CoCentric™
SystemC Compiler
Behavioral User Guide

Version 2000.11-SCC1, March 2001

Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright 0 2000 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
and its employees. This is copy number

"

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks

Synopsys, the Synopsys logo, AMPS, Arcadia, CMOS-CBA, COSSAP, Cyclone, DelayMill, DesignPower, DesignSource,
DesignWare, dont_use, EPIC, ExpressModel, Formality, in-Sync, Logic Automation, Logic Modeling, Memory Architect,
ModelAccess, ModelTools, PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, RailMill, Silicon Architects,
SmartLicense, SmartModel, SmartModels, SNUG, SOLV-IT!, SolvNET, Stream Driven Simulator, Synopsys Eagle
Design Automation, Synopsys Eagle/, Synthetic Designs, TestBench Manager, and TimeMill are registered trademarks
of Synopsys, Inc.

Trademarks

ACE, BCView, Behavioral Compiler, BOA, BRT, CBA, CBAIIl, CBA Design System, CBA-Frame, Cedar, CoCentric,
DAVIS, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design
Compiler, DesignTime, Direct RTL, Direct Silicon Access, dont_touch, dont_touch_network, DW8051, DWPCI, ECL
Compiler, ECO Compiler, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Compiler Il, FPGA Express, Frame
Compiler, General Purpose Post-Processor, GPP, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer,
Liberty, Library Compiler, Logic Model, MAX, ModelSource, Module Compiler, MS-3200, MS-3400, Nanometer Design
Experts, Nanometer IC Design, Nanometer Ready, Odyssey, PowerCODE, PowerGate, Power Compiler, ProFPGA,
ProMA, Protocol Compiler, RMM, RoadRunner, RTL Analyzer, Schematic Compiler, Scirocco, Shadow Debugger,
SmartModel Library, Source-Level Design, SWIFT, Synopsys EagleV, Test Compiler, Test Compiler Plus, Test Manager,
TestGen, TestSim, TetraMAX, TimeTracker, Timing Annotator, Trace-On-Demand, VCS, VCS Express, VCSi, VERA,
VHDL Compiler, VHDL System Simulator, Visualyze, VMC, and VSS are trademarks of Synopsys, Inc.

Service Marks
TAP-in is a service mark of Synopsys, Inc.

All other product or company nhames may be trademarks of their respective owners.

Printed in the U.S.A.

Document Order Number: 37444-000 JB
CoCentric™ SystemC Compiler Behavioral User Guide, v2000.11-SCC1

Contents

What's New in ThisRelease XXViil
About This Guide. XXX
Customer SUPPOIt.o XXX

1. Introduction to SystemC Compiler Behavioral Synthesis

Understanding What SystemC CompilerDoes................ 1-3
Synthesis With SystemC Compiler 1-4
TIMING .. 1-6
Scheduling. 1-7
Allocating Hardware. i 1-9
Creatingan FSMandDataPath 1-10
Pipelining Loops 1-11
Inferring Memories. 1-11

Librariesand Other Inputs. 1-12
Behavioral Description. 1-13
Technology Library. 1-13

Synthetic Library 1-14

Outputs From SystemC Compiler 1-14

Using SystemC Compiler

Usageand Commands 2-3
Defining Libraries 2-5
Compiling and Elaborating the Source Code 2-5
Preparingto Use BCView 2-5
Using the compile_systemc Command 2-6
Elaborating a Design With a Single Behavioral Module. 2-7
Elaborating a Hierarchical Design With Multiple Behavioral
Modules 2-7
Elaborating a Design With Multiple Files 2-8
Assigning Timing and Area Design Constraints 2-8
Setting the Clock Period 2-8
Setting Other Initial Constraints. 2-9
Checkingthe Design 2-10
Running Check Design 2-10
ChangingtheCode 2-10
Estimating Timeand Area. 2-11
Reporting Timing and Area Estimates. 2-12
Savingthe Timed Design. 2-12
Scheduling the Design and Allocating Resources. 2-13
Scheduling for SmallestArea. 2-13
Changing the EffortLevel 2-14
Setting Schedule Constraints 2-14

Using BCView to Analyze Scheduling Errors. 2-15

Analyzing SchedulingResults 2-15
Generating Summary Reports. i 2-16
Removing Designs from SystemC Compiler Memory........... 2-16
Resuming Synthesis Froma Saved .dbFile.................. 2-17
Writingthe RTLFiles. 2-18

Writingthe RTL . db File. 2-19

Writing a Synthesizable RTLHDL File. 2-20

Writing an RTL Simulation File, 2-21

Specifying VHDL Packages. 2-23

Specifying Verilog Include Files. 2-23
Compiling and Writing a Gate-Level Netlist. 2-24

Preparing for Placeand Route 2-24

Preparing for Physical Compiler 2-25

Preparing RTL for Physical Synthesis 2-25
Preparing Gate-Level for Physical Synthesis. 2-26

. Timing and Area Estimation

Understanding Clock Cycle, I/O, and Operation Relationships. ... 3-2
Operation Delay and Clock Cycle 3-2
/O Protocol 3-3
Operationsand Clock Cycles., 3-5

Setting Your Timing Environment 3-7
SettingClocks 3-7
Setting InputDelays. 3-8

Setting Operating Conditions. 3-9

Listing Libraries 3-9
Listing Operating Conditions 3-10
SettingWireLoads i, 3-12
Timingthe Design 3-13
Timing Through the Components 3-13
Computing the Clock Cycle Margin 3-14
Interpreting the Timing and Area Resource Report. 3-17
Evaluating the Resource Estimate Report. 3-17
Looking at Parallel Paths. 3-19
Area Estimates 3-21

4. Scheduling and Scheduling Constraints

Vi

Scheduling for Synthesis. 4-2
Operation Scheduling 4-3
Resource Sharing 4-4
Inferred Reqgisters i 4-5
Register Sharing e 4-6
Controller (FSM) Generation 4-7
Controlling Synthesis. i, 4-10

Selecting an I/O SchedulingMode 4-10
Cycle-Fixed I/O SchedulingMode 4-12
Using Cycle-Fixed I/O SchedulingMode. 4-12
Superstate-Fixed I/O SchedulingMode. 4-14
Using Superstate-Fixed I/O Scheduling Mode. 4-15
Comparing the 1/0O SchedulingModes. 4-16

Performing Scheduling 4-18

Scheduling Objectives 4-18
Using Timing-Constrained Scheduling. 4-18
Using Resource-Driven Scheduling. 4-19
Analyzing the Scheduling Report 4-20
Schedule Summary Report 4-20
Schedule Reportof Operations 4-22
Schedule Reportof Variables 4-26
Schedule Reportofthe FSM 4-28
Adding Scheduling Constraints 4-31
Matching Cells to Operationsand Loops. 4-31
Naming Conventionst 4-31
Using Line Labels 4-32
Using Find 4-33
Reporting Hierarchy. 4-34
Constraining Loops and Operations 4-37
Constraining Between Two Operations 4-37
Constraininga Loop.t 4-38
Constraining Nested Loops oo oot 4-39
Placing Constraints Across Loop Boundaries 4-41
Using the Set Cycles Commands and Options 4-42
Pipelining a Loop oo 4-44
Restrictions and Limitations For Pipelining Loops 4-47
Determining the Initiation Interval. 4-47
Pipelining a Loop With Handshake Signals 4-50
Determining Current Scheduling Constraints. 4-53

