthetic operation (+, *, and so forth) instead of the default,
which is the implementation with the smallest area.

To force the bc_time_design command to recompute and
overwrite the existing timing and area estimates, use the -force
option. Use it, for example, to recalculate timing and area estimates
when you change the target library. Enter

dc_shell> bc_time_design -force

Commands, variable settings, and other techniques you can use to
improve latency and area are described in Chapter 3, “Timing and
Area Estimation,” and Chapter 5, “Optimizing Latency and Area.”

2-12

Using SystemC Compiler

Reporting Timing and Area Estimates

The report_resource_estimates command displays the timing
and area estimates generated by the bc_time_design command.
Enter

dc_shell> report_resource_estimates

The report shows the delays through the synthetic components
required by the current design. These delays are used for scheduling
and allocation.

An example of the report and an explanation are provided in
“Interpreting the Timing and Area Resource Report” on page 3-17.

Saving the Timed Design

Save the timed .db file so you can explore different architectures
without running bc_time_design each time. Use the write
command to write out the timed .db file. Enter

dc_shell> write -hierarchy
 -output cmult_timed.db

Resuming synthesis from this saved .db file is described in “Resuming
Synthesis From a Saved .db File” on page 2-17.

2-13

Using SystemC Compiler

Scheduling the Design and Allocating Resources

The schedule command invokes the scheduling and allocation
functions of SystemC Compiler. If you have not already invoked the
bc_time_design command, the schedule command executes it.
Enter

dc_shell> schedule -io_mode mode

By default, the schedule command

• Makes tradeoffs to achieve a design with the fastest latency as
the top priority

• Creates a design with the smallest area as a secondary priority

• Performs scheduling and allocation with low effort

• Performs cycle-fixed I/O scheduling

The -io_mode can be an I/O scheduling mode of either
cycle_fixed or superstate_fixed. Selecting a scheduling I/O
mode is described in “Selecting an I/O Scheduling Mode” on page
4-10. For the complex number multiplier example, the
superstate_fixed mode is chosen.

Scheduling for Smallest Area

To change the scheduling priority to smallest area scheduling as the
top priority and fastest latency as a secondary priority, use the
-extend_latency option. Enter

dc_shell> schedule -io_mode superstate_fixed
 -extend_latency

2-14

Using SystemC Compiler

When you use the -extend_latency option with the
superstate-fixed scheduling mode, the schedule command adds
clock cycles (latency) to the design whenever possible to minimize
resources needed by the design and produce the smallest area. The
-extend_latency option is not relevant for the cycle-fixed
scheduling mode, because placement of clock cycles are controlled
by the source code.

Changing the Effort Level

To control the CPU effort level for scheduling, use the -effort
option. Define the effort as quick,low, medium, or high. For
example,

dc_shell> schedule -io_mode superstate_fixed -effort medium

To control the CPU effort level for allocation, use the
-allocation_effort option. Define the effort as quick, low,
medium, or high. For example,

dc_shell> schedule -io_mode superstate_fixed
 -effort high
 -allocation_effort medium

Setting Schedule Constraints

You can apply other scheduling constraints before using the
schedule command, as described in Chapter 4, “Scheduling and
Scheduling Constraints."

2-15

Using SystemC Compiler

Using BCView to Analyze Scheduling Errors

If you get scheduling errors when running the bc_check_design
or schedule commands, use the BCView Scheduling Error Analyzer
to obtain graphic information that can help you determine where and
why the scheduling errors occur. The Scheduling Error Analyzer
shows where design specification requirements conflict. Such
conflicts arise when user constraints and the inherent requirements
of the design are incompatible.

For details about using BCView, see “Examining Scheduling Errors”
on page 6-9.

When BCView can analyze scheduling errors , SystemC Compiler
prints a message directing you to launch BCView. Otherwise,
SystemC Compiler provides informative messages.

Analyzing Scheduling Results

After scheduling the design, analyze the results using one or both of
the following methods:

• Use BCView to perform analysis after scheduling, which is
described in “Evaluating the Architecture Generated by SystemC
Compiler” on page 6-21.

• Use the report_schedule command to display the results of
scheduling.

The report_schedule command displays the results of scheduling
and allocation. Examine the scheduling reports to determine whether
the synthesized design is satisfactory. Enter

dc_shell> report_schedule

2-16

Using SystemC Compiler

An example scheduling report and an explanation are provided in
“Analyzing the Scheduling Report” on page 4-20.

Generating Summary Reports

To generate summary reports of the design after it is compiled to
gates, use one or more of the following commands:

dc_shell> report_area
dc_shell> report_resources
dc_shell> report_timing

Examples of these reports are shown in “Report Area” on page B-11,
“Report Resources” on page B-14, and “Report Timing” on page B-12

show.

Removing Designs from SystemC Compiler Memory

You might want to remove all the current designs from SystemC
Compiler memory to synthesize a different design or resume
synthesis from a .db file you saved at some point in the flow. To
remove designs from SystemC Compiler memory, use either the
remove_design or free commands. Enter,

dc_shell> remove_design -designs

Or enter,

dc_shell> free -designs

2-17

Using SystemC Compiler

Resuming Synthesis From a Saved .db File

To resume synthesis of a design from a .db file you saved after
elaboration, timing, or scheduling, use the read command to bring
the .db file into SystemC Compiler. Before reading the .db file, you
can optionally remove all designs from SystemC Compiler. For
example, if you want to resume synthesis of the complex number
multiplier from the .db file saved after timing, enter

dc_shell> free -designs
dc_shell> read cmult_timed.db

Then resume synthesis starting at the next step in the synthesis flow.
For this example, the next step is described in “Scheduling the Design
and Allocating Resources” on page 2-13.

2-18

Using SystemC Compiler

Writing the RTL Files

When you are satisfied with the results of scheduling, write out an
RTL .db file and HDL format files for

• Verification of behavioral synthesis results

• A future logic synthesis session

• Formal verification

• RTL sign-off

• Use with other Synopsys tools

You can write out the RTL in three styles

1. Write an RTL .db file, which is recommended for compilation to a
gate-level netlist.

2. Write a synthesizable RTL file in Verilog or VHDL, which you can
use for compilation to gates, for verification, or for any other aspect
of the design flow that requires an HDL input.

3. Write an RTL HDL or SystemC file optimized for simulation, which
is recommended for verification. This file is not appropriate for
synthesis.

2-19

Using SystemC Compiler

Writing the RTL .db File

The RTL .db file is a scheduled and constrained database file you
can use for logic synthesis with Synopsys tools, such as Design
Compiler and Physical Compiler, that accept a .db file. To write out
this file, use the following command:

dc_shell> write
-hierarchy
-output design_sch_rtl.db

where

• The -hierarchy option specifies to write all designs in the
hierarchy. It is recommended that you always use the
-hierarchy option for writing out the RTL .db file of a design
synthesized with SystemC Compiler.

• The -output option specifies the output file name. It is
recommended that you create a file name with _sch to indicate
the design is scheduled, _rtl to indicate RTL, and the .db extension
to indicate it is a database file.

Resuming synthesis from this saved .db file is described in “Resuming
Synthesis From a Saved .db File” on page 2-17.

2-20

Using SystemC Compiler

Writing a Synthesizable RTL HDL File

Write the RTL design in an HDL format file for a future logic synthesis
session with other Synopsys synthesis tools such as Design Compiler
and Physical Compiler. Synthesizable RTL is a register transfer level
description of a design generated by SystemC Compiler. To write out
this file, use the following command:

dc_shell> write_rtl
[-format [verilog | vhdl]
[-output [design_sch_rtl.vhd | design_sch_rtl.v]]
[-rtl_script design_sch_rtl.scr]

where

• The -format option specifies the output format as Verilog or
VHDL.

• The -output option specifies the output file name. It is
recommended that you create the file name with the typical
extensions of .v for Verilog or .vhd for VHDL.

• The -rtl_script option specifies the file name for the
automatically generated dc_shell script, which contains RTL
synthesis constraints. (If you are running dc_shell in the dctcl
mode, the script is generated with the appropriate Tcl syntax.)

Prior to performing logic synthesis, read in the RTL design and
the automatically generated script using the following commands:

dc_shell> read -f [vhdl | verilog] design_sch_rtl.v[hd]
dc_shell> include design_sch_rtl.scr
dc_shell> compile

2-21

Using SystemC Compiler

Writing an RTL Simulation File

You can write the scheduled design to an HDL or SystemC format
file optimized for simulation speed using the -simulation option
with the write_rtl command. Use this file as input to a simulator
such as Verilog Compiled Simulator (VCS) or Scirocco VHDL
Simulator. If you write a SystemC file, use it with a C++ language
compiler.

You can also use the synthesizable RTL file, described in “Writing a
Synthesizable RTL HDL File” on page 2-20, for simulation. It is not,
however, optimized for simulation speed.

When you use the -simulation option with the write_rtl
command, SystemC Compiler generates a cycle-accurate, levelized
RTL netlist for simulation purposes. The design hierarchy is flattened
and the RTL netlist is written out to contain the least possible number
of processes. Each process is sensitive to a clock, which means that
only recognized simulation events are clock edges. Because there
are only a few processes, the total number of simulation events is
significantly reduced, and simulation executes much faster. With the
clock edges limited to only simulation events, the simulation is cycle
accurate.

Note:
This style of RTL is not suitable for synthesis with logic synthesis
tools.

2-22

Using SystemC Compiler

To write out an RTL HDL or SystemC file optimized for simulation,
use the following command:

dc_shell> write_rtl
[-format [verilog | vhdl | systemc]
[-simulation]
[-debug_mode]
[-output [design_sch_rtl.vhd | design_sch_rtl.v

 design_sch_rtl.cc]]

where

• The -output option specifies the output file name.

• The -format option specifies the output format as Verilog, VHDL,
or SystemC.

• The -simulation option specifies the output format as
optimized for simulation speed.

• The -debug_mode option specifies that the simulation RTL
output contains additional code to print diagnostics and enhance
debugging of the RTL simulation model. The -debug_mode
option can only be used with the -simulation option. The debug
enhancements include

- A process that traces the execution of the FSM generated by
SystemC Compiler

The process contains variables that you can monitor during
simulation for the current state of the FSM, the behavioral
design loop currently being executed, and the number of clock
cycles spent in the loop.

- Warnings about registers set to unknown values and
multiplexers with invalid values on their control lines

2-23

Using SystemC Compiler

- Warnings about input ports with values that are assumed to be
constant because the bc_dont_register_input_port
command is applied to the input port, but the values are
changing during simulation

- A trace of all reads and writes to memories

- A trace of all I/O operations that the design executes
(To generate I/O traces, set the bc_add_io_trace variable
to true before executing the schedule command.)

Specifying VHDL Packages

If you are writing a VHDL RTL file, you can use the -use_packages
option of the write_rtl command to specify a list of VHDL
packages to use in the RTL output. To specify VHDL packages, enter

dc_shell> write_rtl
-format vhdl
-output design_sch_rtl.vhd
-rtl_script design_sch_rtl.scr
-use_packages {dw02.dw02_components,
 synopsys.attributes}

Specifying Verilog Include Files

If you are writing a Verilog RTL file, you can use the
-include_files option to specify a list of Verilog include files to
use in the RTL output. To specify include files, enter

dc_shell> write_rtl
-format verilog
-output design_sch_rtl.v
-rtl_script design_sch_rtl.scr

-include_files {my_mult.v, test_decl.v}

2-24

Using SystemC Compiler

Compiling and Writing a Gate-Level Netlist

At this point in the flow, the behavioral description has been
synthesized into RTL. You can prepare the design for either place
and route or physical synthesis.

Preparing for Place and Route

Use the compile command to create a gate-level netlist for place
and route. The compile command performs logic synthesis and
optimization on the current design.

dc_shell> compile
-map_effort [low | medium | high]

Use the following command to write the gate-level netlist:

dc_shell> write
-hierarchy
-output cmult_netlist.db

For verification at the gate level, write a Verilog (or VHDL) simulation
file using the following command:

dc_shell> write
-format verilog
-hierarchy
-output cmult_netlist.v

2-25

Using SystemC Compiler

Preparing for Physical Compiler

Physical Compiler accepts an RTL or gate-level input and performs
logical and physical synthesis. This process results in placed gates.

To use Physical Compiler for physical synthesis, you need to perform
behavioral synthesis of the design using SystemC Compiler with a
target library that contains physical information in .lef or .pdb format.
For information about using Physical Compiler, see the Physical
Compiler documentation.

Preparing RTL for Physical Synthesis

To perform physical synthesis from an RTL netlist with Physical
Compiler, you need to provide a synthesizable RTL netlist and a
constraints file in Tcl format.

After you execute the SystemC Compiler compile_systemc,
bc_time_design, and schedule commands, use the following
command to write the synthesizable RTL database file:

dc_shell> write -format db
-hierarchy
-output cmult_rtl.db

Use the following command to write the synthesizable Verilog file and
a Tcl constraints script for an HDL-based flow:

dc_shell> write_rtl -format verilog
-output cmult_rtl.v
-rtl_script synrtl.tcl

For verification of the RTL, write a Verilog (or VHDL) simulation file
using the following command:

2-26

Using SystemC Compiler

dc_shell> write
-format verilog
-hierarchy
-output cmult_rtl.v

Preparing Gate-Level for Physical Synthesis

To perform physical synthesis from a mapped, gate-level database
with Physical Compiler, you need to provide a .db file.

After you execute the SystemC Compiler compile_systemc,
bc_time_design, and schedule commands, use the following
compile command to create a mapped, gate-level netlist of the
design:

dc_shell> compile
-map_effort [low | medium | high]

Use the following command to write the gate-level netlist:

dc_shell> write -format db
-hierarchy
-output cmult_gate.db

For verification at the gate level, write a Verilog (or VHDL) simulation
file using the following command:

dc_shell> write
-format verilog
-hierarchy
-output cmult_gate_netlist.v

3-1

Timing and Area Estimation

3
Timing and Area Estimation 3

This chapter describes how SystemC Compiler calculates timing and
area estimates before scheduling the design. It also explains how to
influence the estimation of timing and area.

This chapter contains the following sections:

• Understanding Clock Cycle, I/O, and Operation Relationships

• Setting Your Timing Environment

• Timing the Design

• Interpreting the Timing and Area Resource Report

3-2

Timing and Area Estimation

Understanding Clock Cycle, I/O, and Operation
Relationships

Your behavioral description defines the I/O protocol of your design
and the operations required to execute the required functionality.

Operation Delay and Clock Cycle

To understand how SystemC Compiler uses timing and area
estimates, you need to understand the relationships between
operation delays and the clock period.

SystemC Compiler produces a circuit that is synchronous. The
synchronous design uses edge-triggered flip-flops and a
single-phase, single-clock clocking scheme.

Each process in the behavioral description is sensitive to the positive
or negative edge of a single clock, which is defined with the
create_clock command. The relevant clock edge is called the
active clock edge. At the active clock edge,

• Inputs to registers are sampled

• Outputs change

In addition to the edge-triggered flip-flops, the design contains
combinational logic. The combinational logic is used to implement
components, multiplexers, and finite-state machine (FSM) logic.

The combinational logic resides between registers. The
combinational logic must compute its output data before the data is
sampled by the registers on the next active clock edge. Therefore,

3-3

Timing and Area Estimation

your choice of a clock period determines how much combinational
logic SystemC Compiler can place in each clock cycle. This in turn
affects the architecture produced by SystemC Compiler.

I/O Protocol

You define the I/O protocol in your behavioral description by
specifying when data is read from the input ports and when data is
written to the output ports. Inputs are read and outputs are written at
the active clock edge.

Active edges are represented in the behavioral description by wait()
statements. The number of wait() statements between I/O reads and
writes determines the number of clock cycles between them.

Example 3-1 shows the I/O protocol of the complex number multiplier
highlighted in bold. Figure 3-1 shows a timing diagram of the I/O
protocol implied by this SystemC description.

Example 3-1 Complex Multiplier I/O Protocol
// cmult.cc implementation file
#include "systemc.h"
#include "cmult.h"
void cmult_hs :: entry()
{
 sc_int<8> a, b, c, d;
 //Initialize and reset if reset asserts
 ready_for_data.write(false);
 output_data_ready.write(false);
 real_out.write(0);
 imaginary_out.write(0);
 wait(); //required clock before while loop
 while (true)
 {
 ready_for_data.write(true);
 output_data_ready.write(false);

3-4

Timing and Area Estimation

 wait_until(new_data.delayed() == true);
 ready_for_data.write(false);
 // Read four data values from input port
 a = data_in.read();
 wait();
 b = data_in.read();
 wait();
 c = data_in.read();
 wait();
 d = data_in.read();
 wait();
 //Calculate and write output ports
 real_out.write(a * c - b * d);
 imaginary_out.write(a * d + b * c);
 output_data_ready.write(true);
 wait();
 }
}

Figure 3-1 Timing Diagram of the Complex Multiplier I/O Protocol

clk

data_in

real_out

ready_for_data

output_data_ready

new_data

imaginary_out

a b c d

a * c - b * d

a * d + b * c

3-5

Timing and Area Estimation

Operations and Clock Cycles

Operations in a behavioral description manipulate data received from
the input ports to produce the output data, as required by the design
functionality. SystemC Compiler determines in which clock cycle it is
possible to execute each operation, and then it executes the
operation in the most beneficial clock cycle. This is called operation
scheduling.

Example 3-2 shows the arithmetic expressions of the complex
number multiplier highlighted in bold. Figure 3-2 shows the individual
operations that compose the expressions and also shows one
possible schedule that maps the operations to clock cycles.

Example 3-2 Complex Multiplier Arithmetic Operations
// cmult.cc implementation file
#include "systemc.h"
#include "cmult.h"
void cmult_hs :: entry()
{
 sc_int<8> a, b, c, d;
 //Initialize and reset if reset asserts
 ready_for_data.write(false);
 output_data_ready.write(false);
 real_out.write(0);
 imaginary_out.write(0);
 wait(); //required clock before while loop
 while (true)
 {
 ready_for_data.write(true);
 output_data_ready.write(false);
 wait_until(new_data.delayed() == true);
 ready_for_data.write(false);
 // Read four data values from input port
 a = data_in.read();
 wait();
 b = data_in.read();
 wait();

3-6

Timing and Area Estimation

 c = data_in.read();
 wait();
 d = data_in.read();
 wait();
 //Calculate and write output ports
 real_out.write(a * c - b * d);
 imaginary_out.write(a * d + b * c);
 output_data_ready.write(true);
 wait();
 }
}

Figure 3-2 Operations of the Complex Multiplier

a * c - b * d

a * d + b * c

Arithmetic operationsExpressions

*

*

*

*

-

+

a
c

b
d

Schedule

a * c b * c

(a * c) - (b * d)

(a * d) + (b * c)

Cycle 9

Cycle 10

a * d b * d

Cycle 8

Cycle 11

3-7

Timing and Area Estimation

Setting Your Timing Environment

Set your timing environment before you use either the
bc_time_design or bc_margin commands. You need to define
the clock period, and you can optionally set the input delay, wire load,
and operating conditions.

Setting Clocks

Define the clock period in the units of the technology library using the
create_clock command. To create a 20 time unit clock, enter

dc_shell> create_clock clk -period 20

To display the current clock setting, use the report_clock
command to generate a clock report similar to Example 3-3. Enter

dc_shell> report_clock

Example 3-3 Report Clock
dc_shell> report_clock
**
Report : clocks
Design : cmult_hs
Version: 2000.11-PROD
Date : Fri Dec 15 11:37:14 2000
**

Attributes:
 d - dont_touch_network
 f - fix_hold
 p - propagated_clock
 G - generated_clock

Clock Period Waveform Attrs Sources
--
clk 20.00 {0 10} {clk}
--

3-8

Timing and Area Estimation

To remove a clock, use the remove_clock command. Enter

dc_shell> remove_clock clk

You can also remove all clocks by using the -all argument. Enter

dc_shell> remove_clock -all

Setting Input Delays

Inputs to the design may be coming from other circuits on or off the
chip. These inputs will not arrive exactly at the active clock edge,
rather they will arrive some time after the active edge. You can use
the set_input_delay command to specify the exact time after the
active clock edge when the inputs will arrive. This constraint is
optional, but it is highly recommended that you set it to enable you
to reach timing closure later in the flow.

For example, to set an input delay of 1.0 for the data_in port with
respect to the clk clock, enter

dc_shell> set_input_delay 1.0 -clock clk data_in

The delay value specifies the input delay, which is in the units of the
technology library. SystemC Compiler assumes that the specified
inputs, in this case data_in, are available at the specified input delay
after the active clock edge. SystemC Compiler uses this information
to compute the combinational path delays.

The -clock option specifies the name of the clock; the specified
input delay is added to its active edge. If the design has only one
clock, it is not necessary to use the -clock option.

3-9

Timing and Area Estimation

The port or list of ports option defines the input ports in the current
design to which the input delay is assigned.

You can use the all_inputs() function in place of a port list to
automatically extract the port names. For example,

dc_shell> set_input_delay 1.0 -clock clk
all_inputs() - clk

The all_inputs() function returns all input port names, and minus clk
removes the clock name from the list of all inputs.

Setting Operating Conditions

Use the set_operating_conditions command to set the
interconnect model as part of the operating conditions. The operating
conditions are specified as best case, worst case, and typical case.
If you do not specify an operating condition, the technology library
default typical case is used. For example, to set the operating
conditions to worst case, enter

dc_shell> set_operating_conditions WORST

Although the set_operating_conditions command is optional,
it is highly recommended that you select the same operating
conditions that you will supply to other tools in the backend flow.

Listing Libraries

To list the names of libraries you have in memory, their file names,
and path, use the list command with the -lib option. Enter

dc_shell> list -lib

3-10

Timing and Area Estimation

Example 3-4 shows a typical list of libraries.

Example 3-4 Listing Libraries
dc_shell> list -lib

Library File Path
------- ---- ----
cba_core tc6a_cbacore.db /remote/dtg332/scp/src/\

2000.11-SCC2/2000.11-SCC2/\
libraries/syn

dw01.sldb dw01.sldb /remote/dtg332/scp/src/\
2000.11-SCC2/2000.11-SCC2/\
libraries/syn

dw02.sldb dw02.sldb /remote/dtg332/scp/src/\
2000.11-SCC2/2000.11-SCC2/\
libraries/syn

gtech gtech.db /remote/dtg332/scp/src/\
2000.11-SCC2/2000.11-SCC2/\
libraries/syn

standard.sldb standard.sldb /remote/dtg332/scp/src/\
2000.11-SCC2/2000.11-SCC2/\
libraries/syn

Listing Operating Conditions

To list the operating conditions defined in a technology library, use
the report_lib command. Enter

dc_shell> report_lib cba_core

Example 3-5 shows a partial library report.

3-11

Timing and Area Estimation

Example 3-5 Library Report (Partial)
dc_shell> report_lib cba_core
**
Report : library
Library: cba_core
Version: 2000.11-PROD
Date : Wed Nov 22 14:18:34 2000
**

Library Type : Technology
Tool Created : v3.3b
Date Created : Fri Aug 9 17:02:36 1996
Library Version : tc6a_r06
Comments : Operating condition (25.00 C, 5.00 V, typical)
Time Unit : 1ns

Capacitive Load Unit : 1.000000pf
Pulling Resistance Unit : 1kilo-ohm
Voltage Unit : 1V
Current Unit : 1mA
Leakage Power Unit : Not specified.
Bus Naming Style : %s[%d] (default)

Operating Conditions:

Name Library Process Temp Volt Interconnect

 Model
--
typ_25_5.00 cba_core 1.00 25.00 5.00
typ_-40_4.50 cba_core 1.00 -40.00 4.50
...

3-12

Timing and Area Estimation

Setting Wire Loads

SystemC Compiler uses statistically generated wire load models to
estimate the wire lengths of nets, their capacitance, resistance, and
area. The wire load models, provided in the technology library, define
a fanout-to-length relationship. If you do not specify a wire load, the
technology library default is used.

Use the set_wire_load command to specify the wire load model.
Although this constraint is optional, it is recommended that you use
the appropriate wire load model for the size of the design you are
going to synthesize.

dc_shell> set_wire_load 90x90 -lib cba_core

Example 3-6 shows a partial report of a wire load model in the
cba_core technology library. The report was generated by the
report_lib command. For example,

dc_shell> report_lib cba_core

Example 3-6 Wire Load Model (Partial)
Wire Loading Model:

Name : tc6a120m2
Location : cba_core
Resistance : 0
Capacitance : 0.02
Area : 1.4375
Slope : 2.5
Fanout Length Points Average Cap Std Deviation
--
 1 2.50
 2 5.00
 ...
 10 25.00

3-13

Timing and Area Estimation

Timing the Design

SystemC Compiler performs timing to obtain the bit-level timing
through the components that are necessary to implement the
operations in the behavioral description. It also reserves time from
the clock period for hardware that is placed on every timing path
during synthesis. The reserved time is called the timing margin or
cycle margin.

Timing Through the Components

To perform timing of the design, use the bc_time_design
command. The bc_time_design command computes the timing
delays through all chains of operations in the behavioral description.
Operations are chained when the output of one operation is used by
another operation. Enter,

dc_shell> bc_time_design

You need to run the bc_time_design command only once. You
may want to force it to recompute the timing delays, for example after
you change the timing environment. Enter

dc_shell> bc_time_design -force

While the bc_time_design command is executing, it displays
messages that show which component it is currently building. When
SystemC Compiler finishes executing the command, it generates a
timing report showing the computed delays through all chains of
operations. Example 3-7 shows a partial timing report for the complex
number multiplier.

3-14

Timing and Area Estimation

Example 3-7 Timing Report (Partial)
...
Cumulative delay starting at mul_36:
 mul_36 = 6.357016
 add_36 = 10.150984
 imaginary_out_36 = 10.150984

Cumulative delay starting at add_36:
 add_36 = 8.784022
 imaginary_out_36 = 8.784022

Cumulative delay starting at data_in_26:
 data_in_26 = 0.000000
 mul_36 = 6.357016
 mul_35 = 6.357016
 add_36 = 10.150984
 sub_35 = 10.150984
 imaginary_out_36 = 10.150984
 real_out_35 = 10.150984
...

A detailed description of the report is provided in “Interpreting the
Timing and Area Resource Report” on page 3-17.

Computing the Clock Cycle Margin

The bc_time_design command reserves time in the clock period
as a clock cycle margin for the hardware that SystemC Compiler adds
to every timing path in the design during synthesis. SystemC Compiler
extracts the required time to be reserved from the target technology
library. The clock period less the reserved clock cycle margin is
available for combinational logic.

The timing path starts at the clock pin of a register, passes through
the combinational logic, and terminates at the data input pin of a
register. Figure 3-3 shows a typical timing path.

3-15

Timing and Area Estimation

Figure 3-3 Typical Timing Path

Each timing path, as illustrated in Figure 3-3, contains common
hardware components. SystemC Compiler reserves a clock cycle
margin in the clock period for the following components:

• Register margin

The leading register requires time at the beginning of the clock
period to respond to the clock edge and make the data available
on its Q output pin. This is called clock-to-Q delay.

Data must arrive at the D input pin to the trailing register a certain
time before the end of the clock cycle. This is called setup time.

The register margin is also referred to as the flip-flop (FF) margin,
because registers are implemented as FFs from the target library.

Combinational
logic

>
CLK

D Q

Leading
register

>
CLK

D Q

Trailing
register

Multiplexer

Multiplexer
control signal
from FSM

Clock period

CLK>Q FSM
delay

MUX
delay

Register

delay
setup

Clock period - margin

3-16

Timing and Area Estimation

• Multiplexer margin

The trailing register can get its input from several different
sources. A multiplexer controls which of the different sources
provides input to the register. The reserved timing margin includes
time for the multiplexer.

• FSM margin

At each clock cycle, the FSM generated by SystemC Compiler
moves into a new state. The reserved timing margin includes time
for the FSM to decode its state and generate the control signals
to control the data path portion of the synthesized design.

The bc_time_design command reports the clock cycle margin
value based on the current target library. SystemC Compiler looks for
all available flip-flops in the target library and uses the average
clock-to-Q delay and setup delay. Example 3-8 shows the relevant
data in the report.

Example 3-8 Clock Margin in the Resource Estimate Report
 Clock Cycle Margin : 2.86 (Default)
 FSM : 0.55
 MUX : 1.21
 FF : 1.11
 Clock Uncertainty : 0.00

To control clock cycle margin calculation, see “Controlling Margin
Calculation” on page 5-12.

3-17

Timing and Area Estimation

Interpreting the Timing and Area Resource Report

SystemC Compiler uses operation delays during scheduling to
estimate timing. It uses area estimates of components that implement
the operations, multiplexers, and registers to calculate the total area
of the synthesized design.

SystemC Compiler reports timing and area resource estimates in two
ways:

• The report is automatically displayed when you run the
bc_time_design command.

• The resource report is displayed when you run the
report_resource_estimates command after SystemC
Compiler has calculated timing and area estimates.

A complete example of a resource estimate report is provided in
“Estimated Resources” on page B-6.

Evaluating the Resource Estimate Report

The resource estimate report shows paths through chains of
operations and the delays at all points in the path. The report is divided
into sections, where each section reports on the paths starting at a
specific operation.

Figure 3-4 shows a partial report, the related behavioral description
fragment, and the related data flow diagram.

3-18

Timing and Area Estimation

Figure 3-4 Estimated Resources Report (Partial)

This report shows paths in the design starting at the input read of the
data_in port on line 32 of the behavioral description. Starting from
this input read, the maximum bit-level delay to any output of the

Starting point

Intermediate
points in
the path

Ending points

Cumulative delay starting at data_in_32:
 data_in_32 = 0.000000

 mul_36 = 6.340029
 mul_36_2 = 6.340029
 mul_35_2 = 6.340029

 add_36 = 10.138293
 imaginary_out_36 = 10.138293

 sub_35 = 10.417433
 real_out_35 = 10.417433

Related code fragment

 32 d = data_in.read();
 33 wait();
 34 //Calculate and write output ports
 35 real_out.write(a * c - b * d);
 36 imaginary_out.write(a * d + b * c);

data_in_32

mul_35_2

b

mul_35

a c

sub_35

real_out_35

Related data flow diagram

3-19

Timing and Area Estimation

operation add_36 is 10.1 time units. Operation add_36 is the addition
on line 36. Indentation in the report indicates intermediate points in
the same timing path.

Looking at Parallel Paths

The resource estimates report indicates parallel paths by using the
same level of indentation.

Figure 3-5 shows a data flow graph of the two parallel paths in the
related code fragment. The relevant code and lines of the report are
highlighted in bold. The add_36 and sub_35 operations have the
same level of indentation, indicating they are parallel paths starting
at the output of the mul_35_2 operation.

3-20

Timing and Area Estimation

Figure 3-5 Parallel Paths in the Estimated Resources Report (Partial)

Starting point

Ending points

Cumulative delay starting at data_in_32:
 data_in_32 = 0.000000

 mul_36 = 6.340029
 mul_36_2 = 6.340029
 mul_35_2 = 6.340029

 add_36 = 10.138293
 imaginary_out_36 = 10.138293

 sub_35 = 10.417433
 real_out_35 = 10.417433

Related code fragment

 32 d = data_in.read();
 33 wait();
 34 //Calculate and write output ports
 35 real_out.write(a * c - b * d);
 36 imaginary_out.write(a * d + b * c);

Parallel
paths

data_in_32

mul_35_2
b

mul_36

a

add_36

imaginary_out_36

mul_35

sub_35

a c

Related data flow diagram

real_out_35

mul_36_2

b c

3-21

Timing and Area Estimation

Area Estimates

The area section of the report displays the area estimates for all the
components (processors) that can implement that operation.
Example 3-9 shows the timing and area resource report with an
addition operation that has two possible components; an asterisk
indicates the component used to calculate the timing. By default, the
smallest component is used for the estimate.

Example 3-9 Estimated Resource Report
Area for processors that can implement mul_36
(* = used for timing):
 *DW02_mult(nbw) = 2750.742432

Area for processors that can implement add_36
(* = used for timing):
 *DW01_add(rpl) = 94.239998
 DW01_addsub(rpl) = 503.678986

Note:
The target technology library specifies the units of time and area.

3-22

Timing and Area Estimation

4-1

Scheduling and Scheduling Constraints

4
Scheduling and Scheduling Constraints 4

This chapter describes how to use the SystemC Compiler I/O
scheduling modes and other methods to improve scheduling. During
the scheduling step in synthesis, SystemC Compiler determines the
specific clock cycle in which to execute the I/O operations, arithmetic
operations, and memory accesses. This chapter contains the
following sections:

• Scheduling for Synthesis

• Selecting an I/O Scheduling Mode

• Performing Scheduling

• Analyzing the Scheduling Report

• Adding Scheduling Constraints

• Constraining Resource Allocations

4-2

Scheduling and Scheduling Constraints

Scheduling for Synthesis

The main synthesis step is scheduling the design. During scheduling,
SystemC Compiler schedules I/O operations, arithmetic operations,
and memory accesses into specific clock cycles, as shown in Figure
4-1.

Figure 4-1 Scheduling Into Specific Clock Cycles

Before executing the schedule command, the design must be timed.
If you have not executed the bc_time_design command, SystemC
Compiler executes it before it starts the schedule command.

wait_until(start.delayed() == true);
A = port1.read() * port2.read();
B = port3.read() * port4.read();
C = A + B;
if (C < 0) {...}

port1

port2

port3

port4
*

A

B

C

OperationCycle

1

2

3

4

*

*

+

<

Schedule read inputs

5

I/O Arithmetic operations Scheduled operations

Behavioral code

+ <

*

4-3

Scheduling and Scheduling Constraints

Operation Scheduling

During scheduling, SystemC Compiler selects the most beneficial
clock cycle in which to execute each operation in the behavioral
description. Figure 4-2 shows a sample schedule for the operations
in the complex number multiplier example.

Figure 4-2 Operation Scheduling

SystemC Compiler ensures that the set of operations that are placed
into the same clock cycle can be executed within the clock period that
you specify. SystemC Compiler uses the timing information from the
bc_time_design command to determine the timing.

SystemC Compiler schedules operations to minimize the latency (the
number of clock cycles) to execute the synthesized design.

(a x c) (b x c)

(a x c) - (b x d)

(a x d) + (b x c)

(a x d) (b x d)

a = data_in.read()

b = data_in.read()

c = data_in.read()

d = data_in.read()

real_out.write() imaginary_out.write()

Cycle

1

2

3

4

5

6

7

8

Operation

4-4

Scheduling and Scheduling Constraints

Resource Sharing

SystemC Compiler shares resources whenever possible. This means
if two operations can execute on the same component, SystemC
Compiler uses one component to execute both operations. This part
of the schedule command is called resource allocation. Figure 4-3
shows a possible allocation for the complex number multiplier, based
on the schedule shown in Figure 4-2.

Figure 4-3 Resource Allocation Reservation Table

Resource allocations are typically expressed as a reservation table.
The columns represent individual components and the rows
represent clock cycles. The location of an operation in the table
indicates the component that performs the operation and the clock
cycle when the operation is executed.

a x c b x c

(a x c) - (b x d)

(a x d) + (b x c)

a x d b x d

a = data_in.read()

b = data_in.read()

c = data_in.read()

d = data_in.read()

real_out.write() imaginary_out.write()

Cycle

1

2

3

4

5

6

7

8

Resource

Port
data_in Multiplier 1 Multiplier 2 Adder/Subtractor

Port
imaginary_out

Port
real_out

4-5

Scheduling and Scheduling Constraints

SystemC Compiler shares resources whenever it is beneficial to do
so. Sharing resources means allowing the resource to accept inputs
from multiple sources, and sharing may require additional
multiplexers that can increase the overall area of the synthesized
design. SystemC Compiler shares resources if it results in a reduction
of the overall area of the synthesized design; otherwise, it does not
share resources.

Inferred Registers

SystemC Compiler infers registers for the following behavioral
constructs:

• Output ports

SystemC Compiler places a register immediately before each
output port of the synthesized design. This ensures that the output
data is held stable over the clock cycle when the outputs are
asserted.

• Signals

Signals are used in a behavioral description to communicate
between processes in the same design. Registers are used to
implement signals.

• Variables

Variables that have data created in one clock cycle and used in
a later clock cycle are assigned a register to hold the data. The
duration when the data must be held is called the lifetime of the
variable.

4-6

Scheduling and Scheduling Constraints

Variables can be defined in the behavioral description. In addition,
SystemC Compiler automatically infers variables for the
intermediate results of complex, single-line expressions. For
example,

x = a + b + c

This expression has one variable x that is defined in the behavioral
description. SystemC Compiler infers an additional variable for
the result of a + b. If the intermediate result has a lifetime beyond
a clock cycle, SystemC Compiler also assigns a register to store
the result.

Register Sharing

Registers that are inferred for output ports and signals are dedicated
registers. Registers that are inferred to hold variables can be shared
between variables, similar to components that are shared by
operations.

If two variables have lifetimes that do not overlap, a single register
can be used to hold both variables. When the data of one variable
becomes irrelevant before the data of a second variable becomes
relevant, their lifetimes do not overlap. The irrelevant data no longer
needs to be stored in the design, and the data can be overwritten with
the relevant data when it becomes available.

SystemC Compiler performs lifetime analysis on each variable to
determine if registers can be shared. Variable lifetime is measured
from the first clock cycle when it is produced to the last clock cycle in
which it is used.

4-7

Scheduling and Scheduling Constraints

Figure 4-4 shows a reservation table representation of register
sharing for the complex number multiplier. Notice how the variable
lifetimes are represented and how the variables with non-overlapping
lifetimes share the same register.

Figure 4-4 Register Allocation Reservation Table

SystemC Compiler shares registers when sharing reduces the overall
area of the synthesized design.

Controller (FSM) Generation

When SystemC Compiler shares a component or register, it
automatically inserts multiplexers at their inputs, if needed. A
multiplexer is inserted if the component or register needs to accept
its inputs from multiple sources. Figure 4-5 shows a shared

Cycle

1

2

3

4

5

6

7

8

Registers

R1 R2 R3

a

b c

d

v1

v2v4

v3

v5

v6

R4 R5

Automatically generated
variables for intermediate results:

v1 = (a x c)
v2 = (b x c)
v3 = (a x d)
v4 = (b x d)
v5 = v1 - v4 = (a x c) - (b x d)
v6 = v2 - v3 = (a x d) + (b x c)+

4-8

Scheduling and Scheduling Constraints

component, and Figure 4-6 shows a shared register. In both cases,
each port gets its input from one of two possible sources. A multiplex
is inserted on each port to enable this switching.