Vii

viii

Removing Scheduling Constraints. 4-54

Constraining Resource Allocations 4-55
Setting Common Resourcesu ... 4-55
Setting Exclusive Registers 4-57

Optimizing Latency and Area

Exploring Architectures and Improving the Quality of Results 5-2
Looking at Architectural Tradeoffs 5-2
Architectural Exploration Guidelines 5-6

Controlling Operation and Implementation Selection 5-7

Operation Chaining e 5-8
Operation Chaining With Bitwise Timing 5-8
Determining Operation Chaining 5-10
Controlling Operation Chaining 5-11
Controlling Margin Calculation. 5-12

Removing Unnecessary Registers 5-18

Using Multicycle Operations 5-19
Reporting Multicycle Operations 5-20
Increased Latency of Multicycle Operations 5-21
Replacing Multicycle Components. 5-23

Using Preserved Functions 5-23
When to Preserve Functions 5-24
Determining Which Functions to Preserve. 5-24
Creating Preserved Functions 5-25
Preservinga Function 5-27

6.

Using a Precompiled Netlist for a Preserved Function. 5-28

Compiling Preserved Functions 5-29

Using Preserved Functions for Behavioral Synthesis 5-31
Limitations of Preserved Functions 5-33
Bit-Width Restrictions. L. 5-33
Hierarchy i 5-33
Sequential Logic. 5-34

Using DesignWare Components. 5-34
Listing DesignWare Components 5-35
Finding and Implementing Pipelined Components 5-37

Analyzing Designs With BCView

USiNg BCVIeW e e 6-2
Preparing Designs for BCView 6-2
Starting BCVIeW.o 6-3
Removing BCView Analysis Information 6-3

Using BCView WINndows 6-3

Recommended Usage forBCView 6-8

Examining Scheduling Errors 6-9
Identifying Errorsto Analyze 6-9
Using the Scheduling Error Analyzer. 6-10

Viewing the Selection Inspector Window 6-11
Determining the Operations That Bound the Error. 6-12
Examining the Graphic Information 6-13
Fixing the Code and Rescheduling 6-21
Evaluating the Architecture Generated by SystemC Compiler 6-21

Reviewing FSM Operation. 6-22

Stepping Throughthe FSM 6-23
Reviewing State Transitions and Actions. 6-24
Evaluating the Scheduled Design 6-26
Understanding the Reservation Table Window 6-26
Viewing Resources, Latencies, and Operation Sharing. ... 6-31
Viewing Clocks, Chaining, and Combinational Delay. 6-36
Examining Paths 6-38
Reviewing RegisterUse. 6-42
VIewing LOOPS . .. oo i 6-44
ldentifying Constraints and Data Dependencies 6-49
Exploring Architectural Improvements. 6-51
ReducingLatency 6-51
ldentifying Multicycle Operations 6-51
ldentifying Chaining Opportunities. 6-53
Viewing Clock-Cycle Utilization 6-54
Reducing Area. 6-55
Reviewing Critical Paths 6-61
Viewing the Design Summary i, 6-61

7. Using Register Files and Memories for Arrays

Comparing Array Implementations 7-2
Comparing Arrays, Register Files, and Memories........... 7-3
Array Implementation Recommendations 7-6

Mapping Arrays to Register Files 7-6
Mapping All Arrays to RegisterFiles 7-6
Mapping Specific Arrays to Register Files. 7-7

Understanding the Effects of Mapping to Register Files
Reporting Array Access Conflicts
Allowing Multiple Accesses inthe Same Cycle
Identifying Register File Operations.
Finding Array OperationCells,

Mapping ArraySto MEMOIYot

Preparingto Use Memories.
Using Memory in YourDesign
Getting Memory and Library Information

Using Asynchronous Memories.,

Allowing for Vendor Memory Timing
Setting Memory Input Delay for Vendor Memory Timing . . .
Setting Memory Output Delay for the Vendor Timing
Specifications.

Constraining Read and Write Operations on Memory
Reporting Conflicting Memory Accesses
Using the ignore_memory_precedences Command
Using the ignore_memory_loop precedences Command. .

Generating Memory Wrapperst
Understanding the Memory Wrapper Generator Tool
Using the Memory Wrapper Generator Tool

Creating a Memory Wrapper for a Vendor Memory.
Defining the Memory Type and Properties.
Assigning Memory Pins to the Wrapper Logical Ports..
Defining the Memory Wrapper Properties
Reviewing the Memory Wrapper
Editing the WaveformValues

Xi

Adding Registers to the Memory Wrapper.
Adding Custom Logic to the Memory Wrapper
Viewing and Editing the Wrapper Properties
Saving the Memory Wrapper Files.

Using Generated Vendor Memory Wrappers
With SystemC Compiler

Creating a Memory Wrapper for an Exploratory Memory
Defining the Memory Type and Properties.
Assigning Pins to the Memory Logical Ports
Defining the Exploratory Memory Wrapper Properties.
Reviewing and Editing the Exploratory Memory Wrapper . .
Saving the Exploratory Memory Wrapper Files

Generating a Memory Wrapper Testbench

8. Advanced Techniques

Using Multiple Files to Describe aDesign.
Using#include e
Using Precompiled Netlists

Speculative EXecution.
Setting a Specific Implementation for Components

Externalize a Cell

Appendix A. Setting Up SystemC Compiler
Defining Environment Variablesand Paths.
Defining Libraries and Other Variables

Starting the SystemC Compiler Command Interface

Xii

Creatingacommand.logFile. A-4

Recording Your Command Session. A-5
Issuing SystemC Compiler Commands. A-5
Listing SystemC Compiler Variables A-6
USINg SCHPtS . . . oot A-6

Creating SCIptS A-6

Script Example. A-7

Usingthe Script A-8

Using UNIX ShellCommands A-9
Using compile_systemc Command Preprocessor Options A-9
Starting BCVIew A-11

Starting BCView Fromdc _shell. A-11

Starting BCView Froma UNIX Shell A-12

Using BCViewinYour Script A-12

Opening BCView WIiNndows, A-13
Starting the Memory WrapperTool A-14
Getting Command, Variable, and ErrorHelp. A-15

System Prompt A-15

SystemC Compiler Command Prompt. A-15

Appendix B. Complex Number Multiplier Example Files

Complex Number Multiplier Source Code. B-2
Command SCript B-4
Reports Created During Synthesis B-6

Xiii

Xiv

Estimated Resources. B-6

Schedule Report B-9
Area Report B-11
Timing Report B-12
Report Resource B-14

Figures

Figure 1-1
Figure 1-2

Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 3-1

Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Figure 4-1

Behavioral Synthesis Compared to RTL Synthesis 1-3
Structure of the Circuit Generated by SystemC Compiler
During Behavioral Synthesis. 1-5
Scheduling Into Specific Clock Cycles 1-7
Allocation of Resources 1-9
An Algorithm and the Created Data Path and FSM 1-10
SystemC Compiler Input and Output Flow 1-12
SystemC Compiler Commands Use in the Flow. 2-4
Timing Diagram of the Complex Multiplier 1/0