Figure 4-5 Shared Component

Figure 4-6 Shared Register

SystemC Compiler synthesizes a controller, in the form of a
finite-state machine (FSM), that supplies the multiplexer signals to
correctly switch multiplexers at the appropriate clock cycles. The
controller is also used to generate the control signals for the
components and the registers. Figure 4-7 shows how the controller
might supply the control signal for a multiplexer and the load enable
signal for a register.

Component

Controller

X

Y

Z

W

Controller

Z

W
D Q

CLK

4-9

Scheduling and Scheduling Constraints

Figure 4-7 FSM Control Signals

The final synthesized design has a data path that contains a netlist
of components, multiplexers, registers, and an FSM to control the
data path. Figure 4-8 shows a representative fragment of the
synthesized design.

Figure 4-8 Synthesized Design Representation

Controller

New Data
D Q

CLK
Controller

New Data

CLK

D Q

EN

Load enable with a
multiplexer

Load enable with an
enable flip-flop

m

Reg
Op

Clk

Enable
output

input

input

m

Select

Select

Select

Controller

4-10

Scheduling and Scheduling Constraints

Controlling Synthesis

By default, SystemC Compiler performs scheduling and allocation to
minimize design latency and area. You can control the synthesis to
better achieve your design objectives. Constraining scheduling and
resource allocation is described in more detail in “Adding Scheduling
Constraints” on page 4-31 and “Constraining Resource Allocations”
on page 4-55.

Selecting an I/O Scheduling Mode

For scheduling, SystemC Compiler considers every port or signal
read or write statement in the behavioral code to be an I/O operation.
Variables are considered to be local to a process. Variable read and
write statements are not considered as I/O.

I/O operations are special in that they are the design’s interface to
external design modules and testbenches.

In the behavioral code, the wait() and wait_until() statements
delineate clock cycles. All input ports are read during a clock cycle,
while the data from the output ports appear at the active edge of the
next clock cycle, as illustrated in Figure 4-9. This figure shows simple
behavioral code statements, the clock (in this case, a positive-edge
sensitive design is assumed), and the resulting I/O operations.

4-11

Scheduling and Scheduling Constraints

Figure 4-9 Behavioral Code and I/O Operation

Inputs must be stable during the entire clock cycle so the synthesized
circuit behavior matches the original behavioral description.

SystemC Compiler provides cycle-fixed and superstate-fixed modes
for scheduling I/O operations. You need to set an I/O scheduling mode
for the bc_check_design and schedule commands.

wait();
A = in_1.read() ;
 out_1.write(A+A);
wait();
B = in_1.read() ;

out_1.write(A+B);
wait();
C = in_1.read();

out_1.write(A+C);
wait();

in_1 B CA

A+CA+A A+Bout_1

Clock

Behavioral
Code

4-12

Scheduling and Scheduling Constraints

Cycle-Fixed I/O Scheduling Mode

In cycle-fixed I/O scheduling mode, SystemC Compiler preserves the
cycle-to-cycle behavior of I/O as defined in the behavioral description,
as shown in Figure 4-10.

Figure 4-10 Cycle-Fixed I/O Mode

Using Cycle-Fixed I/O Scheduling Mode

The goal of cycle-fixed I/O scheduling is to allow simulation of the
SystemC behavioral description and the synthesized design side by
side with no differences in observed I/O behavior. Cycle-fixed mode
is a good choice when you want to specify cycle-accurate behavior

wait();
A = in_1.read() ;
 out_1.write(A+A);
wait();
B = in_1.read() ;

out_1.write(A+B);
wait();
C = in_1.read();

out_1.write(A+C);
wait();

in_1 B CA

A+CA+A A+Bout_1

cycle-fixed
I/O mode

in_1 DB CA

A+CA+A A+Bout_1

Clock

behavioral
code

Behavior of

Behavior of the
synthesized
circuit in

4-13

Scheduling and Scheduling Constraints

and you are confident that the operations between I/O can be
completed in the number of cycles that you specify. The cycle-fixed
I/O mode gives you complete control over the I/O schedule so you
can use the same testbench for behavioral simulation and for verifying
the results of synthesis.

In cycle-fixed I/O scheduling mode, I/O operations are constrained
to occur in the same cycle in the synthesized design as in the original
behavioral description. The operations required to compute the
outputs from the inputs must be completed in the number of cycles
between the inputs and outputs that are specified in the source code,
but SystemC Compiler determines the exact clock cycle in which each
operation is performed.

Cycle-fixed I/O scheduling is appropriate, for example, if input data
always arrives at a fixed frequency and the output is required in a
fixed number of cycles from the input arrival. Specify the I/O schedule
in the behavioral description, and direct SystemC Compiler to use
cycle-fixed mode to schedule the design.

In cycle-fixed I/O scheduling mode,

• Each wait() statement generates a clock cycle.

• Signal read and write operations remain in the cycle where the
source code defines them.

• Operations that are not I/O can float from cycle to cycle as allowed
by data and control dependencies, and by constraints.

• If the operations that compute an output from the input data cannot
be accommodated within the number of clock cycles between the
input and output, SystemC Compiler issues an error message.

4-14

Scheduling and Scheduling Constraints

For coding rules and recommendations about coding style using this
mode, see Chapter 3, “Behavioral Coding Guidelines” in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide.

Superstate-Fixed I/O Scheduling Mode

In superstate-fixed mode, SystemC Compiler preserves the logical
relationship of read and write operations, but it can add clock cycles
to lengthen the time between I/O operations. Figure 4-11 shows an
example where SystemC Compiler takes five clock cycles to read A
and perform the multiplication, three to read B and perform the
addition, and so forth. Therefore, the I/O schedule differs from the
original behavioral code because several clock cycles are added.

The segment between two wait() statements in the behavioral
description is called a superstate. This segment executes in one clock
cycle in the behavioral simulation, but may execute in several clock
cycles in the synthesized design.

I/O operations that occur between a pair of consecutive wait()
statements in the behavioral description belong to the same
superstate. Input reads can be scheduled at any clock cycle in the
superstate, but outputs appear after the last clock cycle of the
superstate. Notice that A*A in Figure 4-11 appears at the output at
the end of the superstate.

4-15

Scheduling and Scheduling Constraints

Figure 4-11 Superstate-Fixed I/O Mode

Using Superstate-Fixed I/O Scheduling Mode

The superstate-fixed I/O scheduling mode is useful for specifying the
sequence of I/O operations while retaining some flexibility in the
length of the schedule. In some cases this allows you to change the
length of the schedule to minimize the hardware required for
implementing the design.

wait();
A = in_1.read() ;
 out_1.write(A*A);
wait();
B = in_1.read() ;

out_1.write(A+B);
wait();
C = in_1.read();

out_1.write(A+C);
wait();

in_1 DB CA

A+CA*A A+Bout_1

Clock

A+CA*A A+Bout_1

B CAin_1

A can be read from
 in_1 in any of these cycles

superstate-fixed
I/O mode

behavioral
code

Behavior of

Behavior of the
synthesized
circuit in

4-16

Scheduling and Scheduling Constraints

Use superstate-fixed mode when latency-based design exploration
is important for your design. It allows you to quickly perform clock
period, latency, and resource tradeoffs without modifying the
behavioral description.

Use wait() statements in superstate-fixed I/O scheduling mode to
segment the process into superstates, as illustrated in Figure 4-11
on page 4-15.

Because a superstate corresponds to multiple clock cycles, you
cannot determine the exact cycle when the inputs are read; the exact
cycle can only be determined after SystemC Compiler schedules the
design. When you use superstate-fixed scheduling mode, use
handshaking for all data transfers to and from the circuit.

For coding rules about this mode, recommendations about placing
clocks in your SystemC source code, and details about handshaking,
see Chapter 3, “Behavioral Coding Guidelines” and Chapter 6, “Using
Handshaking in the Circuit and Testbench” in the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

Comparing the I/O Scheduling Modes

Figure 4-12 shows a comparison of the simulation of the original
SystemC code with simulations of the possible results of SystemC
Compiler when using different I/O scheduling modes.

4-17

Scheduling and Scheduling Constraints

Figure 4-12 Source Code and I/O Scheduling Mode Simulation

Original Source Code

Superstate-Fixed Mode

Cycle-Fixed Mode

in_1 DB CA

A+CA+A A+Bout_1

in_1 DB CA

A+CA+A A+Bout_1

Clock

A+CA+A A+Bout_1

DB CAin_1

4-18

Scheduling and Scheduling Constraints

Performing Scheduling

After you select an appropriate scheduling I/O mode, perform
scheduling by executing the schedule command. Enter

dc_shell> schedule

By default, SystemC Compiler schedules with the cycle-fixed I/O
mode. If you want to schedule with the superstate-fixed I/O mode,
enter

dc_shell> schedule -io_mode superstate_fixed -effort medium

Scheduling Objectives

By default, the schedule command makes tradeoffs to achieve a
design schedule with the fastest latency as the top priority, and it tries
to create the smallest area as a secondary priority. To change the
default scheduling priorities, apply scheduling constraints before
using the schedule command.

Using Timing-Constrained Scheduling

With timing-constrained scheduling, SystemC Compiler minimizes
the latency of the design in the superstate-fixed I/O mode. In the
cycle-fixed I/O mode, the latency is determined by the number of
wait() statements in the SystemC description.

Latency is defined as the number of clock cycles required to execute
one iteration of a loop or to execute the set of operations.

4-19

Scheduling and Scheduling Constraints

In timing-constrained scheduling, SystemC Compiler does the
following:

• Calculates the minimum number of cycles required to execute the
loop or set of operations. The number of cycles is the minimum
latency.

• Minimizes the hardware required to achieve the minimum latency

This scheduling technique is most beneficial for designs that have
short latency requirements. Short latency is achieved by creating a
parallel design implementation. This may require more area than a
minimum area design.

Using Resource-Driven Scheduling

You can direct SystemC Compiler to perform resource-driven
scheduling instead of timing-constrained scheduling. When
performing resource-driven scheduling, SystemC Compiler
minimizes hardware resources such as adders, multipliers,
multiplexers, and registers while trading off latency. Because this
changes the latency that is specified in the behavioral description,
this method can be used only with the superstate-fixed I/O mode.

For this type of scheduling, SystemC Compiler increases loop latency.
Increasing the latency of a loop distributes operations across more
cycles, allowing greater resource sharing. Because fewer resources
are allocated, this type of scheduling reduces area.

To implement resource-driven scheduling, use the

-extend_latency option with the schedule command.

4-20

Scheduling and Scheduling Constraints

Analyzing the Scheduling Report

After you run the schedule command, use the report_schedule
command to generate a scheduling report. For example,

dc_shell> schedule -io_mode superstate_fixed
 -effort medium
dc_shell> report_schedule

Schedule Summary Report

Example 4-1 shows a report generated by the report_schedule
command for the complex number multiplier.

In the schedule report in Example 4-1,

• The timing summary indicates the latency in clock cycles for one
loop iteration. In this example, the entry loop takes 8 cycles, the
loop beginning on line 17 takes 7 cycles, and the loop beginning
on line 22 takes 1 cycle.

• The report also indicates that the loop beginning on line 22 has a
continue statement that occurs in cycle 3 and a loop exit that may
occur in cycle 2.

• The area summary shows the total estimated design area and the
FSM summary (number of control state, basic transitions, control
inputs, and control outputs).

• The resource types show the total number of registers in the
design, the number of operations, the associated synthetic library
cell, and the I/O ports. The bit-width of each resource type is
included in the report.

4-21

Scheduling and Scheduling Constraints

Example 4-1 Schedule Report Summary
/*****report_schedule*****/

 Date : Wed Nov 8 13:18:51 2000
 Version : 2000.11-PROD
 Design : cmult_hs

* Summary report for process entry: *

 Timing Summary

 Clock period 20.00
 Loop timing information:
 entry...8 cycles (cycles 0 - 8)
 loop_17.....................................7 cycles (cycles 1 - 8)
 loop_22.................................1 cycle (cycles 2 - 3)
 (continue) skip_short_branch_1.............. (cycle 3)
 (exit) EXIT_L22_1........................... (cycle 2)

 Area Summary

 Estimated combinational area 6127
 Estimated sequential area 1734
 TOTAL 7861

 9 control states
 11 basic transitions
 2 control inputs
 7 control outputs

 Resource types

Register Types
==

8-bit register.....................3
16-bit register....................1

Operator Types
==

(8_8->16)-bit DW02_mult............2
(16_16->16)-bit DW01_add...........1
(16_16->16)-bit DW01_sub...........1

4-22

Scheduling and Scheduling Constraints

I/O Ports
==

1-bit input port...................1
1-bit registered output port.......2
8-bit input port...................1
16-bit registered output port......2

Schedule Report of Operations

The -operations option reports the scheduling and allocations of
operations in a reservation table format. Enter

dc_shell> report_schedule -operations

Example 4-2 on page 4-24 shows a report of the scheduled operations
for the complex number multiplier. It reports all I/O operations,
arithmetic operations, and loops that are scheduled in the design.
SystemC Compiler reports loops in the design as resources to show
the clock cycle in which they are scheduled.

In the reservation table, resources are listed in the horizontal axis,
and the clock cycles in which the resources are used are listed in the
vertical axis. Operations are placed within the reservation table in the
row that corresponds to the clock cycle in which they are executed,
and the column that corresponds to the resource that executes it.

4-23

Scheduling and Scheduling Constraints

In the reservation table, resource type and operation names are
abbreviated. The abbreviations are expanded in the report as follows

• Rn means to read from an I/O resource at line number n in the
description. For example, the report in Example 4-2 shows in cycle
2 that the new_data port is read according to line 22 in the
description. This is indicated by R22 in the row labeled 2 and the
column labeled p5.

• Wn means to write to an I/O resource at line number n in the
description. In cycle 3 of Example 4-2, the output is written to the
ready_for_data port in line 23 in the description. This is indicated
by W23 in the row labeled 3 and the column labeled p2.

• on means an arithmetic operation is performed at line number n
in the description. In cycle 5 of Example 4-2, the multiply operation
in line 35 is performed with DW02_mult. This is indicated by o35
in the row labeled 5 and the column labeled r407.

• Ln means a loop begin, loop end, loop continue, or loop exit
boundary. A loop begin means the cycle in which the loop starts,
and a loop end means the cycle in which the loop ends. A loop
continue means the cycle in which the decision is made to branch
back for the next iteration of the loop. A loop exit means the cycle
in which the decision is made to exit the loop and jump to the loop
end cycle. The number after the loop is a sequential number
assigned by SystemC Compiler, and it indicates a loop boundary
abbreviation rather than a line number in the description. In
Example 4-2, L6 is the beginning of the loop specified on line 17
in the description, L7 is the end of this loop, and L8 is the loop
continue boundary for this loop, and L9 is the loop exit decision.
Notice that L6 loop begin and L9 exit decision are in cycle 2. The
L8 loop continue decision and the L7 loop end decision are in
cycle 3.

4-24

Scheduling and Scheduling Constraints

Example 4-2 Report Schedule Operations

**
* Operation schedule of process entry: *
**

 Resource types
====================================
loop......loop boundaries
p0........16-bit registered output port imaginary_out
p1........1-bit registered output port output_data_ready
p2........1-bit registered output port ready_for_data
p3........16-bit registered output port real_out
p4........8-bit input port data_in
p5........1-bit input port new_data
r35.......(8_8->16)-bit DW02_mult
r120......(16_16->16)-bit DW01_add
r350......(16_16->16)-bit DW01_sub
r407......(8_8->16)-bit DW02_mult

 D D
 D D W W
 W W 0 0
 0 0 2 2
 1 1 _ _
 p p _ _ m m p p p p
 o o a s u u o o o o
 r r d u l l r r r r
 t t d b t t t t t t

-------+------+-----+-----+------+------+------+------+-----+-----+-----+-----
 cycle | loop | p4 | p5 | r120 | r350 | r407 | r35 | p0 | p1 | p2 | p3
--
 0 |..L0..|.....|.....|......|......|......|......|.W14.|.W12.|.W11.|.W13.
 1 |..L3..|.....|.....|......|......|......|......|.....|.W20.|.W19.|.....
 2 |..L9..|.....|.R22.|......|......|......|......|.....|.....|.....|.....
 |..L6..|.....|.....|......|......|......|......|.....|.....|.....|.....
 3 |..L8..|.R26.|.....|......|......|......|......|.....|.....|.W23.|.....
 |..L7..|.....|.....|......|......|......|......|.....|.....|.....|.....
 4 |......|.R28.|.....|......|......|......|......|.....|.....|.....|.....
 5 |......|.R30.|.....|......|......|.o35..|......|.....|.....|.....|.....
 6 |......|.R32.|.....|......|.o35b.|.o35a.|......|.....|.....|.....|.....
 7 |......|.....|.....|.o36..|......|.o36b.|.o36a.|.W36.|.W37.|.....|.W35.
 8 |..L5..|.....|.....|......|......|......|......|.....|.....|.....|.....
 |..L4..|.....|.....|......|......|......|......|.....|.....|.....|.....
 |..L2..|.....|.....|......|......|......|......|.....|.....|.....|.....
 |..L1..|.....|.....|......|......|......|......|.....|.....|.....|.....

4-25

Scheduling and Scheduling Constraints

Operation name abbreviations
=============================
L0........loop boundaries entry_design_loop_begin
L1........loop boundaries entry_design_loop_end
L2........loop boundaries entry_design_loop_cont
L3........loop boundaries loop_17/loop_17_design_loop_begin
L4........loop boundaries loop_17/loop_17_design_loop_end
L5........loop boundaries loop_17/loop_17_design_loop_cont
L6........loop boundaries loop_17/loop_22/loop_22_design_loop_begin
L7........loop boundaries loop_17/loop_22/loop_22_design_loop_end
L8........loop boundaries loop_17/loop_22/loop_22_design_loop_cont
L9........loop boundaries loop_17/loop_22/EXIT_L22_1
R22.......1-bit read loop_17/loop_22/new_data_22
R26.......8-bit read loop_17/data_in_26
R28.......8-bit read loop_17/data_in_28
R30.......8-bit read loop_17/data_in_30
R32.......8-bit read loop_17/data_in_32
W11.......1-bit write ready_for_data_11
W12.......1-bit write output_data_ready_12
W13.......16-bit write real_out_13
W14.......16-bit write imaginary_out_14
W19.......1-bit write loop_17/ready_for_data_19
W20.......1-bit write loop_17/output_data_ready_20
W23.......1-bit write loop_17/ready_for_data_23
W35.......16-bit write loop_17/real_out_35
W36.......16-bit write loop_17/imaginary_out_36
W37.......1-bit write loop_17/output_data_ready_37
o35.......(8_8->16)-bit MULT_TC_OP loop_17/mul_35
o36.......(16_16->16)-bit ADD_TC_OP loop_17/add_36
o35a......(8_8->16)-bit MULT_TC_OP loop_17/mul_35_2
o35b......(16_16->16)-bit SUB_TC_OP loop_17/sub_35
o36a......(8_8->16)-bit MULT_TC_OP loop_17/mul_36
o36b......(8_8->16)-bit MULT_TC_OP loop_17/mul_36_2

4-26

Scheduling and Scheduling Constraints

Schedule Report of Variables

To generate useful reports of variables, operations, and abstract
FSM, use report_schedule command options.

The -variables option reports the scheduled lifetimes of variables
and register allocations in a reservation table format. Enter

dc_shell> report_schedule -variables

Example 4-3 shows a report of the variables from the complex number
multiplier. It lists the storage resources. These are automatically
generated registers. It also lists the variables that are stored in the
registers and the cycles in which a variable occupies a register.
Variable names are abbreviated in the reservation table, for example
v0, and are expanded in the “Data value name abbreviations” section
of the report where v0 means the output of the multiplication at line
35 (mul_35/Z).

Variables in the scheduling report do not necessarily match the
variables in the original behavioral description. SystemC Compiler
introduces variables for data that needs to be stored across several
clock cycles, and it removes variables specified in the behavioral
description if its lifetime does not span clock edges.

4-27

Scheduling and Scheduling Constraints

Example 4-3 Report Schedule Variables

* Register usage of process entry: *

 Storage resource types
=======================
 r357.......8-bit register
 r428.......16-bit register
 r1271......8-bit register
 r1272......8-bit register

-------+------+-------+------+-------
 cycle | r428 | r1271 | r357 | r1272

 | (16) | (8) | (8) | (8)
======================================
 0 |......|.......|......|.......
 1 |......|.......|......|.......
 2 |......|.......|......|..v5...
 3 |......|..v2...|......|.......
 4 |......|..v2...|..v3..|.......
 5 |..v0..|..v2...|..v3..|.......
 6 |..v1..|..v2...|..v3..|..v4...
 7 |......|.......|......|.......
 8 |......|.......|......|.......

Data value name abbreviations
======================
 v0......16-bit data value loop_17/mul_35/Z
 v1......16-bit data value loop_17/sub_35/Z
 v2......8-bit data value loop_17/data_in_26/net
 v3......8-bit data value loop_17/data_in_28/net
 v4......8-bit data value loop_17/data_in_32/net
 v5......1-bit data value loop_17/loop_22/U2/Z

4-28

Scheduling and Scheduling Constraints

Schedule Report of the FSM

The -abstract_fsm option reports the FSM generated by SystemC
Compiler in a state table format. Enter

dc_shell> report_schedule -abstract_fsm

Example 4-4 on page 4-29 shows the scheduled abstract FSM report
for the complex number multiplier.

The state table is a textual representation of the FSM’s state diagram.
Each row corresponds to a state transition and includes

• The name of the present state is represented as s_n_n. The state
name is automatically created by SystemC Compiler.

• The name of the branch condition that transitions out of the
present state. The branch conditions are described after the state
table.

• The next state that the FSM reaches when it executes the
transition.

• The actions column lists the actions that are executed by the
synthesized design if this transition is performed. The action name
a_n is automatically created by SystemC Compiler. The
description of the action provides the operation being executed
in this transition and the associated line of code. For example,
Example 4-4 shows the s_0_0 present state and lists the following
four actions that are executed in this state:

- a_6 imaginary_out_14 (write), I/O write to port imaginary_out
on line 14 of the behavioral description

- a_10 output_data_ready_12 (write), I/O write to port
output_data_ready on line 12 of the behavioral description

4-29

Scheduling and Scheduling Constraints

- a_15 ready_for_data_11 (write), I/O write to port
ready_for_data on line 11 of the behavioral description

- a_19 real_out_13 (write), I/O write to port real_out on line 13
of the behavioral description

Example 4-4 Report Schedule Abstract FSM

* State table style report for process entry: *

===
 present next
 state input state actions

s_0_0 c1 s_0_1
 a_6 imaginary_out_14 (write)
 a_10 output_data_ready_12 (write)
 a_15 ready_for_data_11 (write)
 a_19 real_out_13 (write)
s_0_1 c2 s_1_2
 a_9 loop_17/output_data_ready_20
 (write)
 a_14 loop_17/ready_for_data_19
 (write)
s_1_2 c3 s_1_4
 a_0 loop_17/data_in_26 (read)
 a_13 loop_17/ready_for_data_23
 (write)
s_1_2 c5 s_1_4
 a_4 loop_17/loop_22/new_data_22
 (read)
s_1_2 c6 s_2_3
 a_4 loop_17/loop_22/new_data_22
 (read)
s_1_4 c7 s_1_5 a_1 loop_17/data_in_28 (read)
s_1_5 c8 s_1_6 a_2 loop_17/data_in_30 (read)
 a_24 loop_17/mul_35
 (operation)
s_1_6 c9 s_1_7 a_3 loop_17/data_in_32 (read)
 a_27 loop_17/mul_35_2
 (operation)
 a_35 loop_17/sub_35 (operation)
s_1_7 c10 s_1_8
 a_5 loop_17/imaginary_out_36
 (write)
 a_8 loop_17/output_data_ready_37

4-30

Scheduling and Scheduling Constraints

 (write)
 a_18 loop_17/real_out_35 (write)
 a_21 loop_17/add_36 (operation)
 a_30 loop_17/mul_36 (operation)
 a_33 loop_17/mul_36_2
 (operation)
 s_1_8 c11 s_1_2 a_9 loop_17/output_data_ready_20
 (write)
 a_14 loop_17/ready_for_data_19
 (write)
 s_2_3 c12 s_1_4 a_0 loop_17/data_in_26 (read)
 a_13 loop_17/ready_for_data_23
 (write)
 s_2_3 c13 s_1_4 a_4 loop_17/loop_22/new_data_22
 (read)
 s_2_3 c14 s_2_3 a_4 loop_17/loop_22/new_data_22
 (read)
 +++++ c15 s_0_0 a_6 imaginary_out_14 (write)
 a_10 output_data_ready_12
 (write)
 a_15 ready_for_data_11 (write)
 a_19 real_out_13 (write)

*********** Branch Conditions ***********

 state condition source

c1 true
c2 true
c3 (and true
 (branch 1 of conditional loop_17/loop_22/SPLIT_L22_1))
c5 (and true
 (branch 1 of conditional loop_17/loop_22/SPLIT_L22_1))
c6 (and true
 (not (branch 1 of conditional loop_17/loop_22/SPLIT_L22_1)))
c7 true
c8 true
c9 true
c10 true
c11 true
c12 (branch 1 of conditional loop_17/loop_22/SPLIT_L22_1)
c13 (branch 1 of conditional loop_17/loop_22/SPLIT_L22_1)
c14 (not (branch 1 of conditional loop_17/loop_22/SPLIT_L22_1))
c15 true

===

4-31

Scheduling and Scheduling Constraints

The branch conditions section of the report describes the branch
conditions under which state transitions are made. Each branch
condition is described with the combination of logical events that
trigger it. For example, condition c6 happens when branch 1 of the
conditional on line 22 of the behavioral description is not taken.

Adding Scheduling Constraints

You can constrain the clock cycles in which operations and loops are
scheduled with the set cycles commands (set_cycles,
set_min_cycles, and set_max_cycles). These commands
allow you to control the number of clock cycles between two
operations or loop boundaries.

Matching Cells to Operations and Loops

To constrain the number of cycles between a pair of operations or
loops during synthesis, you need to specify the cells that indicate the
operation or loop. This section describes how to determine the cell
that corresponds to an operation or loop in your behavioral
description.

Naming Conventions

SystemC Compiler uses a hierarchical naming convention when
creating cells. Levels of hierarchy are loops and preserved functions.
To identify an operation further, the line number in the source code
is used. For example,

cmult_entry/loop_73/sub_88

4-32

Scheduling and Scheduling Constraints

where cmult_entry is the name of the process, within the process
loop_73 is the beginning of a loop at line 73 in the source code, and
sub_88 is the subtract operation that implements the subtract
operation on line 88 in the source code.

To constrain two operations to be two cycles apart, use the
set_cycles command, for example:

dc_shell> set_cycles 2 -from cmult_entry/loop_73/sub_88
 -to_end cmult_entry/loop_73/sub_88

Using Line Labels

If you use the default names of cells generated by SystemC Compiler,
the set_cycles command is sensitive to the line numbers in the
behavioral description. When you add or delete lines from the
behavioral description, you will need to update the set_cycles
command definitions.

Alternatively, you can add labels to lines that contain operations or
loops that you want to constrain. SystemC Compiler then replaces
the line number with your label in the cell name. This makes the cell
names independent from their source code line numbers.

Use a C language label or SystemC Compiler line_label compiler
directive to label lines in the behavioral description, and refer to these
labels in constraints.

For example,

//C language label
C_label: y.write(a + b + c + d);

//SystemC Compiler line_label directive
y.write(a + b + c +d); // synopsys line_label my_label

4-33

Scheduling and Scheduling Constraints

Use either line label syntax so the cell name representing the output
write operation to port y is named y_my_label instead of line number
names such as y_23.

If more than one operation is on the same line that is labeled as
my_label, a suffix such as _2, _3, and so forth are added to the cell
names. In the example, the addition operations are add_my_label,
add_my_label_2, add_my_label_3, and add_my_label_4.

To constrain two of the addition operations to be 5 clock cycles apart,
use the following set_cycles command:

dc_shell> set_cycles 5 -from add_my_label -to add_my_label_3

Using Find

You can use the find command to locate cells in a design. The find
command returns all the design or library objects that match the
specified names.

dc_shell> find type {name_list}
[-hierarchy]
[-flat]

The type specifies the object to be found. The value of type can be
design, clock, port, reference, cell, net, pin, cluster, library, lib_cell,
lib_pin, multibit, operator, module, implementation, or file.

By default, the find command returns all objects that match the type
and name_list in the current level of design hierarchy. Use the
-hierarchy option to return all objects matching the type and
name_list within all levels of hierarchy of the current design. If you
use the -hierarchy option, the type must be design, lib_cell, net,
cell, or pin.

4-34

Scheduling and Scheduling Constraints

dc_shell> find cell sub_35 -hier

You can limit the search to a particular operation by using a wildcard
specification, for example:

dc_shell> find cell *mul* -hier

The -flat option specifies that the command finds only objects in
the leaf cells. You need to also use the -hierarchy option when
using the -flat option, for example

dc_shell> find cell *sub* -hier -flat

Reporting Hierarchy

You can also use the report_hierarchy command to show the
design hierarchy. Enter

dc_shell> report_hierarchy

Example 4-5 shows a hierarchy report before scheduling. Each level
of hierarchy is indented. In this example, the top-level hierarchy is
cmult_hs, the second level is entry_design, and so forth.

4-35

Scheduling and Scheduling Constraints

Example 4-5 Report Hierarchy Before Scheduling
**
Report : hierarchy
Design : cmult_hs
Version: 2000.11-PROD
Date : Fri Dec 15 11:09:01 2000
**

Information: This design contains unmapped logic. (RPT-7)
Warning: 10 unresolved references are not included in this
report. (RPT-2)

cmult_hs
 entry_design
 loop_17_design
 loop_22_design
 GTECH_BUF gtech
 GTECH_NOT gtech
 group1

Example 4-6 shows a hierarchy report after scheduling the same
design.

4-36

Scheduling and Scheduling Constraints

Example 4-6 Report Hierarchy After Scheduling
**
Report : hierarchy
Design : cmult_hs
Version: 2000.11-PROD
Date : Fri Dec 15 11:10:49 2000
**

Information: This design contains unmapped logic. (RPT-7)

cmult_hs
 GTECH_BUF gtech
 GTECH_NOT gtech
 GTECH_OR2 gtech
 cmult_hs_fsm_block_dsg_0
 GTECH_AND2 gtech
 GTECH_NOT gtech
 GTECH_OR2 gtech
 GTECH_OR3 gtech
 GTECH_OR4 gtech
 GTECH_OR5 gtech
 cmult_hs_rd_9_0
 cmult_hs_rd_1_0_0
 cmult_hs_rd_1_1
 cmult_hs_rd_8_0_0
 cmult_hs_rd_8_1_0
 cmult_hs_rd_8_2
 cmult_hs_rd_16_0_0
 cmult_hs_rd_16_1_0
 cmult_hs_rd_16_2
 group1_0

4-37

Scheduling and Scheduling Constraints

Constraining Loops and Operations

To constrain the latency through the body of a loop or to specify the
latency between two operations in a loop, use one or more of the
set_cycles, set_min_cycles, and set_max_cycles
commands. These three commands use the same options to specify
constraints, which are described in “Using the Set Cycles Commands
and Options” on page 4-42

Place constraints on cells after running the compile_systemc
command and before running bc_check_design or schedule
commands.

Constraining Between Two Operations

To set a constraint of a fixed number of cycles between two
operations, use the set_cycles command. To select the operations
you want to constrain, place line labels on the lines of behavioral
description that contain the operations, and use the find command
before you use one of the set cycle commands.

For example, to set a constraint of 4 clock cycles between the two
addition operations on lines line labels M and N in Example 4-7, use
the following commands:

dc_shell> op1 = find -hier cell *top/add_M*
dc_shell> op2 = find -hier cell *top/add_N*
dc_shell> set_cycles 4 -from op1 -to op2

4-38

Scheduling and Scheduling Constraints

Example 4-7 Constraining Between Two Operations
void top(){
 ...
 wait();
 x = in_1.read();
 out1.write(calc_M(x)); //synopsys label M

 wait();
 x = in_1.read();
 out_2.write(calc_N(x)); //synopsys label N
 wait();
 ...

Constraining a Loop

The schedule command sets the minimum latency for each loop by
default, which usually results in the largest area. You can define a
larger cycle budget for a loop to maximize resource sharing. Example
4-8 shows a loop that SystemC Compiler can schedule in two cycles
by using two adders.

Example 4-8 Constraining a Loop
void top(){
 ...
 wait();
 loop1: for (int i = 0; i < 4; i++){
 x = in_1.read() + in_2.read();
 wait();
 x = x + in_3.read();
 wait();
 out1.write(calc_M(x));}
 ...

4-39

Scheduling and Scheduling Constraints

You can force sharing of a single adder resource by setting a
constraint of 4 cycles on the loop. Enter

dc_shell> loop1 = find -hier cell *top/loop1
dc_shell> set_cycles 4 -from_beginning loop1 -to_end loop1

Constraining Nested Loops

SystemC Compiler schedules designs from the innermost loop to the
outermost loop. Constraints placed on the outermost loop in a loop
hierarchy do not propagate to the inner loops. It is recommended that
you constrain the inner loop first, then constrain the next outer loop,
and so forth. Constrain the outermost loop last.

Example 4-9 shows a code fragment with three nested loops.

Example 4-9 Nested Loops With Operations
...
loop1: while (true){
 ...
 // 1 operation
 loop2: for (int i = 0; i < 4; i++){
 ...
 // 1 operation
 ...
 loop3: while (out_ready == 1){
 ...
 // 3 operations
 }
 }
}

Figure 4-13 illustrates the effects of setting different cycle constraints
on the nested loops in Example 4-9.

4-40

Scheduling and Scheduling Constraints

Figure 4-13 Resources With Loops

On the left side of Figure 4-13, placing a constraint of 5 on the
outermost loop (loop1) creates a design latency of five cycles, but it
requires three resources for the design. The unconstrained innermost
loop (loop3) dictates area, which is implemented in one cycle using
three resources. The constraint on the outer loop does not propagate
to the innermost loop. Therefore, this loop implements in the shortest
possible latency, wasting two unused cycles in loop1.

On the right side of Figure 4-13, the innermost loop (loop3) has a loop
constraint of three cycles. SystemC Compiler uses one resource and
distributes the three operations over three cycles. This constraint on
the innermost loop fully utilizes the five cycles intended for the design.

op

set_cycles 5

 -to_end .../loop1

set_cycles 3

 -to_end .../loop3

loop1

loop2

loop3

loop1

loop2

loop3

-from_begin .../loop1 -from_begin .../loop3

op

op op op

op

op

op

op

op

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

4-41

Scheduling and Scheduling Constraints

Placing Constraints Across Loop Boundaries

Infinite loops, while loops, and for loops form a level of hierarchy for
SystemC Compiler, and it schedules each hierarchical unit
separately. Therefore, operations in one loop cannot reference
operations in other loops.

SystemC Compiler does not budget cycles across loop boundaries.
Do not set constraints between an operation in one loop and an
operation in another loop. Instead, do the following steps:

1. Place a constraint between the operation in a loop and the loop
end.

2. Place another constraint between the end of the first loop and the
beginning of the second loop.

3. Place a third constraint between the beginning of the second loop
and the operation in the second loop.

The following commands show how to pass a constraint between
loops for the code segments in Example 4-10.

dc_shell> set_cycles 2 -from cmult_entry/label1
-to_end cmult_entry/lp1

dc_shell> set_cycles 1 -from_end cmult_entry/lp1
-to_beginning cmult_entry/lp2

dc_shell> set_cycles 2 -from_beginning cmult_entry/lp2
-to cmult_entry/lp2/label2

4-42

Scheduling and Scheduling Constraints

Example 4-10 Passing a Constraint Between Loops
//SystemC

lp1: for (cond1) {

 label1: y.write(a + b);

}

wait();

lp2: for (cond2) {

 label2: q.write(result);

}

Using the Set Cycles Commands and Options

The set_cycles, set_min_cycles, and set_max_cycles
commands have the same options, described in the following
sections. Use the set_cycles command to define a fixed number
of cycles between two operations. Use the set_min_cycles to
define a minimum number of cycles between two operations. Use the
set_max_cycles to define a maximum number of cycles between
two operations.

It is easy to overconstrain the schedule by improperly using these
commands. For example, if the latency specified by
set_max_cycles is less than that specified by set_min_cycles,
scheduling fails. If this occurs when executing the schedule
command, review the error messages and the constraints, and
remove the constraints that make scheduling impossible.

4-43

Scheduling and Scheduling Constraints

You can set the following options for the set cycles commands:

[-process process_name]
[cycle_offset]
[[-from | -from_beginning | -from_end] from_operation]
[[-to | -to_beginning | -to_end] to_operation]

The -process option specifies the process to which this command
applies. Use this option if your behavioral description has multiple
processes.

The cycle_offset option specifies the number of cycles by which
you are constraining the two operations. The number must be a
positive integer, and a negative integer is invalid. If you set the
cycle_offset to zero, it implies that the two operation can happen
in the same cycle.

The -from and -from_beginning options (functionally equivalent
options) specify that the beginning of an operation is selected. In the
case of a loop, select the first cycle of the loop. In the case of a
multicycle operation, select the first cycle of the operation. In the case
of a single-cycle operation, select the cycle of the operation.

The -from_end option specifies that the ending of an operation is
selected. In the case of a loop, select the last cycle of the loop. In the
case of a multicycle operation, select the last cycle of the operation.

The -to and -to_beginning options (functionally equivalent
options) specify the last cycle of an operation or loop boundary to
constrain. In the case of a loop, select the first cycle of the loop. In
the case of a multicycle operation, select the first cycle of the
operation. In the case of a single-cycle operation, select the cycle of
the operation.

4-44

Scheduling and Scheduling Constraints

The -to_end option specifies that the end of an operation is selected.
In the case of a loop, select the last cycle of the loop. In the case of
a multicycle operation, select the last cycle of the operation.

Pipelining a Loop

You can increase the throughput of your design by pipelining loops.
When a loop is pipelined, SystemC Compiler synthesizes the design
so that the loop iterations overlap when the synthesized design is
operating. Pipelining loops reduces the overall runtime latency of the
synthesized design. By default, loops are not pipelined. Figure 4-14
shows code for a loop with a latency of 6 clock cycles and its
nonpipelined latency.

Figure 4-14 Nonpipelined Loop

To pipeline a loop, use the pipeline_loop command so SystemC
Compiler generates the required loop pipelining controls in the FSM
during scheduling. The pipeline controls tasks such as filling and
flushing the pipeline and overlapping loop iterations.

read a[i] and b[i] prod = a[i] * b[i] Z[i] = prod

read a[i] and b[i] prod = a[i] * b[i] Z[i] = prod
Loop iteration 1

Loop iteration 2

Clock

my_loop: while(true){
i = mem_index[in1];
prod = a[i] * b[i];
z[i] = prod;
outz.write(prod);
wait();

}

Latency = 6

4-45

Scheduling and Scheduling Constraints

For the pipeline_loop command, you specify the loop name, the
initiation interval, and the latency of the loop you want SystemC
Compiler to pipeline. The initiation interval is the number of clock
cycles until the start of the next loop iteration, and loop latency is the
number of clock cycles required to complete one loop iteration.

Figure 4-15 shows the effect of pipelining of the same loop code from
Figure 4-14 with an initial interval of 2 and a latency of 6.

Figure 4-15 Pipelined Loop

To pipeline a loop,

1. Schedule the design without pipelining to determine the loop
latency, which is provided in the scheduling report timing
summary.

2. Determine the initiation interval based on your behavioral
description, as described in “Determining the Initiation Interval”
on page 4-47.

3. Use the pipeline_loop command to specify the pipeline
values.

4. Run the schedule command again and compare the results, or
use BCView and look at the generated FSM.

read a[i] and b[i] prod = a[i] * b[i] z[i] = prod

read a[i] and b[i] prod = a[i] * b[i] z[i] = prod

read a[i] and b[i] prod = a[i] * b[i] z[i] = prod
Initiation interval

Latency = 6

Initiation interval = 2

4-46

Scheduling and Scheduling Constraints

Use the find command to extract the full loop path name. Enter the
following commands to pipeline the loop and report the schedule:

dc_shell> loop_label = find -hier cell *calc_loop*
dc_shell> pipeline_loop loop_label

-init_interval 2
-latency 6

dc_shell> report_schedule -summary

Note:
In superstate-fixed scheduling mode, you can set the latency with
either the pipeline_loop or the set_cycle command.

Example 4-11 shows the schedule summary report with pipelined
loop information of 2 cycles for the initiation interval and 6 cycles for
the pipeline latency for the calc_loop.

Example 4-11 Pipelined Loop Timing Summary (Partial)

 Timing Summary

 Clock period 20.00
 Loop timing information:
 entry...8 cycles (cycles 0 - 8)
 loop_17.......................................7 cycles (cycles 1 - 8)

calc_loop.(initiation interval)...2 cycles

 (pipeline latency)......6 cycles
 (cycles 1-7)
...

You can change the initiation interval and latency of pipelined loops
to explore tradeoffs such as throughput and area. A smaller loop
iteration means a higher loop throughput.

4-47

Scheduling and Scheduling Constraints

Restrictions and Limitations For Pipelining Loops

Pipelining a loop has the following restrictions:

1. The loop latency must be an integer multiple of the initiation
interval. For example, a loop latency of 6 can have an initiation
interval of 1, 2, or 3, and a loop latency of 10 can have an initiation
interval of 1, 2, or 5.

2. A pipelined loop cannot contain other loops unless the nested
loop is unrolled.

3. A loop exit is implicitly constrained to occur only within the initiation
interval.

For further information, see Chapter 3, “Behavioral Coding
Guidelines” in the CoCentric™ SystemC Compiler Behavioral
Modeling Guide.

Determining the Initiation Interval

To determine the initiation interval, consider the design throughput
requirements and the

• Loop carry dependencies

• Memory and I/O accesses

• Loops with handshake signals

• Exit from a pipelined loop

4-48

Scheduling and Scheduling Constraints

Loop Carry Dependencies

Loop carry dependencies are data values produced in one iteration
of a loop that are consumed by a subsequent iteration. A loop carry
dependency can restrict the initiation interval. Figure 4-16 shows a
loop with a latency of 5 that produced a result in loop iteration 1, which
is needed in iteration 2. The result from iteration 1 is not available
until the end of cycle two. An initiation value of 1 is, therefore, not valid.

Figure 4-16 Invalid Loop Initiation Value

Figure 4-17 shows a corrected version of the loop with an initiation
interval of 2. The loop latency is extended to six to satisfy the
requirement that the loop initiation must be an integer multiple of the
latency.

Figure 4-17 Valid Loop Initiation Value

**

Iteration 1

**
++
++

Iteration 2

Latency
= 5

Initiation = 1

Iteration 3

--

**
**
++
++
--

**
**
++
++
--

**
**
++
++

Latency
= 6

Initiation = 2

--

**
**
++
++
--

**
**
++
++
--

Iteration 1

Iteration 2

Iteration 3

4-49

Scheduling and Scheduling Constraints

Memory and I/O Accesses

When you pipeline a loop, the original order specified in the behavioral
description for reading and writing to the same memory, signal, or
port is preserved. Simultaneous reading and writing to the same
memory, signal, or port are not possible from different loop iterations.
Figure 4-18 illustrates several reads (RD1, RD2, and RD3) from and
a write (WR1) to the same memory. This loop cannot be pipelined,
because it is attempting to simultaneously read from the same
memory in different loop iterations.

Figure 4-18 Invalid Memory and I/O Access

If the memory has two ports (for example, a dual-port RAM), the
pipelining shown in Figure 4-18 is valid. If WR1 and RD1 are
accessing the same memory location, however, there is a loop-carry
dependency from WR1 to RD1. In that case, the initiation interval
must be changed to 3, as shown in Figure 4-19, to resolve the
loop-carry dependency.

RD1RD1

RD2RD2

RD3RD3

WR1WR1

Latency
= 4

Initiation = 1

RD1RD1

RD2RD2

RD3RD3
WR1WR1

Iteration 1

Iteration 2

4-50

Scheduling and Scheduling Constraints

Figure 4-19 Valid Memory and I/O Access

Pipelining a Loop With Handshake Signals

A loop with handshake signals can require modification of the loop
code before you can pipeline the loop. Figure 4-20 shows a code
example that contains a handshake signal output_rdy. A function call,
which requires 4 cycles to execute, is between the two writes to the
handshake signal. Before iteration 2, the output_rdy signal is already
a 1. In iteration 2, however, the output_rdy.write(0) cannot occur until
the iteration 1 output_rdy_write(1) has occurred. This loop, therefore,
cannot be pipelined.

Figure 4-20 Handshake Signal Preventing Loop Pipelining

RD1RD1

RD2RD2
RD3RD3
WR1WR1

Latency
= 6

Initiation = 3

RD1RD1

RD2RD2

RD3RD3
WR1WR1Iteration 1

Iteration 1

W0W0Latency
= 8

Iteration=4

W1W1 W0W0

W1W1

Iteration 1

Iteration 2

calc_loop : while (true){
output_rdy.write(0);
wait();
result.write(func(in1));
output_rdy.write(1);
wait();

}

4-51

Scheduling and Scheduling Constraints

You can change the order of the code in a loop with handshake signals
to change the latency and initiation interval. This allows the loop to
be pipelined, and it improves the throughput. Figure 4-21 shows the
reordered loop code from Figure 4-20. It moves the raising and
lowering of the output_rdy signal closer together. The loop latency is
extended to 6, allowing an initiation interval of 2.

Note:
In this situation, you might need to rewrite the code to enable
pipelining. Changing just the initiation interval and latency will not
enable pipelining.

Figure 4-21 Pipelined Loop With Handshake Signal

calc_loop : while (true){

output_rdy.write(0);
wait();

result.write(func(in1));
output_rdy.write(1);
wait();

}

output_rdy.write(0);
wait(); Latency

=6
Initiation =2

W1W1

W0W0

W1W1

W0W0

W1W1

W0W0

Iteration 1

Iteration 2

Iteration 3

4-52

Scheduling and Scheduling Constraints

Exit From a Pipelined Loop

A loop exit can occur only within the initiation interval of a pipelined
loop, because the semantics of the behavioral description forbid the
next iteration from being launched. To preserve the semantics, a
check is made to determine if the current iteration is the last iteration.
If it is the last iteration, the loop is exited before the next iteration
begins. Figure 4-21 illustrates an invalid exit and a valid exit from a
pipelined loop.

Figure 4-22 Exit From a Pipelined Loop

To exit a pipelined loop within the initiation interval, use a while loop
with an implicit conditional exit or a for loop with an implicit conditional
exit, because the exit condition of these loops are evaluated in the
first cycle of the loop.

*,**,*
+,++,+
ExitExit

--

Latency
= 4 *,**,*

+,++,+
ExitExit

--

Initiation
= 2

*,**,*
ExitExit

++

--

Latency
= 4 *,**,*

ExitExit

++
--

Initiation
= 2

Iteration 1

Iteration 1

Iteration 1

Iteration 1

Invalid exit Valid exit

4-53

Scheduling and Scheduling Constraints

Determining Current Scheduling Constraints

To determine all scheduling constraints, use the
report_scheduling_constraints command to display all
SystemC Compiler scheduling constraints on the current design.

dc_shell> report_scheduling_constraints

This command reports constraints you set with the following
commands:

• set_cycles

• set_max_cycles

• set_min_cycles

• pipeline_loop

• preschedule

• chain_operations

• dont_chain_operations

4-54

Scheduling and Scheduling Constraints

Removing Scheduling Constraints

If you want to remove scheduling constraints, use the
remove_scheduling_constraints command to remove the
explicit constraints.

dc_shell> remove_scheduling_constraints
[-process process_name]

If you do not specify a process, the default is all processes.

The remove_scheduling_constraints command removes
constraints set with the following commands:

• set_cycles

• set_max_cycles

• set_min_cycles

• set_min_cycles

• preschedule

• dont_chain_operations

The remove_scheduling_constraints command does not
affect timing constraints or constraints inferred from the source
description.

4-55

Scheduling and Scheduling Constraints

Constraining Resource Allocations

SystemC Compiler shares resources whenever possible. You can
constraint the amount of resource sharing.

Setting Common Resources

For your design, you might want to instruct SystemC Compiler to
share resources. You can do this with the set_common_resource
command. It provides control to reduce area by allowing you to specify
the implementation of a set of operations on a given number of
resources.

dc_shell> set_common_resource
[-process process_name] {operation_names}
[-min_count min_resources]
[-max_count max_resources]
[-force_sharing]
[-exclusive]

The -process option specifies the process to which this command
applies. The default is to apply the command to all behavioral
processes in the current design.

The -min_count option specifies the minimum number of available
resources for operations in operation_names. You can specify this
option only in combination with the schedule command using its
-extend_latency option. During resource driven scheduling, this
prevents SystemC Compiler from increasing the latency of a design
to the point where the design can be scheduled with only one resource
of each type.

4-56

Scheduling and Scheduling Constraints

For example, the commands in Example 4-12 schedule the design
so that cycles are added to allow the operations add_2, add_27,
add_33, sub_5, and sub_21 to be implemented on two resources.

Example 4-12 Commands for Minimum Resource-Driven Scheduling
dc_shell> ops = {"add_2" "add_27" "add_33" "sub5" "sub_21"}
dc_shell> set_common_resource ops -min_count 2
dc_shell> schedule -extend_latency

The-max_count option specifies the maximum number of available
resources for operation in operation_names. SystemC Compiler
terminates scheduling and issues an error message if it cannot find
a schedule that uses resources fewer than or equal to the specified
max_count value.

Example 4-13 shows the commands to schedule the design so that
cycles are added to allow the operations add_2, add_27, add_33,
sub_5, and sub_21 to be implemented on three or fewer resources.

Example 4-13 Commands for Maximum Resource-Driven Scheduling
dc_shell> ops = {"add_2" "add_27" "add_33" "sub5" "sub_21"}
dc_shell> set_common_resource ops -max_count 3
dc_shell> schedule -extend_latency

The -force_sharing option is used in combination with the
-max_count option. It forces SystemC Compiler to share the
operations even if the cost functions indicate that this would increase
the area of the design. Without this option, SystemC Compiler could
disregard the -max_count option if the sharing results in a design
with a larger area, for example if resource sharing introduces large
multiplexers.

4-57

Scheduling and Scheduling Constraints

Example 4-14 shows the commands to schedule the design so that
cycles are added to allow the operations add_2, add_27, add_33,
sub_5, and sub_21 to be implemented on three or fewer resources
with forced sharing of resources.

Example 4-14 Commands for Forced Maximum Resource-Driven
Scheduling

dc_shell> ops = {"add_2" "add_27" "add_33" "sub5" "sub_21"}
dc_shell> set_common_resource ops -max_count 3
-force_sharing
dc_shell> schedule -extend_latency

The set_common_resource command affects the scheduling of
operations. Operations grouped into common resources are
scheduled in non-overlapping cycles to allow them to be shared on
the same resource.

SystemC Compiler attempts to increase the number of cycles
(latency) to meet specified resource goals, but these increases in
cycles must not violate timing constraints. Timing constraints take
priority over resource goals. If the resource goals are not met within
the defined timing constraints, SystemC Compiler issues an error.

Setting Exclusive Registers

During your design, you might want a variable to remain in a single
register at all times; for example, a variable that you later scan out.
You can accomplish this by using a signal instead of a variable. In
that case, SystemC Compiler creates a dedicated register to hold the
signal value.

To control register sharing, use the set_exclusive_use
command. When you apply this command to a variable, it directs
SystemC Compiler to dedicate a single register to hold the variable.

4-58

Scheduling and Scheduling Constraints

After executing the compile_systemc command and before
executing the schedule command, enter

dc_shell> set_exclusive_use variable_name

You can use the -shared option with the set_exclusive_use
command to direct SystemC Compiler to force register sharing by
assigning the variable to an existing register. Enter

dc_shell> set_exclusive_use variable_name -shared

If it is not possible to find a register with variables that do not overlap
lifetimes with the specified variable, SystemC Compiler will not force
sharing.

5-1

Optimizing Latency and Area

5
Optimizing Latency and Area 5

This chapter describes how to influence the optimization of latency
and area to improve the quality of results produced by SystemC
Compiler.

This chapter contains the following sections:

• Exploring Architectures and Improving the Quality of Results

• Controlling Operation and Implementation Selection

• Operation Chaining

• Removing Unnecessary Registers

• Using Multicycle Operations

• Using Preserved Functions

• Using DesignWare Components

5-2

Optimizing Latency and Area

Exploring Architectures and Improving the Quality of
Results

Exploring architectures means trading off the clock speed, latency,
and resources for a design. Use the visualization capabilities of
BCView and the various timing and scheduling reports to find
opportunities to improve the quality of results of your design.

Looking at Architectural Tradeoffs

Figure 5-1 shows different implementations of a design that performs
two multiplications, one addition, and one subtraction. The figure
shows you how to explore different architectural possibilities by
setting constraints, using command options, and selecting different
components from the synthetic library.

5-3

Optimizing Latency and Area

Figure 5-1 Architectural Exploration

In Figure 5-1,

• Architecture 1

Architecture 1 is implemented with the bc_time_design
command default of smallest area and the schedule command
default of fastest latency. The clock period is set to 10ns. This
architecture requires 5 clock cycles or 50ns.

The multiplication operations require more than one clock cycle
to execute, which makes them multicycle operations. Multicycle
operations increase latency, because their inputs must be
registered prior to the start of the multicycle operation.

+
_

Clock 10ns
2 small

1 adder

*

+
_

Clock 20ns
2 slow

1 adder +

*

**

_
+

*

Architecture 1 Architecture 3 Architecture 5

* *

Clock 10ns
Loop pipelined
2 multipliers

Architecture 6

* *

_

1 adder
1 subtracter

* *
+
_

Clock 10ns
2 fast

Architecture 2

1 adder
1 subtracter 1 subtracter

 chain

+
_

Clock 20ns
Latency

1 adder +

*

Architecture 4

1 subtracter
 chain

*

1 slow
multipliersmultipliersmultipliers

multiplier

extended

Clock 10ns
Latency

1 adder
1 subtracter

1 pipelined
multiplier

extended

*
+
_ +

2 subtracters

5-4

Optimizing Latency and Area

Architecture 1 shows an empty first clock cycle when the inputs
to the multipliers must arrive. Finding multicycle operations is
described in “Identifying Multicycle Operations” on page 6-51

• Architecture 2

Eliminating multicycle operations can reduce the latency of your
architecture. In Architecture 2, the bc_time_design command
is used with the -fastest option to select faster components.
The multiply operations can now be executed in a single clock
cycle, reducing the latency of the architecture to 3 cycles or 30ns.
However, faster components are usually larger, so you need to
tradeoff a larger area for the faster latency. These commands are
described in “Controlling Operation and Implementation
Selection” on page 5-7.

• Architecture 3

If your design allows a slower clock period, you can eliminate
multicycle operations by increasing the clock period. In
Architecture 3, the clock period is set to 20ns. The slower multiply
operations are not multicycle and their inputs do not need to be
registered. The addition and the subtraction operations are quick
enough to be executed in the same cycle, even though they are
data-dependent. This reduces the overall latency of the
architecture to 2 cycles or 40ns. The scheduling optimization that
places several data-dependent operations in one cycle is called
operation chaining, and it is described in “Operation Chaining” on
page 5-8.

• Architecture 4

If you are concerned about reducing the area rather the improving
the latency, use the schedule command in the superstate-fixed
I/O scheduling mode with the -extend_latency option to
achieve Architecture 4. SystemC Compiler stretches the latency

5-5

Optimizing Latency and Area

of the loop, so that the multiply operations can share the same
multiplier. This architecture has one less multiplier and a latency
of 3 cycles or 60ns. Reducing area is described in “Using
Resource-Driven Scheduling” on page 4-19.

• Architecture 5

You can eliminate multicycle operations without increasing the
clock period by using pipelined components to implement the
operation. Architecture 5 illustrates the use of a 2-stage pipelined
multiplier. For this alternative, use the schedule command with
the -extend_latency option so the two multiply operations can
share the same pipelined multiplier. This architecture can be
implemented with a 10ns clock in 5 cycles, which is a total of 50ns.
In your behavioral description, use the map_to_operator
compiler directive to instruct the bc_time_design command to
map a function to a specific component. You can also use the
set_dont_use command to prevent the bc_time_design
command from using certain undesirable components. These
commands are described in “Controlling Operation and
Implementation Selection” on page 5-7.

• Architecture 6

If you are concerned about throughput, loop pipelining may be
appropriate for your design. Architecture 6 shows two overlapping
iterations of a loop that are pipelined with an initiation interval of
1 clock cycle and a latency of 3 clock cycles. The fast multipliers
are used to achieve the highest throughput and fastest latency
possible. Loop pipelining usually results in larger area designs,
because components and registers need to be duplicated to
provide the resources to execute the overlapping iterations of the
loop. How to pipeline a loop is described in “Pipelining a Loop” on
page 4-44.

5-6

Optimizing Latency and Area

Architectural Exploration Guidelines

Explore the architecture of your design looking for opportunities to
improve the quality of results by using these general guidelines.

• Use the BCView Selection Inspector detailed area breakdown to
find opportunities to reduce area by selecting components and
implementations, described in “Controlling Operation and
Implementation Selection” on page 5-7.

• Check for under utilization of resources, described in “Resource
Utilization” on page 6-32. To improve resource utilization, use
component selection and operation chaining.

• Look for operation chaining opportunities, described in
“Identifying Chaining Opportunities” on page 6-53.

• Look for multicycle operations, described in “Identifying Multicycle
Operations” on page 6-51. In place of multicycle components, use
preserved functions, described in “Creating Preserved Functions”
on page 5-25. Or use pipelined components, described in “Finding
and Implementing Pipelined Components” on page 5-37.

• Analyze critical paths and try to reduce the delay by using
preserved functions, described in “Using Preserved Functions”
on page 5-23.

• Look for loop pipelining opportunities, described in “Pipelining a
Loop” on page 4-44.

• Map arrays to memory, described in Chapter 7, “Using Register
Files and Memories for Arrays.

5-7

Optimizing Latency and Area

Controlling Operation and Implementation Selection

For timing estimation, SystemC Compiler uses the components and
implementations with the minimum area by default. The smallest
components are typically the slowest components. For example, if
the design description contains an addition operation (+) and the
default synthetic libraries are in use, SystemC Compiler implements
the design with the DW01_add operation with the ripple carry (rpl)
implementation because it has the smallest area.

To control implementation selection, use one of the following
methods:

• Restrict the choice of component by using the set_dont_use
command on components or implementations that you do not
want used for estimation.

dc_shell> set_dont_use {object_list}

The object_list specifies a list of objects (library cells, modules,
or implementations) that are excluded in the design. The object
names must contain a library prefix. For example, if you do not
want SystemC Compiler to consider the bk or csm
implementations in the dw01.sldb synthetic library to reduce the
execution time of the bc_time_design command, you can
exclude them with the following commands:

dc_shell> set_dont_use dw01.sldb/*/bk
dc_shell> set_dont_use dw01.sldb/*/csm

To decide which synthetic library architectures you might want to
exclude, see the descriptions in the DesignWare documentation.

5-8

Optimizing Latency and Area

• Use the bc_time_design command with the -fastest option
to instruct SystemC Compiler to use the fastest component
available in its timing estimates.

If you want to remove the set_dont_use command after defining
it, use the remove_attribute command. For example,

dc_shell> remove_attribute dw01.sldb/*/csm set_dont_use

Operation Chaining

Operation chaining is the process of scheduling multiple,
data-dependent operations in the same clock cycle if the total delay
is less than the clock period. SystemC Compiler automatically looks
for opportunities to chain operations to deliver higher performance
designs.

Operation Chaining With Bitwise Timing

SystemC Compiler schedules multiple data dependent operations
into the same clock cycle if the total bitwise delay is less than the
clock period.

Figure 5-2 shows the bitwise operation chaining possibility for
z = a + b + c - d using a clock period of 10 ns. The low order bits of
a + b can be used to compute the low order bits of a + b + c, before
the entire computation of a + b is finished. Therefore, the two addition
and subtraction operations can be combined into a chain. Their total
delay can be less than 10ns, even if the individual operations have a
6ns delay.

5-9

Optimizing Latency and Area

Figure 5-2 Bitwise Timing for Operation Chaining

You cannot chain into a multicycle operation because its inputs must
be registered, but you can chain out of a multicycle operation.

+
-

+
a

b
c

d
z

a + b

+ c

- d

6 ns

8 ns

9 ns

 high Bit order low

z = a + b + c - d

5-10

Optimizing Latency and Area

Determining Operation Chaining

You can determine chained operations by looking at the resource
estimates report (described in “Interpreting the Timing and Area
Resource Report” on page 3-17). Figure 5-3 shows a partial resource
estimates report of the complex number multiplier. The cumulative
delay starting at data_in_32 shows the timing path to the sub_35
subtraction operation is 10.4, and the mul_35_2 operation is 6.3. It
appears that the subtraction operation delay is 3.8. However, looking
further in the report for the individual delay of the sub_35 operation,
the operation delay is actually 9.1.The subtraction operation delay of
3.8 is the incremental delay contributed by sub_35 to the chain of
data-dependent operations starting at data_in_32.

Figure 5-3 Chained Operations in the Estimated Resources Report (Partial)

Cumulative delay starting at data_in_32:
 data_in_32 = 0.000000

 mul_36 = 6.340029
 mul_36_2 = 6.340029
 mul_35_2 = 6.340029

 add_36 = 10.138293
 imaginary_out_36 = 10.138293

 sub_35 = 10.417433
 real_out_35 = 10.417433
...

Cumulative delay starting at sub_35:
 sub_35 = 9.158618

 real_out_35 = 9.158618

5-11

Optimizing Latency and Area

Controlling Operation Chaining

You control operation chaining with the bc_enable_chaining
variable, which is set to true by default. You can set this variable to
false to prevent operation chaining. For example,

dc_shell> bc_enable_chaining = "false"

SystemC Compiler automatically implements operation chaining
when the schedule command runs. To force SystemC Compiler to
chain certain operations, use the chain_operations command
before scheduling. However, the chain_operations command is
ignored if the delay through the operations exceeds the cycle time.
For example, to chain the operations labeled add_1, add_2, and
sub_1, enter

dc_shell> add_1 = find -hier cell *add_1*
dc_shell> add_2 = find -hier cell *add_2*
dc_shell> sub_1 = find -hier cell *sub_1*
dc_shell> chain_operations {add_1 sub_1 add_2 }

Similarly, to prevent SystemC Compiler from chaining a particular set
of operations with each other, use the dont_chain_operations
command. For example, to force the operations labeled op1, op2,
and op3 to be scheduled in different clock cycles, enter

dc_shell> op_1 = find -hier cell *op_1*
dc_shell> op_2 = find -hier cell *op_2*
dc_shell> op_3 = find -hier cell *op_3*
dc_shell> dont_chain_operations {op_1 op_2 op_3}

5-12

Optimizing Latency and Area

SystemC Compiler chains input port reads into an operation by
default, even if you specify the operation inputs are not to be chained
with the dont_chain_operations command. To disable chaining
of an input port read into an operation, set the
bc_chain_read_into_oper variable to false. Enter

dc_shell> bc_chain_read_into_oper = "false"

SystemC Compiler provides a similar variable for memories,
bc_chain_read_into_mem. Input port reads are chained into a
memory by default, even if the memory .sldb file declares they are
not chainable. To disable chaining of an input port read into memory,
set the bc_chain_read_into_mem variable to false. Enter

dc_shell> bc_chain_read_into_mem = "false"

In some cases it may appear as though two operations can be
chained, but SystemC Compiler is failing to do so. The most common
reason for this is cycle margin, as described in the next section.

Controlling Margin Calculation

The bc_time_design command reserves time in the clock period
as a clock cycle margin for the hardware that SystemC Compiler adds
to every timing path in the design during synthesis. SystemC Compiler
extracts the required time to be reserved from the target technology
library. The clock period less the reserved clock cycle margin is
available for combinational logic.

The timing path starts at the clock pin of a register, passes through
the combinational logic, and terminates at the data input pin of a
register. Figure 5-4 shows a typical timing path.

5-13

Optimizing Latency and Area

Figure 5-4 Typical Timing Path

Each timing path, as illustrated in Figure 5-4, contains common
hardware components. SystemC Compiler reserves a clock cycle
margin in the clock period for the following components:

• Register margin

The leading register requires time at the beginning of the clock
period to respond to the clock edge and make the data available
on its Q output pin. This is called clock-to-Q delay.

The trailing register requires data to arrive at its D input pin a
certain time before the end of the clock cycle. This is called setup
time.

The register margin is also referred to as the flip-flop (FF) margin,
because registers are implemented as FFs from the target library.

Combinational
logic

>
CLK

D Q

Leading
register

>
CLK

D Q

Trailing
register

Multiplexer

Multiplexer
control signal
from FSM

Clock period

CLK>Q FSM
delay

MUX
delay

Register

delay
setup

Clock period - margin

5-14

Optimizing Latency and Area

• Multiplexer margin

The trailing register can get its input from several different
sources. A multiplexer controls which of the different sources
provides input to the register. The reserved timing margin includes
time for the multiplexer.

• FSM margin

At each clock cycle, the FSM generated by SystemC Compiler
moves into a new state. The reserved timing margin includes time
for the FSM to decode its state and generate the control signals
to control the data path portion of the synthesized design.

The bc_time_design command reports the clock cycle margin
value based on the current target library. SystemC Compiler looks for
all available flip-flops in the target library and uses the average
clock-to-Q delay and setup delay. Example 5-1 shows the relevant
data in the resource estimate report.

Example 5-1 Clock Margin in the Resource Estimate Report
 Clock Cycle Margin : 2.86 (Default)
 FSM : 0.55
 MUX : 1.21
 FF : 1.11
 Clock Uncertainty : 0.00

The FSM margin is computed based on the FSM coding style that is
specified with the bc_fsm_coding_style variable. The default for
this variable is the one_hot coding style. To compute the register
margin, SystemC Compiler looks for all available flip-flops in the target
library and uses the average clock-to-Q delay and setup delay unless
you specify the -preferred_FF option of the bc_margin
command. To specify a particular flip-flop to use for the margin
calculation, enter

5-15

Optimizing Latency and Area

dc_shell> bc_margin -preferred_FF FF_name

You can see the value for the clock cycle margin in the report
generated by the bc_time_design, bc_margin, or
report_resource_estimates commands.

Figure 5-5 shows a situation where OP1 and OP2 cannot chain
because the total delay, including margin, exceeds the clock period.

Figure 5-5 Chaining Operation Timing

If the clock margin is too conservative, you can make improvements
in either of the following ways:

• Remove slower flip-flops from consideration by applying a
set_dont_use command for them before executing the
bc_time_design command. For example,

dc_shell> set_dont_use my_lib/dff_slow
dc_shell> bc_time_design

• Manually override the default value by applying the bc_margin
command after the bc_time_design command completes.
Confirm the new value by examining the end of the report
produced by the report_resource_estimates command
(Example 5-2 on page 5-21).

Clock

Clock period = 15ns

Clock margin = 2.5ns

OP1 OP2

7ns 6ns

Cycle time = Clock period - clock margin = 15 - 2.5 = 12.5ns
Logic delay = OP1 delay + OP2 delay = 7 + 6 = 13ns

Logic delay > cycle time, therefore OP1 cannot chain into OP2

5-16

Optimizing Latency and Area

For example,

dc_shell> bc_time_design
dc_shell> bc_margin -global 1.5
dc_shell> report_resource_estimates

If you provide the global margin value, FSM, multiplex, and register
delay is set to 1/3 of the global margin. For example, if you set the
cycle margin to 6:

bc_margin -global 6

Cycle margin : 6.00
FSM : 2.00
MUX : 2.00
FF : 2.00

You can use the following options with the bc_margin command:

dc_shell> bc_margin [-process process_name] [-global margin]
[-reg margin] [-fsm margin] [-mux margin] [-preferred_FF
cell_name] [-report]

The -process process_name option specifies the process to
which it applies. The default is to apply the command to all behavioral
processes in the current design.

The -global margin option specifies the total clock cycle margin
to be used by SystemC Compiler for the current design.

The -fsm margin option specifies the amount of timing margin to
be used for FSM decoding logic.

The -mux margin option specifies the amount of timing margin to
be used for MUX delay.

5-17

Optimizing Latency and Area

The -reg margin option specifies the amount of timing margin to
be used for setup and clock-to-Q pin delay inside flip-flop.

The -preferred_FF cell_name option specifies the flip-flop
name from the current target library which is used to determine setup
and clock-to-Q delay.

The -report option generates the detailed information of the
flip-flops in the current target library that you can set with the
-preferred_FF option.

5-18

Optimizing Latency and Area

Removing Unnecessary Registers

By default, SystemC Compiler saves the value of input ports in
registers after they are read if the value is used in a later clock cycle.
When an input port is a static value (for example, a mode-select signal
or coefficient value) that never changes during normal operation of
your design, the registers are unnecessary.

You can remove these redundant registers from your design and save
area by instructing SystemC Compiler that these input values are
static and they do not need registers.

Use the bc_dont_register_input_port command to specify
which ports are static. For example, to prevent registers on ports
name1, name2, and name3, enter

dc_shell> bc_dont_register_input_port
 {name1 name2 name3}

The ports you list with this command will not have their input data
registered, and they chain directly into operations in the design.

Note:
If a port is specified as static, its value should change only during
the reset state. If the value changes at any other time, the circuit
might operate incorrectly because SystemC Compiler constructs
an architecture that treats the signal as static.

5-19

Optimizing Latency and Area

Using Multicycle Operations

SystemC Compiler uses the timing estimates to determine whether
to implement single cycle or multicycle operations. If the hardware
delay is less than the clock period, SystemC Compiler implements a
single cycle operation and may be able to chain single cycle
operations together in the same clock cycle; otherwise, SystemC
Compiler implements a multicycle operation.

You do not have to indicate whether to schedule operations as
multicycle or single cycle. SystemC Compiler schedules these
operations automatically if the clock cycle, scheduling constraints,
and target technology indicate that multicycling is necessary.

If an operation has a delay greater than the clock period and you are
allowing multicycle, SystemC Compiler automatically schedules it as
a multicycle operation, as shown in Figure 5-6.

Figure 5-6 Multicycle Operation

In Figure 5-6, the multiplication hardware has a maximum delay of
12 ns, but the clock is only 10 ns. If you use this multiplier in a system
that has a clock of 10 ns, the multiplier becomes a multicycle
operation.

A B

Z

cycle n 10 ns

cycle n+1 10 ns

12 ns

Register

Register Register

*

z = a * b

5-20

Optimizing Latency and Area

A multicycle operation affects implementation in these ways:

• The inputs to the multicycle operation must be held stable for as
many clock cycles as necessary. For example, in Figure 5-6 the
inputs must be held stable for two clock cycles, so they are
registered.

• The results are valid in the register corresponding to variable Z
two cycles after the input data is valid.

• You need to pass the correct multicycle constraints into logic
optimization.

• Optimizing multicycle paths can impact Design Compiler runtime.

SystemC Compiler automatically handles all of these requirements
based on the clock period and timing estimates it calculates for the
hardware operations.

Reporting Multicycle Operations

You can use the report_multicycles command to report
multicycle operations for your scheduled design. Example 5-2 shows
a partial report, where

• The cstep (clock step) indicates the first clock cycle in which the
multicycle operation is used.

• The cycle latency is the number of cycles for the multicycle
operation.

• The cluster is the automatically created resource name for the
component executing the multicycle operation, which is expanded
at the end of the report to show the multicycle resource.

5-21

Optimizing Latency and Area

• The design name is the name of the synthetic operation that is
multicycled.

• The self delay is the operation delay.

Example 5-2 Multicycle Report (Partial)
Clock period: 10.00 & margin: 0.00

loop_17/add_36
cstep: 8
cycle latency: 2
cluster: r46
design name: DW01_add
self delay: 13.62

...
**
* Multicycle operators for process cmult_entry: *
**
r46: DW01_add

loop_17/add_36
...

Increased Latency of Multicycle Operations

In many situations, multicycle operations cause an undesirable
increase in area or latency. A multicycle operation can increase
latency, because

• An extra clock is required before the operation to register the input
data and keep the inputs stable for the duration of the multicycle
operation.

• If a multicycle operation is in the first clock cycle of a conditional
statement, the conditional evaluation needs to be evaluated at
least 2 clock cycles earlier.

5-22

Optimizing Latency and Area

Figure 5-7 shows a code fragment containing a conditional if
statement. When the multiply operation is not multicycle, the entire
code fragment can be implemented in 1 clock cycle. When the multiply
operation is multicycle, the latency increases to 4 clock cycles,
because the if condition must be evaluated in the first cycle before
the input data is read, the input data is read and registered in the
second cycle, and the multiply operation takes 2 cycles.

Figure 5-7 Multicycle Operations in Conditional Statements

in1

Cycles

if A B *

cond = in1.read();
if(cond == yes) {
 A = B * C;
 out.write(A);
 wait();
}
else {...};
...

Related code fragment

out in1 if

A B

*
out

No multicycling Multicycle multiply

1

2

3

4

5-23

Optimizing Latency and Area

Replacing Multicycle Components

It is highly recommended that you replace multicycle components
whenever possible to improve latency.

To replace the multicycle components with a faster combinational
component, use the -fastest option with the bc_time_design
command.

If the combinational version is too slow, replace the multicycle
component with either a preserved function or a pipelined component,
as described in the next sections.

Using Preserved Functions

You can reduce the design complexity and runtime and improve the
quality of the resulting hardware by using preserved functions,
importing netlists from other tools such as Module Compiler, and
using custom DesignWare parts.

Preserved functions allow you to create complex components. By
default, SystemC Compiler creates inline code for functions and
removes the level of hierarchy the functions might represent. You can
direct SystemC Compiler to preserve a function instead of inlining it.

For each preserved function, SystemC Compiler creates a level of
hierarchy during elaboration. During synthesis, the level of hierarchy
is compiled into a component that is treated exactly the same way as
any other combinational component, such as an adder or a multiplier.
Only functions that describe purely combinational RTL designs can
be preserved.

5-24

Optimizing Latency and Area

When to Preserve Functions

Use a preserved function when you want to do the following:

• Preserve a complex function as an operation

• Group components that belong in the same cycle into one
operation so SystemC Compiler treats the encapsulated function
as a single operation

• Incorporate custom netlists into your design (for example,
preexisting combinational and pipelined parts)

• Precompile parts and enable more accurate timing estimation

• Precompile groups of operations that would otherwise take more
than one cycle with aggressive compile strategies

• Use the preserved function as a resource that can be shared

• Create a pipelined component for an operation

Determining Which Functions to Preserve

During your early attempts to synthesize a design, it might not be
obvious where preserved functions are needed. Run an initial timing
estimation or schedule the design to help you identify functions for
which you might want to preserve hierarchy. After identifying these
functions, you can preserve them.

To determine which functions to preserve and to compile them,

1. Apply the preserve_function compiler directive to functions
that you already know you want to maintain as separate
hierarchies.

5-25

Optimizing Latency and Area

2. Compile and elaborate the entire design using the
compile_systemc command.

3. Check the timing estimations or run an initial schedule to find out
which other operations might be best kept in their own hierarchies.

For example, look in the resource estimate report for operations
that should always be chained into one clock cycle or for groups
of logic that have an unrealistic delay estimation. (See “Evaluating
the Resource Estimate Report” on page 3-17.) You can usually
improve the delay estimation later by precompiling groups of logic
with user-defined constraints.

4. Group the logic and operations you want as a preserved function
into a function, and insert the preserve_function compiler
directive into your code, as described in the CoCentric™ SystemC
Compiler Behavioral Modeling Guide.

5. After elaboration, set the clock period, run the
compile_preserved_functions command, and time the
design.

Creating Preserved Functions

For each preserved function, SystemC Compiler creates a level of
hierarchy during elaboration. As a result, right after elaboration you
can see the hierarchy, write out elaborated preserved functions, and
compile them. Treat a preserved function as you would any other
combinational RTL design.

To preserve a function where the function is defined in the design
description, annotate it with the preserve_function compiler
directive, as shown in Example 5-3. Note that the
preserve_function directive must be the first line in the function
body.