Protocol. 3-4
Operations of the Complex Multiplier 3-6
Typical Timing Path. 3-15
Estimated Resources Report (Partial) 3-18
Parallel Paths in the Estimated Resources Report

(Partial). 3-20
Scheduling Into Specific Clock Cycles 4-2

XV

Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 5-1
Figure 5-2
Figure 5-3

XVi

Operation Scheduling. 4-3
Resource Allocation Reservation Table 4-4
Register Allocation Reservation Table 4-7
Shared Component. 4-8
Shared Register i 4-8
FSM Control Signals. 4-9
Synthesized Design Representation. 4-9
Behavioral Code and I/O Operation 4-11
Cycle-Fixed I/OMode. 4-12
Superstate-Fixed /OMode. 4-15
Source Code and I/O Scheduling Mode Simulation 4-17
Resources WithLoops 4-40
Nonpipelined Loop i 4-44
Pipelined Loop i 4-45
Invalid Loop Initiation Value 4-48
Valid Loop Initiation Value. 4-48
Invalid Memory and I/O Access 4-49
Valid Memory and I/O Access.t 4-50
Handshake Signal Preventing Loop Pipelining. 4-50
Pipelined Loop With Handshake Signal 4-51
Exit From a Pipelined Loop. 4-52
Architectural Exploration. 5-3
Bitwise Timing for Operation Chaining 5-9

Chained Operations in the Estimated Resources

Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 6-16
Figure 6-17

Report (Partial) i
Typical Timing Path.
Chaining Operation Timing.
Multicycle Operation.
Multicycle Operations in Conditional Statements..
Flow for Preserving Functions
Command Flow With Preserved Functions
BCView WIindows
BCView Recommended Usage
Selection Inspector With Error Information.
Scheduling Error Analyzer With Bounding Operations. .
Scheduling Error Analyzer Paths and Clock Cycles. . ..
Expanded Derived Edge.
Selection Inspector Window With Edge Information. . . .
Code Browser With Behavioral Code
FSM Viewer With States and Transitions
Selected Transition With Conditions and Actions.
Reservation Table Window
Reservation Table Toolbar Buttons.
Resource Utilization in Reservation Table
Resource Delay in Reservation Table.
Operation Delay in Reservation Table
Operation Delay Detail in Selection Inspector

Shared Resources in Reservation Table

XVii

Figure 6-18
Figure 6-19
Figure 6-20
Figure 6-21
Figure 6-22
Figure 6-23
Figure 6-24
Figure 6-25
Figure 6-26
Figure 6-27
Figure 6-28
Figure 6-29
Figure 6-30
Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5
Figure 7-6

Figure 7-7

Figure 7-8
Figure 7-9

XViii

Operation Delays in Clock Cycles 6-37
Derived Edge Example. 6-39
Registers in the Reservation Table. 6-42
Loopsinthe ReservationTable 6-44
Loop Information TipS.o 6-46
Loop Details in Selection Inspector 6-47
Loop Operations Zoomed View 6-48
Clock Cycle Utilization 6-54
Little Resource Sharing 6-56
Shared Resources 6-57
Shareable Resources That Are Not Shared 6-58
Forced Resource Sharing. 6-60
Design Summary in Selection Inspector Window. 6-62
Array Generation 7-2
Register File Architecture 7-3
Dual-Port Memory Operations 7-4
Multiple Accesses in the Same Cycle That May

Conflict 7-12
Asynchronous Memory With Registered Input. 7-24
Manually Adding Registers to an Asynchronous

MEMOIY. . .o 7-25
Memory Access Time Specification 7-25
Pipelined Memory Accesses. 7-29
Invalid Schedule With Loop Carry Dependency. 7-32

Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22

Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 7-31
Figure 7-32

Empty Memory Wrapper Window 7-36
Completed Memory Wrapper 7-37
Memory Selection DialogBox. 7-40
Memory Selection from a DB File Dialog Box. 7-41
Memory Definition DialogBox 7-42
Completed Memory Definition 7-45
Memory Pin Definition DialogBox 7-47
Completed Memory Pin Definition 7-49
Completed Wrapper Properties Dialog Box 7-51
Wrapper Summary 7-54
Memory Wrapper Displayed in Main Window. 7-55
Read Port Protocol Waveforms 7-57
Manually Adding Registers to an Asynchronous

MemoOry. 7-59
Code Editor Dialog Box With Default Code 7-60
Properties DialogBoxes. 7-63
Export Wrapper DialogBox 7-65
Exploratory Memory Selection Dialog Box 7-68
Exploratory Memory Definition Dialog Box........... 7-69
Completed Exploratory Memory Definition. 7-71
Exploratory Memory Pin Definition Dialog Box. 7-72
Exploratory Wrapper Properties Dialog Box.......... 7-74
Exploratory Memory Wrapper Summary 7-76
Exploratory Memory Wrapper in Main Window 7-77

XiX

Figure 8-1

XX

Externalize a Cell

Tables

Table 6-1 Edges Representing Constraints 6-14
Table 6-2 Reservation Table Symbols 6-28
Table 7-1 Comparing Arrays, Register Files, and Memories 7-5

XXi

XXil

Examples

Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5
Example 3-6
Example 3-7
Example 3-8
Example 3-9
Example 4-1
Example 4-2
Example 4-3
Example 4-4
Example 4-5
Example 4-6
Example 4-7

Complex Multiplier 1/0 Protocol. 3-3
Complex Multiplier Arithmetic Operations. 3-5
ReportClock. 3-7
Listing Libraries. i 3-10
Library Report (Partial) 3-11
Wire Load Model (Partial) 3-12
Timing Report (Partial) 3-14
Clock Margin in the Resource Estimate Report 3-16
Estimated Resource Report 3-21
Schedule Report Summary. 4-21
Report Schedule Operations. 4-24
Report Schedule Variables 4-27
Report Schedule Abstract FSM 4-29
Report Hierarchy Before Scheduling. 4-35
Report Hierarchy After Scheduling 4-36
Constraining Between Two Operations. 4-38

XXiii

Example 4-8
Example 4-9
Example 4-10
Example 4-11
Example 4-12

Example 4-13

Example 4-14

Example 5-1
Example 5-2
Example 5-3
Example 5-4
Example 5-5

Example 5-6
Example 5-7
Example 5-8
Example 5-9
Example 6-1
Example 7-1
Example 7-2
Example 7-3

XXiV

Constrainingaloop,
Nested Loops With Operations.
Passing a Constraint Between Loops.............
Pipelined Loop Timing Summary (Partial).
Commands for Minimum Resource-Driven
Scheduling
Commands for Maximum Resource-Driven
Scheduling
Commands for Forced Maximum Resource-Driven

Scheduling
Clock Margin in the Resource Estimate Report
Multicycle Report (Partial).
Creating a Preserved Function.
Defining a Preserved Function in a Separate File. . . .
Using the read_preserved_function_netlist

Command
Using the compile_preserved_functions Command . .
Using DesignWare Components.
Reporting DesignWare Components
Listing Pipelined Components
HLS-52 ErrorMessage oo oo

Defining a Register File for a Specific Array

Report of Array Conflicts.
Accesses That May or May Not Conflict.

Example 7-4
Example 7-5
Example 7-6
Example 7-7
Example 7-8
Example 7-9
Example 7-10
Example 8-1
Example 8-2
Example A-1
Example A-2
Example B-1
Example B-2
Example B-3
Example B-4
Example B-5
Example B-6
Example B-7

Declaring a Local Memory Resource 7-18
Report of Synthetic Memory Wrapper. 7-19
Report of a Synthetic Library 7-22
Report of Memories Used ina Design 7-23
Set Memory InputDelay 7-27
Report Nonconflicting Memory Accesses 7-30
Memory Array Definition 7-66
Executing Without Speculative Execution. 8-5
Executing With Speculative Execution 8-6
SystemC Compiler Command Script A-7
Using BCViewinaScript A-12
Complex Multiplier Source Code. B-2
Command Script for Complex Number Multiplier B-4
Report Resource Estimates B-6
Schedule Report. B-9
Report Area. B-11
Report Timingt B-12
Report Resources. B-14

XXV

XXVi

Preface

This preface includes the following sections:

« What's New in This Release
e About This Guide

e Customer Support

XXVii

What's New in This Release

This section describes the new features, enhancements, and
changes included in SystemC Compiler version 2000.11-SCC1.
Unless otherwise noted, you can find additional information about
these changes later in this book.

New Features

SystemC Compiler version 2000.11-SCC1 includes the following new
features:

« Thewite_rtl commandgenerates eithera synthesizable RTL
model or an RTL model optimized for simulation. This command
provides a single interface to generate RTL models that replaces
setting several dc_shell variables and using the wr i t e command.

 Using eitherthewrite rtl orwite command, you can write
an RTL SystemC model optimized for simulation.

For information about these commands, see “Writing the RTL Files”
on page 2-18.

Enhancements
SystemC Compiler version 2000.11-SCC1 includes the following
enhancements:

« Synthesizable RTL models now contain operators such as +,
which are used instead of instantiations of Synopsys DesignWare
components like DW01_add. Substitutions are made when

XXViii

possible. This eliminates the dependency on Synopsys-specific
components for synthesizable RTL models, unless the behavioral
description specifies them.

The memory wrapper generation tool now allows you to specify
a memory write latency in addition to a read latency.

You can now customize the address and data bus waveforms. In
previous versions of the memory wrapper generation tool,
address and data bus waveforms were fixed to the first cycle.

For information about this enhancement, see “Editing the
Waveform Values” on page 7-56.

Known Limitations and Resolved STARS

Information about known problems and limitations, as well as about
resolved Synopsys Technical Action Requests (STARS), is available
in the CoCentric SystemC Compiler Release Note in SolvNET.

To see the CoCentric SystemC Compiler Release Note,

1. Go to the Synopsys Web page at http://www.synopsys.com and

click SolvNET.

If prompted, enter your name and password. If you do not have
a SOLV-IT! user name and password, you can obtain them at
http://www.synopsys.com/registration.

. Click Release Notes, then openthe CoCentric SystemC Compiler
Release Note.

XXiX

About This Guide

The CoCentric™ SystemC Compiler Behavioral User Guide explains
how to synthesize a SystemC behavioral description of a hardware
module into an RTL description or gate-level netlist using the
CoCentric SystemC Compiler.

Audience

The CoCentric™ SystemC Compiler Behavioral User Guide is for
system and hardware designers and electronic engineers who are
familiar with the SystemC Class Library and the C or C++ language
and development environment.

Familiarity with one or more of the following Synopsys tools is
advantageous but not required:

» Synopsys Behavioral Compiler

* Synopsys Design Compiler

» Synopsys Scirocco VHDL Simulator

« Synopsys Verilog Compiled Simulator (VCS)

XXX

Related Publications

In addition to the CoCentric™ SystemC Compiler Behavioral User
Guide, see the following manuals:

The CoCentric™ SystemC Compiler Behavioral Modeling Guide,
which provides information about how to develop or refine a
SystemC behavioral model for synthesis with SystemC Compiler

The SystemC HDL Cosimulation User Guide, which provides
information about cosimulating a system with mixed SystemC and
HDL modules

The CoCentric™ SystemC Compiler Quick Reference, which
provides a list of commands with their options and a list of
variables.

For additional information about SystemC Compiler and other
Synopsys products, see

Synopsys Online Documentation (SOLD), which is included with
the software

Documentation on the Web, which is available through SolvNET
on the Synopsys Web page at http://www.synopsys.com

The Synopsys Print Shop, from which you can order printed
copies of Synopsys documents, at http://docs.synopsys.com

You can also refer to the documentation for the following related
Synopsys products:

Design Compiler
Scirocco VHDL Simulator

Verilog Compiled Simulator

XXXi

Conventions

The following conventions are used in Synopsys documentation.

Convention Description
Couri er Indicates command syntax.
Courier italic Indicates a user-defined value in Synopsys

syntax, such as obj ect _nane. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Courier bold Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

[Denotes optional parameters, such as
pinl [pin2 ... pinN

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one
of three possible values for an option:
low, medium, or high.)

Connects terms that are read as a single term
by the system, such as
set _annot at ed_del ay

Control-c Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.
/ Indicates levels of directory structure.
Edit > Copy Indicates a path to a menu command, such as

opening the Edit menu and choosing Copy.

XXXIi

Customer Support

Customer support is available through SOLV-IT! and through
contacting the Synopsys Technical Support Center.

Accessing SOLV-IT!

SOLV-IT!is the Synopsys electronic knowledge base, which contains
information about Synopsys and its tools and is updated daily.

To access SOLV-IT!,
1. Go to the SolvNET Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password.

If you do not have a SOLV-IT! user name and password, you can
obtain them at http://www.synopsys.com/registration.

If you need help using SOLV-IT!, click SolvNET Help in the column
on the left side of the SolvNET Web page.

XXXiii

XXXIV

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

* Open acall to your local support center from the Web by going to
http://solvnet.synopsys.com (SOLV-IT! user name and password
required), then clicking “Enter a Call.”

« Send an e-mail message to support_center@synopsys.com.

« Telephone your local support center.
- Call (800) 245-8005 from within the continental United States.
- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.

Training

For SystemC and SystemC Compiler training and private workshops,
contact the Synopsys Customer Education Center in one of the
following ways:

» Go to the Synopsys Web page at http://www.synopsys.com/
services/education.

» Telephone (800) 793-3448.

1

Introductionto SystemC Compiler Behavioral
Synthesis

CoCentric™ SystemC Compiler synthesizes a SystemC behavioral
hardware module into RTL or agate-level netlist, and it can synthesize
a SystemC RTL module into a gate-level netlist. After synthesis, you
can use other Synopsys tools for test insertion, power optimization,
and other tasks to complete the physical design.

For information about setting up your environment to use SystemC
Compiler, see Appendix A, “Setting Up SystemC Compiler.”

This chapter describes the synthesis process, the inputs required by
SystemC Compiler, and the outputs it produces in the following
sections:

« Understanding What SystemC Compiler Does

» Libraries and Other Inputs

Introduction to SystemC Compiler Behavioral Synthesis
1-1

e Outputs From SystemC Compiler

Introduction to SystemC Compiler Behavioral Synthesis
1-2

Understanding What SystemC Compiler Does

SystemC Compiler is a tool that can accept both behavioral and RTL
SystemC descriptions and performs behavioral or RTL synthesis, as
required, to create a gate-level netlist. You can also use SystemC
Compiler to create an HDL description for simulation or to use with
other HDL tools in your flow. Figure 1-1 shows behavioral and RTL
synthesis paths to gate-level netlists.