5-26

Optimizing Latency and Area

Example 5-3 Creating a Preserved Function
//SystemC code fragment

my_add (const sc_int<8> a,
const sc_int<8> b) {

// synopsys preserve_function
//Function code block
return (a+b);

}

If the preserved function is defined in a separate file, declare the
preserved function in the header file, as shown in Example 5-4. Place
the preserve_function compile directive on the function
declaration. This compiler directive alerts SystemC Compiler that the
preserved function is defined in another file.

Example 5-4 Defining a Preserved Function in a Separate File
//SystemC code fragment
// preserve.h header file
SC_MODULE(pre_example) {

// Declare ports
...
// Declare member functions
bool func1(); /* synopsys preserve_function */
// Declare processes in the module
void entry();
// Constructor
SC_CTOR (pre_example) {

...
}

};

For details about creating preserved functions, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

5-27

Optimizing Latency and Area

Preserving a Function

Figure 5-8 shows the standard flow for preserving a function.

Figure 5-8 Flow for Preserving Functions

The typical flow is to elaborate the top-level design, compile the
preserved functions, read in any precompiled netlists that are used
to implement the preserved functions, then time and schedule the
design. If you do not have a precompiled netlist, compile all the
preserved functions as described in “Compiling Preserved Functions”
on page 5-29.

Elaborate

Existing
netlist

?

design

Time
design

Schedule
design

Compile
design

Write

(optional)

Yes No

compile_preserved_
functions

read_preserved_
function_netlist

5-28

Optimizing Latency and Area

Using a Precompiled Netlist for a Preserved Function

You can read in an existing precompiled, mapped netlist for a
preserved function. The mapped netlist must be in .db format and
generated with the compile_preserved_functions command
or by another Synopsys tool.

To use precompiled netlists as preserved functions,

1. Elaborate the top-level design with the compile_systemc
command.

2. Execute the read_preserved_function_netlist
command. This command reads in netlists of all preserved
functions in the designated design library. Or you can read in each
preserved function netlist separately.

3. Time and schedule the design.

Example 5-5 shows the most commonly used options for the
read_preserved_function_netlist command.

Example 5-5 Using the read_preserved_function_netlist Command
dc_shell> compile_systemc my_design
dc_shell> read_preserved_function_netlist func1

-design_library my_lib
dc_shell> read_preserved_function_netlist func2

-design_library my_other_lib
-return_port new_return_port_name

You can provide one or more preserved function names to read. If
you do not specify a preserved function name, this command reads
all preserved functions in the designated design library. The must be
an existing .db file named func_name.db file in the designated design
library. To provide more than one function name, enclose the names
in braces ({ }).

5-29

Optimizing Latency and Area

The -design_library option specifies a design library where the
preserved functions are stored. If you do not specify a design library,
it reads from the default design library typically named WORK. When
you designate a design library name, use the define_design_lib
command to map the logical library name to a physical UNIX path
before executing the read_preserved_function_netlist
command.

For example,

dc_shell> define_design_lib library_name1
-path /remote/design_libraries/library1

dc_shell> read_preserved_function_netlist func1
-design_library my_lib

The -return_port option specifies the name of the port to use for
the return value of the preserved function. The default return port
name of func_name-return is used when you do not specify a return
port name.

If the preserved function is a pipelined netlist that was created with
either the compile_preserved_function_netlist or
pipeline_design command, the
read_preserved_function_netlist command automatically
determines that the netlist is pipelined and not combinational.

Compiling Preserved Functions

When you do not precompile preserved functions, SystemC Compiler
automatically compiles them during timing of the design with default
compilation strategy and constraints.

5-30

Optimizing Latency and Area

You can compile the preserved functions before timing a design to
check the results of compilation for preserved functions and make
adjustments to get the timing and area you want, if necessary, before
performing timing estimation.

Example 5-6 shows the most commonly used options for the
compile_preserved_functions command. Define the clock
period with the create_clock command before executing the
compile_preserved_functions command.

Example 5-6 Using the compile_preserved_functions Command
dc_shell> create_clock -name clk -period 20
dc_shell> compile_preserved_functions {func1 func2}

[-write]
[-design_library mylib]
[compile_effort high]
[-stages number_of_stages]
[-include_script constraints.scr]

The list of function names specifies preserved function names that
are to be compiled. The default is to compile all preserved functions
in the current top-level design.

The -write option specifies to write out each elaborated and
compiled design to a file as function_name.db for reuse. The .db files
are written in the default design library, or use the
-design_library option to specify the design library in which the
designs are to be written.

Use the -compile_effort option to specify a compilation effort of
low, medium, or high. The default is medium.

When the -stages option is used, SystemC Compiler automatically
runs retiming on the preserved function to generate pipelined
preserved functions. Without this option, only combinational

5-31

Optimizing Latency and Area

preserved function are created. This option specifies the number of
pipeline stages for the preserved functions. The number of stages is
one more than the number of registers encountered on any path from
any data input port to any data output of the preserved function. The
minimum possible value is 2.

The -include_script option includes a user-defined dc_shell
synthesis script file that contains constraints and compilation
commands to enable customized compilation of preserved function
into components. (For information about using these scripts, see
“Using Scripts” in Appendix A.)

Using Preserved Functions for Behavioral Synthesis

Figure 5-9 shows where preserved function fit in the SystemC
Compiler command flow.

5-32

Optimizing Latency and Area

Figure 5-9 Command Flow With Preserved Functions

compile_systemc

bc_time_design

Behavioral Code

Reports

schedule

Cycle-accurate

RTL .db File

Gate-Level Netlist

compile

Elaborated .db File

bc_check_design

BCView and reports

Target and

libraries

Constraints
Latency

Pipeline

Constraints
Timing and Area

synthetic

SystemC
Compiler

OutputsCommandsInputs

RTL HDL file

Hierarchical .db File

Externally
Timed .db File

HDL simulation file

compiled
netlists

read_preserved_
function_netlist

compile_preserved_
functions

5-33

Optimizing Latency and Area

Limitations of Preserved Functions

This section describes the restrictions placed on functions that can
be preserved.

The following sequential constructs are not allowed in preserved
functions:

• Sequential DesignWare parts, such as memories and pipelined
parts, although the preserved function itself can be pipelined

• A wait() statement

• Signal reads and writes

• Rolled loops

• Preserved functions (no nesting of preserved functions)

Bit-Width Restrictions

You can describe inlined functions without restricting the bit-width.
For preserved functions, however, you need to define the bit-width of
every formal parameter and variable used in the functions as a
SystemC data types such as sc_int<n>, sc_uint<n>, and sc_bv<n>.

Hierarchy

Preserved functions cannot contain lower levels of hierarchy (such
as other preserved functions or rolled loops).

The compile_preserved_functions command automatically
flattens the design by default.

5-34

Optimizing Latency and Area

You cannot call other preserved functions from a preserved function;
however, you can have a function call to nonpreserved functions
inside a preserved function. The nonpreserved function call will be
inlined.

During elaboration, SystemC Compiler checks for hierarchical
elements in a preserved function. It issues an error message if you
try to call another preserved function or a warning (unresolved
reference) if you use a netlist that contains hierarchy.

Sequential Logic

Sequential logic such as rolled loops and wait() statements are not
allowed in preserved functions. SystemC Compiler issues an error
message when structures of these types are encountered.

Using DesignWare Components

In addition to preserved functions, you can also use DesignWare
components to create a level of hierarchy in your design. The
map_to_operator compiler directive performs an action similar to
the preserve_function compiler directive with the following
additional benefits:

• Enables use of memories

• Enables use of standard DesignWare components

DesignWare components cannot contain hierarchy; however, they
can contain other DesignWare components that have been compiled
down to gates.

5-35

Optimizing Latency and Area

Example 5-7 shows code that uses a DesignWare component. For
more information about creating a SystemC description that uses
DesignWare components, see the CoCentric™ SystemC Compiler
Behavioral Modeling Guide.

Example 5-7 Using DesignWare Components
//SystemC code fragment

sc_int<8> my_add (const sc_int<8> A,
 const sc_int<8> B)

{
 //snps map_to_operator MULT2_TC_OP
 //snps return_port_name Z
 //Function code block
 ...

return (A*B);
}

Listing DesignWare Components

To list the available DesignWare components,

1. Execute the list -libs command to list the available libraries.

2. Execute the report_synlib command to list the available
components in a DesignWare library.

For example,

dc_shell> list -libs
dc_shell> report_synlib standard.sldb

Example 5-8 shows fragments of the synthetic library report. For
details about this report, see the DesignWare documentation.

5-36

Optimizing Latency and Area

Example 5-8 Reporting DesignWare Components
Library Type : Synthetic
Tool Created : 2000.11-PROD
Date Created : Fri Oct 27 20:38:23 PDT 2000
Library Version : 1998.08

Operator Types:

 Operator Name Type
 --
 ABS_OP abs

 ADD_TC_CI_OP add
 ...

Operators:

 Operator Ports Dir
 --
 ABS_OP A in
 Z out

 ADD_TC_CI_OP A in
 B in
 CI in
 Z out
 ...

Synthetic Modules:

 Module
 --
 DW01_ADD_AB design_library: DW01

 DW01_ADD_AB1 design_library: DW01
 ...

Module Pins:

 Attributes:
 c - clock_pin
 Default Stall Pin
 Module Pins Dir Width Value Pin Attributes
 --
 DW01_ADD_AB A in 1
 B in 1
 S out 1
 COUT out 1

5-37

Optimizing Latency and Area

 DW01_ADD_AB1 A in 1
 B in 1
 S out 1
 COUT out 1
 ...

Module Bindings:

Module Binding
--
DW01_add b1 bound_operator: ADD_UNS_OP
 Pin Associations (module, oper):
 A, A
 B, B
 CI,"0"
 SUM, Z

 b2 bound_operator: ADD_TC_OP
 Pin Associations (module, oper):
 A, A
 B, B
 CI,"0"
 SUM, Z
...

Finding and Implementing Pipelined Components

Multicycle operations increase latency, because they require an extra
clock cycle to register the input data to keep it stable. To improve
latency, you can replace a multicycle component with a pipelined
component. Changing to a pipelined component instead of a
multicycle component also provides the opportunity to pipeline the
loop, as described in “Pipelining a Loop” on page 4-44.

To find and implement a pipelined component,

1. Execute the report_synlib command to list the components
available in a DesignWare library.

2. Choose a pipelined component.

5-38

Optimizing Latency and Area

3. Modify your behavioral description to use the pipelined
component with the map_to_operator compiler directive.
Example 5-7 on page 5-35 shows an example.

4. Start again at the beginning of the SystemC Compiler command
flow and execute the compile_systemc command (“Compiling
and Elaborating the Source Code” on page 2-5).

For example, if you want to replace a multiplier with a pipelined
multiplier, use the report_synlib command to find a pipelined
multiplier component. Example 5-9 shows a fragment of the report
for the DW02 synthetic library that lists some of the multiplier
components where

• DW02_mult2 is a nonpipelined multiplier

• DW02_mult_s_stage is a 2-stage pipelined multiplier

• DW02_mult_3_stage is a 3-stage pipelined multiplier

Example 5-9 Listing Pipelined Components
 ...

 DW02_mult2 design_library: DW02
 HDL parameter: A_width = width(’A’)
 HDL parameter: B_width = width(’B’)
 Parameter: PRODUCT_width = B_width + A_width

 DW02_mult_2_stage design_library: DW02
 clocking_scheme: positive_edge
 resource: P1
 resource: P2
 HDL parameter: A_width = width(’A’)
 HDL parameter: B_width = width(’B’)
 Parameter: PRODUCT_width = B_width + A_width

 DW02_mult_3_stage design_library: DW02
 clocking_scheme: positive_edge
 resource: P1
 resource: P2
 resource: P3
 HDL parameter: A_width = width(’A’)

5-39

Optimizing Latency and Area

 HDL parameter: B_width = width(’B’)
 Parameter: PRODUCT_width = B_width + A_width
 ...

You might choose, in this case, to replace a DW02_mult2 component
with a 2-stage pipelined component, DW02_mult_2_stage.

5-40

Optimizing Latency and Area

6-1

Analyzing Designs With BCView

6
Analyzing Designs With BCView 6

After you time and schedule your design, use BCView to review
common scheduling errors, evaluate the results of scheduling, and
evaluate ways to improve the latency and area of your design.

This chapter includes the following sections:

• Using BCView

• Using BCView Windows

• Recommended Usage for BCView

• Examining Scheduling Errors

• Evaluating the Architecture Generated by SystemC Compiler

• Exploring Architectural Improvements

6-2

Analyzing Designs With BCView

Using BCView

SystemC Compiler has a graphical analysis environment called
BCView, which you can use to

• Evaluate your synthesized architecture

• Understand how it corresponds to the original behavioral
SystemC description

• Zoom in on specific features of the architecture, such as
operations, components, and dataflow paths

• Tune your synthesis constraints to improve the synthesized
architecture

• Analyze scheduling errors

Preparing Designs for BCView

To use BCView, you must set a variable that causes SystemC
Compiler to generate the analysis information used by BCView. Set
the bc_enable_analysis_info variable to true before using the
compile_systemc command. Enter

dc_shell> bc_enable_analysis_info = true
dc_shell> compile_systemc design.cc

The default value of the bc_enable_analysis_info variable is
false.

6-3

Analyzing Designs With BCView

Starting BCView

To start BCView from the dc_shell, enter

dc_shell> bc_view

For additional information and other ways to start BCView, see
“Starting BCView” in Appendix A.

Removing BCView Analysis Information

After your analysis is complete and if you want to reduce the size of
the .db file, use the remove_analysis_info command to delete
the analysis information. Deleting this information means you cannot
use BCView on the design unless you execute the preparation steps
again.

Using BCView Windows

BCView uses cross-linked windows to graphically show information
about

• Source code

• Resource allocation and operation scheduling

• The FSM generated by SystemC Compiler

• Clock-cycle (also called a control step) and resource utilization

• Scheduling errors

The cross-linking allows you to select an object in one window and
view specific information about it in the other windows.

6-4

Analyzing Designs With BCView

Note:
BCView is not a graphical front end to SystemC Compiler. Also,
it is not a design-entry tool, and it does not give explicit information
about your SystemC coding style.

Figure 6-1 shows an example of the five BCView windows.

6-5

Analyzing Designs With BCView

Figure 6-1 BCView Windows

Scheduling
Error

Analyzer

Selection
Inspector

Reservation
Table

 Code
Browser

FSM
Viewer

6-6

Analyzing Designs With BCView

The BCView windows are

Reservation Table

Allows you to view resource allocation, scheduling information,
and data dependencies between operations and registers. The
table displays allocated resources on the horizontal axis and the
clock cycles on the vertical axis. Operations are placed in the
reservation table in the column corresponding to the resource on
which it is executed and the row corresponding to the clock cycle
in which it is executed. The row and column with a percentage
(%) heading show the percentage of the clock cycle or resource
that is used by the operation.

Code Browser

Displays the behavioral SystemC source file. Whenever you
select an object in another window, the line of code corresponding
to that object is highlighted in the Code Browser window.

FSM Viewer

Illustrates the FSM generated by SystemC Compiler in a
traditional bubble diagram format. You can step through the state
transitions, view the actions that the synthesized architecture
executes on each transition, and see the corresponding lines of
the source code and allocated resources highlighted in the Code
Browser and the Reservation Table windows. You can also view
the conditions and actions related to a selected transition in the
FSM Viewer window.

Selection Inspector

Shows detailed information about an object selected in any of the
other windows, including the object name, hierarchy, class,
description, fanins, and fanouts.

6-7

Analyzing Designs With BCView

Scheduling Error Analyzer

Shows conflicts between user constraints and the inherent
constraints in the behavioral description that result in scheduling
errors during synthesis, so you cano graphically determine the
cause of some of these errors. If there are no scheduling errors,
this window is not displayed.

You can also find information about BCView in the Synopsys man
pages.

6-8

Analyzing Designs With BCView

Recommended Usage for BCView

Use BCView to quickly find common scheduling errors and to
evaluate the results of synthesis. Figure 6-2 shows a recommended
usage for BCView.

Figure 6-2 BCView Recommended Usage

Start

Schedule
Success

?

Scheduling Error
Analyzer

Revise code or
modify constraints

No

Yes

Evaluate
Architecture

?

Step through
FSM branches

Analyze
I/O protocol and

Yes

No

I/O paths

Measure QOR*:
area, latency,
resources

Analyze
register
allocation

Improve
Architecture

?

Analyze
critical paths

Improve with
multicycle and

Yes

No

chaining

Improve with
resource
sharing

Check
Reservation
Table % column

Finish compile to gates
* QOR = Quality of Results

Edit code

6-9

Analyzing Designs With BCView

Examining Scheduling Errors

The Scheduling Error Analyzer window in BCView presents a graph
of the operations involved in a scheduling failure, providing you with
a graphical description of what is wrong. This window displays a graph
that shows only the operations, data dependencies, and constraints
(both user-defined and inherent) involved in the scheduling failure.

The Scheduling Error Analyzer window shows a visual representation
of the conflicts that resulted in the scheduling error. Using the
Scheduling Error Analyzer window, you can quickly analyze
constraints and your code to determine where and why a scheduling
failure occurred.

Identifying Errors to Analyze

You can use the Scheduling Error Analyzer window to examine the
following scheduling errors:

• Unsatisfiable timing constraints (HLS-51)

The design fails to schedule because conflicting timing constraints
cannot be met. For example, a design using the superstate-fixed
I/O mode might have a set_cycles command (see
“Constraining Loops and Operations” on page 4-37) that
overconstrains the design.

• Fixed I/O schedule is unsatisfiable (HLS-52)

The design fails to schedule in cycle-fixed I/O mode because it
contains insufficient wait statements. For example, a design might
contain two wait statements separating input and output
operations, but the computation of the outputs from the inputs
requires three clock cycles.

6-10

Analyzing Designs With BCView

When one of these two errors occurs, a message similar to Example
6-1 prompts you to use BCView.

Example 6-1 HLS-52 Error Message
Error: Fixed IO schedule is unsatisfiable (HLS-52)
The scheduling errors can be analyzed with BCView:
 type "bc_view [-output <out_db_file>]"

Using the Scheduling Error Analyzer

When a scheduling error occurs and you are prompted to use
BCView, you can start BCView immediately from the dc_shell prompt
and use it to examine the causes for the error.

To review a scheduling error in the Scheduling Error Analyzer window,

1. Start BCView.

dc_shell> bc_view

2. Read the Selection Inspector window. This window usually directs
you to the error.

3. Determine the two operations that bound the problem area.

4. Examine the graphical information to determine the mismatch
displayed.

5. Fix the code or modify the constraints.

6. Reschedule the design.

6-11

Analyzing Designs With BCView

Viewing the Selection Inspector Window

The Selection Inspector window (Figure 6-3) displays detailed
information about the scheduling error and about operations and
constraints that are selected in the Scheduling Error Analyzer
window. This window also often provides information about correcting
the error.

To display the initial error message in the Selection Inspector window,

• Choose Data > Show Error Message in the Scheduling Error
Analyzer window (Figure 6-3).

Figure 6-3 Selection Inspector With Error Information

Information about
how to correct the
error

SEA =
Scheduling
Error
Analyzer

Next Select

Describe Selected Object

Describe Fanins

Previous Select

Describe Fanouts

6-12

Analyzing Designs With BCView

Determining the Operations That Bound the Error

In the Scheduling Error Analyzer window, a node represents a data
operation (I/O, memory read/write, or arithmetic) or a control
construct (loop or conditional statement). Nodes appear as bubbles,
ovals, or rectangles (Figure 6-4).

The scheduling failure occurs between operations represented by the
top and bottom nodes in the Scheduling Error Analyzer window.

Figure 6-4 Scheduling Error Analyzer With Bounding Operations

Top and bottom
nodes represent
operations that
bound the
scheduling failure

Zoom To Fit

Zoom In 2X

Zoom Out 2X

Zoom By Box

Expand all edges one level

Expand all edges recursive

Expand selected edge one level

Expand selected edge recursive

Reset View

Display error message
in Selection Inspector

Overview of SEA

Enable/Disable Info Tips

Edges show
the conflicting
constraints

6-13

Analyzing Designs With BCView

Examining the Graphic Information

Examine the information in the Scheduling Error Analyzer window
(see Figure 6-5) and view the related code and detail in the Code
Browser and Selection Inspector windows to determine the cause of
the error. Clicking on the top and bottom rectangles will highlight the
place in the code, in the Code Browser window, that is causing the
problem.

Understanding the Scheduling Error Analyzer Display

The Scheduling Error Analyzer (Figure 6-5) shows a scheduling error
between two operations or control constructs.

Figure 6-5 Scheduling Error Analyzer Paths and Clock Cycles

2. Path between the two operations
and inherent constraint (minimum
cycles to schedule successfully)

1. User-defined constraint (set_cycles)

3. Clock cycles that need to be
inserted during scheduling

6-14

Analyzing Designs With BCView

In Figure 6-5,

1. The edge on the right shows the user-defined constraint (the
number of cycles specified by a SystemC Compiler constraint
such as the set_cycles command or by the number of wait
statements in the SystemC code between the two operations).

2. The edge on the left shows the path between the two operations
formed by inherent data and control dependencies and the
minimum number of cycles required by SystemC Compiler to
schedule the operations successfully. You can click the curved
edge to expand it and analyze the path further.

3. The horizontal lines segmenting the left edge show clock cycles
(control-steps) that need to be inserted during scheduling.

The edges that represent constraints appear in BCView as described
in Table 6-1.

Derived constraints are edges that represent a set of inherent data
flow and control constraints. Derived constraints summarize the
combined effect of the individual constraints in the set. Be default,
the Scheduling Error Analyzer window does not expand derived
constraints. You can click a derived edge to expand it and show the
set of inherent constraints.

Table 6-1 Edges Representing Constraints

Constraint Representation

User-defined constraints Curved red edges

Inherent constraints (data dependencies) Straight black edges

Derived constraints Curved black edges

6-15

Analyzing Designs With BCView

Reading Labels on Edges and Nodes

The delay implied by a constraint appears as an arithmetic
expression, such as >= 6, next to the related edge. The label shows
the minimum, maximum, or exact number of clock cycles that
separate the nodes, as follows:

>= n

Indicates the minimum number of control-step boundaries that
must separate the nodes.

== n

Indicates the exact number of control-step boundaries that must
separate the nodes.

<= n

Indicates the maximum number of control-step boundaries that
must separate the nodes.

In Figure 6-5 on page 6-13, the Scheduling Error Analyzer window
indicates that the code between the two operations that bound the
problem requires at least four clock cycles, but it is constrained to
three cycles.

In the case of multicycle operations, the labels appear next to nodes.
Labels on nodes that represent multicycle operations appear as >n,
where n is the minimum number of clock-cycles that the operation
spans. For example, a multicycle operation with a delay of two clock
cycles has a label >1.

6-16

Analyzing Designs With BCView

Viewing Information About Individual Objects

You can enable the Info Tips feature, which pops up a summary of
information regarding the object currently under the pointer. You can
click an object to view more details about it in the Selection Inspector
window.

To enable Info Tips,

• Do one of the following:

- Choose View > Info Tips.

- Click the Info Tip toolbar button.

A check mark appears next to the menu command when it is enabled.

Obtaining More Detailed Information

You can obtain more detailed information by

• Expanding derived edges

• Analyzing displayed information about constraints

• Reviewing the related SystemC code

To expand a derived edge (shown as a curved, black line),

• Do one of the following:

- Double-click the edge to expand it.

- Select the edge, then click one of the expand toolbar buttons.

6-17

Analyzing Designs With BCView

The Scheduling Error Analyzer window expands the derived edge to
show all constraints and nodes contained within it (Figure 6-6). The
new edges are selected.

Figure 6-6 Expanded Derived Edge

In Figure 6-6 the expanded edge shows two multicycle operations
that span at least two clock cycles. Notice the clock cycle lines that
show the clock boundary.

To analyze detailed information about a constraint,

1. Select an edge.

2. Read the information in the Selection Inspector window.

Clock cycle lines help you to
visualize the clock boundaries

Multicycle operation that spans at
least two clock cycles

6-18

Analyzing Designs With BCView

Figure 6-7 shows the Selection Inspector window after selection of
the first edge (above the multicycle operation) in Figure 6-6.

Figure 6-7 Selection Inspector Window With Edge Information

The information in Figure 6-7 identifies the edge as having a control
dependency and describes possible reasons why the two operations
must be separated by a clock cycle. In this case, one of the operations
is multicycled. The data_in_28 operation supplies an input to
mul_35_2. Because mul_35_2 is multicycled, its inputs must be
registered. This implies an inherent control dependency to prevent
the two operations from chaining. Therefore, data_in_28 must be
available one clock cycle before mul_35_2, so the data can be
registered. (For details about multicycle operations, see “Using
Multicycle Operations” on page 5-19.)

To review the related SystemC code,

1. Click the operation in the Selection Inspection window to select it.

Description of why
operations cannot
be chained

Identification of
control dependency
between operations

6-19

Analyzing Designs With BCView

2. View the code in the Code Browser window.

After you select the multicycled operation in Figure 6-6, the Code
Browser window shows the information in Figure 6-8.

6-20

Analyzing Designs With BCView

Figure 6-8 Code Browser With Behavioral Code

Associated code of error in SEA

Previous file

Next file

Follow selected

Open file

Find text

Push in a level of hierarchy

Find selected

Pop out a level of hierarchy

Exit BCView
(from other windows)

6-21

Analyzing Designs With BCView

Fixing the Code and Rescheduling

Use a text editor to modify the source code. When you are finished,
reschedule the design.

To fix the code in Figure 6-8 on page 6-20, adding an additional wait
statement in the SystemC code between the b = data_in.read() and
real_out.write(a * c - b * d) statements will solve the problem.

Evaluating the Architecture Generated by SystemC
Compiler

Use the FSM Viewer, Reservation Table, Code Browser, and
Selection Inspector windows to review the results of a successful
schedule. First review the FSM structure. You can then evaluate
information about how the design is scheduled and explore ways to
reduce latency and area.

When you view the design, focus on one type of information at a time
to avoid the confusion that can occur if you try to evaluate all of the
information for all operations at once.

6-22

Analyzing Designs With BCView

Reviewing FSM Operation

SystemC Compiler generates a Mealy FSM. In BCView, bubbles
represent states and arcs represent state transitions, as shown in
Figure 6-9. Actions that the synthesized design executes are
annotated on the state transition when they occur.

Figure 6-9 FSM Viewer With States and Transitions

Show all

Show selected

Next transition

Next Branch

Condition/Action
Window

Zoom To Fit

Zoom In 2X

Zoom Out 2X

Zoom By Box

Follow Selection
State

Transition

(flow through loops)

6-23

Analyzing Designs With BCView

Use the FSM Viewer window to review the Mealy machine by first
stepping through the FSM, then reviewing state transitions and
actions in detail.

Stepping Through the FSM

When you step through the state machine in the FSM Viewer window,
you view the cycle-by-cycle behavior of the design and can correlate
the transitions with the code highlighted in the Code Browser window.

To step through the FSM,

1. Click an arc in the FSM Viewer window to select the transition
where you want to start.

2. Examine the highlighted code in the Code Browser window.

3. Press the Tab key or click the Next transition toolbar button to
advance to the next transition.

4. Review the highlighted code in the Code Browser window (Figure
6-8 on page 6-20).

As you traverse through the state machine, one or more lines are
highlighted in the Code Browser window because the transition
may execute operations in more than one line of code.

5. To choose an alternate transition from a state that has multiple
transitions, press Ctrl-Tab or click the Next branch toolbar button.

6-24

Analyzing Designs With BCView

Reviewing State Transitions and Actions

Use the FSM Conditions/Actions window to analyze the details of the
condition when the transition occurs and the actions performed during
the transition.

To review state transitions and actions,

1. In the FSM Viewer window, click a transition to select it.

2. Do one of the following:

- Choose FSM > Conditions/Actions Window.

- Click the Conditions/Actions toolbar button.

The Conditions/Actions window is displayed, showing the conditions
for the selected transition to execute and the actions that occur. Figure
6-10 shows an example of a selected transition and the
corresponding Conditions/Actions window.

The information presented in the Conditions/Actions window is similar
to the information presented in the Abstract FSM report generated
by the report_schedule command. An example of this report and
information about it is available in “Schedule Report of the FSM” on
page 4-28.

6-25

Analyzing Designs With BCView

Figure 6-10 Selected Transition With Conditions and Actions

6-26

Analyzing Designs With BCView

Evaluating the Scheduled Design

Use BCView to evaluate the area and latency of a scheduled design.
The Reservation Table window provides a graphical representation
of the design structure and resource usage, including timing and data
dependency information.

Understanding the Reservation Table Window

Using the Reservation Table window, you can analyze area,
resources, latencies, operator sharing, clock-cycle utilization,
chaining, combinational delays, paths in the design, registers, and
loops.

The Reservation Table Window is shown in Figure 6-11

6-27

Analyzing Designs With BCView

Figure 6-11 Reservation Table Window
% Resource

Input ports Output ports Logic operations

Data dependencies Operations% of clock cycle used Clock
cycle

 utilization

Status bar

6-28

Analyzing Designs With BCView

Table 6-2 briefly describes the symbols that appear in the Reservation
Table window.

In the Reservation Table window in Figure 6-11, columns represent
resources, and rows represent the clock cycles. The objects in the
table represent operations and other actions that the synthesized
architecture performs. Each object is positioned in the column
representing the resource that executes it and in the row representing
the clock cycle in which it is executed. This Reservation Table displays
the Inverse Quantization design from the CoCentric SystemC
Compiler Behavioral Modeling Guide.

Table 6-2 Reservation Table Symbols

Symbol What it represents

Gray oval Operation with zero delay, for example a port
operation.

Gray box
Operation with a combinational delay, where the
height of the box is proportional to the delay.

Gray bar Operation with combinational delay, where the
length of the bar is proportional to the delay.

Arrow Data dependency (fanin or fanout).

Arc User or inherent constraint.

Light blue

line

Derived edge. See “Examining Paths” on page 6-38.

Light grey bar
(in % column)

Percentage of clock cycle used for chain delay.

6-29

Analyzing Designs With BCView

Information about individual objects is displayed in the status bar or
in pop-up Info Tips, as described in “Viewing Information About
Individual Objects” on page 6-16.

Use the Reservation Table toolbar buttons to perform the functions,
which are shown in Figure 6-12.

6-30

Analyzing Designs With BCView

Figure 6-12 Reservation Table Toolbar Buttons

Zoom To Fit

Zoom In 2X

Zoom Out 2X

Zoom By Box

Zoom Selected

Undo

Redo

Reset View

Select Fanout

Expand Selection

Design Summary

Select Fanin

Loop resources

Port resources

Memory resources

Register resources

Single-cycle resources

Multicycle resources

Pipelined resources

Multiplex resources

Logic resources

Derived edges (data dependencies)

Show/hide resources

Note: Click these icons to change the display by showing or hiding resources.

6-31

Analyzing Designs With BCView

Viewing Resources, Latencies, and Operation Sharing

Resources appear in the top row of the Reservation Table window.
Symbols in the column headers represent the different resources in
the design such as components, input ports, output ports, memories,
and logic operations. Use these columns to review resource utilization
and latency, and to identify shared resources.

Showing or Hiding Resources

You can hide information in the Reservation Table to concentrate on
particular data. To hide or display resources, do one of the following:

• Click the corresponding button in the vertical toolbar at the left
side of the Reservation Table window (Figure 6-12 on page 6-30).
Choosing a particular resource type causes that type of resource
to be shown or hidden in the Reservation Table.

• Choose View > Show/Hide Resources > Resource.

Resource is the type of resource you want to either hide or display
(for example, Loops).

6-32

Analyzing Designs With BCView

Resource Utilization

To review resource utilization, move the pointer over a column in the
first (%) row of the window. To improve the quality of results, look for
resources that are not fully used. The thickness of the bar, pointed to
by the arrow in Figure 6-13, is proportional to the resource usage. If
the usage is 100%, the box is filled.

The status bar displays the percentage of the total clock cycles in
which that resource is active, as shown in Figure 6-13.

Figure 6-13 Resource Utilization in Reservation Table

Memory resource utilization

Selected memory
resource

6-33

Analyzing Designs With BCView

Resource Delays

To determine resource delays, move the pointer across the resource
column headers. The name of each resource and its delay appear in
the status bar and Info Tips window as you move the pointer, as shown
in Figure 6-14.

Figure 6-14 Resource Delay in Reservation Table
Selected operator

6-34

Analyzing Designs With BCView

Operation Delay

To view operation delay, observe the height of the rectangle
representing an operation. Figure 6-15 shows an enlarged section of
an add operation in the Reservation Table. The height represents the
operation’s delay.

Figure 6-15 Operation Delay in Reservation Table

Then, click an operation and read the detailed information in the
Selection Inspector window, shown in Figure 6-16.

Figure 6-16 Operation Delay Detail in Selection Inspector

6-35

Analyzing Designs With BCView

Shared Resources

To identify shared resources, select a resource by clicking on it, as
shown in Figure 6-17. The operations allocated to that resource and
the corresponding clock cycles become highlighted in blue. In this
example, the resource is used in clock cycles 0, 4, 5, 9, 12, and 13.
Multiple entries in the same column indicate a shared resource.

Figure 6-17 Shared Resources in Reservation Table

 Selected output port resource

6-36

Analyzing Designs With BCView

Viewing Clocks, Chaining, and Combinational Delay

The second column (%) of the Reservation Table window shows
clock-cycle utilization, as shown in Figure 6-18 on page 6-37. The
bars in a row (clock cycle) show the percentage of the clock cycle
used for the delay of either a chain of operations or a single,
unchained operation occurring in that specific clock cycle. Multicycle
operations do not appear in the clock utilization column.

Find chained operations in the clock utilization column and review
detailed information about the chains in the Selection Inspector
window.

To find chained operations,

• Do one of the following:

- Choose Select > Chained Operations.

The Reservation Table window highlights the chains in the
design.

- Select the horizontal bar that represents the delay of a chain in
the clock utilization column.

The corresponding operations and their resources become
highlighted, as shown in Figure 6-18.

6-37

Analyzing Designs With BCView

Figure 6-18 Operation Delays in Clock Cycles

The Selection Inspector window displays detailed information about
the highlighted chains.

To locate and evaluate chain delay,

1. Enable Info Tips and the status bar (see “Viewing Information
About Individual Objects” on page 6-16).

2. Move the pointer over a delay bar.

Selected chained operation

Selected chained operation details

6-38

Analyzing Designs With BCView

The status bar and Info Tips show the total delay. Figure 6-18 on
page 6-37 shows an example.

Examining Paths

The Reservation Table uses derived edges to show the existence of
a path between two operations or registers when you hide objects in
the path. Displaying derived edges helps manage complexity in the
Reservation Table window.

You can use derived edges to view the connectivity between objects
and to narrow your review to a specific path.

Understanding Derived Edges

Derived edges appear as blue lines connecting two objects in the
Reservation Table window. A derived edge appears when hidden
objects exist along the path between two objects. Figure 6-19 shows
an example of a derived edge.

6-39

Analyzing Designs With BCView

Figure 6-19 Derived Edge Example

Derived edges are enabled by default when you open the Reservation
Table window. They appear when you hide resources or operations.
You can expand a derived edge to see the operations and registers
it contains or hide a derived edge to further simplify the display.

To display the objects hidden by a derived edge,

• Do one of the following:

- Double-click the derived edge.

- Select the derived edge and click the Expand Derived Edge
toolbar button.

- Select the derived edge and choose View > Expand Selected.

Input Adder RegisterInput Adder Register

Path With Hidden RegisterActual Path

When you hide this register,
the register disappears and
a blue derived edge
appears, which connects
the input and the adder

6-40

Analyzing Designs With BCView

To hide all derived edges,

• Do one of the following:

- Click the Show/Hide Derived Edges toolbar button at the left
side of the window.

- Choose View > Show/Hide Dependencies > Derived
(expandable) Edges.

Viewing Connectivity

Use derived edges to view the connectivity between two objects, for
example, input-to-output paths.

To see input-to-output paths,

1. Use the toolbar buttons at the left side of the window to hide all
resources except I/O ports.

2. Observe the derived edges that result. These edges indicate the
paths from input to output ports.

Viewing Isolated Paths or Objects

You can view individual paths or objects by either expanding the
appropriate derived edges or zooming to isolate them.

To view a specific path using derived edges,

1. Display the derived edges between the objects of interest.

2. Select the derived edge that represents the path you want to
examine and then expand it.

6-41

Analyzing Designs With BCView

To view a selected object or path by zooming,

1. Select the object or path you want to examine.

2. Do one of the following:

- Click the Zoom Selected toolbar button at the top of the window.

- Choose View > Zoom Selected.

The Reservation Table window shows only the selected objects, so
you can concentrate on that specific set of objects.

To restore the previous contents of the window,

• Choose View > Undo.

To restore the initial contents of the window,

• Choose View > Reset.

6-42

Analyzing Designs With BCView

Reviewing Register Use

Viewing register allocation and sharing can help you determine
whether you can accomplish further area reduction.

The Reservation Table displays registers as rectangles spanning at
least one clock cycle, as shown in Figure 6-20.

Figure 6-20 Registers in the Reservation Table

When you select a register, the clock cycles in which it is used are
highlighted. The register symbol appears at the top of each column
containing a register. The lower-right corner of the Reservation Table
window shows the bit-width range of the displayed registers. You can
limit the registers display by setting the bit-width range.

Selected
register

Registers

6-43

Analyzing Designs With BCView

To simplify the default view of the Reservation Table window, register
resources are hidden. To show registers, do one of the following:

• Choose View > Show/Hide Resources > Register.

• Click the Show/Hide Registers button in the toolbar.

To choose the size of the registers displayed,

1. Choose Data > Register Bitwidth.

2. In the dialog box that appears, enter the values that represent the
upper and lower limits of the bit-widths you want to display.

3. Click OK.

When you select a register in the Reservation Table window, the
operation that produces the value stored in the register becomes
highlighted in the Code Browser window.

6-44

Analyzing Designs With BCView

Viewing Loops

Loops occupy a column on the left side of the Reservation Table
window. Figure 6-26 shows just that area of the Reservation Table
for the Inverse Quantization design from the CoCentric SystemC
Compiler Behavioral Modeling Guide. Each vertical box in the Loops
column represents a loop in the design. Boxes within boxes indicate
nested loops, so you can view the hierarchy of the loops in your
design.