Figure 1-1 Behavioral Synthesis Compared to RTL Synthesis

Behavioral Synthesis RTL Synthesis

Behavioral
code

Behavioral
synthesis c%glé
Write | g |
optional +
RTL
Logic Logic
synthesis synthesis

Y

Gate
level
netlist

Gate
level
netlist

Introduction to SystemC Compiler Behavioral Synthesis
1-3

Synthesis With SystemC Compiler

This guide explains how to do behavioral synthesis with SystemC
Compiler. For information about doing RTL synthesis with SystemC
Compiler, see the CoCentric™ SystemC Compiler RTL User and
Modeling Guide.

SystemC Compiler synthesizes hardware from a behavioral
description by

Timing all operations, based on a technology library

Scheduling operations, 1/0, and memory accesses into clock
cycles

Allocating hardware by assigning variables and signals to
registers and assigning operations to synthetic components

Creating a finite state machine (FSM) and memory interface
control logic

Pipelining loops for higher throughput, which typically increases
the size of the ASIC

Inferring memory for arrays

Chaining and multicycling operations

Introduction to SystemC Compiler Behavioral Synthesis

1-4

SystemC Compiler generates a design that consists of an FSM, a
data path, and memory, as shown in Figure 1-2.

Figure 1-2 Structure of the Circuit Generated by SystemC Compiler During

Behavioral Synthesis
Control FSM
External >
input > Logic
[j Memory
State optional
Status
v
v
nput ——» 0000 0110110010110101
M
Data _»_’ > 1000 0111100001010101
<«— Input o 0100 0011111010101011
R R 1100 0010101011111001
0010 1101010111010101
> Output 1010 0000000011010101
0110 0111111110010111
Clk Enable
Data Path

Memory

Introduction to SystemC Compiler Behavioral Synthesis

1-5

Timing

During timing, SystemC Compiler determines the delay through each
component that is used in the design shows the critical paths in the
design. To accurately determine timing, it uses

ASIC vendor libraries
Wire load models
Operating conditions

DesignWare component libraries

The timing estimates that are created are used during scheduling and
allocation to determine an appropriate architecture. Timing is
described in more detail in “Timing and Area Estimation” in Chapter 3.

Introduction to SystemC Compiler Behavioral Synthesis

1-6

Scheduling

During scheduling, SystemC Compiler schedules 1/0 operations,
arithmetic operations, and memory accesses into specific clock

cycles, as shown in Figure 1-3.

Figure 1-3 Scheduling Into Specific Clock Cycles

Behavioral code

wait_until (start.delayed() == true);
A = portl.read() * port2.read();

B = port3.read() * port4.read();
C=A+B

if (C<0) {...}

I/0 Arithmetic operations Scheduled operations

portl A Cycle

Operation

Schedule 1

read inputs

port2 C
-
2

port3
B
3

port4

OlOIO/©

Introduction to SystemC Compiler Behavioral Synthesis

1-7

SystemC Compiler objectives during scheduling are to

Satisfy the data and control dependencies between operations

Ensure that the scheduling constraints of latency, throughput, and
clock period are met

Facilitate maximum resource sharing by distributing operations
over the allowed number of cycles

Allow for maximum register sharing by producing and consuming
variables intelligently

The scheduling mode defines how SystemC Compiler handles 1/0
operations. You control the scheduling mode to be either cycle-fixed
or superstate-fixed. In cycle-fixed scheduling mode, the 1/0
operations are left in the exact clock cycle specified in the behavioral
description. In superstate-fixed scheduling mode, SystemC Compiler
preservesthe relative order of I/0O operations defined in the behavioral
description, but it can insert clock cycles between I/O operations.
Scheduling modes are described in Chapter 4, “Scheduling and
Scheduling Constraints.”

Introduction to SystemC Compiler Behavioral Synthesis

1-8

Allocating Hardware

After the design is scheduled into clock cycles, data values are
assigned to specific registers, and operations are allocated to specific
hardware resources. To achieve the best overall hardware cost,
SystemC Compiler calculates whether sharing aresource and adding
multiplexers is more expensive than duplicating the resources during
allocation. Figure 1-4 shows allocation of hardware for a set of
constraints. The allocatation uses one multiplier, one adder, and one
comparator to execute the operations

Figure 1-4 Allocation of Resources

Scheduled operations Hardware resources

Cycle Operation Allocation Multiplier| Adder | Comparator
— >

1 read inputs *
2 @/ *

Introduction to SystemC Compiler Behavioral Synthesis
1-9

Creating an FSM and Data Path

Data path operations are specified explicitly in the behavioral
description, and FSM actions are implied from the control statements
such as if, while, and loop statements. Figure 1-5 shows a simple
algorithm and the data path and FSM that SystemC Compiler creates.

Figure 1-5 An Algorithm and the Created Data Path and FSM

Algori Data Path
gorithm 2
— 1y >
R =1,
while (I > 1){ _.@— %—

R=R* I,

_ . l—>
s
v >

R=1
FSM

Introduction to SystemC Compiler Behavioral Synthesis

1-10

Pipelining Loops

You can increase the throughput of your design by pipelining loops.
During scheduling, SystemC Compiler generates the required loop
pipelining controls in the FSM. By pipelining loops, your design can
execute more operation per time unit, however the resulting ASIC
implementation is usually larger. Pipelining loops is described in
“Pipelining a Loop” on page 4-44.

Inferring Memories

You can map an array to a memory and use a simple array access
statement in the behavioral description to access the memory.
SystemC Compiler automatically schedules memory accesses and
generates the control for memory access. Data dependencies
between memory read and write and other operations in the data flow
are respected. Use memory inferencing to explore the tradeoffs of
different memory architectures. Inferring memories and register files
is described in Chapter 7, “Using Register Files and Memories for
Arrays.”

Introduction to SystemC Compiler Behavioral Synthesis
1-11

Libraries and Other Inputs

SystemC Compiler requires a SystemC behavioral description
following the coding guidelines described in the CoCentric™
SystemC Compiler Behavioral Modeling Guide, a technology library,
and a synthetic library.

Figure 1-6 shows the flow into and out of SystemC Compiler.

Figure 1-6 SystemC Compiler Input and Output Flow

Behavioral Constraints Technology Synthetic
Description Script Library Library

-

~

BCView

SystemC Compiler

High-Level
Synthesis

Cycle-accurate Constraints Scheduled Reports Graphical
HDL RTL or analysis
l sch(;duled .db
Post-synthesis Physical synthesis
verification or
logic synthesis
Gate-level
netlist

Introduction to SystemC Compiler Behavioral Synthesis
1-12

Behavioral Description

Write and refine the behavioral hardware description in SystemC
using the SystemC Class Library according to the guidelines in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide.

The behavioral description is independent from the technology and
iImplementation architecture. Using SystemC Compiler, you can
change the target technology library or constrain the implementation
architecture without modifying the behavioral description. This allows
you to explore various implementation architectures and target
technologies, which is particularly useful for FPGAs.

This manual uses the example designs that are available in the
CoCentric ™ SystemC Compiler Behavioral Modeling Guide. Thefiles
for these examples are available in the SystemC Compiler installation
in the $3SYNOPSYS/doc/syn/scc directory.

Technology Library

A technology library is provided by an ASIC vendor in Synopsys .db
database format. It provides the area, timing, wire load models, and
operating conditions. You provide the path to your chosen technology
library for your design by defining the t ar get _| i br ary variable in
dc_shell.

Sample technology libraries are provided in the SystemC Compiler
installation at $SYNOPSY S/libraries/syn. For the examples in this
manual, the tc6a_cbacore.db sample technology library is defined as
the target library.

Introduction to SystemC Compiler Behavioral Synthesis
1-13

Synthetic Library

The DesignWare synthetic library is a technology-independent library
of logic components. SystemC Compiler maps your design
operations to the synthetic library components. You provide the path
to your chosen synthetic libraries for your design by defining the
synthetic_|ibrary variable in dc_shell.

The DesignWare libraries are provided in the SystemC Compiler
installation at $SYNOPSY S/libraries/syn. The synthetic libraries have
names such as standard.sldb, dw01.sldb, dw02.sldb, and so forth.
For information about the DesignWare libraries, see the DesignWare
online documentation.

Outputs From SystemC Compiler

The output from SystemC Compiler is a cycle-true, fully constrained
RTL architecture that includes the FSM control logic and constraints
(such as multicycle constraints and resource sharing constraints)
needed for logic synthesis, as shown in Figure 1-6 on page 1-12.

You can write out the RTL in three styles

« An RTL .db file, which is recommended for compilation to a
gate-level netlist.

* A synthesizable RTL HDL file in Verilog or VHDL, which you can
use for compilation to gates, for verification, or for any other aspect
of the design flow that requires an HDL input.

« An RTL HDL or SystemC file optimized for simulation, which is
recommended for verification.

Introduction to SystemC Compiler Behavioral Synthesis

1-14

SystemC Compiler has a graphical analysis environment called
BCView that you can use to quickly and effectively analyze the
architecture generated by SystemC Compiler and to identify the
causes of common scheduling errors, if they should occur. BCView
Is described in Chapter 6, “Analyzing Designs With BCView.”

Introduction to SystemC Compiler Behavioral Synthesis

1-15

Introduction to SystemC Compiler Behavioral Synthesis
1-16

Using SystemC Compiler

This chapter describes the SystemC Compiler commands required
to synthesize a SystemC behavioral description into a gate-level
netlist or an RTL description.

In this chapter, a complex number multiplier design is used to show
the typical command usage. The source code, command script, and
reports generated are available in Appendix B, “Complex Number
Multiplier Example Files.” Other example designs are available in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide, and you
can access the design files in the SystemC Compiler installation at
$SYNOPSYS/doc/syn/scc.

This chapter contains the following sections:

 Usage and Commands

« Defining Libraries

Using SystemC Compiler
2-1

Compiling and Elaborating the Source Code
Assigning Timing and Area Design Constraints
Checking the Design

Estimating Time and Area

Scheduling the Design and Allocating Resources
Generating Summary Reports

Removing Designs from SystemC Compiler Memory
Resuming Synthesis From a Saved .db File

Writing the RTL Files

Compiling and Writing a Gate-Level Netlist

Using SystemC Compiler

2-2

Usage and Commands

This chapter uses the complex number multiplier example (“Complex
Number Multiplier Source Code” on page B-2) to show how to use
the commands. Figure 2-1 illustrates the primary commands that you
use to perform behavioral synthesis with SystemC Compiler and
compile the design into gates. The diagram also shows the inputs
you provide and the outputs SystemC Compiler can provide.

The commands used in this chapter show the typical options you use.
For a full description of the command and all its options, see the
Synopsys online man pages. Accessing and using man pages is
described in “Getting Command, Variable, and Error Help” on page
A-15.

You do not to need complete this design flow in a single session. Start
the session at the top of the flow. If you stop, reenter the flow at a
later time either at the conpi | e_syst ent command, at the

bc _time_desi gn command, or at the schedul e command.

Enter the SystemC Compiler commands at the dc_shell prompt or
use the i ncl ude command to run a script that contains the
commands. To start dc_shell, enter the following at a UNIX prompt:

uni X% dc_shel |

If this is the first time you are using SystemC Compiler, see Appendix
A, “Setting Up SystemC Compiler” for information about setting up
your environment, entering commands, and using scripts.

Using SystemC Compiler
2-3

Figure 2-1 SystemC Compiler Commands Use in the Flow

Inputs

Target and
synthetic
libraries

T2,

Commands Outputs

Behavioral Code

conpi |l e_systenc

SystemC
Compiler

Elaborated .db File

Constraints
Timing
Area

bc_check_desi gn

| Timed .db File

e |
e |

bc_time_design

Reports |

~Y

Constraints
Latency
Pipeline

Using SystemC Compiler
2-4

C@* BCView and reports I

> RTL .db File
conpile

> Cycle-accurate
HDL simulation file

L Synthesizable
Gate-Level Netlist I RTL HDL file

Defining Libraries

Before you use SystemC Compiler, you need to define the target
library, synthetic library, link library, and search path that are
appropriate for your design by setting thetarget |i brary,
synthetic_library,link _|ibrary,andsearch_path
variables. For example, to use the tc6a_cbacore library and the
DesignWare libraries, enter

dc_shell > target library = {"tc6a_cbacore. db"}

dc_shell > synthetic_library = {"dw01l. s/ db" "dwo2. sl db"}
dc_shell>1link _library =target |library + synthetic_library
dc_shel |l > search_path = search_path + "your_[|ibrary.db"

Other variables you can set are described in “Defining Libraries and
Other Variables” on page A-3.

Compiling and Elaborating the Source Code

Before you use SystemC Compiler, simulate your design with a
standard C++ compiler. This ensures that your design is functionally
correct and meets the functional specification. This is also valuable
to detect and correct any C++ syntax and semantic errors.

Preparing to Use BCView

To use BCView for evaluating your design, set the

bc_enabl e_anal ysi s_i nf o variable to true before you use the
conpi | e_syst ent command so SystemC Compiler creates the
additional analysis data. Enter

dc_shel |l > bc_enabl e_analysis _ info = true

Using SystemC Compiler
2-5

After executing the schedul e command, use BCView to determine
scheduling errors or to evaluate your scheduled design. You can later
remove the additional analysis data with the

renove_anal ysi s_i nf o command.

Using the compile_systemc Command

Usetheconpi | e_syst ent commandto read your SystemC source
code and check it for compliance with synthesis policy, C++ syntax,
and C++ semantics. If there are no errors, it produces an internal
database (.db) ready for timing analysis. This process is called
elaboration.

The conpi | e_syst ent command, and the other SystemC
Compiler commands, respond with 1 if no errors were encountered
or a 0 if an error was encountered. It also displays explanatory
messages for errors and warnings.