Figure 6-21 Loops in the Reservation Table

Loop: entry_design

Loop: while at line 30

Loop: at line35, no label

Exit

Loop: main_loop_design

Exit

Loop: at line161, no label

Exit

Loop: at line 93

Exit

(infinite, no exit)

(main function, no exit)

6-45

Analyzing Designs With BCView

An exit from a loop appears as a horizontal red line spanning the
width of the loop box in the clock cycle where the exit is scheduled,
as shown in Figure 6-21 on page 6-44. A single loop can have multiple
exits, and the exits do not always occur at the end of a loop. For
example, in a SystemC design a break statement in the code causes
an exit from a loop.

Identifying Loop Names

Use Info Tips to identify the name of the loop represented by each
vertical box and to see information about the loop exits.

To use Info Tips,

1. Choose View > Display > Info Tips.

2. Move the pointer over a loop or exit to display summary
information about the object. Figure 6-22 shows an example of a
loop and a loop exit displayed by Info Tips.

6-46

Analyzing Designs With BCView

Figure 6-22 Loop Information Tips

Viewing Loop Details

 For more detailed information about a loop, such as the latency of
the loop, the number of states created for the loop, and the resources
used in the loop, use the Selection Inspector window.

To see detailed information about a loop,

• Click the box that represents the loop.

Detailed information appears in the Selection Inspector window.
Figure 6-23 shows the first section of detailed loop data for a
selected loop in Figure 6-22 on page 6-46.

Loop: main_loop_design

(c9) Loop Exit: loop_30/main_loop/EXIT_L88

6-47

Analyzing Designs With BCView

Figure 6-23 Loop Details in Selection Inspector

To view information for all loops in a design,

• Choose Select > Resources (Columns) > Loop.

The Code Browser, FSM Viewer, and Selection Inspector
windows display and highlight the code, states, state transitions,
and detailed information related to the design loops.

6-48

Analyzing Designs With BCView

Viewing Operations in a Loop
To find and review operations in a loop,

1. Select a loop by clicking the box that represents it.

2. Choose Select > Loop Operations.

All operations in the selected loop become highlighted in both the
Reservation Table window and the Code Browser window.

3. Choose View > Zoom Selected.

The Reservation Table window displays an isolated, zoomed-in
view of the selected loop operations, as shown in Figure 6-24.

4. To revert to the normal Reservation Table view, click the Reset
View button in the toolbar (see Figure 6-12 on page 6-30).

Figure 6-24 Loop Operations Zoomed View

6-49

Analyzing Designs With BCView

Identifying Constraints and Data Dependencies

Dark lines between scheduled operations and registers in the
Reservation Table window show how operations depend on data from
previous operations or registers.

Arcs between operations in the Reservation Table window represent
constraints. They might be specified by a designer or inherent in the
code.

Viewing Data Dependencies

The fanin of an operation (an arrow going into an operation) indicates
the operation’s dependency on a previous operation. The fanout of
an operation (an arrow going out of an operation) indicates where the
operation’s output data is used.

To view fanins to an operation,

1. Click the operation you are interested in to select it.

2. Do one of the following:

- Click the fanin toolbar button at the top of the Reservation Table
window.

- Choose Select > Fanin.

To view fanouts from an operation,

1. Click an operation to select it.

2. Do one of the following:

6-50

Analyzing Designs With BCView

- Click the fanout toolbar button at the top of the Reservation
Table window.

- Choose Select > Fanout.

To view fanins to and fanouts from an operation,

1. Click an operation to select it.

2. Choose Select > Fanin/Fanout.

Viewing Constraints

By default, constraints do not appear in the Reservation Table
window. When they are displayed, a check mark appears next to the
type of constraints in the View menu.

To display and highlight user constraints,

• Choose View > Show/Hide Dependencies > User Constraints.

The Reservation Table window displays any user constraints.

To display and highlight inherent constraints, that is constraints
present in the code.

• Choose View > Show/Hide Dependencies > Inherent
Constraints.

The Reservation Table window displays any inherent constraints.

When you select (highlight) user and inherent constraints, additional
information about the highlighted constraint appears in the Selection
Inspector window.

6-51

Analyzing Designs With BCView

Exploring Architectural Improvements

This section describes how to use BCView to identify areas where
you can make architectural improvements to reduce latency or area.
For more information about improving timing and area results, see
Chapter 3, “Timing and Area Estimation.”

Reducing Latency

The following are methods you might use to reduce latency:

• Use the -fastest option with the bc_time_design command.

• Remove multicycle operations.

• Increase chaining.

• Use pipelined components.

• Vary the clock period.

Use BCView to identify multicycle operations, chaining opportunities,
underutilized clock cycles, and to evaluate critical paths.

Identifying Multicycle Operations

Multicycle operations increase latency because they require an extra
clock cycle to register the inputs to keep them stable, and they cannot
be chained with other operations. Use BCView to identify multicycle
operations that you can eliminate to reduce latency.

To identify multicycle operations,

• Do one of the following:

6-52

Analyzing Designs With BCView

- Choose Select > Resources > Multicycle. All multicycle
operations become highlighted in the Reservation Table
window.

- Examine the lengths of the objects in the Reservation Table
window. Any object that spans more than one row (clock cycle)
is a multicycle operator.

- Select an operation that is not a register, and check the
information in the Selection Inspector window. The Selection
Inspector window describes the multicycle operator.

When you select multicycle components, the Code Browser, FSM
Viewer, and Selection Inspector windows display and highlight the
code, state transitions, and detailed information specific to the
multicycle operations. By default, the Code Browser window displays
the source code corresponding to multicycle components in red.

6-53

Analyzing Designs With BCView

Identifying Chaining Opportunities

The maximum delay of an operation can be significantly shorter than
the clock period. When this is the case, several operations can be
scheduled in the same cycle. This scheduling optimization is called
operation chaining. For a description of operation chaining and
bit-level timing, see “Operation Chaining” on page 5-8."

Use BCView to identify opportunities to chain operations, which can
reduce latency.

To identify chaining opportunities,

1. Look for data dependencies (edges) that cross clock cycles (rows)
in the Reservation Table window. These might indicate chaining
opportunities.

2. Select an operation with a data dependency.

3. View the fanins and fanouts, as described in “Viewing Data
Dependencies” on page 6-49, to evaluate chaining opportunities.
For information about advance chaining techniques, see Chapter
8, “Advanced Techniques.”

6-54

Analyzing Designs With BCView

Viewing Clock-Cycle Utilization

The % column in the Reservation Table window is a histogram of the
delays. The bars represent the amount of delay for the chained or
unchained single-cycle operation in that clock cycle. Examine this
histogram to determine how a design utilizes the clock cycle. White
space on the right side of the column indicates that the clock cycle is
not fully used and can be shortened.

Figure 6-25 Clock Cycle Utilization

Clock cycle utilization is shown in the % column

6-55

Analyzing Designs With BCView

Reducing Area

You can improve the area by increasing resource sharing. Use
BCView to examine resource sharing in the design and to review the
area detail in the design summary (described in “Viewing the Design
Summary” on page 6-61).

Two possible ways to increase resource sharing are to increase
latency or to use SystemC Compiler commands to force sharing.

Figure 6-26 shows an example of a design with little resource sharing
and the corresponding design summary. This design uses 10
multipliers and 11 adders, resulting in an area of 33,826.

Adding constraints to increase the latency of the example in Figure
6-26 increases resource sharing and reduces the area. Figure 6-27
shows the effect of stretching a loop from 6 cycles to 10 cycles using
the set_cycles command (see “Constraining Loops and
Operations” on page 4-37). This reduces the area to 14,855 by using
only 3 multipliers and 3 adders.

6-56

Analyzing Designs With BCView

Figure 6-26 Little Resource Sharing

This design uses 10 multipliers and 11 adders

Total estimated area is 33826

6-57

Analyzing Designs With BCView

Figure 6-27 Shared Resources

Total estimated area is 14855

The design now uses 3 multipliers and 3 adders

6-58

Analyzing Designs With BCView

Figure 6-28 Shareable Resources That Are Not Shared

Total estimated area is 3689

This design uses 2 multipliers and 3 adders

6-59

Analyzing Designs With BCView

Figure 6-28 shows a case in which it appears that resources, like
adders and multipliers, can be shared but they are not. You can force
sharing using the set_common_resource command (see “Setting
Common Resources” on page 4-55) with the -max_count and
-force_sharing options.

Figure 6-29 shows the design after forcing resource sharing using
the set_common_resource command.

6-60

Analyzing Designs With BCView

Figure 6-29 Forced Resource Sharing

Total estimated area is 3146

The design now uses 1 multiplier and 1 adder

Operator area decreases with sharing.

Multiplexer area increases with sharing

6-61

Analyzing Designs With BCView

Reviewing Critical Paths

Reviewing critical paths can help identify opportunities for reducing
latency or area.

To review a critical path,

1. In the Reservation Table window, click any resource, like an output
port or a register to select it.

2. Choose Select > Transitive Fanin.

All paths leading into that resource become highlighted in the
Reservation Table window.

Viewing the Design Summary

The design summary reports the area and resources, area
breakdowns, and clock period information. Review this information
to ensure your design criteria is achieved.

To display the design summary,

• Do one of the following in the Reservation Table window:

- Choose Data > Design Summary.

- Click the Design Summary toolbar button.

Figure 6-30 shows the detailed information displayed in the Selection
Inspector window.

6-62

Analyzing Designs With BCView

Figure 6-30 Design Summary in Selection Inspector Window

7-1

Using Register Files and Memories for Arrays

7
Using Register Files and Memories for Arrays7

This chapter describes how to implement large arrays as register files
and memories to improve area, latency, and optimization time. It
describes how to use, constrain, and obtain reports for register files
and memories. It also describes how to generate a memory wrapper,
which provides the interface to describe the memory I/O and
sequential behavior of a vendor-provided memory for SystemC
Compiler.

This chapter contains the following sections:

• Comparing Array Implementations

• Mapping Arrays to Register Files

• Mapping Arrays to Memory

• Generating Memory Wrappers

7-2

Using Register Files and Memories for Arrays

Comparing Array Implementations

By default, SystemC Compiler generates registers for arrays and
logic for indexing into the arrays (including multidimensional arrays)
in the behavioral code, as shown in Figure 7-1. SystemC Compiler
generates dedicated indexing logic for each read from or write to an
array. This can result in increased area for the indexing logic.

Figure 7-1 Array Generation

You can improve the quality of result for designs with large arrays by
mapping an array to a register file or memory. If your design includes
large arrays (more than 1024 elements) that are not mapped to a
register file or memory, SystemC Compiler issues a warning because
large unmapped arrays can cause long runtimes during elaboration
and scheduling.

Indexing
logic

Registers

Address

Data

Address

Data

7-3

Using Register Files and Memories for Arrays

If you have large arrays (more than 1024 elements), we strongly
recommend mapping them to register files or memory. If you have
smaller arrays, compile the design without mapping the arrays. If you
do not achieve the results you want, map all or some of the arrays to
register files or to memory.

Comparing Arrays, Register Files, and Memories

It is generally more efficient to map arrays to memory than to register
files because a memory uses less area than the equivalent register
file. However, unless you have ready access to the appropriately
sized memory and all the models you need (a vendor library for
synthesis and a behavioral model for simulation), it is easier to map
arrays to register files.

Register files are similar to memories except that SystemC Compiler
builds the read and write ports and the register array on-the-fly. Figure
7-2 shows the architecture of a register file.

Figure 7-2 Register File Architecture

Array master
Array write portData

Address

Array write portData

Address

Array read portData

Address

Array read portData

Address

7-4

Using Register Files and Memories for Arrays

A memory (RAM) contains address decode logic that is transparent
to your design. Figure 7-3 illustrates a typical dual-port memory. A
memory is a single component that includes indexing and
multiplexing logic as well as memory cells.

Figure 7-3 Dual-Port Memory Operations

R/W port 0

Address port 0

Address port 1

DI
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

Di
DoAdr

Wen
Mem
Cell

R/W port 1

Port 1

Write enable 0

Write enable 1

Port 0

7-5

Using Register Files and Memories for Arrays

Table 7-1 shows the primary differences between implementing
arrays as individual registers, register files, or memories.

Table 7-1 Comparing Arrays, Register Files, and Memories

Individual Registers Register Files Memories

Best for small arrays and
are created by default

Best for designs that allow
substantial resource sharing

More efficient and require less
area than individual registers or
register files

Generates registers and
dedicated indexing logic
for each array access

Generates shareable array
read and write ports rather
than dedicated indexing
logic

Eliminates all indexing logic for
array access. Access ports are
internal to the memory

Can cause long
elaboration and
optimization times

Require more area than
memories

Smallest area solution. Also
produces the fastest SystemC
Compiler runtimes

Does not extend design
latency

May extend design latency if
delays through the
combinational address
decode logic of the
generated read and write
ports are significant. This
can happen with large
arrays.

Extends design latency
because each memory access
requires one or more cycles to
complete

7-6

Using Register Files and Memories for Arrays

Array Implementation Recommendations

When you can choose the array implementation for a design, the
recommendations are:

1. Implement small arrays with individual registers. This is the default
mode for SystemC Compiler.

2. Implement large arrays as memories.

3. If an appropriate memory cell is not available or the latency
constraints do not allow for the use of memories, use register files.

Mapping Arrays to Register Files

Mapping arrays to register files works best for designs that allow for
substantial resource sharing. This is because SystemC Compiler
generates array read and write operations for each array access.
These operations are allocated on shareable array read and write
port resources that SystemC Compiler synthesizes. Sharing the
register file read and write ports means that fewer copies of address
decode logic are necessary than if one dedicated copy was made for
each array access. This can happen if the array is not mapped to a
register file or memory.

Mapping All Arrays to Register Files

To map all arrays in your code to register files, set the
bc_use_registerfiles variable to true before using the
compile_systemc command.

dc_shell> bc_use_registerfiles = true
dc_shell> compile_systemc design.cc

7-7

Using Register Files and Memories for Arrays

Mapping Specific Arrays to Register Files

 To map specific arrays to register files, you need to use the resource
compiler directive with the map_to_registerfiles attribute in
your SystemC code to specify the arrays that are to be mapped to
register files.

Example 7-1 shows a section of code that uses the resource
compiler directive and the map_to_registerfiles attribute to
map the real and imag arrays to two separate register files. In this
example, the resources RAM_A and RAM_B are arbitrary names, the
variable keyword defines the arrays that are mapped to the register
file, and the map_to_registerfiles variable is set to true to
indicate that the resource is a register file.

Example 7-1 Defining a Register File for a Specific Array
void fft::entry()
{
 // Define arrays to implement.
 sc_int<16> real[16];
 sc_int<16> imag[16];
 /* snps resource RAM_A: variables = "real",
 map_to_registerfiles="TRUE"; */
 /* snps resource RAM_B: variables = "imag",
 map_to_registerfiles="TRUE"; */
...
}

For more information about mapping specific arrays to register files
and accessing them efficiently, see the CoCentric™ SystemC
Compiler Behavioral Modeling Guide.

7-8

Using Register Files and Memories for Arrays

Understanding the Effects of Mapping to Register Files

Minimize the number of array read and write operations just as you
would minimize memory accesses. For example, rather than reading
an array element twice, store the content of an array element in an
intermediate variable. For more information, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

If SystemC Compiler determines that two array writes can access the
same array element (the same location in the register file), SystemC
Compiler schedules them in different clock cycles to prevent access
conflicts that might corrupt data held in the register file.

Reporting Array Access Conflicts

After running the compile_systemc command on your design, use
the bc_report_arrays command to report the conflicting and
nonconflicting accesses to arrays mapped to register files. The
command is

dc_shell> bc_report_arrays

Example 7-2 on page 7-9 shows a typical report about conflicting and
nonconflicting array accesses. In this example,

• The fourth line in the conflicting accesses shows a conflicting
access, imag_read_180_2, imag_read_183 indicating that the
second read of array imag_read on line 180 conflicts with the first
read of array imag_read on line 183.

• There are no conflicting accesses across iterations of pipelined
loops.

7-9

Using Register Files and Memories for Arrays

• The second line in the non-conflicting accesses shows that the
imag_read on line 180 does not conflict with the image_read on
line 183.

• There are no nonconflicting accesses across iterations of
pipelined loops.

• The last four lines of the report indicate accesses that SystemC
Compiler cannot determine if they conflict or not. By default,
SystemC Compiler schedules these accesses in separate clock
cycles to avoid the possibility that they might conflict.

Example 7-2 Report of Array Conflicts
Conflicting accesses in process ’entry’ are as follows:
 (imag_read_180, imag_read_183)
 (imag_read_180, imag_write_186)
 (imag_read_180_2, imag_read_183)
 (imag_read_180_2, imag_read_183_2)
 (imag_read_180_2, imag_write_183)
 (imag_read_180_2, imag_write_186)
 (imag_read_183, imag_write_186)
 (imag_read_183_2, imag_write_183)
 (imag_read_183_2, imag_write_186)
 (imag_read_209, imag_write_218)
 (imag_read_211, imag_write_218)
 (imag_read_211, imag_write_220)
 (imag_write_183, imag_write_186)
 (real_read_179, real_read_182)
 (real_read_179, real_write_185)
 (real_read_179_2, real_read_182)
 (real_read_179_2, real_read_182_2)
 (real_read_179_2, real_write_182)
 (real_read_179_2, real_write_185)
 (real_read_182, real_write_185)
 (real_read_182_2, real_write_182)
 (real_read_182_2, real_write_185)
 (real_read_208, real_write_217)
 (real_read_210, real_write_217)
 (real_read_210, real_write_219)
 (real_write_182, real_write_185)

7-10

Using Register Files and Memories for Arrays

Conflicting accesses across iterations of pipelined loops
 in process ’entry’ are not found.
Non_conflicting accesses in process ’entry’ are as follows:
 (imag_read_180, imag_read_180_2)
 (imag_read_180, imag_read_183_2)
 (imag_read_180, imag_write_183)
 (imag_read_183, imag_read_183_2)
 (imag_read_183, imag_write_183)
 (imag_read_209, imag_read_211)
 (imag_read_209, imag_write_220)
 (imag_write_218, imag_write_220)
 (real_read_179, real_read_179_2)
 (real_read_179, real_read_182_2)
 (real_read_179, real_write_182)
 (real_read_182, real_read_182_2)
 (real_read_182, real_write_182)
 (real_read_208, real_read_210)
 (real_read_208, real_write_219)
 (real_write_217, real_write_219)
Non_conflicting accesses across iterations of pipelined
 loops in process ’entry’ are not found.
Unable to resolve all accesses in process ’entry’.
The following accesses may conflict:
 imag_read_254
 real_read_253

Allowing Multiple Accesses in the Same Cycle

In some cases, SystemC Compiler cannot automatically determine
whether two array accesses conflict or not, for example if the array
access indices come from input reads. In such cases, SystemC
Compiler schedules the two accesses in separate clock cycles by
setting a precedence constraint between the two. The two accesses
are scheduled in the order in which they appear in the behavioral
description.

7-11

Using Register Files and Memories for Arrays

If you know that no conflicts can occur and want to schedule the two
accesses in the same cycle, remove the precedence inserted by
SystemC Compiler with the ignore_array_precedences
command or the ignore_array_loop_precedences command.
The commands are

dc_shell> ignore_array_precedences
 -from_set from_operations

-to_set to_operations

dc_shell> ignore_array_loop_precedences
operations

Example 7-3 shows two array reads and two array writes. The indices
for the array reads are obtained from input ports of the design.
SystemC Compiler cannot determine if the two array writes access
the same location, and it schedules them in two separate clock cycles.

Example 7-3 Accesses That May or May Not Conflict
loop1 : while (c < 45) {
 index1 = in_a.read();
 index2 = in_b.read();
 index3 = in_c.read();
 index4 = in_d.read();
 a[index1] = x; // synopsys line_label WR1
 a[index2] = y; // synopsys line_label WR2
 wait();
 out_f = a[index3]; // synopsys line_label RD1
 c = c + 1;
 x = x + 2;
 y = y + x;
 wait();
 }

If you are sure that the two accesses never conflict, you can inform
SystemC Compiler by using the ignore_array_precedences
command. For example,

7-12

Using Register Files and Memories for Arrays

dc_shell> ignore_array_precedences \
-from_set
 { my_process/loop1/ARRAY_WRITE_RAM_A_WR1 } \
-to_set
 { my_process/loop1/ARRAY_WRITE_RAM_A_WR2 }

If you pipeline loop1 in Example 7-3 with a latency of 3 cycles and an
initiation interval of 1 cycle, the array read of the first iteration needs
to happen in the same clock cycle as the array writes of the second
iteration, as shown in Figure 7-4.

Figure 7-4 Multiple Accesses in the Same Cycle That May Conflict

SystemC Compiler cannot determine if the indices conflict, so it
prevents the accesses from being scheduled in the same cycle. This
prevents loop1 from being pipelined with an initiation interval of 1
cycle.

To inform SystemC Compiler that the accesses do not conflict, enter

dc_shell> ignore_array_loop_precedences \
-from_set
 { my_process/loop1/ARRAY_WRITE_RAM_A_RD1 }
-to_set
 { my_process/loop1/ARRAY_WRITE_RAM_A_WR1
 my_process/loop1/ARRAY_WRITE_RAM_A_WR2 }

RD

WR1 WR2

RD

WR1 WR2

RD

WR1 WR2

Iteration 1 Iteration 2 Iteration 3

7-13

Using Register Files and Memories for Arrays

This allows SystemC Compiler to pipeline loop1 with an initiation
interval of 1 clock cycle as shown in Figure 7-4.

Identifying Register File Operations

For the ignore_array_precedences and
ignore_array_loop_precedences commands -from_set
and -to_set arguments, you need to identify the register file
operations.

When you map an array to a register file, SystemC Compiler creates
three types of operations:

• An ARR_READ operation that represents each array read
operation

• An ARR_WRITE operation that represents each array write
operation

• An ARR_MASTER operation that represents the register file for the
array

Each write to or read from an array creates an instance of the
ARR_WRITE or ARR_READ cells, which are identified as
ARR_WRITE* or ARR_READ* where the asterisk represents a
unique instance number. Figure 7-2 on page 7-3 illustrates the
register file architecture with these operations.

7-14

Using Register Files and Memories for Arrays

Finding Array Operation Cells

For the ignore_array_precedences and
ignore_array_loop_precedences command -from_set and
-to_set arguments, you can use the find command to locate the
cells to set the precedence. For example, to find the ARR_READ*
and ARR_WRITE* cells and instruct SystemC Compiler to ignore
precedence between these cells, enter

dc_shell> op1 = find (cell -h "*ARR_READ*")
dc_shell> op2 = find (cell -h "*ARR_WRITE*")
dc_shell> ignore_array_precedences -from_set op1
 -to_set op2
dc_shell> schedule

Note that the ignore_array_precedence command is used
before the schedule command.

7-15

Using Register Files and Memories for Arrays

Mapping Arrays to Memory

Mapping arrays to memory is more efficient than using register files
or registers. A memory is a single component that includes the
indexing and multiplexing logic as well as the memory cells (illustrated
in Figure 7-3 on page 7-4).

Preparing to Use Memories

To use a vendor or custom memory in a design, you need to prepare
interface files to incorporate the memory into your design. You need
to perform the following memory preparation steps only once:

1. From the memory vendor, obtain the following memory files:

- A vendor cell library (in .db format) that describes the boundary
(ports, their names, their types, and number of bits) and
electrical properties (capacitance and timing diagram
information)

- A Verilog (.v) or VHDL (.vhd) simulation model

If you do not have a vendor memory cell library, you can create
an exploratory memory wrapper, described in “Creating a
Memory Wrapper for an Exploratory Memory” on page 7-67.

Most memory vendors provide both a Synopsys .db file and a
.lib file. If you have only the .lib file of the vendor memory library,
you can convert it to a .db format by using the Synopsys Library
Compiler tool.

7-16

Using Register Files and Memories for Arrays

2. Use the SystemC Compiler Memory Wrapper Generator
(described in “Generating Memory Wrappers” on page 7-34) to
generate the following additional files that are needed by SystemC
Compiler for synthesis based on the memory cell you have
chosen:

- A DesignWare synthetic library (.sl and .sldb) that describes the
sequential cycle-by-cycle behavior of the memory buses and
signals

- An HDL structural wrapper (.v or .vhd) interface that is used by
the compile command to compile the wrapper to gates

3. Add the synthetic library .sldb file generated by the Memory
Wrapper Generator to the synthetic_library variable. For
example, for the memory r6_16_wrap_6x16, enter

dc_shell> synthetic_library = synthetic_library +
r6_16_wrap_6x16.sldb

4. Add the synthetic library .sldb file created by the Memory Wrapper
Generator and the vendor memory library .db file (if you have one)
to the link_library variable. For example, to add the
r6_16_wrap_6x16.sldb synthetic file and the r6_16.db vendor
memory library, enter

dc_shell> link_library = link_library +
{r6_16_wrap_6x16.sldb, r6_16.db }

5. When you create the wrapper files with the Memory Wrapper
Generator, if you set the Design Library field of the Wrapper
Properties dialog box, described in “Defining the Memory Wrapper
Properties” on page 7-52, to something other than the WORK
directory, you need to define the design library with the
define_design_lib command.

7-17

Using Register Files and Memories for Arrays

For example, enter

dc_shell> define_design_lib my_design_library
-path /export/design_libraries/my_design_library

where my_design_library is the name of your design library and
/export/design_libraries/my_design_library is the name of a
directory on a hard drive that will hold the library.

6. Use the analyze command to analyze the memory wrapper
Verilog .v or VHDL .vhd source file in your design library. The
analyze command executes quickly, so you can use it in your
dc_shell command script without a performance penalty. Enter

dc_shell> analyze -f verilog r6_16_wrap_6x16.v

If your design library is something other than WORK, you need to
specify the -library option with the analyze command. Enter

dc_shell> -library my_design_library
analyze -f verilog r6_16_wrap_6x16.v

Now you are ready to use the memory. Elaborate the SystemC file
with the compile_systemc command and proceed with the rest of
the SystemC Compiler flow.

Using Memory in Your Design

To use memory in your design, declare an array of variables and use
the resource compiler directive with the map_to_module attribute
in your code. Example 7-4 shows a local memory declaration, where
the resources RAM_A and RAM_B are arbitrary names, the variable
keyword defines the array variables mapped to the memory, and
map_to_module defines the memory wrapper r6_16_wrap_6x16 for
the memory that you created with Memory Wrapper Generator.

7-18

Using Register Files and Memories for Arrays

Example 7-4 Declaring a Local Memory Resource
void fft::entry() {
 // Define memories to implement.
 sc_int<16> real[16];
 sc_int<16> imag[16];
 /* snps resource RAM_A: variables = "real", map_to_module = "r6_16_wrap_6x16"; */
 /* snps resource RAM_B: variables = "imag", map_to_module = "r6_16_wrap_6x16"; */
...
}

(For details about declaring local and shared arrays, resource
selection, and accessing memory arrays, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.)

Now, you are ready to proceed with the next steps in the SystemC
flow. Use the compile_systemc and other commands to synthesize
your design.

Getting Memory and Library Information

To locate memory models in libraries and obtain information about
the memories, use one or more of the following commands.

Using the list Command

To display and check the current definition of the target_library,
link_library, search_path, synthetic_library, and other
variables, use the list command. For example,

dc_shell> list synthetic_library

SystemC Compiler displays the current synthetic libraries, for
example

synthetic_library = {"dw01.sldb" "r6_16_wrap_6x16.sldb"}

7-19

Using Register Files and Memories for Arrays

Using the report_synlib Command

To report the contents of the synthetic library, use the
report_synlib command. Enter

dc_shell> report_synlib library [{module_list}]

The synthetic library report displays:

• A list of all operations and their pins

• A list of all modules with their pins, parameters, attributes,
implementations, and bindings

• A list of all external implementations and external bindings

• A list of DesignWare subblocks declared in the library

The specified library must be already loaded into SystemC Compiler
or be in the search_path definition.

By default, all modules are reported, or you can specify a list of
modules to report.

Figure 7-5 shows a typical report of a synthetic library for a memory
wrapper. For more information about this report, see the DesignWare
documentation

Example 7-5 Report of Synthetic Memory Wrapper
**
Report : library
Library: r6_16_wrap_6x16.sldb
Version: 2000.05
Date : Fri Sep 29 10:25:00 2000
**

Library Type : Synthetic
Tool Created : 2000.05
Date Created : August 01, 2000
Library Version : Not Specified

7-20

Using Register Files and Memories for Arrays

Synthetic Modules:

 Module
 --
 r6_16_wrap design_library: WORK
 clocking_scheme: positive_edge
 resource: S0_p0 (count=1)
 resource: S1_p0 (count=1)

Module Pins:

 Attributes:
 c - clock_pin
 Default Stall Pin
Module Pins Dir Width Value Pin Attributes
 --
r6_16_wrap dia in 16
 aadr in 6
 doa out 16
 wea in 1
 oea in 1
 clka in 1 c

Module Implementations:
 Attributes/Parameters:
 v - verify_only
 V - verification implementation
 u - dont_use
 r - regular_licenses
 l - limited_licenses
 d - design_library
 s - priority_set_id
 p - priority
 leg - legal

 Module Implementations Attributes/Parameters
 --
 r6_16_wrap wrap

Module Bindings:

Module Binding
--
r6_16_wrap read_port0 bound_operator: MEM_READ_SEQ_OP
 State: 0
 Pin Associations (module, oper):

7-21

Using Register Files and Memories for Arrays

 aadr, ADDR
 wea,"0"
 clka, CLK
 use_resource: S0_p0
 Unbound oper pin ’CLK’ is bound to "1"
 State: 1
 Pin Associations (module, oper):
 doa, Q
 clka, CLK
 use_resource: S1_p0
 Unbound oper pin ’CLK’ is bound to "1"

 write_port0 bound_operator:
 MEM_WRITE_SEQ_OP
 State: 0
 Pin Associations (module, oper):
 aadr, ADDR
 dia, D
 wea,"1"
 clka, CLK
 use_resource: S0_p0
 Unbound oper pin ’CLK’ is bound to "1"

7-22

Using Register Files and Memories for Arrays

Using the bc_report_memories Command

To report specific information about the memories in the available
synthetic libraries, use the bc_report_memories command. Enter

dc_shell> bc_report_memories -synthetic_libraries

The -synthetic_libraries option displays information about
memories available in the synthetic libraries declared by the
synthetic_library variable.

Figure 7-6 shows a report of a memory wrapper synthetic library. This
report shows a memory (actually a memory wrapper) named
r6_16_wrap in the current synthetic libraries.

It has one read-write port that is accessed through an address port
named aadr. The memory read is a pipelined access that has a
latency of 2 cycles with an initiation interval of 1 cycle. The memory
write is a 1 cycle non-pipelined operation. The clock controlling this
synchronous memory is named clka.

Example 7-6 Report of a Synthetic Library
Memory modules available in synthetic libraries

--
| r6_16_wrap | Address | MEM_READ
==
| Port 1 R/W | aadr | 2-state, 1-cyc
 | access, pipe
--

| MEM_WRITE | Clock |
===
|1-state, 1-cyc | clka |
| access, nonpipe | |

7-23

Using Register Files and Memories for Arrays

To report specific information about the memories instantiated within
an elaborated behavioral design, use the bc_report_memories
command with the -used_memories option after executing the
compile_systemc command. Enter

dc_shell> compile_systemc fft_mem.cc
dc_shell> bc_report_memories -used_memories

Figure 7-7 shows a report of memories used in an FFT design. This
report shows two memories, RAM_A and RAM_B, of type
r6_16_wrap instantiated in the design. Both memories have address
ranges 0 to 15 and a data width of 16 bits. The read-write port
accessed through address bus aadr is used in both memories. The
behavioral process entry performs read and write accesses to both
memories.

Example 7-7 Report of Memories Used in a Design

 Memory instances used in design

--
| r6_16_wrap / RAM_B | | Process |
| [0 - 15] X 16 | Address | entry |
==
| Port 1 R/W | aadr | R, W |
--

--
| r6_16_wrap / RAM_A | | Process |
| [0 - 15] X 16 | Address | entry |
==
| Port 1 R/W | aadr | R, W |
--

7-24

Using Register Files and Memories for Arrays

Using Asynchronous Memories

SystemC Compiler only uses memories with synchronous interfaces.
This means there must be at least one register in the path from the
inputs of the memory to the outputs. When you have an asynchronous
memory, this is not the case. Because SystemC Compiler interfaces
with the memory wrapper that you place around the memory rather
than the actual memory, you can insert registers between the inputs
of the memory wrapper and the inputs of the memory.

The Memory Wrapper Generator can be used to automatically insert
registers in the wrapper, if you define the memory to be asynchronous
(see “Defining the Memory Type and Properties” on page 7-40).
Figure 7-5 illustrates the input register placement and wrapper
interface the Memory Wrapper Generator tool generates for an
asynchronous memory.

Figure 7-5 Asynchronous Memory With Registered Input

You can also insert registers on the outputs of an asynchronous
memory using the Memory Wrapper Generator tool (see “Adding
Registers to the Memory Wrapper” on page 7-58). Figure 7-6
illustrates a wrapper around an asynchronous memory with registers
inserted on both the input and output.

Memory wrapper

Asynchronous
vendor
memory

Inputs of
wrapper

Outputs of
wrapper

R
eg

is
te

r

7-25

Using Register Files and Memories for Arrays

Figure 7-6 Manually Adding Registers to an Asynchronous Memory

Allowing for Vendor Memory Timing

If you are using a synchronous vendor memory, it is possible that the
memory has logic between its I/O ports and its internal registers, as
shown in Figure 7-7. The delay specifications for this logic are typically
provided in the timing diagrams of the memory vendor’s datasheet.

Figure 7-7 Memory Access Time Specification

Memory wrapper

Asynchronous
vendor
memory

Inputs of
wrapper

Outputs of
wrapper

R
eg

is
te

r

R
eg

is
te

r

Memory wrapper

Synchronous vendor memory

Inputs of
wrapper

Outputs of
wrapper

. . .

Registers
internal to the
vendor memory

Delay of
input logic
internal to
the vendor
memory

Delay of
output logic
internal to
the vendor
memory

7-26

Using Register Files and Memories for Arrays

You need to provide the input and output delay specifications to
SystemC Compiler, so it can reserve time in the clock cycle to allow
for computation of this logic. Use the set_memory_input_delay
and set_memory_output_delay commands to specify the vendor
memory input delay and output delay. SystemC Compiler uses these
delays when computing the values for the address, data, and control
lines leading into the memory, and to ensure that the values arrive at
the ports of the memory at the appropriate time.

Setting Memory Input Delay for Vendor Memory Timing

To set the input delay on a memory according to the vendor timing
specification, use the set_memory_input_delay command.

dc_shell> set_memory_input_delay [delay_value]
[-external ext_delay_value] [-name mem_name]

The delay_value specifies the input delay, which must be a positive
number in the units of the technology library.

The -external option specifies the external input delay, which must
be a positive number in the units of the technology library. The
external input delay is applicable if the vendor memory is positioned
external to the design. You can move a memory out of the design by
executing the externalize_cell command (see “Externalize a
Cell” on page 8-8). The external input delay accounts for a delay that
occurs to transfer the input signal to the external memory. For
example, this might account for the delay through an I/O pad taking
the signal off-chip.

7-27

Using Register Files and Memories for Arrays

The -name option specifies the resource for one or more memories
to which this command applies. The default is to apply the command
to all memories in the current design. If you are specifying more than
one memory name, enclose the list of names in double-quotes or
braces.

Example 7-8 shows an example of the resource directive in the
behavioral description that specifies the memory and the
set_memory_input_delay command to set the internal input
delay to 3.5 and the external input delay to 3.

Example 7-8 Set Memory Input Delay
/* snps resource RAM_A: variables = "real",
 map_to_module = "r6_16_wrap"; */

dc_shell> set_memory_input_delay -name RAM_A 3.5 -ext 3

Setting Memory Output Delay for the Vendor Timing
Specifications

To set the output delay of a memory according to the vendor timing
specification, use the set_memory_output_delay command. The
set_memory_output_delay command allows you to specify a
delay due to logic on the outputs of a memory. You can also use this
command to specify an additional delay to access an external, off-chip
memory.

dc_shell> set_memory_output_delay [delay_value] [-external
ext_delay_value] [-name mem_name]

The delay_value specifies the output delay, which is the output delay
of the memory. The delay_value must be a positive number in the
units of the technology library.

7-28

Using Register Files and Memories for Arrays

The -external option specifies the external output delay. The
external output delay is the delay caused by positioning the memory
external to the design. You can move a memory out of the design by
executing the externalize_cell command (see “Externalize a
Cell” on page 8-8). The external delay can represent delay elements
such as I/O pad and off-chip delays.

SystemC Compiler reserves time in the clock cycle for the total of the
internal and external memory delays, and it only schedules
operations that use the output data of the memory that can fit in the
remainder of the clock cycle.

The -name option specifies one or more memories to which this
command applies. The default is to apply the command to all
memories in the current design. If you are specifying more than one
memory name, enclose the list of names in double-quotes or braces.

Constraining Read and Write Operations on Memory

The number of memory read or write operations that can access the
same memory simultaneously depends on the type of memory and
the number of ports it has.

• Single port memories perform only one read or write in each clock
cycle.

• Multiple port memories can perform several memory read and
write operations at the same time, depending on the configuration
of the ports, such as read ports, write ports, and read/write ports.

• Memories that allow pipelined accesses can overlap memory read
and write operations, where a second memory access can be
initiated before the first memory access is completed.

7-29

Using Register Files and Memories for Arrays

The number of cycles required for a sequence of memory read or
write operations depends on the type of memories and the access
patterns on the memories. Typical memories perform a read in two
clock cycles and a write in one clock cycle.

SystemC Compiler automatically pipelines memory accesses if the
memory allows it. Figure 7-8 illustrates pipelined memory accesses,
where two reads happen in three cycles and two writes happen in
two cycles. Notice the pipelining where the second read begins in the
same cycle as the second stage of the first read.

Figure 7-8 Pipelined Memory Accesses

Reporting Conflicting Memory Accesses

If the memory being used has multiple ports and allows for multiple
simultaneous memory accesses, SystemC Compiler can schedule
several memory accesses in the same cycle. However, it will not
schedule two memory accesses to the same memory location in the
same cycle. SystemC Compiler tries to determine if two memory
accesses can conflict, that is access the same memory location. If
they never conflict, SystemC Compiler allows them to be scheduled
in the same cycle.

write
adr 0

write
adr 1

Cycle 1

Cycle 2

Cycle 3

Cycle 4

read
adr 0

read
adr 1

7-30

Using Register Files and Memories for Arrays

To generate a report about which memory accesses conflict and
which do not conflict, use the bc_report_memories command with
the -conflicting or -non_conflicting options. For example,
to list the nonconflicting pairs, enter

dc_shell> bc_report_memories -non_conflicting

Example 7-9 shows a typical memory report of nonconflicting
accesses.

Example 7-9 Report Nonconflicting Memory Accesses
Non_conflicting accesses in process ’entry’ are as follows:
 (imag_read_180, imag_read_180_2)
 (imag_read_180, imag_read_183_2)
 (imag_read_180, imag_write_183)
 (imag_read_183, imag_read_183_2)
 (imag_read_183, imag_write_183)
 (imag_read_209, imag_read_211)
 (imag_read_209, imag_write_220)
 (imag_write_218, imag_write_220)
 (real_read_179, real_read_179_2)
 (real_read_179, real_read_182_2)
 (real_read_179, real_write_182)
 (real_read_182, real_read_182_2)
 (real_read_182, real_write_182)
 (real_read_208, real_read_210)
 (real_read_208, real_write_219)
 (real_write_217, real_write_219)
Non_conflicting accesses across iterations of pipelined loops
 in process ’entry’ are not found.
Unable to resolve all accesses in process ’entry’.
The following accesses may conflict:
 imag_read_254
 real_read_253

7-31

Using Register Files and Memories for Arrays

Using the ignore_memory_precedences Command

If SystemC Compiler determines that two memory accesses can
conflict (access the same memory location), it sets a precedence
constraint so that they do not execute in the same clock cycle. It also
ensures that they execute in the order in which they appear in the
behavioral description.

In certain situations, SystemC Compiler cannot make a static
determination about whether two memory accesses conflict. This can
happen when the index expressions for the memory accesses
depend on runtime information such as the value on input ports of
the design. In these situations, SystemC Compiler considers it
possible for these memory accesses to access the same locations
at the same time, and it inserts precedence constraints as if they were
conflicting accesses.

If you are sure that the accesses do not conflict, use the
ignore_memory_precedences command so SystemC Compiler
is allowed to schedule the two accesses in the same clock cycle. This
results in a smaller latency for the design. Enter

dc_shell> ignore_memory_precedences [-process process_name]
-from_set from_operations -to_set to_operations

The -process option applies this command to only the process
process_name. If this option is not specified, this command applies
to all behavioral processes.

The -from_set and -to_set options remove all precedence
constraints inserted from memory accesses in the
from_operations set to those in the to_operations.

7-32

Using Register Files and Memories for Arrays

For example, to remove precedence conflicts between memory
accesses to arrays, read and imag, enter

dc_shell> op1 = find (cell -h "*read_read*")
dc_shell> op2 = find (cell -h "*imag_read*")
dc_shell> ignore_memory_precedences -from_set op1
 -to_set op2
dc_shell> schedule

Note that the ignore_memory_precendences command is used
before the schedule command.

Using the ignore_memory_loop_precedences
Command

When a loop containing memory accesses is pipelined, it is possible
that memory writes in one loop iteration introduce dependencies with
memory reads in subsequent iterations, as illustrated in Figure 7-9.

Figure 7-9 Invalid Schedule With Loop Carry Dependency

x = mem[0]

mem[1] = c;

a = x*x;

b = 2*x;

c = a + b + 1;

x = mem[1]

mem[2] = c;

a = x*x;

b = 2*x;

c = a + b + 1;

x = mem[2]

mem[3] = c;

a = x*x;

b = 2*x;

c = a + b + 1;

i = 0;
square_loop : while (i < 100) {
 x = mem[i];
 a = x * x;
 b = 2 * x;
 c = a + b + 1;
 mem[i+1] = c;
 i++;
}

Iteration 1 Iteration 2 Iteration 3

i++;

i++;

i++;

Loop carry dependencies

Behavioral description

7-33

Using Register Files and Memories for Arrays

SystemC Compiler automatically inserts loop-carry dependencies to
prevent these violations. If your design has pipelined loops, the
reports generated by the bc_report_memories command with the
-conflicting and -non_conflicting options has a section
that lists pairs of memory accesses that are determined to conflict (or
not conflict) across iterations of the pipelined loop.

If SystemC Compiler determines that a pair of memory accesses
across loop iterations can access the same memory location, or if it
cannot determine that they do not access the same memory location,
then SystemC Compiler automatically inserts a precedence
constraint to ensure that the loop-carry dependency is not violated.

If you are sure that the two accesses never access the same location,
use the ignore_memory_loop_precedences command to direct
SystemC Compiler to remove the precedence constraint.

dc_shell> ignore_memory_loop_precedences
[-process process_name] {operations}

The operations option defines the memory access operations that
you allow SystemC Compiler to assume do not conflict across
iterations of the pipelined loop that contains them. For example,

dc_shell> op1 = find (cell -h "*read_read*")
dc_shell> op2 = find (cell -h "*imag_read*")
dc_shell> ignore_memory_loop_precedences { op1, op2 }
dc_shell> schedule

Note that the ignore_memory_loop_precendences command is
used before the schedule command.

7-34

Using Register Files and Memories for Arrays

Generating Memory Wrappers

This section describes how to generate memory wrappers using the
Memory Wrapper Generator graphical user interface (GUI) tool
included with SystemC Compiler.

Understanding the Memory Wrapper Generator Tool

SystemC Compiler requires that the memories used in the design be
described as synthetic DesignWare components. Most memory
vendors do not provide memories as synthetic DesignWare
components, therefore the Memory Wrapper Generator tool is
provided with SystemC Compiler to encapsulate vendor memories
as DesignWare components. This tool generates a memory wrapper
(in Verilog or VHDL format) and a synthetic library description
(in the Synopsys .sldb format) for use with SystemC Compiler.

SystemC Compiler uses the Verilog/VHDL wrapper file to instantiate
the memory in the design during elaboration and the .sldb file to
determine the characteristics of the memory.

The Memory Wrapper Generator tool also enables you to insert
custom logic in the memory wrapper, if it is required to interface with
the memory.

You can use the Memory Wrapper Generator tool in two ways:

• To encapsulate an existing memory model from a memory vendor,
described in “Creating a Memory Wrapper for a Vendor Memory”
on page 7-39.

7-35

Using Register Files and Memories for Arrays

• To create an exploratory memory interface to experiment with
different memory architectures that you might want to use,
described in “Creating a Memory Wrapper for an Exploratory
Memory” on page 7-67.

Using the Memory Wrapper Generator Tool

Start the Memory Wrapper Generator tool from a directory where you
have write permission. You will need to save your memory wrapper
files in this directory.

For example, to change to the directory my_design and start the
Memory Wrapper Generator tool,

• Enter the following at the UNIX prompt:

unix% cd my_design
unix% memwrap &

When the Memory Wrapper Generator window is initially displayed it
is empty, as shown in Figure 7-10.

Note:
If the Memory Wrapper Generator window does not display, see
“Starting the Memory Wrapper Tool” on page A-14.”

7-36

Using Register Files and Memories for Arrays

Figure 7-10 Empty Memory Wrapper Window

Figure 7-11 shows an example of the Memory Wrapper window after
a wrapper is created.

7-37

Using Register Files and Memories for Arrays

Figure 7-11 Completed Memory Wrapper

Schematic

Waveform

Control pins list for

area

area

Memory

New file

Open file

Save file

Properties edit

Insert logic

Input register

Output register

Open help

operation
selection

selected memory operation

7-38

Using Register Files and Memories for Arrays

The three display areas in the Memory Wrapper window show the
following information after you create a wrapper:

Schematic Area

The top display area shows a schematic of the memory wrapper.

Waveform Area

The lower-left display area shows the waveforms for each of the
memory operations of the memory wrapper.

Control Pins List

The lower-right display area shows the control pins list with items
like a chip enable or write enable that are associated with a
wrapper memory operation you select in the Waveform Area.

Logical Port

The Memory Wrapper Generator groups vendor memory pins into
physical ports and connects them to logical ports in the memory
wrapper. Logical ports refer to ports in the memory wrapper, and
pins and physical ports refer to the vendor memory.

One memory wrapper logical port includes the address bus, data
bus, and control signals to access one physical port of the vendor
memory.

7-39

Using Register Files and Memories for Arrays

Creating a Memory Wrapper for a Vendor Memory

The Memory Wrapper Generator saves the current memory wrapper
specification in a .wrap file. This file encapsulates all of the information
necessary to generate the synthetic library file (.sldb) and the HDL
wrapper file needed by SystemC Compiler. You can read in and
modify a .wrap file that was previously created using the Memory
Wrapper Generator.

The general steps for creating a memory wrapper for an existing
vendor memory are

1. Define the type and properties of the memory.

2. Assign vendor memory pins to the logical ports of the memory
wrapper.

3. Define properties of the wrapper and add control pins to the
wrapper, if necessary.

4. Edit the wrapper by adding or deleting logic or registers and
specifying the waveforms.

5. Save the wrapper files.

7-40

Using Register Files and Memories for Arrays

Defining the Memory Type and Properties

To define the type and properties of the memory,

1. Choose File > New in the Memory Wrapper window.

(To open a previously saved .wrap file, choose File > Open.)

The Memory Selection dialog box is displayed (Figure 7-12).

Figure 7-12 Memory Selection Dialog Box

7-41

Using Register Files and Memories for Arrays

2. Click Vendor Memory.

The Memory Selection from a DB File dialog box (Figure 7-13) is
displayed.

Figure 7-13 Memory Selection from a DB File Dialog Box

a. Enter a .db file name in the Current DB File text field, or click
on Browse to select a .db file.

b. Check that the correct vendor library is selected in the Selected
Library Names field.

c. Enter or select a memory model name from the vendor library.
For example, the ram8x32 memory model is selected in Figure
7-13 from the sync_rams vendor library.

d. Click OK.

The Memory Definition dialog box (Figure 7-14) is displayed for
the selected vendor memory. To list the contents of a library and
other related commands, see “Getting Memory and Library
Information” on page 7-18.

7-42

Using Register Files and Memories for Arrays

Figure 7-14 Memory Definition Dialog Box

Vendor
memory
description

Memory
wrapper
definition

7-43

Using Register Files and Memories for Arrays

3. The memory model name you selected from the vendor library is
displayed in the Memory Name field.

a. Select the Synchronous type if the vendor memory has a clock.
Otherwise, select Asynchronous. (See “Using Asynchronous
Memories” on page 7-24.)

b. Enter or choose the number of clock cycles for the memory read
and write latency. Memory latency depends on the type of
memory, and you can obtain it from the memory vendor
datasheet. For synchronous memories, enter the number of
clock cycles the vendor memory model requires to complete
one read and one write operation.

c. In the Logical Ports section, enter the number of logical ports
in the memory wrapper for each of following types:

Read-Write ports A read-write port is a logical port that you can
use to perform either a memory read or a
memory write, but not both at the same time.
The physical ports associated with a
read-write logical port are typically an address
bus, a data in bus (for the memory write), a
data out bus (for the memory read), and the
control lines.

Read ports A read port is a logical port that you can use
only to perform a memory read. The physical
ports that it typically connects to are an
address bus, a data out bus (for the data being
read out of memory), and the control
lines.

7-44

Using Register Files and Memories for Arrays

d. In the Logical Ports section, enter the address bit-width and the
data bit-width. The address and data bit-widths are common to
all ports.

Result: Figure 7-15 shows the completed memory definition.

Write ports A write port is a logical port that you can use
only to perform a memory write. The physical
ports that it typically connects to are an
address bus, a data in bus (for the data being
written to memory), and the control lines.

7-45

Using Register Files and Memories for Arrays

Figure 7-15 Completed Memory Definition

7-46

Using Register Files and Memories for Arrays

4. Click the Next button to display the Memory Pin Definition dialog
box (Figure 7-16).

Assigning Memory Pins to the Wrapper Logical Ports

The Memory Pin Definition dialog box (Figure 7-16) shows the
assignment of the vendor memory pins to the logical ports in the
memory wrapper. Use the Memory Pin Definition dialog box to assign
or reassign vendor memory pins to the correct memory wrapper
logical ports.

7-47

Using Register Files and Memories for Arrays

Figure 7-16 Memory Pin Definition Dialog Box

When you are creating a wrapper from a memory in a .db file, all the
pins are initially unassigned (as in Figure 7-16).

Vendor
memory
description

Memory
wrapper
definition

7-48

Using Register Files and Memories for Arrays

To assign pins for a memory in a .db file,

1. Assign pins to the correct categories by dragging unassigned
vendor memory pins (on the right side of the Memory Pin Definition
dialog box) to the appropriate memory wrapper logical port
categories (on the left side of the dialog box).

a. Select and drag all vendor address pins to the memory wrapper
logical port address category.

b. Select and drag all vendor data input pins to the logical port
data input category.

c. Select and drag all vendor data output pins to the logical port
data output category.

d. Select and drag each vendor control pin such as write enable
(wen) and read enable (ren) to the logical port controls category.
When assigning control pin assigned to a logical port are signals
that are used only for accesses to that specific physical port.

e. Select and drag any signals that are used for all memory
accesses and are not associated with a single port to the Global
Controls wrapper category. Global Controls are pins that are
relevant for accesses to all the physical ports.

f. Select and drag any other signals such as test pins that are not
used by SystemC Compiler to the Unused by BC category. You
can expand the Unused by BC category hierarchy, and choose
the appropriate category for the unused pins.

Memory Wrapper Generator extracts the clock name from the
vendor memory .db file.

Shortcut:

While assigning or reassigning pins, you can select multiple
pins using the Shift-click method (for consecutive selection) or
the Control-click method (for nonconsecutive selection), or by
drawing a rectangle around the pins with the mouse.

7-49

Using Register Files and Memories for Arrays

Result: When all vendor pins are assigned to a logical port
wrapper category, a green circle with an OK is displayed next to
the Port Address, Data Input, Data Output, Clock, and
Unassigned Pins wrapper categories. After you assign all vendor
pins, the vendor pins field is empty. Figure 7-17 shows a
completed memory pin definition.

Figure 7-17 Completed Memory Pin Definition

7-50

Using Register Files and Memories for Arrays

2. In some cases, the vendor memory’s pin are not explicitly grouped
into buses in the memory library file. In step 1, you assigned these
individual pins to logical port categories, and now you need to
specify the order (MSB to LSB) of these pins with respect to pins
of the correspond logical port.

For example, if the vendor memory has pins ADDRX, ADDRY,
ADDRZ, and ADDRW, and you placed these in the address
category of logical port 0, you need to specify the order in which
these pins map to the bits of the logical port’s address bus.

To specify the ordering of the address and data pins (MSB to LSB),

a. Select the appropriate category (Address, Data Input, or Data
Output).

b. Change the order of the vendor pins by dragging the pins within
the vendor pin list or by clicking the Pin Name column header.
Clicking the Pin Name column header reverses the order of the
pins from MSB to LSB, or from LSB to MSB.

3. Click on the Next button to display the Wrapper Properties dialog
box (Figure 7-18).

7-51

Using Register Files and Memories for Arrays

Figure 7-18 Completed Wrapper Properties Dialog Box

7-52

Using Register Files and Memories for Arrays

Defining the Memory Wrapper Properties

The Wrapper Properties dialog box (Figure 7-18) shows the
connections between the memory vendor cell and the wrapper. You
can use the Wrapper Properties dialog box to further specify the
wrapper interface and see how the wrapper pins are connected to
the memory cell.

Initially, a wrapper pin or bus is created and connected to the memory
pin or bus for each memory pin or bus that is not located in the Unused
by BC category in the Memory Pin Definition dialog box.

You can also use the Wrapper Properties dialog box to add extra
control pins to the wrapper. These extra control pins can be for test
logic or for adding extra control or decode logic at a later time.

To define the wrapper properties,

1. Select positive or negative to define the clock edge used by the
memory. This must be the same as the active clock edge that you
use in your behavioral description.

2. In the Wrapper Name text field, enter the name of your wrapper
module. By default, the Memory Wrapper Generator uses the
Memory Name you defined as the memory name (Figure 7-15 on
page 7-45) with an additional _wrap as the name.

3. In the Design Library field, enter the design_library name
representing the design library where SystemC Compiler places
the design for your wrapper when you analyze the wrapper VHDL
(or Verilog) files. This is also the design library in which the
synthetic library (.sldb) that contains your wrapper expects to find
the design for your wrapper. Designate the WORK library unless
you have a particular library where you want the files written. You
can use any name except a reserved Synopsys library name such
as “DW01.”

7-53

Using Register Files and Memories for Arrays

The design_library name is the logical name of a library where
you want the files written. You can map this logical library name
to a physical UNIX directory with the define_design_lib
command before you analyze the wrapper VHDL or Verilog files
during synthesis. For example,

dc_shell> define_design_lib my_design_library
-path /export/design_libraries/my_design_library

Result: Figure 7-18 shows a completed wrapper properties.

4. Add pins as necessary. (You can add only global control pins to
the wrapper. You cannot add pins to the vendor memory. For
details about global control pins, see “Assigning Memory Pins to
the Wrapper Logical Ports” on page 7-46.)

a. Click the Add Pin button.

b. Fill out the displayed dialog box and click OK.

5. Delete pins as necessary (you can only delete wrapper pins).

a. Select the pins you want to delete.

b. Click the Delete Pins button.

6. Change the default control pin connections as necessary (you can
change only the connections of control pins).

a. Click a wrapper pin.

b. Drag the pin to the memory pin with which you want to connect it.

A new connection removes any previous connections and
connects the two pins.

When you connect a wrapper control pin to a memory control
pin, the wrapper pin inherits the properties of the memory pin,
for example the memory port that it is associated with and
whether it is an input pin or an output pin.

7-54

Using Register Files and Memories for Arrays

7. Disconnect wrapper pins, as necessary, by clicking them and
dragging them to an open area.

8. Click the Next button to display a Wrapper Summary dialog box
(Figure 7-19).

Figure 7-19 Wrapper Summary

7-55

Using Register Files and Memories for Arrays

9. If the displayed summary information is correct, click Finish.

When you are finished, the wrapper is displayed in the Memory
Wrapper main window (Figure 7-20).

Figure 7-20 Memory Wrapper Displayed in Main Window

 Schematic

Timing

 Control pin list

Memory
operation

of memory wrapper

waveform of
selected memory
operation

Vendor
memory

selection tab

for selected
memory operation

7-56

Using Register Files and Memories for Arrays

Reviewing the Memory Wrapper

The upper display area (the schematic in Figure 7-20) shows how
the vendor memory is embedded in the wrapper.

The lower-left display area shows the timing waveforms of the
selected memory operations, for example a memory read from port
0. You can click on the Memory Operation Selection tabs to select
another memory operation. All control pin names and waveforms
refer to the wrapper, not the pins on the vendor memory. All
information you enter in the waveform display area applies to the
wrapper.

The lower-right display area (the port control pin list) displays the list
of available control pins for the memory operation that you select and
is shown in the waveform to the left. Initially all control pins are marked
with a check mark (displayed in the waveform). To deselect a control
pin, click the box next to it to remove the check mark.

Editing the Waveform Values

The waveform display shows the cycle-by-cycle protocols for a
memory read or write operation on a logical port. For example, Figure
7-21 shows the timing protocol for a memory read from the logical
port 0. The waveform shows that the adr, do, wen, and ren signals
are involved in a memory read. The address of memory to be read
is asserted on the adr bus in the second cycle. At the same time, wen
is asserted and ren is deasserted. This completes the memory read
request and the data is placed on the do bus in the next clock cycle.

7-57

Using Register Files and Memories for Arrays

Figure 7-21 Read Port Protocol Waveforms

The first and last cycles of the waveforms show the values of the
various signals when there are no requests. These are called the
inactive values and can be low, high, or don’t care. Editable
waveforms are drawn in red.

Memory
operation
selection
tab

7-58

Using Register Files and Memories for Arrays

To edit the waveform state,

1. Double-click on the pin’s waveform to change its state from don’t
care to high or low.

Each double-click changes the state from don’t care to high to low
in a circular fashion.

2. Click on the Read or Write Port tab to select another operation on
the same port or an operation on a different port.

Adding Registers to the Memory Wrapper

You can add registers within the wrapper to the input or output of the
memory. Adding these registers is required for an asynchronous
memory to convert it to a synchronous memory. (See “Using
Asynchronous Memories” on page 7-24.)

Adding registers increases the latency of memory accesses. For
example, in the asynchronous memory shown in Figure 7-20 with
registered inputs and outputs, the latency of a memory read is 2 clock
cycles: one to register the inputs and the second to register the output
data from the memory read. The output data is available at the data
output port of the memory wrapper in the third clock cycle.

7-59

Using Register Files and Memories for Arrays

Figure 7-22 Manually Adding Registers to an Asynchronous Memory

To add or delete input registers or output registers between the
wrapper and the memory, do one of the following:

1. Choose Edit > Register Type

2. Click the Input Register button or the Output Register button on
the toolbar

The added registers are functional registers. Do not use them as
testability registers.

Adding Custom Logic to the Memory Wrapper

To insert custom logic between the wrapper and the memory,

1. Do one of the following:

- Choose Edit > Insert Logic

Memory wrapper

Asynchronous
vendor
memory

Inputs of
wrapper

Outputs of
wrapper

R
eg

is
te

r

R
eg

is
te

r

Input Register Output Register

7-60

Using Register Files and Memories for Arrays

- Click the Insert Input Logic button on the toolbar.

The Code Editor dialog box is displayed with default code
(Figure 7-23).

2. In the Code Editor dialog box, select the Verilog or VHDL
language. The Memory Wrapper Generator displays the default
code. The default code lists the connection between each wrapper
port and the corresponding memory port. To insert logic, write it
as you would write RTL. Note, however, the code must be Verilog
or VHDL.Figure 7-23 shows an example of default Verilog code.

Figure 7-23 Code Editor Dialog Box With Default Code

3. Enter Verilog or VHDL code for the custom logic.

Use this Code Editor dialog box to edit the default code and
combinational logic.

7-61

Using Register Files and Memories for Arrays

4. Click OK to complete the logic insertion. A box labeled as Logic
is inserted in the Schematic window to indicate the custom logic.

To remove custom logic between the wrapper and the memory,

• Choose Edit > Insert Logic. The Insert Logic command becomes
unchecked (it toggles), and the logic is removed.

To change custom logic between the wrapper and the memory,

1. Double-click on the Logic box in the Schematic window.

The Code Editor dialog box is displayed.

2. Edit the contents and click OK.

If you are adding registers or custom logic into the wrapper, you must
ensure that the latency of the read/write operations and the waveform
specified match the behavior of the memory with the wrapper. If they
do not match, you must go back and edit the latency or the waveforms.

Viewing and Editing the Wrapper Properties

If you want to review or edit any of the memory wrapper dialog boxes,
choose the Edit > Edit Properties command or click on the Properties
button in the tool bar.

Figure 7-30 shows the Properties window with the Memory Definition
dialog box displayed. You can select the Memory Definition, Memory
Pin Definition, Wrapper Properties, and Wrapper Summary dialog
boxes by clicking on the tabs at top.

Properties

7-62

Using Register Files and Memories for Arrays

The properties are described in

• “Defining the Memory Type and Properties” on page 7-40

• “Assigning Memory Pins to the Wrapper Logical Ports” on page
7-46

• “Defining the Memory Wrapper Properties” on page 7-52

• “Reviewing the Memory Wrapper” on page 7-56

7-63

Using Register Files and Memories for Arrays

Figure 7-24 Properties Dialog Boxes

Selection tabs

7-64

Using Register Files and Memories for Arrays

Saving the Memory Wrapper Files

After specifying the waveforms, save the wrapper (.wrap) file, the
associated synthetic library (.sldb) file, and the Verilog (.v) file. For
details about file types, see “Preparing to Use Memories” on page
7-15.

You can save just the .wrap file and read it into the Memory Wrapper
Generator tool at a later time to create the .sldb, .sl, or .v files.

By default, the Memory Wrapper Generator tool uses the memory
name with _wrap for the file names, for example, memory_wrap.sldb
and memory_wrap.v

To save the wrapper and associated files,

1. To save just the memory_wrap.wrap file, choose File > Save. You
can also save the .wrap file using the File > Save As command.

2. To save the memory_wrap.sl, memory_wrap.sldb, and
memory_wrap.v files, choose File > Export Wrapper. Figure 7-25
shows the Export Wrapper dialog box.

7-65

Using Register Files and Memories for Arrays

Figure 7-25 Export Wrapper Dialog Box

3. In the Export Wrapper dialog box, select the Save as type to be
Verilog Wrapper or VHDL Wrapper.

You can also use this command to save a testbench for the
memory wrapper, which is described in “Generating a Memory
Wrapper Testbench” on page 7-79.

Note:
This command saves a synthetic library .sl file. This file contains
the DesignWare Developer source code that was used to
generate the .sldb file. It is included for reference only. It is not
used by SystemC Compiler, and you can delete it.

7-66

Using Register Files and Memories for Arrays

Using Generated Vendor Memory Wrappers
With SystemC Compiler

To run SystemC Compiler using a vendor memory,

1. In the source code, use the resource compiler directive to map
an array to the memory wrapper. Example 7-10 shows declaration
of a resource named RAM_A, accessed by the array variable mema,
and its wrapper module is ram8x32_wrap. For details about
declaring and accessing memories, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

Example 7-10 Memory Array Definition
//SystemC code fragment
// Declare the memory access array
sc_int<32> mema[256];
/* synopsys resource RAM_A :
variables = "mema",
map_to_module = "ram8x32_wrap"; */

2. Map the design library name you designated when creating the
memory wrapper files to a physical UNIX directory. For example,

dc_shell> define_design_lib my_design_library
-path /export/design_libraries/my_design_library

3. Run SystemC Compiler analyze command to analyze and
elaborate the memory wrapper file into the design library you
specified in step 2.

dc_shell> analyze -f verilog ram8x32_wrap.v
 -library my_design_library

4. Add the memory .sldb file generated by Memory Wrapper
Generator to the synthetic_library variable. For example,

7-67

Using Register Files and Memories for Arrays

dc_shell> synthetic_library = synthetic_library +
ram8x32_wrap.sldb

5. Add the memory library with the .db files to the link_library
variable.

dc_shell> link_library = link_library + ram8x32.db

6. You are now ready to run compile_systemc on your design.

Creating a Memory Wrapper for an Exploratory Memory

The Memory Wrapper Generator creates a unique file format called
a .wrap file. This file encapsulates all of the information necessary to
generate a synthetic library (.sldb) for a exploratory memory. You can
use this .sldb file for architectural exploration of memories with single
or dual ports, a read/write versus a separate read and write port, and
various address and data bit widths.

The general steps for creating a memory wrapper are

1. Define the type and properties of the memory.

2. Define properties of the wrapper and add control pins to the
wrapper, if necessary.

3. Edit the wrapper by adding or deleting logic or registers and
specifying the waveforms.

4. Save the wrapper.

7-68

Using Register Files and Memories for Arrays

Defining the Memory Type and Properties

To define the type and properties of the exploratory memory wrapper,

1. Choose File > New.

(To open a previously saved .wrap file, choose File > Open.)

The Memory Selection dialog box is displayed (Figure 7-12).

Figure 7-26 Exploratory Memory Selection Dialog Box

2. Click the Exploratory Memory button.

The Memory Definition dialog box (Figure 7-27) is displayed for
an exploratory memory. Because a physical memory does not
actually exist, the Memory Description field displays “Uninitialized
Memory” to indicate no information is available.

7-69

Using Register Files and Memories for Arrays

Figure 7-27 Exploratory Memory Definition Dialog Box

3. Enter the properties for the wrapper interface that SystemC
Compiler uses.

a. Enter a name in the Memory Name text field.

Exploratory
memory,

description

Memory
wrapper
definition

no

7-70

Using Register Files and Memories for Arrays

b. Select the Synchronous type if the wrapper has a clock.
Otherwise, select Asynchronous.

c. Enter the number of clock cycles the wrapper requires to
complete one read operation and one write operation.

d. In the Logical Ports section, enter the number of logical ports
(for example, for a single-port or dual-port memory). The
following briefly describes the port information:

e. In the Logical Ports section, enter the address bit-width and the
data bit-width. The address and data bit-widths are common to
all ports.

Result: Figure 7-28 shows the completed Memory Definition
example.

Read-Write ports A read-write port is a logical port that you can
use to perform either a memory read or a
memory write, but not both at the same time.
The physical ports associated with a
read-write logical port are typically an address
bus, a data in bus (for the memory write), a
data out bus (for the memory read), and the
control lines.

Read ports A read port is a logical port that you can use
only to perform a memory read. The physical
ports that it typically connects to are an
address bus, a data out bus (for the data being
read out of memory), and the control
lines.

Write ports A write port is a logical port that you can use
only to perform a memory write. The physical
ports that it typically connects to are an
address bus, a data in bus (for the data being
written to memory), and the control lines.

7-71

Using Register Files and Memories for Arrays

Figure 7-28 Completed Exploratory Memory Definition

4. Click the Next button to display the Memory Pin Definition dialog
box (Figure 7-16).

7-72

Using Register Files and Memories for Arrays

Figure 7-29 Exploratory Memory Pin Definition Dialog Box

Based on the input and output ports you defined, the Memory
Wrapper Generator tool generates a pin definition list required
from the memory vendor for a matching memory cell.

Memory
cell description

Memory
wrapper
definition

from vendor
required

7-73

Using Register Files and Memories for Arrays

Assigning Pins to the Memory Logical Ports

Default pins and buses are initially created and assigned
automatically. The Memory Pin Definition dialog box shows the ports
and control pins used in the memory wrapper, and it shows the pins
that would be required in a vendor memory to match the wrapper
interface.

A green circle with an OK is displayed next to the Port Address, Data
Input, Data Output, Clock, and Unassigned Pins categories in the
wrapper define. This means there is no pin assignment action
required.

Click the Next button to display the Wrapper Properties dialog box
(Figure 7-18).

If you need to add additional pins, click on the Add Pins button.

7-74

Using Register Files and Memories for Arrays

Figure 7-30 Exploratory Wrapper Properties Dialog Box

7-75

Using Register Files and Memories for Arrays

Defining the Exploratory Memory Wrapper Properties

The Wrapper Properties dialog box shows the connections between
the wrapper and a memory of this type.

To define the wrapper properties,

1. Select positive or negative to define the clock edge used by the
exploratory memory, which should be the same as your design.

2. In the Wrapper Name text field, the name of the wrapper is
displayed.

3. In the Design Library field, enter a name representing the design
library in which the wrapper design will reside.

The name is a design library that contains the analyzed structural
wrapper. Enter the WORK design library, if you do not have a
designated library name. You can use any name except a
reserved Synopsys library name such as “DW01.”

4. Add pins as necessary (you can add only global control wrapper
pins, not memory pins). This step is not usually needed for
exploratory memories.

5. Click the Next button to display a Wrapper Summary dialog box
(Figure 7-31).

7-76

Using Register Files and Memories for Arrays

Figure 7-31 Exploratory Memory Wrapper Summary

 If the displayed summary information is correct, click Finish.

7-77

Using Register Files and Memories for Arrays

When you are finished, the wrapper is displayed in the Memory
Wrapper main window (Figure 7-20).

Figure 7-32 Exploratory Memory Wrapper in Main Window

 Schematic

Waveform

Port control pin list

7-78

Using Register Files and Memories for Arrays

Reviewing and Editing the Exploratory Memory Wrapper

You can review and edit the memory wrapper for a exploratory
memory using the commands in “Viewing and Editing the Wrapper
Properties” on page 7-61.

Saving the Exploratory Memory Wrapper Files

After specifying the waveforms, save the .wrap and .sldb files.

To save the wrapper,

1. Choose File > Save, which saves the .wrap file.

2. Choose File > Export Wrapper, and select the Save as type to be
Verilog Wrapper or VHDL Wrapper, which saves the .sldb file and
the Verilog or VHDL wrapper description file. “Saving the Memory
Wrapper Files” on page 7-64 shows this dialog box and provides
additional details about exporting wrapper files.

After the exploratory memory is generated, you can use it the same
way as a vendor memory, described in “Using Generated Vendor
Memory Wrappers With SystemC Compiler” on page 7-66.

7-79

Using Register Files and Memories for Arrays

Generating a Memory Wrapper Testbench

After you generate the memory wrapper, it is important to verify that
it meets the memory vendor’s specifications. Checking the wrapper
after you generate it can save verification and redesign time later in
the design cycle.

The Memory Wrapper Generator tool can automatically create a
self-checking simulation testbench and test case to verify that the
memory wrapper is correctly specified and generated. The testbench
performs a sequence of writes to and reads from the memory.
Generating the memory wrapper testbench requires that you have a
Verilog or VHDL memory simulation model, which is typically supplied
by the memory vendor.

To verify your memory wrapper, use the automatically created test
design and testbench to run behavioral simulation of your memory
wrapper.

The memory wrapper testbench generated files use your specified
memory wrapper name with an additional _D as the file names, for
example memory_wrap_D.v.

To test your wrapper with a memory wrapper testbench,

1. Choose File > Export Wrapper (Figure 7-25 on page 7-65), select
the Save as type to be Verilog Testbench or VHDL Testbench,
which saves the following files:

- A sample design containing memory operations,
memory_wrap_D.v or memory_wrap_D.vhd

This file contains a behavioral design that reads data from its
input port, writes the data into the memory, reads it back from
the memory, and writes it to its output port.

7-80

Using Register Files and Memories for Arrays

- A self-checking simulation testbench, memory_wrap_D_tb.v or
memory_wrap_D_tb.vhd

This file writes a number of values to the sample design and
reads values back from the sample design. It compares each
value read from the sample design to the expected value.

To create a very simple test case that writes and reads only one
value, enable the “Check here to create simple test only” option
in the Export Wrapper dialog box, and save the testbench files
again.

- A dc_shell script file, memory_wrap_D_v.scr or
memory_wrap_D_vhd.scr

This script contains the dc_shell commands to synthesize the
sample design. You can customize the script.

2. Run the memory_wrap_D_v.scr script in dc_shell.

This synthesizes the sample design and generates a structural
RTL design.

3. Simulate the RTL design with the generated wrapper file and the
memory simulation model. For example, to simulate a Verilog RTL
design with VCS, read in the *_D_tb.v, *_D.v, and the *_D.scr files.

This simulation reveals any problems with the memory wrapper
specification. If problems are detected, you need to correct the
memory wrapper definition and generate a revised memory
wrapper to produce a valid memory testbench simulation.

8-1

Advanced Techniques

8
Advanced Techniques 8

This chapter explains advanced features and techniques you can use
to further improve scheduling and the quality of results.

This chapter contains the following sections:

• Using Multiple Files to Describe a Design

• Speculative Execution

• Setting a Specific Implementation for Components

• Externalize a Cell

8-2

Advanced Techniques

Using Multiple Files to Describe a Design

If your design has multiple modules that are defined in separate files,
you can use either the #include directive or preserved functions to
bring the external files into the primary design.

Using #include

To bring separate files in a primary design file, you can use the
#include directive. This is useful if you want to include the same files
in several designs. For example, you may have IP that is used in
many designs. However, this is not a recommended C programming
style, because using the #include directive increases the size of your
program.

Using Precompiled Netlists

External precompiled netlists in the form of .db files can be brought
into your primary design with the preserved function capability.

To bring the precompiled netlist into the primary design,

1. Add the preserve_function compiler directive to a function in
your behavioral description that represents the external
precompiled netlist.

2. Elaborate the design with the compile_systemc command.
Enter

dc_shell> compile_systemc primary_design.cc

3. Read in the precompiled netlists with the
read_preserved_function command. This command maps
the precompiled netlist to the preserved function.

8-3

Advanced Techniques

Enter

dc_shell> read_preserved_function_netlist
module1_elab.db

dc_shell> read_preserved_function_netlist
module2_elab.db

4. Use the link command to link the design. Enter

dc_shell> link

If your precompiled netlist is in a directory that is not defined as a
design library, use the define_design_lib command to map the
directory to a design library before using the
read_preserved_function_netlist command.

For example, to map module1.db and module2.db files in the library1
directory to the library_name1 design library, enter

dc_shell> define_design_lib library_name1
-path /remote/design_libraries/library1

dc_shell> compile_systemc primary_design.cc
dc_shell> read_preserved_function_netlist module1_elab.db

-design_library library_name1
dc_shell> read_preserved_function_netlist module2_elab.db

-design_library library_name1
dc_shell> link

How to create and use preserved functions is described in “Using
Preserved Functions” on page 5-23. Also see the coding guidelines
in the CoCentric™ SystemC Compiler Behavioral Modeling Guide.

8-4

Advanced Techniques

Speculative Execution

You can reduce the length of critical paths that contain conditional
operations by allowing SystemC Compiler to perform speculative
execution. The bc_enable_speculative_execution variable is
set to false by default. To enable speculative execution, set this
variable to true before executing the schedule command. Enter

dc_shell> bc_enable_speculative_execution = "true"
dc_shell> schedule -io_mode superstate_fixed

When speculative execution is enabled, conditional operations are
precomputed before the results of the conditional branches are
known. Results of branches that are not executed are ignored. This
applies only to data path operations, such as

if (condition)
 y = z + q;
else
 y = z - q;

The original behavioral description, for example, could contain
reading of an input port, an add, a subtract, and writing the results to
an output port that must occur in the same clock cycle, as shown in
Example 8-1.

8-5

Advanced Techniques

Example 8-1 Executing Without Speculative Execution
...
wait();
wait();
cond_bool = in_port.read() + b;
if (cond_bool)
 z = x - y;
else
 z = y - x;
out_port.write(z);
wait();
...

Synthesis of the code in Example 8-1 requires control chaining.
Control chaining is when the condition controlling the selection of a
branch execution happens in the same cycle as operations in that
branch. This happens in Example 8-1 because the following occur in
the same clock cycle:

• The read of in_port

• The computation of cond_bool

• The selection of the appropriate branch

• The execution of the appropriate subtraction

• The write to the output

Enabling speculative execution allows SystemC Compiler to
restructure the code internally similar to Example 8-2, where the
changes are shown in bold. When you enable speculative execution,
control chaining is preempted and the length of the critical paths are
reduced.

8-6

Advanced Techniques

Example 8-2 Executing With Speculative Execution
...
x1 = x - y;
wait();
x2 = y - x;
wait();
cond_bool = in_port.read() + b;
if (cond_bool)
 z = x1;
else
 z = x2;
out_port.write(z);
wait();
...