The conpi | e_syst ent command performs the following:

» Checks C++ syntax and semantics

* Replaces source code arithmetic operations with DesignWare
components

« Performs optimizations such as constant propagating, constant
folding, dead code elimination, and algebraic simplification

« Performs the necessary elaboration steps to prepare the
SystemC description for timing analysis and scheduling

Forinformation aboutissuing C++compiler preprocessor options with
the conpi | e_syst ent command, see “Using compile_systemc
Command Preprocessor Options” on page A-9.

Using SystemC Compiler

2-6

Elaborating a Design With a Single Behavioral Module

If your design has a single behavioral module with one or more
behavioral processes, use the conpi | e_syst ent command to
elaborate the design. For example, to elaborate the cmult design,
enter

dc_shel |l > conpil e _systent cnult. cc

Elaborating a Hierarchical Design With Multiple
Behavioral Modules

If your design is hierarchical and contains multiple behavioral
modules, you need to use the conpi | e_syst ent command to
elaborate each module separately. Then use the | i nk command to
link the internal databases. The top-level module must be an RTL
module that instantiates the behavioral modules. Each behavioral
module can contain one or more processes. (For details about
creating a hierarchical module, see the CoCentric™ SystemC
Compiler Behavioral Modeling Guide or the CoCentric™ SystemC
Compiler RTL User and Modeling Guide.) Enter

dc_shel | > conpil e_systent beh _nodul el. cc

dc_shel | > conpil e_systent beh _nodul e2. cc

dc_shel Il > conpile _systent -rtl -rtl _format db top rtl.cc
dc_shell > |ink

The current design name is taken from the most recently executed
conpi | e_syst ent command. In this example, the current design
name is top_rtl. You can elaborate the files in any order. To change
the current design name after you link the elaborated files, enter

dc_shel | > current _desi gn new desi gn_nane

Using SystemC Compiler
2-7

The conpi | e_syst ent command provides several other options
related to RTL synthesis. For information about these options, see
the CoCentric™ SystemC Compiler RTL User and Modeling Guide.

Elaborating a Design With Multiple Files

If your design has multiple modules that are defined in separate files,
you can use either the #include directive or preserved functions to
bring the external files into the primary design. The commands to use
either method are described in “Using Multiple Files to Describe a
Design” on page 8-2

Assigning Timing and Area Design Constraints

Before timing the design, you can enter constraints that affect timing.
The cr eat e_cl ock command is the only constraint that is required
by SystemC Compiler at this stage.

Setting the Clock Period

Use the cr eat e_cl ock command to mark an existing design port
as the clock and set the clock period, which is specified in the same
unit defined in the target technology library. For example, to mark a
port named clk as a clock port and set the clock period to 20 units,

enter

dc_shell > create_clock cl/k -period 20

Using SystemC Compiler

2-8

Setting Other Initial Constraints

You do not need to set other design constraints at this stage. You
can, however, set constraints including environmental conditions that
affect delays (for example, the operating conditions and wire load
model). If you do not specify operating conditions and a wire load
model, the target library default values are used. The constraints you
can set are described in “Setting Your Timing Environment” on page
3-7.

Using SystemC Compiler
2-9

Checking the Design

Use the bc_check_desi gn command to check for errors that will
prevent your design from being synthesized with SystemC Compiler.

Before usingthe bc_check_desi gn command, you need to specify
the clock period for the design so the analysis is accurate (see “Setting
the Clock Period” on page 2-8).

Running Check Design

Runthebc_check_desi gn command to quickly check for SystemC
Compiler scheduling errors. This check determines whether your
module can be scheduled using the selected 1/0O scheduling mode.

dc_shel | > bc_check_design -i o_node node

Thei o_node canbeeithercycl e_fi xedorsuperstate_fi xed.
The defaulti o_node is cycl e_fi xed. For the complex number
multiplier example, the 1/0O mode is chosen to be

superstate_ fi xed mode.

Selecting a scheduling 1/0 mode is described in “Selecting an 1/0
Scheduling Mode” on page 4-10. Finding and fixing scheduling errors
Is described in “Using BCView to Analyze Scheduling Errors” on page
2-15.

Changing the Code

If the result of bc_check_desi gn indicates a need to change the
source code, make the necessary changes and repeat the steps from
“Compiling and Elaborating the Source Code” on page 2-5.

Using SystemC Compiler

2-10

Estimating Time and Area

The bc_ti ne_desi gn command estimates the timing and area
used by the design based on the initial design constraints. The Design
Compiler timing engine and the target library default settings are used
for accurate estimation. By default, the calculation is based on the
implementation with the smallest area. Enter

dc_shell > bc_tinme_design

This command annotates the current design with the timing and area
data for later use by the schedul e command.

To change the default behavior of the bc_t i ne_desi gn command,
use the - f ast est option. Enter

dc_shell > bc_tine_design -fastest

The - f ast est option uses the fastest available implementation for
each synthetic operation (+, *, and so forth) instead of the default,
which is the implementation with the smallest area.

To force the bc_ti ne_desi gn command to recompute and
overwrite the existing timing and area estimates, use the - f orce
option. Use it, for example, to recalculate timing and area estimates
when you change the target library. Enter

dc_shell > bc_tinme_design -force

Commands, variable settings, and other techniques you can use to
improve latency and area are described in Chapter 3, “Timing and
Area Estimation,” and Chapter 5, “Optimizing Latency and Area.”

Using SystemC Compiler
2-11

Reporting Timing and Area Estimates

Thereport _resource_esti mat es command displays the timing
and area estimates generated by the bc_ti me_desi gn command.
Enter

dc_shell > report _resource_esti mtes

The report shows the delays through the synthetic components
required by the current design. These delays are used for scheduling
and allocation.

An example of the report and an explanation are provided in
“Interpreting the Timing and Area Resource Report” on page 3-17.

Saving the Timed Design

Save the timed .db file so you can explore different architectures
without running bc_ti ne_desi gn each time. Usethewite
command to write out the timed .db file. Enter

dc_shell> wite -hierarchy
-output cnult_tined. db

Resuming synthesis from this saved .dbfile is described in “Resuming
Synthesis From a Saved .db File” on page 2-17.

Using SystemC Compiler

2-12

Scheduling the Design and Allocating Resources

The schedul e command invokes the scheduling and allocation
functions of SystemC Compiler. If you have not already invoked the
bc_time_desi gn command, the schedul e command executes it.
Enter

dc_shel |l > schedule -io_node node

By default, the schedul e command

* Makes tradeoffs to achieve a design with the fastest latency as
the top priority

» Creates a design with the smallest area as a secondary priority
» Performs scheduling and allocation with low effort
» Performs cycle-fixed 1/0O scheduling

The -i o_node can be an I/O scheduling mode of either

cycl e fixedorsuperstate fixed. Selecting a scheduling 1/0
mode is described in “Selecting an I/O Scheduling Mode” on page
4-10. For the complex number multiplier example, the

super st ate_fi xed mode is chosen.

Scheduling for Smallest Area

To change the scheduling priority to smallest area scheduling as the
top priority and fastest latency as a secondary priority, use the
- ext end_I| at ency option. Enter

dc_shell > schedule -io_nobde superstate fixed
-extend_| at ency

Using SystemC Compiler
2-13

When you use the - ext end_| at ency option with the
superstate-fixed scheduling mode, the schedul e command adds
clock cycles (latency) to the design whenever possible to minimize
resources needed by the design and produce the smallest area. The
- ext end_I at ency option is not relevant for the cycle-fixed
scheduling mode, because placement of clock cycles are controlled
by the source code.