Setting a Specific Implementation for Components

Use the bc_set_implementation command to define a specific
implementation for an operation before executing the
bc_time_design command. This overrides the bc_time_design
command default implementation selection for that operation. For
example, to specify the DW01_add, cla implementation for the add
operation on line 114, enter

dc_shell> bc_set_implementation entry/main_loop/add_114
 -module DW01_add
 -implementation cla
dc_shell> bc_time_design

The -module option specifies the synthetic component from a
DesignWare library, and the -implementation option specifies the
specific implementation of that component. The implementation is
used for the add_114 operation.

8-7

Advanced Techniques

You can use the bc_set_implementation command to list all
possible implementations for an operation. For example, to list the
possible implementations for the add_114 operation, enter

dc_shell> bc_set_implementation entry/main_loop/add_114
-list_valid

You may inadvertently restrict sharing of multifunctional units when
you use the bc_set_implementation command. For example, if
you specify an DW01_add implementation for an add operation, you
are not allowing sharing of the DW01_addsub implementation for that
add operation with another subtraction operation.

You can also use the bc_set_implementation command to
define an implementation for all operations of the same type. Use the
find command to extract the full path to the operations. For example,
to find all the add operations and specify that the DW01_add, cla
implementation is used, enter

dc_shell> bc_set_implementation find (cell {*add*} -hier)
 -module DW01_add
 -implementation cla

8-8

Advanced Techniques

Externalize a Cell

Externalizing a cell in your design means to make it an external model,
for example a memory model.

The external cell outputs become inputs to your design, and the
external cell inputs become outputs of your design. Figure 8-1
illustrates the r1 cell before and after making it external.

Figure 8-1 Externalize a Cell

To externalize a RAM cell,

1. Modify your behavioral description to map an array to a RAM.

2. Schedule the design.

3. Use the compile command to compile the design into gates.

4. Use the externalize_cell command to externalize the RAM
cell.

Externalized cellOriginal cell

r1

RAM

addr

di

do

r1_addr

r1_di

r1_do
r1

my_design

8-9

Advanced Techniques

For example,

dc_shell> schedule -io_mode super
dc_shell> compile
dc_shell> externalize_cell RAM_A

8-10

Advanced Techniques

A-1

Setting Up SystemC Compiler

A
Setting Up SystemC Compiler A

This appendix describes the basic information and commands you
need to know to set up and start SystemC Compiler in the following
sections:

• Defining Environment Variables and Paths

• Defining Libraries and Other Variables

• Starting the SystemC Compiler Command Interface

• Issuing SystemC Compiler Commands

• Using Scripts

• Using compile_systemc Command Preprocessor Options

• Starting BCView

• Starting the Memory Wrapper Tool

A-2

Setting Up SystemC Compiler

• Getting Command, Variable, and Error Help

Defining Environment Variables and Paths

Before you can start SystemC Compiler on your workstation, you
need to define the SYNOPSYS, SNPSLM_LICENSE_FILE, and
SYSTEMC_CPP environment variables. Define the SNYOPSYS
environment variables as the path to the SystemC Compiler
installation.

setenv SYNOPSYS path

where path is the Synopsys synthesis products installation (for
example, on your system it could be /usr/releases/bin/synopsys)

set path = ($SYNOPSYS/sparcOS5/syn/bin $path)

setenv SNPSLMD_LICENSE_FILE your_license_key_path

setenv SYSTEMC_CPP "path options -Iinclude_path"

where path options is one of the following:

• the GNU C++ Compiler version 2.95.2 or later compiler options
are:

-trigraphs -E -C -U__GNUC__
-U__GNYG__ -Wp, -no-gcc, -pedantic

or

• the Sun SparcWorks C++ Compiler version 5.0 or later compiler
options are:

-E -xCC -Xc

A-3

Setting Up SystemC Compiler

The include_path is the path to the SystemC include directory with
the systemc.h header file (part of the SystemC Class Library
installation).

Defining Libraries and Other Variables

SystemC Compiler uses the same variables as Design Compiler to
set up synthesis. The following table shows the important variables
that define a synthesis setup.

You can define SystemC Compiler variables in a .synopsys_dc.setup
file, from the command interface shell, or in your command script.

Variable Description Example Definition

target_library Technology Library {“tc6a_cbacore.db”}

synthetic_library DesignWare Library {“dw01.sldb” “dw02.sldb”}

link_library Link Library {“*” “} + target_library + synthetic_library

search_path Search Path search_path + ./CC + ./DB + ./
(By default, search_path includes the
current working directory and the
$SYNOPSYS/libraries/syn path.)

A-4

Setting Up SystemC Compiler

SystemC Compiler reads the .synopsys_dc.setup files in the following
order:

For details about these variables, the .synopsys_dc.setup file,
choosing a target technology, a wire load model, and operating
conditions, see the Design Compiler Command-Line Interface Guide
and the Synopsys man pages.

Starting the SystemC Compiler Command Interface

To invoke the SystemC Compiler command interface, change to the
working directory containing your design source and enter the
dc_shell command at the system prompt:

unix% dc_shell

This command launches the command interface, reads the
.synopsys_dc.setup files, and displays a dc_shell prompt.

Creating a command.log File

SystemC Compiler records the commands you enter at the command
prompt in the command log file. A new command log file is created
each time you launch dc_shell. Remember to save each log file with
a different file name before starting another command interface shell,
otherwise it will be overwritten

Search Path Typical Variable Definitions

${SYNOPSYS}/admin/setup/.synopsys_dc.setup Site setup definitions

~/.synopsys_dc.setup User setup definitions

./.synopsys_dc.setup Project setup definitions

A-5

Setting Up SystemC Compiler

By default, the site-wide .synopsys_dc.setup file defines the
command_log_file as

command_log_file = "./command.log"

After you run an interactive session of SystemC Compiler, you can
use the command.log file to create and customize a command script
file (see “Using Scripts” on page A-6.)

Recording Your Command Session

To record the commands you issue and the system responses in a
log file for later evaluation, at the UNIX prompt, pipe the output of the
dc_shell command to the UNIX tee command. The tee command
copies the output of your screen to the designated log file. For
example,

unix% dc_shell | tee filename.log

Issuing SystemC Compiler Commands

After you launch the SystemC Compiler tool, you enter commands
at the dc_shell prompt, for example

dc_shell> compile_systemc my_design.cc

If SystemC Compiler is able to execute the command successfully,
the system response is 1. However, if SystemC Compiler cannot
execute the command, the system response is 0 and an error
message informing you of the problem is displayed.

A-6

Setting Up SystemC Compiler

Listing SystemC Compiler Variables

You can list all of the SystemC Compiler variables for behavioral
synthesis and their current settings by using the following command
at the dc_shell prompt:

dc_shell> list -variables bc

Using Scripts

A script file, also called a command script, is a sequence of dc_shell
commands in a text file. Command scripts enable you to execute
dc_shell commands automatically.

Creating Scripts

To create a command script, create a text file of the commands you
want to enter at the dc_shell prompt. Or, you can use a saved
command.log file and modify the commands for your current
synthesis run.

A-7

Setting Up SystemC Compiler

Script Example

Example A-1 shows an example command script you can use as a
guide to create a script that suits your requirements.

Example A-1 SystemC Compiler Command Script
/* define variables */
bc_enable_analysis_info = "true"

target_library = {"tc6a_cbacore.db"}
synthetic_library = {"dw01.sldb" "dw02.sldb"}
link_library = {"*"} + target_library + synthetic_library;
search_path = search_path;

clock_name = "clk"
clock_period = 20

read dw01.sldb
read standard.sldb

/* parse and elaborate SystemC code */
compile_systemc cmult.cc

/* write elaborated db file */
write -f db -hier -o cmult_elab.db

/* set constraints on the chip */
create_clock clock_name -p clock_period

/* estimate timing and report estimates */
bc_time_design
report_resource_estimates

write -hier -o cmult_timed.db

/* check design for coding style */
bc_check_design

/* display time stamp to see scheduling time */
sh date

/* schedule and report scheduling */
schedule -io super -effort medium
report_schedule
sh date

A-8

Setting Up SystemC Compiler

/* write design database and rtl code */
write -hier -f verilog -o cmult_rtl.v
write -hier -f db -o cmult_rtl.db

/* compile to gates & write gate-level database */
sh date
compile
sh date
write -hier -f db -o cmult_gate.db

/* report timing, resources, and area */

report_timing
report_resources
report_area

quit

Using the Script

You can provide a command script when you start dc_shell or use
the include command from dc_shell.

To provide a command script named command.scr when you start
dc_shell, enter the following at a UNIX prompt:

unix% dc_shell -f command.scr

To run the same command script from a dc_shell prompt, enter

dc_shell> include oommand.scr

For more information about creating and using commands scripts,
see the Design Compiler Command-Line Interface Guide

A-9

Setting Up SystemC Compiler

Using UNIX Shell Commands

You can include a UNIX shell command in a SystemC Compiler script
by preceding it with sh, for example

sh date

Note:
The UNIX shell command response is 0 for success or 1 to
indicate an error, which is the reverse of SystemC Compiler
responses.

Using compile_systemc Command Preprocessor
Options

The compile_systemc command uses a standard C++ compiler’s
C++ preprocessor. The preprocessor is defined by the
SYSTEMC_CPP environment variable, which is set to the GCC
compiler by default (see “Defining Environment Variables and Paths”
on page A-2).

You can also define preprocessor options with the following
compile_systemc command options:

dc_shell> compile_systemc
[-cpp cpp_program]
[-cpp_options options]
 design.cc

Use the -cpp option to specify a C++ preprocessor to use with the
compile_systemc command other than the default.

A-10

Setting Up SystemC Compiler

This option directs the compile_systemc command to use the
specified C++ preprocessor. Otherwise, it uses the C++ preprocessor
that is defined by the SYSTEMC_CPP environment variable.

You can also specify compile_systemc command preprocessor
options with the -cpp_options argument. For example, the options
can be used as

dc_shell> compile_systemc -cpp
 "/usr/local/bin/g++ -trigraphs -E -C -U__GNUC__ -U__GNYG__
 -Wp,-no-gcc,-pedantic" cmult.cc

where usr/local/bin is the path to the g++ executable and the other
terms within the double-quotes are g++ preprocessor options. The
preprocessor options may be different for your system. Enclose the
cpp_program specification in double-quotes.

You can also use the -cpp_options option to specify C++
preprocessor arguments you want the compile_systemc
command to pass to the C++ preprocessor.

For example, to pass arguments to the C preprocessor without
changing the designated preprocessor, enter

dc_shell> compile_systemc -cpp_options
"-DMACX -I/u/systemc/include" cmult.cc

where DMACX defines a C preprocessor macro and instructs the C
preprocessor to look for header files in the directory /u/systemc/
include.

For information about GCC or SparcWorks compiler options, consult
the compiler documentation.

A-11

Setting Up SystemC Compiler

Starting BCView

You can start BCView from within the SystemC Compiler environment
or from a UNIX shell. Before using the SystemC Compiler
compile_systemc command, set the bc_enable_analysis
variable to true so SystemC Compiler generates the additional
analysis information used by BCView. See “Preparing Designs for
BCView” on page 6-2 for details.

If you are running BCView on a remote system, set the display to your
system, for example

unix% setenv DISPLAY hostname:0.0

Starting BCView From dc_shell

Start BCView from within dc_shell either after a successful schedule
or after scheduling errors occur.

To start BCView from dc_shell,

• Enter the following at the dc_shell prompt:

dc_shell> bc_view
[-output out_db_file]
[-project_file project_file_name]
[-dont_start]

This generates a project settings file, opens an xterm window, and
starts BCView. Use the options if you want to also specify the project
file name or create the .proj file without starting BCView.

For more information about the bc_view command and its options,
see the Synopsys man pages.

A-12

Setting Up SystemC Compiler

Starting BCView From a UNIX Shell

You can start BCView from a UNIX shell if the project settings file is
available.

To start BCView from a UNIX shell,

1. Produce a .db file with analysis information at appropriate stages
in the design flow (for example, after the schedule command).

2. Create a project settings file (.proj file).

To do this from dc_shell, enter

dc_shell> bc_view -dont_start

3. Issue the following command:

unix% bc_view -f file.proj

Using BCView in Your Script

You can incorporate BCView directly into your design flow by
including it in your script. Example A-2 shows part of a script that
includes BCView in the flow. The BCView related lines are bold.

Example A-2 Using BCView in a Script
bc_enable_analysis_info = "true"
 compile_systemc design.cc
...
schedule -io superstate
...
...(successful schedule)
bc_view

A-13

Setting Up SystemC Compiler

Opening BCView Windows

When you start BCView for post-scheduling analysis, it automatically
displays the FSM Viewer, HDL Browser, Selection Inspector, and
Reservation Table windows.

When you start BCView in error analysis mode, it automatically
displays the Selection Inspector, Code Browser, and Scheduling Error
Analyzer windows. To open BCView in error analysis mode, see
“Using the Scheduling Error Analyzer” on page 6-10.

To open a BCView window during a session,

• Choose Window > Create > window_name in any currently open
BCView window.

where window_name is the name of the window you want to open.

A-14

Setting Up SystemC Compiler

Starting the Memory Wrapper Tool

Before using the Memory Wrapper tool, set your display environment
variable. Then change to the directory that contains your memory
files to start the program.

To set the display environment variable,

• Enter the following at the UNIX prompt:

unix% setenv DISPLAY hostname:0.0

To change directories and start the Memory Wrapper tool,

• Enter the following at the UNIX prompt:

unix% cd my_memory_design
unix% memwrap &

See “Generating Memory Wrappers” on page 7-34 for details about
using the Memory Wrapper tool.

A-15

Setting Up SystemC Compiler

Getting Command, Variable, and Error Help

The CoCentric™ SystemC Compiler Quick Reference provides a list
of frequently used commands and variables.

You can also find information about the SystemC Compiler,
Behavioral Compiler, and Design Compiler commands, variables,
and errors in the online man pages, which are available using the
various access methods described in the following sections.

System Prompt

You can access online man pages for SystemC Compiler commands,
variables, and errors from the UNIX prompt by entering the following
command:

unix% man command_name | variable_name | error_name

Note: You need to add the ${SYNOPSYS}/doc/syn/man path to your
MANPATH environment variable.

SystemC Compiler Command Prompt

You can access online man pages for SystemC Compiler commands,
variables, and errors from the SystemC Compiler system prompt by
entering the following command:

dc_shell > help [command_name | variable_name | error_name]

A-16

Setting Up SystemC Compiler

B-1

Complex Number Multiplier Example Files

B
Complex Number Multiplier Example Files B

This appendix shows the source code, command script, and
examples of reports generated by SystemC Compiler for the complex
number multiplier example. It contains the following sections:

• Complex Number Multiplier Source Code

• Command Script

• Reports Created During Synthesis

B-2

Complex Number Multiplier Example Files

Complex Number Multiplier Source Code

Example B-1 shows the source code for the complex number
multiplier, which uses two-way handshaking.

Example B-1 Complex Multiplier Source Code

/*********************************/

// cmult.h header file
SC_MODULE(cmult_hs) {

// Declare ports
sc_in<bool> reset;
sc_in<bool> new_data;
sc_in<sc_bv<8> > data_in;
sc_in_clk clk;
sc_out<bool> ready_for_data;
sc_out<bool> output_data_ready;
sc_out<sc_int<16> > real_out;
sc_out<sc_int<16> > imaginary_out;

// Declare internal variables and signals

// Declare processes in the module
void entry();

// Constructor
SC_CTOR (cmult_hs) {

// Register processes and
// define active clock edge
SC_CTHREAD(entry, clk.pos());

// Watching for global reset
watching(reset.delayed() == true);

}
};

B-3

Complex Number Multiplier Example Files

/*********************************/

// cmult.cc implementation file

#include "systemc.h"
#include "cmult.h"

void cmult_hs :: entry()
{
 sc_int<8> a, b, c, d;

 //Initialize and reset if reset asserts
 ready_for_data.write(false);
 output_data_ready.write(false);
 real_out.write(0);
 imaginary_out.write(0);
 wait(); //required clock before while loop

 while (true)
 {
 ready_for_data.write(true);
 output_data_ready.write(false);

 wait_until(new_data.delayed() == true);
 ready_for_data.write(false);

 // Read four data values from input port
 a = data_in.read();
 wait();
 b = data_in.read();
 wait();
 c = data_in.read();
 wait();
 d = data_in.read();
 wait();
 //Calculate and write output ports
 real_out.write(a * c - b * d);
 imaginary_out.write(a * d + b * c);
 output_data_ready.write(true);
 wait();
 }
}

B-4

Complex Number Multiplier Example Files

Command Script

Example B-2 shows the command script to synthesize and compile
the complex number multiplier to gates. It uses the commands and
writes files according to the steps recommended in Chapter 2, “Using
SystemC Compiler.”

Example B-2 Command Script for Complex Number Multiplier
/*****run_cmult.scr script*****/
/* define variables */
bc_enable_analysis_info = "true"

target_library = {"tc6a_cbacore.db"}
synthetic_library = {"dw01.sldb" "dw02.sldb"}
link_library = {"*"} + target_library + synthetic_library;
search_path = search_path;

clock_name = "clk"
clock_period = 20

read dw01.sldb
read standard.sldb

/* parse and elaborate SystemC code */
compile_systemc cmult.cc

/* write elaborated db file */
write -f db -hier -o cmult_elab.db

/* set constraints on the chip */
create_clock clock_name -p clock_period

/* estimate timing and report estimates */
bc_time_design
report_resource_estimates

write -hier -o cmult_timed.db

/* check design for coding style */
bc_check_design

/* display time stamp to see scheduling time */
sh date

B-5

Complex Number Multiplier Example Files

/* schedule and report scheduling */
schedule -io super -effort medium
report_schedule
sh date

/* write design database and rtl code */
write -hier -f verilog -o cmult_rtl.v
write -hier -f db -o cmult_rtl.db

/* compile to gates & write gate-level database */
sh date
compile
sh date
write -hier -f db -o cmult_gate.db

/* report timing, resources, and area */

report_timing
report_resources
report_area

B-6

Complex Number Multiplier Example Files

Reports Created During Synthesis

You can create various reports during a typical synthesis session.
Examples of the reports created with the commands in Chapter 2,
“Using SystemC Compiler,” are shown in the following sections.

Estimated Resources

Example B-3 shows the report of resource estimates generated by
the report_resource_estimates command.

Example B-3 Report Resource Estimates
/*****report_resource_estimates*****/

Cumulative delay starting at new_data_22:
 new_data_22 = 0.000000
 neq_L22 = 0.067000

Cumulative delay starting at neq_L22:
 neq_L22 = 0.067000

Cumulative delay starting at data_in_30:
 data_in_30 = 0.000000
 mul_35 = 6.340029
 sub_35 = 10.138293
 real_out_35 = 10.138293

Cumulative delay starting at real_out_35:
 real_out_35 = 0.000000

Cumulative delay starting at mul_35:
 mul_35 = 6.357016
 sub_35 = 10.150984
 real_out_35 = 10.150984

Area for processors that can implement mul_35 (* = used for timing):
 *DW02_mult(nbw) = 2750.742432

Cumulative delay starting at mul_35_2:
 mul_35_2 = 6.357016
 sub_35 = 10.430123
 real_out_35 = 10.430123

B-7

Complex Number Multiplier Example Files

Area for processors that can implement mul_35_2 (* = used for timing):
 *DW02_mult(nbw) = 2750.742432

Cumulative delay starting at imaginary_out_36:
 imaginary_out_36 = 0.000000

Cumulative delay starting at data_in_32:
 data_in_32 = 0.000000
 mul_35_2 = 6.340029
 mul_36_2 = 6.340029
 mul_36 = 6.340029
 add_36 = 10.138293
 imaginary_out_36 = 10.138293
 sub_35 = 10.417433
 real_out_35 = 10.417433

Cumulative delay starting at mul_36:
 mul_36 = 6.357016
 add_36 = 10.150984
 imaginary_out_36 = 10.150984

Area for processors that can implement mul_36 (* = used for timing):
 *DW02_mult(nbw) = 2750.742432

Cumulative delay starting at add_36:
 add_36 = 8.784022
 imaginary_out_36 = 8.784022

Area for processors that can implement add_36 (* = used for timing):
 *DW01_add(rpl) = 94.239998
 DW01_addsub(rpl) = 503.678986

Cumulative delay starting at data_in_26:
 data_in_26 = 0.000000
 mul_35 = 6.357016
 mul_36 = 6.357016
 add_36 = 10.150984
 sub_35 = 10.150984
 imaginary_out_36 = 10.150984
 real_out_35 = 10.150984

Cumulative delay starting at data_in_28:
 data_in_28 = 0.000000
 mul_36_2 = 6.357016
 mul_35_2 = 6.357016
 add_36 = 10.097484
 imaginary_out_36 = 10.097484

B-8

Complex Number Multiplier Example Files

 sub_35 = 10.430123
 real_out_35 = 10.430123

Cumulative delay starting at sub_35:
 sub_35 = 9.158618
 real_out_35 = 9.158618

Area for processors that can implement sub_35 (* = used for timing):
 DW01_sub(rpl) = 410.551453
 *DW01_addsub(rpl) = 503.678986

Cumulative delay starting at mul_36_2:
 mul_36_2 = 6.357016
 add_36 = 10.097484
 imaginary_out_36 = 10.097484

Area for processors that can implement mul_36_2 (* = used for timing):
 *DW02_mult(nbw) = 2750.742432

 Cycle Margin : 2.86 (Default)
 FSM : 0.55
 MUX : 1.21
 FF : 1.11
 Clock Uncertainty : 0.00

B-9

Complex Number Multiplier Example Files

Schedule Report

Example B-4 shows the schedule report generated by the
report_schedule command.

Example B-4 Schedule Report

/*****report_schedule*****/

 Date : Wed Nov 8 13:18:51 2000
 Version : 2000.11-PROD
 Design : cmult_hs

* Summary report for process entry: *

 Timing Summary

 Clock period 20.00
 Loop timing information:
 entry...8 cycles (cycles 0 - 8)
 loop_17.....................................7 cycles (cycles 1 - 8)
 loop_22.................................1 cycle (cycles 2 - 3)
 (continue) skip_short_branch_1.............. (cycle 3)
 (exit) EXIT_L22_1........................... (cycle 2)

 Area Summary

 Estimated combinational area 6127
 Estimated sequential area 1734
 TOTAL 7861

 9 control states
 11 basic transitions
 2 control inputs
 7 control outputs

 Resource types

B-10

Complex Number Multiplier Example Files

Register Types
==

8-bit register.....................3
16-bit register....................1

Operator Types
==

(8_8->16)-bit DW02_mult............2
(16_16->16)-bit DW01_add...........1
(16_16->16)-bit DW01_sub...........1

I/O Ports
==

1-bit input port...................1
1-bit registered output port.......2
8-bit input port...................1
16-bit registered output port......2

B-11

Complex Number Multiplier Example Files

Area Report

Example B-5 shows the report of area generated by the
report_area command.

Example B-5 Report Area
/*****report_area*****/

**
Report : area
Design : cmult_hs
Version: 2000.11-PROD
Date : Wed Nov 8 13:19:25 2000
**

Library(s) Used:

 cba_core (File: /u/bcp/IMAGES/rhei_dcshell_PROD/libraries/syn/
tc6a_cbacore.db)

Number of ports: 45
Number of nets: 303
Number of cells: 232
Number of references: 31

Combinational area: 1303.439941
Noncombinational area: 371.780029
Net Interconnect area: 5836.250000

Total cell area: 1675.219971
Total area: 7511.469727

B-12

Complex Number Multiplier Example Files

Timing Report

Example B-6 shows the report of timing generated by the
report_timing command.

Example B-6 Report Timing
/*****report_timing*****/

Information: Updating design information... (UID-85)

**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : cmult_hs
Version: 2000.11-PROD
Date : Wed Nov 8 13:19:22 2000
**

Operating Conditions:
Wire Load Model Mode: top

 Startpoint: fsm_block_cell/entry_ctl_state/entry_ctl_state[4]
 (rising edge-triggered flip-flop clocked by clk)
 Endpoint: imaginary_out_reg/imaginary_out_reg[15]
 (rising edge-triggered flip-flop clocked by clk)
 Path Group: clk
 Path Type: max

 Des/Clust/Port Wire Load Model Library
 --
 cmult_hs tc6a120m2 cba_core

 Point Incr Path
 --
 clock clk (rise edge) 0.00 0.00
 clock network delay (ideal) 0.00 0.00
 fsm_block_cell/entry_ctl_state/entry_ctl_state[4]/CLK (fdm5a2)
 0.00 0.00 r
 fsm_block_cell/entry_ctl_state/entry_ctl_state[4]/Q (fdm5a2)
 1.28 1.28 r
 U79/Y (inv1a0) 0.63 1.91 f
 U69/Y (or2c1) 0.77 2.68 r
 U67/Y (buf1a2) 0.74 3.43 r

B-13

Complex Number Multiplier Example Files

 U4/Y (ao4a2) 0.85 4.28 r
 r141/A[4] (cmult_hs_DW02_mult_8_8_1) 0.00 4.28 r
 r141/U57/Y (and2a2) 0.51 4.78 r
 r141/U1/U3140_1_4_0/CO (fa1a0) 0.66 5.44 r
 r141/U1/U3140_2_5_0/S (fa1a0) 0.86 6.30 r
 r141/U1/U3140_3_5_0/S (fa1a0) 0.78 7.09 f
 r141/U1/U3220_4_5/S (ha1a0) 0.60 7.69 f
 r141/U1/U9720/A[0] (cmult_hs_DW01_add_11_1) 0.00 7.69 f
 r141/U1/U9720/U0_1_0/Y (or2c0) 0.36 8.05 r
[7m--More--[m[A
[K r141/U1/U9720/U0_3_0/Y (and2b1) 0.47 8.51 r
 r141/U1/U9720/U0_5_0/Y (xnor2a2) 0.59 9.10 f
 r141/U1/U9720/SUM[0] (cmult_hs_DW01_add_11_1) 0.00 9.10 f
 r141/PRODUCT[5] (cmult_hs_DW02_mult_8_8_1) 0.00 9.10 f
 add_36/B[5] (cmult_hs_DW01_add_16_0) 0.00 9.10 f
 add_36/U1_5/CO (fa1a0) 0.73 9.83 f
 add_36/U1_6/CO (fa1a0) 0.64 10.47 f
 add_36/U1_7/CO (fa1a0) 0.64 11.11 f
 add_36/U1_8/CO (fa1a0) 0.64 11.74 f
 add_36/U1_9/CO (fa1a0) 0.64 12.38 f
 add_36/U1_10/CO (fa1a0) 0.64 13.02 f
 add_36/U1_11/CO (fa1a0) 0.64 13.65 f
 add_36/U1_12/CO (fa1a0) 0.64 14.29 f
 add_36/U1_13/CO (fa1a0) 0.64 14.93 f
 add_36/U1_14/CO (fa1a0) 0.67 15.60 f
 add_36/U1_15/Y (xor3a2) 0.51 16.10 f
 add_36/SUM[15] (cmult_hs_DW01_add_16_0) 0.00 16.10 f
 U36/Y (mx2a2) 0.34 16.45 f
 U118/Y (and2b1) 0.27 16.72 f
 imaginary_out_reg/imaginary_out_reg[15]/D (fd1a1) 0.00 16.72 f
 data arrival time 16.72

 clock clk (rise edge) 20.00 20.00
 clock network delay (ideal) 0.00 20.00
 imaginary_out_reg/imaginary_out_reg[15]/CLK (fd1a1) 0.00 20.00 r
 library setup time -0.27 19.73
 data required time 19.73
 --
 data required time 19.73
 data arrival time -16.72
 --
 slack (MET) 3.01

B-14

Complex Number Multiplier Example Files

Report Resource

Example B-7 shows the report of resources generated by the
report_resource command after executing the compile
command to do logic synthesis.

Example B-7 Report Resources
/*****report_resources*****/

**
Report : resources
Design : cmult_hs
Version: 2000.11-PROD
Date : Wed Nov 8 13:19:24 2000
**

Resource Sharing Report for design cmult_hs in file cmult.cc

===
| | | | Contained | |
| Resource | Module | Parameters | Resources | Contained Operations |
===
r139	DW01_add	width=16		add_36
r141	DW02_mult	B_width=8		mul_35 mul_35_2
		A_width=8		mul_36_2
r143	DW02_mult	B_width=8		mul_36
		A_width=8		
r146	DW01_sub	width=16		sub_35
===

Implementation Report

===
| | | Current | Set |
| Cell | Module | Implementation | Implementation |
===
add_36	DW01_add	rpl	
mul_36	DW02_mult	nbw	
r141	DW02_mult	nbw	
sub_35	DW01_sub	rpl	
===

No multiplexors to report

IN-1

Index

Symbols
#include directive 8-2

A
all_inputs function 3-9
allocating,overview 1-9
analyze command 7-66
architectural exploration 5-2

evaluation 6-21
examples 5-2
guidelines 5-6

area 3-21
constraints 3-1
estimates 3-16, 3-17

array, large 7-2
asynchronous memories 7-24
attribute

map_to_modules 7-17
map_to_registerfiles 7-7

B
bc_chain_read_into_mem variable 5-12
bc_chain_read_into_oper variable 5-12
bc_check_design command 2-10
bc_dont_register_input_port command 5-18

bc_enable_analysis_info variable 2-5, 6-2
bc_enable_chaining variable 5-11
bc_enable_speculative_execution variable 8-4
bc_margin command 5-15, 5-16
bc_report_arrays command 7-8
bc_report_memories command 7-22, 7-30
bc_set_implementation command 8-6
bc_time_design command 2-11, 5-12
bc_use_registerfiles variable 7-6
bc_view command 6-3
BCView 6-1

analyzing scheduling errors 2-15
design evaluation 2-5
error analysis mode A-13
finding scheduling errors 2-15
overview 1-15
recommended flow 6-8
Reservation Table

chained operations 6-36
description 6-26
reading columns and rows 6-28

reviewing results 6-2
starting A-11
windows 6-5

FSM Viewer 6-6
HDL Browser 6-6
Reservation Table 6-6

IN-2

Scheduling Error Analyzer 6-7
Selection Inspector 6-6, 6-11

behavioral description
clock cycle and I/O 3-3

bit-level timing 3-13
bitwise timing 5-8

C
calculating margin 5-12
cells to constrain 4-31
chain_operations command 5-11
chained

operations 5-11, 6-36
changing design name 2-7
clock

creation 2-8
period setting 2-8

clock cycle
code 4-10
compared to I/O 3-3
margin 3-14, 5-12
relation to operation delay 3-2
utilization 6-54

code browser, BCView 6-6
Code Editor, memory 7-61
combinational logic

definition 3-2
delay 3-2

command
log file A-4

command flow 2-4
overview 2-3
preserved functions 5-32

command script
complex multiplier B-4

commands
analyze 7-66
bc_check_design 2-10
bc_dont_register_input_port 5-18
bc_margin 5-15, 5-16

bc_report_arrays 7-8
bc_report_memories 7-22, 7-30
bc_set_implementation 8-6
bc_time_design 2-11, 5-12
bc_view 6-3
chain_operations 5-11
compile 2-24, 2-26
compile_preserved_functions 5-30
compile_systemc 2-6
create_clock 2-8, 3-7
dc_shell 2-3
define_design_lib 5-29
dont_chain_operations 5-11
elaborate 2-7
entry interface A-5
externalize_cell 7-26, 8-8
find 4-33
free 2-16
ignore_array_loop_precedences 7-11
ignore_array_precedences 7-11
ignore_memory_loop_precedences 7-33
ignore_memory_precedences 7-31
include A-8
link 2-7
list 7-18
list -libs 3-9, 5-35
order 2-4
pipeline_loop 4-45
read 2-20
read_lib 7-66
read_preserved_function_netlist 5-28
recording in a log A-5
remove_analysis_info 2-6, 6-3
remove_attribute 5-8
remove_clock 3-8
remove_design 2-16
remove_scheduling_constraints 4-54
report_area 2-16
report_clock 3-7
report_hierarchy 4-34
report_lib 3-10
report_multicycles 5-20

IN-3

report_resource_estimates 2-12, 3-17, 5-15
report_resources 2-16
report_schedule 2-15, 4-20

abstract FSM 4-28
operations 4-22

report_schedule variables 4-26
report_scheduling_constraints 4-53
report_synlib 5-35, 7-19
report_timing 2-16
response 2-6
schedule 2-13, 2-14, 4-18, 4-31, 5-11

-extend_latency 2-13
script entry A-6
set_common_resource 4-55
set_cycles 4-37, 4-42
set_dont_use 5-7, 5-15
set_exclusive_use 4-57
set_input_delay 3-8
set_max_cycles 4-37, 4-42
set_memory_input_delay 7-26
set_memory_output_delay 7-26, 7-27
set_min_cycles 4-37, 4-42
set_operating_conditions 3-9
set_wire_load 3-12
UNIX shell commands A-9
UNIX shell entry A-9
write A-10

RTL .db 2-19
timed design 2-12

write_lib 7-66
write_rtl 2-20

compile_preserved_functions command 5-30
compile_systemc command 2-6
compiler directives

line_label 4-32
map_to_operator 5-34
preserve_function 5-24
resource 7-7, 7-17, 7-66

compiling gate-level netlist 2-24, 2-26
complex multiplier

command script B-4

source code B-2
components

sharing 4-7
constraints

environmental conditions 2-9
identifying cells 4-31
initial 2-8, 2-9, 3-1
latency 4-37
loop 4-38
memory 7-28
nested loops 4-39
removing 4-54
schedule 2-14, 4-18, 4-31
viewing 6-50

control constructs 6-12
control steps, in Scheduling Error Analyzer 6-15
create_clock command 2-8, 3-7
creating cells 4-31
critical path 3-19

determining 1-6
reviewing 6-61

cycle-fixed mode
description 4-13
description of 4-13
I/O scheduling 4-12

D
data path

creation 1-10
in a circuit diagram 1-5

dc_shell A-4
dc_shell command entry 2-3
define environmental variables A-2
delay of an operation 6-53
deleting analysis information 6-3
design

checking 2-11
command order 2-4
constraints 2-9
flow

IN-4

resuming 2-3
resuming from RTL .db 2-17
SystemC Compiler 2-1

name changing 2-7
reducing complexity 5-23
summary reports 6-61
synchronous 3-2
timing 2-8

DesignWare
components 5-23

using 5-34
pipelined components 5-37

dont_chain_operations command 5-11
dont_start option A-12

E
elaborate command 2-7
entering commands 2-3
environmental variables

defining A-2
error analysis mode, BCView A-13
error messages A-15
errors

HLS-51 6-9
HLS-52 6-9
messages 6-10
scheduling 6-9

estimating time and area 2-11
example designs

file location 1-13
explore architecture 5-2

examples 5-2
guidelines 5-6

extend latency 4-19, 4-55
externalize_cell command 7-26, 8-8

F
fanouts, edges in Reservation Table 6-49

find command 4-33
finding

array operation cells 7-14
cells 4-33
inherent constraints 6-50
Reservation Table objects 6-28
scheduling errors 6-9
user constraints 6-50

flip-flop
margin 3-15

flow recommended for BCView 6-8
for loops 4-41
free command 2-16
FSM

Conditions/Actions window 6-24
definition 4-8
in a circuit diagram 1-5
margin 3-16

FSM creation 1-10
FSM Viewer 6-6

usage 6-23
functions

all_inputs 3-9
preserve 5-23

G
gate-level netlist, writing out 2-24, 2-26
global margin value 5-16
goals, resource 4-55

H
handshake

pipelining loops 4-50
hardware allocation 1-9
HDL Browser 6-6
HDL file 2-20, 2-21
help A-15
hierarchy 5-23

IN-5

HLS-51 error 6-9
HLS-52 error 6-9

I
I/O

define 3-3
mode selection 2-13
operations 4-10

ignore_array_loop_precedences command
7-11
ignore_array_precedences command 7-11
ignore_memory_loop_precedences command
7-33
ignore_memory_precedences command 7-31
implementation selection 5-7
include command A-8
inferring memories 7-15
inferring registers 4-5
infinite loops 4-41
Info Tips

finding scheduling errors 6-16
loop names 6-45

initial constraints, specifying 2-8
initial interval

pipelining, clock cycles 4-45, 4-46, 4-47
initiation interval 4-47
inputs to SystemC Compiler 1-12
invoking BCView A-11

L
labeling source code lines 4-32
large array 7-2
latency 4-57

definition 4-18
optimize 5-1

lifetime analysis of variables 4-6
line_label compiler directive 4-32
link command 2-7

link_library variable 2-5, A-3
list command 7-18

libraries 3-9, 5-35
log, creating file of commands A-4, A-5
loops

boundaries 4-41, 4-43
carry dependencies 4-48
constraining 4-37, 4-38
details 6-46
exits 6-45
for 4-41
infinite 4-41
names 6-45
nested

constraining 4-39
operations 6-48
pipelining 4-44

exit 4-52
restrictions 4-47
with handshake 4-50
with memory and I/O 4-49

viewing 6-44
while 4-41, 4-52

M
man pages A-15
map_to_modules attribute 7-17
map_to_operator compiler directive 5-34
map_to_registerfiles attribute 7-7
margin

calculation 5-12
global value 5-16

maximum delay of a processor 6-53
memory

access 7-29
strategy 7-15

and registers 7-5
architecture exploring 7-35
assigning pins to wrapper logical ports 7-46
asynchronous 7-24

IN-6

basics 7-15
Code Editor 7-61
exploratory 7-35
exploratory wrapper 7-67
in a circuit diagram 1-5
inferring 1-11, 7-15
latency 7-43
pipelined accesses 7-29
pipelining loops 4-49
resources

constraining 7-28
starting wrapper GUI A-14
timing 7-25
vendor 7-34
vendor library 7-34
vendor wrapper 7-39
wrapper properties 7-52
wrapper testbench

Memory Wrapper Generator
testbench generation 7-79

Memory Wrapper Generator 7-16
tool description 7-34

methodology of SystemC Compiler 2-1
multicycle components

replacing 5-23
multicycle operations

definition 5-19
identifying 6-51
implementation 5-19
increased latency 5-21
latency increase 5-37

multiple modules 8-2
multiplexer

margin 3-16, 5-14

N
naming conventions

cells 4-31
netlists

levelized 2-21
precompiled 8-2

nodes in SEA 6-12

O
object_list 5-7
operations

chaining
bitwise 5-8
description 5-11

delay 3-2, 6-34
in Scheduling Error Analyzer 6-12
overview 3-5
selecting 5-7

operator
chaining

definition 5-8
optimize

latency and area 5-1
options

dont_start A-12
preprocessor A-9

outputs of SystemC Compiler 1-12
overview

SystemC Compiler
output 1-14

P
parallel paths 3-19
physical synthesis, preparation 2-25
pipeline

components 5-37
constraints

scheduling 4-45
loop 4-44

exit 4-52
overview 1-11
restrictions 4-47

pipeline_loop command 4-45
place and route, preparation 2-24
precedence

IN-7

relations 7-31
precompiled netlist, creating 5-30
Precompiled netlists 8-2
preprocessor options A-9
preserve_function

compiler directive 5-23
restrictions 5-33
using 5-24

preserved functions 5-23
adding external files to primary design 2-8
bit-width restrictions 5-33
command

flow 5-32
compiling 5-30
creating 5-25
flow for using 5-27
identifying what to preserve 5-24
restrictions 5-33

processor chaining
definition 6-53

project settings file A-12

R
read command 2-20
read_lib command 7-66
read_preserved_function_netlist command
5-28
reducing runtimes 7-2
register file

inferring
overview 1-11

registers
allocation 4-6, 4-7
and memories 7-6
and RAM 7-5
bit width 6-42
dedicated 4-6
exclusive 4-57
file operators 7-13
inferred 4-5

margin 3-15, 5-13
removing unnecessary 5-18
sharing 4-6, 4-7
use 6-42

remove_analysis_info command 2-6, 6-3
remove_attribute command 5-8
remove_clock command 3-8
remove_design command 2-16
remove_scheduling_constraints command
4-54
removing scheduling constraints 4-54
removing unnecessary registers 5-18
report_area command 2-16
report_clock command 3-7
report_hierarchy command 4-34
report_lib command 3-10
report_multicycles command 5-20
report_resource_estimates command 2-12,
3-17, 5-15
report_resources command 2-16
report_schedule command 2-15, 4-20

abstract FSM 4-28
operations 4-22
variables 4-26

report_scheduling_constraints command 4-53
report_synlib command 5-35, 7-19
report_timing command 2-16
reports

array conflicts 7-9
clock margin 5-14
design summary 6-61
hierarchy 4-34
multicycle 5-21
nonconflicting memory accesses 7-30
pipelined loop timing summary 4-46
resource estimates 3-17
resource estimation, chained operations 5-10
schedule of FSM 4-28
schedule of operations 4-22
schedule of variables 4-26

IN-8

schedule summary 4-20
synthesis B-6
synthetic memory wrapper 7-19

Reservation Table 6-6
chained operations 6-36
clock-cycle utilization 6-54
derived edges 6-38

connectivity 6-40
description 6-26
hiding/showing resources 6-31
paths 6-38
reading columns and rows 6-28
register bit-width 6-42
register use 6-42
shared resources 6-35
viewing loop details 6-46
viewing loop exits 6-45
viewing loops 6-44
viewing operations in loops 6-48

reservation table 4-4
resource

delays 6-33
estimates report 5-10
setting goals 4-55
shared 6-35
sharing 4-4, 6-55, 6-59
utilization 6-32

resource compiler directive 7-7, 7-17, 7-66
resource estimate 3-17
resource-constrained scheduling 4-19
resource-driven scheduling 4-55
restrictions

pipelining loops 4-47
preserved functions 5-33

reviewing results with BCView 6-2
RTL

writing the .db file 2-19
writing the simulation file 2-21

S
schedule command 2-13, 2-14, 4-18, 4-31

extend latency 4-19, 4-55
processor chaining 5-11

scheduling
constraints 2-14, 4-18, 4-31

removing 4-54
cycle fixed 1-8, 2-13, 4-11, 4-13
default 4-18
effort level 2-14
errors

finding 6-9
errors, using BCView 2-15
-extend_latency 4-19, 4-55
I/O 4-10
I/O cycle-fixed mode 4-12
minimizing latency 4-3
objectives 4-18
operation 4-3
overview 1-7, 4-1, 4-2
performing 4-18
pipeline

constraints 4-45
resource sharing 4-4
resource-constrained 4-19
set_common_resource command 4-57
smallest area priority 2-13
summary report 4-20
superstate fixed 1-8, 2-13, 4-11, 4-14, 4-15,

4-16
-extend_latency 2-13

superstates, definition 4-16
timing-constrained 4-18

Scheduling Error Analyzer 6-7, 6-10
description 6-9
determining control steps 6-15
finding scheduling errors 6-16
nodes 6-12

scripts A-6
search_path variable 2-5, A-3
Selection Inspector 6-6

IN-9

Selection Inspector Window 6-11, 6-37
set_common_resource command 4-55
set_cycles command 4-37, 4-42
set_dont_use command 5-7, 5-15
set_exclusive_use command 4-57
set_input_delay command 3-8
set_max_cycles command 4-37, 4-42
set_memory_input_delay command 7-26
set_memory_output_delay command 7-26,
7-27
set_min_cycles command 4-37, 4-42
set_operating_conditions command 3-9
set_wire_load command 3-12
setup variables A-3
sharing components 4-7
sharing registers 4-7
simulation

cycle-accurate levelized HDL netlist 2-21
writing out gate-level netlist 2-24, 2-25, 2-26

souce code, labeling lines 4-32
source browser 6-6
source code

complex multiplier B-2
speculative execution 8-4
starting

BCView A-11
memory wrapper GUI A-14
SystemC Compiler A-4

superstate-fixed mode
description of 4-16
I/O scheduling 4-14

superstates, definition of 4-16
.synopsys_dc.setup file A-3
synthesis

controlling 4-10
preserved functions 5-31
reports B-6

synthesis flow 1-3
synthesizable RTL out

write command to generate 2-20

synthetic library
define 2-5
location 1-14

synthetic_library
variable 2-5

synthetic_library variable A-3
SystemC Compiler

design flow 2-1
I/O operations 4-11
output

RT-level 2-18, 2-19
timed .db file 2-12

T
target_library variable 2-5, A-3
technology library 1-13

location 1-13
time, units of measure 3-21
timed .db file

writing out 2-12
timing 1-6

bit level 3-13
constraints 3-1, 4-57
estimates 3-17
estimation 5-7

timing of memories 7-25
timing-constrained scheduling 4-18
tracing constraints 6-15

U
UNIX shell commands A-9
user constraints 6-14
using scripts 2-3

V
variables

bc_chain_read_into_mem 5-12
bc_chain_read_into_oper 5-12

IN-10

bc_enable_analysis_info 2-5, 6-2
bc_enable_chaining 5-11
bc_enable_speculative_execution 8-4
bc_use_registerfiles 7-6
environmental

defining A-2
lifetime analysis 4-6
link_library 2-5, A-3
search_path 2-5, A-3
setup A-3
.synopsys_dc.setup A-3
synthetic_library 2-5, A-3
target_library 2-5, A-3

vendor
technology library 1-13

verification, comparison of scheduling modes
4-16

W
while loops 4-41
wrapper

exploratory memory 7-67
vendor memory 7-39

write
gate-level netlist for simulation 2-24, 2-25,

2-26
gate-level netlist for synthesis 2-24, 2-26
HDL file 2-20, 2-21
RTL .db file 2-19
timed .db file 2-12, A-10
timed design 2-12

write_lib command 7-66
write_rtl command 2-20

	Head1TOC - What’s New in This Release xxviii
	Head1TOC - About This Guide xxx
	Head1TOC - Customer Support xxxiii
	ChapTitleTOC - 1. Introduction to SystemC Compiler Behavioral Synthesis
	Head1TOC - Understanding What SystemC Compiler Does 1�3
	Head2TOC - Synthesis With SystemC Compiler 1�4
	Head2TOC - Timing 1�6
	Head2TOC - Scheduling 1�7
	Head2TOC - Allocating Hardware 1�9
	Head2TOC - Creating an FSM and Data Path 1�10
	Head2TOC - Pipelining Loops 1�11
	Head2TOC - Inferring Memories 1�11

	Head1TOC - Libraries and Other Inputs 1�12
	Head2TOC - Behavioral Description 1�13
	Head2TOC - Technology Library 1�13
	Head2TOC - Synthetic Library 1�14

	Head1TOC - Outputs From SystemC Compiler 1�14

	ChapTitleTOC - 2. Using SystemC Compiler
	Head1TOC - Usage and Commands 2�3
	Head1TOC - Defining Libraries 2�5
	Head1TOC - Compiling and Elaborating the Source Code 2�5
	Head2TOC - Preparing to Use BCView 2�5
	Head2TOC - Using the compile_systemc Command 2�6
	Head2TOC - Elaborating a Design With a Single Behavioral Module 2�7
	Head2TOC - Elaborating a Hierarchical Design With Multiple Behavioral
	Head2TOC - Modules 2�7
	Head2TOC - Elaborating a Design With Multiple Files 2�8

	Head1TOC - Assigning Timing and Area Design Constraints 2�8
	Head2TOC - Setting the Clock Period 2�8
	Head2TOC - Setting Other Initial Constraints 2�9

	Head1TOC - Checking the Design 2�10
	Head2TOC - Running Check Design 2�10
	Head2TOC - Changing the Code 2�10

	Head1TOC - Estimating Time and Area 2�11
	Head2TOC - Reporting Timing and Area Estimates 2�12
	Head2TOC - Saving the Timed Design 2�12

	Head1TOC - Scheduling the Design and Allocating Resources 2�13
	Head2TOC - Scheduling for Smallest Area 2�13
	Head2TOC - Changing the Effort Level 2�14
	Head2TOC - Setting Schedule Constraints 2�14
	Head2TOC - Using BCView to Analyze Scheduling Errors 2�15
	Head2TOC - Analyzing Scheduling Results 2�15

	Head1TOC - Generating Summary Reports 2�16
	Head1TOC - Removing Designs from SystemC Compiler Memory 2�16
	Head1TOC - Resuming Synthesis From a Saved .db File 2�17
	Head1TOC - Writing the RTL Files 2�18
	Head2TOC - Writing the RTL .db File 2�19
	Head2TOC - Writing a Synthesizable RTL HDL File 2�20
	Head2TOC - Writing an RTL Simulation File 2�21
	Head2TOC - Specifying VHDL Packages 2�23
	Head2TOC - Specifying Verilog Include Files 2�23

	Head1TOC - Compiling and Writing a Gate-Level Netlist 2�24
	Head2TOC - Preparing for Place and Route 2�24
	Head2TOC - Preparing for Physical Compiler 2�25
	Head3TOC - Preparing RTL for Physical Synthesis 2�25
	Head3TOC - Preparing Gate-Level for Physical Synthesis 2�26

	ChapTitleTOC - 3. Timing and Area Estimation
	Head1TOC - Understanding Clock Cycle, I/O, and Operation Relationships 3�2
	Head2TOC - Operation Delay and Clock Cycle 3�2
	Head2TOC - I/O Protocol 3�3
	Head2TOC - Operations and Clock Cycles 3�5

	Head1TOC - Setting Your Timing Environment 3�7
	Head2TOC - Setting Clocks 3�7
	Head2TOC - Setting Input Delays 3�8
	Head2TOC - Setting Operating Conditions 3�9
	Head3TOC - Listing Libraries 3�9
	Head3TOC - Listing Operating Conditions 3�10

	Head2TOC - Setting Wire Loads 3�12

	Head1TOC - Timing the Design 3�13
	Head2TOC - Timing Through the Components 3�13
	Head2TOC - Computing the Clock Cycle Margin 3�14

	Head1TOC - Interpreting the Timing and Area Resource Report 3�17
	Head2TOC - Evaluating the Resource Estimate Report 3�17
	Head2TOC - Looking at Parallel Paths 3�19
	Head2TOC - Area Estimates 3�21

	ChapTitleTOC - 4. Scheduling and Scheduling Constraints
	Head1TOC - Scheduling for Synthesis 4�2
	Head2TOC - Operation Scheduling 4�3
	Head2TOC - Resource Sharing 4�4
	Head2TOC - Inferred Registers 4�5
	Head2TOC - Register Sharing 4�6
	Head2TOC - Controller (FSM) Generation 4�7
	Head2TOC - Controlling Synthesis 4�10

	Head1TOC - Selecting an I/O Scheduling Mode 4�10
	Head2TOC - Cycle-Fixed I/O Scheduling Mode 4�12
	Head2TOC - Using Cycle-Fixed I/O Scheduling Mode 4�12
	Head2TOC - Superstate-Fixed I/O Scheduling Mode 4�14
	Head2TOC - Using Superstate-Fixed I/O Scheduling Mode 4�15
	Head2TOC - Comparing the I/O Scheduling Modes 4�16

	Head1TOC - Performing Scheduling 4�18
	Head2TOC - Scheduling Objectives 4�18
	Head2TOC - Using Timing-Constrained Scheduling 4�18
	Head2TOC - Using Resource-Driven Scheduling 4�19

	Head1TOC - Analyzing the Scheduling Report 4�20
	Head2TOC - Schedule Summary Report 4�20
	Head2TOC - Schedule Report of Operations 4�22
	Head2TOC - Schedule Report of Variables 4�26
	Head2TOC - Schedule Report of the FSM 4�28

	Head1TOC - Adding Scheduling Constraints 4�31
	Head2TOC - Matching Cells to Operations and Loops 4�31
	Head2TOC - Naming Conventions 4�31
	Head2TOC - Using Line Labels 4�32
	Head2TOC - Using Find 4�33
	Head2TOC - Reporting Hierarchy 4�34
	Head2TOC - Constraining Loops and Operations 4�37
	Head3TOC - Constraining Between Two Operations 4�37
	Head3TOC - Constraining a Loop 4�38
	Head3TOC - Constraining Nested Loops 4�39
	Head3TOC - Placing Constraints Across Loop Boundaries 4�41
	Head3TOC - Using the Set Cycles Commands and Options 4�42

	Head2TOC - Pipelining a Loop 4�44
	Head3TOC - Restrictions and Limitations For Pipelining Loops 4�47
	Head3TOC - Determining the Initiation Interval 4�47
	Head3TOC - Pipelining a Loop With Handshake Signals 4�50

	Head2TOC - Determining Current Scheduling Constraints 4�53
	Head2TOC - Removing Scheduling Constraints 4�54

	Head1TOC - Constraining Resource Allocations 4�55
	Head2TOC - Setting Common Resources 4�55
	Head2TOC - Setting Exclusive Registers 4�57

	ChapTitleTOC - 5. Optimizing Latency and Area
	Head1TOC - Exploring Architectures and Improving the Quality of Results 5�2
	Head2TOC - Looking at Architectural Tradeoffs 5�2
	Head2TOC - Architectural Exploration Guidelines 5�6

	Head1TOC - Controlling Operation and Implementation Selection 5�7
	Head1TOC - Operation Chaining 5�8
	Head2TOC - Operation Chaining With Bitwise Timing 5�8
	Head2TOC - Determining Operation Chaining 5�10
	Head2TOC - Controlling Operation Chaining 5�11
	Head2TOC - Controlling Margin Calculation 5�12

	Head1TOC - Removing Unnecessary Registers 5�18
	Head1TOC - Using Multicycle Operations 5�19
	Head2TOC - Reporting Multicycle Operations 5�20
	Head2TOC - Increased Latency of Multicycle Operations 5�21
	Head2TOC - Replacing Multicycle Components 5�23

	Head1TOC - Using Preserved Functions 5�23
	Head2TOC - When to Preserve Functions 5�24
	Head2TOC - Determining Which Functions to Preserve 5�24
	Head2TOC - Creating Preserved Functions 5�25
	Head2TOC - Preserving a Function 5�27
	Head3TOC - Using a Precompiled Netlist for a Preserved Function 5�28
	Head3TOC - Compiling Preserved Functions 5�29

	Head2TOC - Using Preserved Functions for Behavioral Synthesis 5�31
	Head2TOC - Limitations of Preserved Functions 5�33
	Head3TOC - Bit-Width Restrictions 5�33
	Head3TOC - Hierarchy 5�33
	Head3TOC - Sequential Logic 5�34

	Head1TOC - Using DesignWare Components 5�34
	Head2TOC - Listing DesignWare Components 5�35
	Head2TOC - Finding and Implementing Pipelined Components 5�37

	ChapTitleTOC - 6. Analyzing Designs With BCView
	Head1TOC - Using BCView 6�2
	Head2TOC - Preparing Designs for BCView 6�2
	Head2TOC - Starting BCView 6�3
	Head2TOC - Removing BCView Analysis Information 6�3

	Head1TOC - Using BCView Windows 6�3
	Head1TOC - Recommended Usage for BCView 6�8
	Head1TOC - Examining Scheduling Errors 6�9
	Head2TOC - Identifying Errors to Analyze 6�9
	Head2TOC - Using the Scheduling Error Analyzer 6�10
	Head3TOC - Viewing the Selection Inspector Window 6�11
	Head3TOC - Determining the Operations That Bound the Error 6�12
	Head3TOC - Examining the Graphic Information 6�13
	Head3TOC - Fixing the Code and Rescheduling 6�21

	Head1TOC - Evaluating the Architecture Generated by SystemC Compiler 6�21
	Head2TOC - Reviewing FSM Operation 6�22
	Head3TOC - Stepping Through the FSM 6�23
	Head3TOC - Reviewing State Transitions and Actions 6�24

	Head2TOC - Evaluating the Scheduled Design 6�26
	Head3TOC - Understanding the Reservation Table Window 6�26
	Head3TOC - Viewing Resources, Latencies, and Operation Sharing 6�31
	Head3TOC - Viewing Clocks, Chaining, and Combinational Delay 6�36
	Head3TOC - Examining Paths 6�38
	Head3TOC - Reviewing Register Use 6�42
	Head3TOC - Viewing Loops 6�44
	Head3TOC - Identifying Constraints and Data Dependencies 6�49

	Head1TOC - Exploring Architectural Improvements 6�51
	Head2TOC - Reducing Latency 6�51
	Head3TOC - Identifying Multicycle Operations 6�51
	Head3TOC - Identifying Chaining Opportunities 6�53
	Head3TOC - Viewing Clock-Cycle Utilization 6�54

	Head2TOC - Reducing Area 6�55
	Head2TOC - Reviewing Critical Paths 6�61

	Head1TOC - Viewing the Design Summary 6�61

	ChapTitleTOC - 7. Using Register Files and Memories for Arrays
	Head1TOC - Comparing Array Implementations 7�2
	Head2TOC - Comparing Arrays, Register Files, and Memories 7�3
	Head2TOC - Array Implementation Recommendations 7�6

	Head1TOC - Mapping Arrays to Register Files 7�6
	Head2TOC - Mapping All Arrays to Register Files 7�6
	Head2TOC - Mapping Specific Arrays to Register Files 7�7
	Head2TOC - Understanding the Effects of Mapping to Register Files 7�8
	Head2TOC - Reporting Array Access Conflicts 7�8
	Head2TOC - Allowing Multiple Accesses in the Same Cycle 7�10
	Head2TOC - Identifying Register File Operations 7�13
	Head2TOC - Finding Array Operation Cells 7�14

	Head1TOC - Mapping Arrays to Memory 7�15
	Head2TOC - Preparing to Use Memories 7�15
	Head3TOC - Using Memory in Your Design 7�17
	Head3TOC - Getting Memory and Library Information 7�18

	Head2TOC - Using Asynchronous Memories 7�24
	Head2TOC - Allowing for Vendor Memory Timing 7�25
	Head3TOC - Setting Memory Input Delay for Vendor Memory Timing 7�26
	Head3TOC - Setting Memory Output Delay for the Vendor Timing
	Head3TOC - Specifications 7�27

	Head2TOC - Constraining Read and Write Operations on Memory 7�28
	Head3TOC - Reporting Conflicting Memory Accesses 7�29
	Head3TOC - Using the ignore_memory_precedences Command 7�31
	Head3TOC - Using the ignore_memory_loop_precedences Command 7�32

	Head1TOC - Generating Memory Wrappers 7�34
	Head2TOC - Understanding the Memory Wrapper Generator Tool 7�34
	Head2TOC - Using the Memory Wrapper Generator Tool 7�35
	Head2TOC - Creating a Memory Wrapper for a Vendor Memory 7�39
	Head3TOC - Defining the Memory Type and Properties 7�40
	Head3TOC - Assigning Memory Pins to the Wrapper Logical Ports 7�46
	Head3TOC - Defining the Memory Wrapper Properties 7�52
	Head3TOC - Reviewing the Memory Wrapper 7�56
	Head3TOC - Editing the Waveform Values 7�56
	Head3TOC - Adding Registers to the Memory Wrapper 7�58
	Head3TOC - Adding Custom Logic to the Memory Wrapper 7�59
	Head3TOC - Viewing and Editing the Wrapper Properties 7�61
	Head3TOC - Saving the Memory Wrapper Files 7�64

	Head2TOC - Using Generated Vendor Memory Wrappers With SystemC Compiler 7�66
	Head2TOC - Creating a Memory Wrapper for an Exploratory Memory 7�67
	Head3TOC - Defining the Memory Type and Properties 7�68
	Head3TOC - Assigning Pins to the Memory Logical Ports 7�73
	Head3TOC - Defining the Exploratory Memory Wrapper Properties 7�75
	Head3TOC - Reviewing and Editing the Exploratory Memory Wrapper 7�78
	Head3TOC - Saving the Exploratory Memory Wrapper Files 7�78

	Head2TOC - Generating a Memory Wrapper Testbench 7�79

	ChapTitleTOC - 8. Advanced Techniques
	Head1TOC - Using Multiple Files to Describe a Design 8�2
	Head2TOC - Using #include 8�2
	Head2TOC - Using Precompiled Netlists 8�2

	Head1TOC - Speculative Execution 8�4
	Head1TOC - Setting a Specific Implementation for Components 8�6
	Head1TOC - Externalize a Cell 8�8

	AppTitleTOC - Appendix A. Setting Up SystemC Compiler
	Head1TOC - Defining Environment Variables and Paths A�2
	Head1TOC - Defining Libraries and Other Variables A�3
	Head1TOC - Starting the SystemC Compiler Command Interface A�4
	Head2TOC - Creating a command.log File A�4
	Head2TOC - Recording Your Command Session A�5

	Head1TOC - Issuing SystemC Compiler Commands A�5
	Head1TOC - Listing SystemC Compiler Variables A�6
	Head1TOC - Using Scripts A�6
	Head2TOC - Creating Scripts A�6
	Head2TOC - Script Example A�7
	Head3TOC - Using the Script A�8

	Head2TOC - Using UNIX Shell Commands A�9

	Head1TOC - Using compile_systemc Command Preprocessor Options A�9
	Head1TOC - Starting BCView A�11
	Head2TOC - Starting BCView From dc_shell A�11
	Head2TOC - Starting BCView From a UNIX Shell A�12
	Head2TOC - Using BCView in Your Script A�12
	Head2TOC - Opening BCView Windows A�13

	Head1TOC - Starting the Memory Wrapper Tool A�14
	Head1TOC - Getting Command, Variable, and Error Help A�15
	Head2TOC - System Prompt A�15
	Head2TOC - SystemC Compiler Command Prompt A�15

	AppTitleTOC - Appendix B. Complex Number Multiplier Example Files
	Head1TOC - Complex Number Multiplier Source Code B�2
	Head1TOC - Command Script B�4
	Head1TOC - Reports Created During Synthesis B�6
	Head2TOC - Estimated Resources B�6
	Head2TOC - Schedule Report B�9
	Head2TOC - Area Report B�11
	Head2TOC - Timing Report B�12
	Head2TOC - Report Resource B�14

	FigureTitleLOF - Figure 1�1 Behavioral Synthesis Compared to RTL Synthesis 1�3
	FigureTitleLOF - Figure 1�2 Structure of the Circuit Generated by SystemC Compiler
	FigureTitleLOF - During Behavioral Synthesis 1�5
	FigureTitleLOF - Figure 1�3 Scheduling Into Specific Clock Cycles 1�7
	FigureTitleLOF - Figure 1�4 Allocation of Resources 1�9
	FigureTitleLOF - Figure 1�5 An Algorithm and the Created Data Path and FSM 1�10
	FigureTitleLOF - Figure 1�6 SystemC Compiler Input and Output Flow 1�12
	FigureTitleLOF - Figure 2�1 SystemC Compiler Commands Use in the Flow 2�4
	FigureTitleLOF - Figure 3�1 Timing Diagram of the Complex Multiplier I/O
	FigureTitleLOF - Protocol 3�4
	FigureTitleLOF - Figure 3�2 Operations of the Complex Multiplier 3�6
	FigureTitleLOF - Figure 3�3 Typical Timing Path 3�15
	FigureTitleLOF - Figure 3�4 Estimated Resources Report (Partial) 3�18
	FigureTitleLOF - Figure 3�5 Parallel Paths in the Estimated Resources Report
	FigureTitleLOF - (Partial) 3�20
	FigureTitleLOF - Figure 4�1 Scheduling Into Specific Clock Cycles 4�2
	FigureTitleLOF - Figure 4�2 Operation Scheduling 4�3
	FigureTitleLOF - Figure 4�3 Resource Allocation Reservation Table 4�4
	FigureTitleLOF - Figure 4�4 Register Allocation Reservation Table 4�7
	FigureTitleLOF - Figure 4�5 Shared Component 4�8
	FigureTitleLOF - Figure 4�6 Shared Register 4�8
	FigureTitleLOF - Figure 4�7 FSM Control Signals 4�9
	FigureTitleLOF - Figure 4�8 Synthesized Design Representation 4�9
	FigureTitleLOF - Figure 4�9 Behavioral Code and I/O Operation 4�11
	FigureTitleLOF - Figure 4�10 Cycle-Fixed I/O Mode 4�12
	FigureTitleLOF - Figure 4�11 Superstate-Fixed I/O Mode 4�15
	FigureTitleLOF - Figure 4�12 Source Code and I/O Scheduling Mode Simulation 4�17
	FigureTitleLOF - Figure 4�13 Resources With Loops 4�40
	FigureTitleLOF - Figure 4�14 Nonpipelined Loop 4�44
	FigureTitleLOF - Figure 4�15 Pipelined Loop 4�45
	FigureTitleLOF - Figure 4�16 Invalid Loop Initiation Value 4�48
	FigureTitleLOF - Figure 4�17 Valid Loop Initiation Value 4�48
	FigureTitleLOF - Figure 4�18 Invalid Memory and I/O Access 4�49
	FigureTitleLOF - Figure 4�19 Valid Memory and I/O Access 4�50
	FigureTitleLOF - Figure 4�20 Handshake Signal Preventing Loop Pipelining 4�50
	FigureTitleLOF - Figure 4�21 Pipelined Loop With Handshake Signal 4�51
	FigureTitleLOF - Figure 4�22 Exit From a Pipelined Loop 4�52
	FigureTitleLOF - Figure 5�1 Architectural Exploration 5�3
	FigureTitleLOF - Figure 5�2 Bitwise Timing for Operation Chaining 5�9
	FigureTitleLOF - Figure 5�3 Chained Operations in the Estimated Resources
	FigureTitleLOF - Report (Partial) 5�10
	FigureTitleLOF - Figure 5�4 Typical Timing Path 5�13
	FigureTitleLOF - Figure 5�5 Chaining Operation Timing 5�15
	FigureTitleLOF - Figure 5�6 Multicycle Operation 5�19
	FigureTitleLOF - Figure 5�7 Multicycle Operations in Conditional Statements 5�22
	FigureTitleLOF - Figure 5�8 Flow for Preserving Functions 5�27
	FigureTitleLOF - Figure 5�9 Command Flow With Preserved Functions 5�32
	FigureTitleLOF - Figure 6�1 BCView Windows 6�5
	FigureTitleLOF - Figure 6�2 BCView Recommended Usage 6�8
	FigureTitleLOF - Figure 6�3 Selection Inspector With Error Information 6�11
	FigureTitleLOF - Figure 6�4 Scheduling Error Analyzer With Bounding Operations 6�12
	FigureTitleLOF - Figure 6�5 Scheduling Error Analyzer Paths and Clock Cycles 6�13
	FigureTitleLOF - Figure 6�6 Expanded Derived Edge 6�17
	FigureTitleLOF - Figure 6�7 Selection Inspector Window With Edge Information 6�18
	FigureTitleLOF - Figure 6�8 Code Browser With Behavioral Code 6�20
	FigureTitleLOF - Figure 6�9 FSM Viewer With States and Transitions 6�22
	FigureTitleLOF - Figure 6�10 Selected Transition With Conditions and Actions 6�25
	FigureTitleLOF - Figure 6�11 Reservation Table Window 6�27
	FigureTitleLOF - Figure 6�12 Reservation Table Toolbar Buttons 6�30
	FigureTitleLOF - Figure 6�13 Resource Utilization in Reservation Table 6�32
	FigureTitleLOF - Figure 6�14 Resource Delay in Reservation Table 6�33
	FigureTitleLOF - Figure 6�15 Operation Delay in Reservation Table 6�34
	FigureTitleLOF - Figure 6�16 Operation Delay Detail in Selection Inspector 6�34
	FigureTitleLOF - Figure 6�17 Shared Resources in Reservation Table 6�35
	FigureTitleLOF - Figure 6�18 Operation Delays in Clock Cycles 6�37
	FigureTitleLOF - Figure 6�19 Derived Edge Example 6�39
	FigureTitleLOF - Figure 6�20 Registers in the Reservation Table 6�42
	FigureTitleLOF - Figure 6�21 Loops in the Reservation Table 6�44
	FigureTitleLOF - Figure 6�22 Loop Information Tips 6�46
	FigureTitleLOF - Figure 6�23 Loop Details in Selection Inspector 6�47
	FigureTitleLOF - Figure 6�24 Loop Operations Zoomed View 6�48
	FigureTitleLOF - Figure 6�25 Clock Cycle Utilization 6�54
	FigureTitleLOF - Figure 6�26 Little Resource Sharing 6�56
	FigureTitleLOF - Figure 6�27 Shared Resources 6�57
	FigureTitleLOF - Figure 6�28 Shareable Resources That Are Not Shared 6�58
	FigureTitleLOF - Figure 6�29 Forced Resource Sharing 6�60
	FigureTitleLOF - Figure 6�30 Design Summary in Selection Inspector Window 6�62
	FigureTitleLOF - Figure 7�1 Array Generation 7�2
	FigureTitleLOF - Figure 7�2 Register File Architecture 7�3
	FigureTitleLOF - Figure 7�3 Dual-Port Memory Operations 7�4
	FigureTitleLOF - Figure 7�4 Multiple Accesses in the Same Cycle That May
	FigureTitleLOF - Conflict 7�12
	FigureTitleLOF - Figure 7�5 Asynchronous Memory With Registered Input 7�24
	FigureTitleLOF - Figure 7�6 Manually Adding Registers to an Asynchronous
	FigureTitleLOF - Memory 7�25
	FigureTitleLOF - Figure 7�7 Memory Access Time Specification 7�25
	FigureTitleLOF - Figure 7�8 Pipelined Memory Accesses 7�29
	FigureTitleLOF - Figure 7�9 Invalid Schedule With Loop Carry Dependency 7�32
	FigureTitleLOF - Figure 7�10 Empty Memory Wrapper Window 7�36
	FigureTitleLOF - Figure 7�11 Completed Memory Wrapper 7�37
	FigureTitleLOF - Figure 7�12 Memory Selection Dialog Box 7�40
	FigureTitleLOF - Figure 7�13 Memory Selection from a DB File Dialog Box 7�41
	FigureTitleLOF - Figure 7�14 Memory Definition Dialog Box 7�42
	FigureTitleLOF - Figure 7�15 Completed Memory Definition 7�45
	FigureTitleLOF - Figure 7�16 Memory Pin Definition Dialog Box 7�47
	FigureTitleLOF - Figure 7�17 Completed Memory Pin Definition 7�49
	FigureTitleLOF - Figure 7�18 Completed Wrapper Properties Dialog Box 7�51
	FigureTitleLOF - Figure 7�19 Wrapper Summary 7�54
	FigureTitleLOF - Figure 7�20 Memory Wrapper Displayed in Main Window 7�55
	FigureTitleLOF - Figure 7�21 Read Port Protocol Waveforms 7�57
	FigureTitleLOF - Figure 7�22 Manually Adding Registers to an Asynchronous
	FigureTitleLOF - Memory 7�59
	FigureTitleLOF - Figure 7�23 Code Editor Dialog Box With Default Code 7�60
	FigureTitleLOF - Figure 7�24 Properties Dialog Boxes 7�63
	FigureTitleLOF - Figure 7�25 Export Wrapper Dialog Box 7�65
	FigureTitleLOF - Figure 7�26 Exploratory Memory Selection Dialog Box 7�68
	FigureTitleLOF - Figure 7�27 Exploratory Memory Definition Dialog Box 7�69
	FigureTitleLOF - Figure 7�28 Completed Exploratory Memory Definition 7�71
	FigureTitleLOF - Figure 7�29 Exploratory Memory Pin Definition Dialog Box 7�72
	FigureTitleLOF - Figure 7�30 Exploratory Wrapper Properties Dialog Box 7�74
	FigureTitleLOF - Figure 7�31 Exploratory Memory Wrapper Summary 7�76
	FigureTitleLOF - Figure 7�32 Exploratory Memory Wrapper in Main Window 7�77
	FigureTitleLOF - Figure 8�1 Externalize a Cell 8�8
	TableTitleLOT - Table 6-1 Edges Representing Constraints 6�14
	TableTitleLOT - Table 6-2 Reservation Table Symbols 6�28
	TableTitleLOT - Table 7-1 Comparing Arrays, Register Files, and Memories 7�5
	ExampleTitleLOP - Example 3�1 Complex Multiplier I/O Protocol 3�3
	ExampleTitleLOP - Example 3�2 Complex Multiplier Arithmetic Operations 3�5
	ExampleTitleLOP - Example 3�3 Report Clock 3�7
	ExampleTitleLOP - Example 3�4 Listing Libraries 3�10
	ExampleTitleLOP - Example 3�5 Library Report (Partial) 3�11
	ExampleTitleLOP - Example 3�6 Wire Load Model (Partial) 3�12
	ExampleTitleLOP - Example 3�7 Timing Report (Partial) 3�14
	ExampleTitleLOP - Example 3�8 Clock Margin in the Resource Estimate Report 3�16
	ExampleTitleLOP - Example 3�9 Estimated Resource Report 3�21
	ExampleTitleLOP - Example 4�1 Schedule Report Summary 4�21
	ExampleTitleLOP - Example 4�2 Report Schedule Operations 4�24
	ExampleTitleLOP - Example 4�3 Report Schedule Variables 4�27
	ExampleTitleLOP - Example 4�4 Report Schedule Abstract FSM 4�29
	ExampleTitleLOP - Example 4�5 Report Hierarchy Before Scheduling 4�35
	ExampleTitleLOP - Example 4�6 Report Hierarchy After Scheduling 4�36
	ExampleTitleLOP - Example 4�7 Constraining Between Two Operations 4�38
	ExampleTitleLOP - Example 4�8 Constraining a Loop 4�38
	ExampleTitleLOP - Example 4�9 Nested Loops With Operations 4�39
	ExampleTitleLOP - Example 4�10 Passing a Constraint Between Loops 4�42
	ExampleTitleLOP - Example 4�11 Pipelined Loop Timing Summary (Partial) 4�46
	ExampleTitleLOP - Example 4�12 Commands for Minimum Resource-Driven
	ExampleTitleLOP - Scheduling 4�56
	ExampleTitleLOP - Example 4�13 Commands for Maximum Resource-Driven
	ExampleTitleLOP - Scheduling 4�56
	ExampleTitleLOP - Example 4�14 Commands for Forced Maximum Resource-Driven
	ExampleTitleLOP - Scheduling 4�57
	ExampleTitleLOP - Example 5�1 Clock Margin in the Resource Estimate Report 5�14
	ExampleTitleLOP - Example 5�2 Multicycle Report (Partial) 5�21
	ExampleTitleLOP - Example 5�3 Creating a Preserved Function 5�26
	ExampleTitleLOP - Example 5�4 Defining a Preserved Function in a Separate File 5�26
	ExampleTitleLOP - Example 5�5 Using the read_preserved_function_netlist
	ExampleTitleLOP - Command 5�28
	ExampleTitleLOP - Example 5�6 Using the compile_preserved_functions Command 5�30
	ExampleTitleLOP - Example 5�7 Using DesignWare Components 5�35
	ExampleTitleLOP - Example 5�8 Reporting DesignWare Components 5�36
	ExampleTitleLOP - Example 5�9 Listing Pipelined Components 5�38
	ExampleTitleLOP - Example 6�1 HLS-52 Error Message 6�10
	ExampleTitleLOP - Example 7�1 Defining a Register File for a Specific Array 7�7
	ExampleTitleLOP - Example 7�2 Report of Array Conflicts 7�9
	ExampleTitleLOP - Example 7�3 Accesses That May or May Not Conflict 7�11
	ExampleTitleLOP - Example 7�4 Declaring a Local Memory Resource 7�18
	ExampleTitleLOP - Example 7�5 Report of Synthetic Memory Wrapper 7�19
	ExampleTitleLOP - Example 7�6 Report of a Synthetic Library 7�22
	ExampleTitleLOP - Example 7�7 Report of Memories Used in a Design 7�23
	ExampleTitleLOP - Example 7�8 Set Memory Input Delay 7�27
	ExampleTitleLOP - Example 7�9 Report Nonconflicting Memory Accesses 7�30
	ExampleTitleLOP - Example 7�10 Memory Array Definition 7�66
	ExampleTitleLOP - Example 8�1 Executing Without Speculative Execution 8�5
	ExampleTitleLOP - Example 8�2 Executing With Speculative Execution 8�6
	AppExampleTitleLOP - Example A�1 SystemC Compiler Command Script A�7
	AppExampleTitleLOP - Example A�2 Using BCView in a Script A�12
	AppExampleTitleLOP - Example B�1 Complex Multiplier Source Code B�2
	AppExampleTitleLOP - Example B�2 Command Script for Complex Number Multiplier B�4
	AppExampleTitleLOP - Example B�3 Report Resource Estimates B�6
	AppExampleTitleLOP - Example B�4 Schedule Report B�9
	AppExampleTitleLOP - Example B�5 Report Area B�11
	AppExampleTitleLOP - Example B�6 Report Timing B�12
	AppExampleTitleLOP - Example B�7 Report Resources B�14