Changing the Effort Level

To control the CPU effort level for scheduling, use the - ef for t
option. Define the effort as qui ck, | ow, medi um or hi gh. For
example,

dc_shel |l >schedul e -io_node superstate fixed-effort nedi um

To control the CPU effort level for allocation, use the
-al l ocati on_effort option. Define the effort as qui ck, | ow,
medi um or hi gh. For example,

dc_shell > schedule -io_node superstate fixed
-effort high
-all ocation_effort nedium

Setting Schedule Constraints

You can apply other scheduling constraints before using the
schedul e command, as described in Chapter 4, “Scheduling and
Scheduling Constraints."

Using SystemC Compiler

2-14

Using BCView to Analyze Scheduling Errors

If you get scheduling errors when running the bc_check_desi gn
orschedul e commands, use the BCView Scheduling Error Analyzer
to obtain graphic information that can help you determine where and
why the scheduling errors occur. The Scheduling Error Analyzer
shows where design specification requirements conflict. Such
conflicts arise when user constraints and the inherent requirements
of the design are incompatible.

For details about using BCView, see “Examining Scheduling Errors”
on page 6-9.

When BCView can analyze scheduling errors , SystemC Compiler
prints a message directing you to launch BCView. Otherwise,
SystemC Compiler provides informative messages.

Analyzing Scheduling Results

After scheduling the design, analyze the results using one or both of
the following methods:

« Use BCView to perform analysis after scheduling, which is
described in “Evaluating the Architecture Generated by SystemC
Compiler” on page 6-21.

« Usethereport_schedul e command to display the results of
scheduling.

Ther eport _schedul e command displays the results of scheduling
and allocation. Examine the scheduling reports to determine whether
the synthesized design is satisfactory. Enter

dc_shel |l > report _schedul e

Using SystemC Compiler
2-15

An example scheduling report and an explanation are provided in
“Analyzing the Scheduling Report” on page 4-20.

Generating Summary Reports

To generate summary reports of the design after it is compiled to
gates, use one or more of the following commands:

dc_shell > report _area
dc_shel | > report _resources
dc_shell > report _timng

Examples of these reports are shown in “Report Area” on page B-11,
“Report Resources” on page B-14, and “Report Timing” on page B-12

show.

Removing Designs from SystemC Compiler Memory

You might want to remove all the current designs from SystemC
Compiler memory to synthesize a different design or resume
synthesis from a .db file you saved at some point in the flow. To
remove designs from SystemC Compiler memory, use either the
renove_desi gn or f r ee commands. Enter,

dc_shel | > renove_desi gn -designs

Or enter,

dc_shell > free -designs

Using SystemC Compiler
2-16

Resuming Synthesis From a Saved .db File

To resume synthesis of a design from a .db file you saved after
elaboration, timing, or scheduling, use the r ead command to bring
the .db file into SystemC Compiler. Before reading the .db file, you
can optionally remove all designs from SystemC Compiler. For
example, if you want to resume synthesis of the complex number
multiplier from the .db file saved after timing, enter

dc_shell > free -designs
dc_shell > read cnult_tined. db

Then resume synthesis starting at the next step in the synthesis flow.
For this example, the next stepis described in “Scheduling the Design
and Allocating Resources” on page 2-13.

Using SystemC Compiler
2-17

Writing the RTL Files

When you are satisfied with the results of scheduling, write out an
RTL .db file and HDL format files for

Verification of behavioral synthesis results
A future logic synthesis session

Formal verification

RTL sign-off

Use with other Synopsys tools

You can write out the RTL in three styles

1. Write an RTL .db file, which is recommended for compilation to a

3.

gate-level netlist.

Write a synthesizable RTL file in Verilog or VHDL, which you can
use for compilation to gates, for verification, or for any other aspect
of the design flow that requires an HDL input.

Write an RTL HDL or SystemC file optimized for simulation, which
Is recommended for verification. This file is not appropriate for
synthesis.

Using SystemC Compiler

2-18

Writing the RTL .db File

The RTL .db file is a scheduled and constrained database file you
can use for logic synthesis with Synopsys tools, such as Design
Compiler and Physical Compiler, that accept a .db file. To write out
this file, use the following command:

dc_shell > wite
- hi erarchy
-out put design_sch rtl.db

where

 The - hi er ar chy option specifies to write all designs in the
hierarchy. It is recommended that you always use the
- hi er ar chy option for writing out the RTL .db file of a design
synthesized with SystemC Compiler.

 The - out put option specifies the output file name. It is
recommended that you create a file name with _sch to indicate
the designis scheduled, _rtltoindicate RTL, and the .dbextension
to indicate it is a database file.

Resuming synthesis from this saved .dbfile is described in “Resuming
Synthesis From a Saved .db File” on page 2-17.

Using SystemC Compiler
2-19

Writing a Synthesizable RTL HDL File

Write the RTL design in an HDL format file for a future logic synthesis
session with other Synopsys synthesis tools such as Design Compiler
and Physical Compiler. Synthesizable RTL is a register transfer level
description of a design generated by SystemC Compiler. To write out
this file, use the following command:

dc_shell> wite rtl
[-format [verilog | vhdl]
[-output [design _sch rtl.vhd | design sch rtl.v]]
[-rt] _script design sch rtl.scr]

where

« The-format option specifies the output format as Verilog or
VHDL.

 The - out put option specifies the output file name. It is
recommended that you create the file name with the typical
extensions of .v for Verilog or .vhd for VHDL.

« The-rtl _scri pt option specifies the file name for the
automatically generated dc_shell script, which contains RTL
synthesis constraints. (If you are running dc_shell in the dctcl
mode, the script is generated with the appropriate Tcl syntax.)

Prior to performing logic synthesis, read in the RTL design and
the automatically generated script using the following commands:

dc_shell> read -f [vhdl | verilog] design _sch_rtl.v[hd]
dc_shell > include design sch rtl.scr
dc_shell > conpile

Using SystemC Compiler

2-20

Writing an RTL Simulation File

You can write the scheduled design to an HDL or SystemC format
file optimized for simulation speed using the - si nul ati on option
with the wri te_rtl command. Use this file as input to a simulator
such as Verilog Compiled Simulator (VCS) or Scirocco VHDL
Simulator. If you write a SystemC file, use it with a C++ language
compiler.

You can also use the synthesizable RTL file, described in “Writing a
Synthesizable RTL HDL File” on page 2-20, for simulation. It is not,
however, optimized for simulation speed.

When you use the - si mul at i on option withthewite rtl
command, SystemC Compiler generates a cycle-accurate, levelized
RTL netlist for simulation purposes. The design hierarchy is flattened
and the RTL netlist is written out to contain the least possible number
of processes. Each process is sensitive to a clock, which means that
only recognized simulation events are clock edges. Because there
are only a few processes, the total number of simulation events is
significantly reduced, and simulation executes much faster. With the
clock edges limited to only simulation events, the simulation is cycle
accurate.

Note:

This style of RTL is not suitable for synthesis with logic synthesis
tools.

Using SystemC Compiler
2-21

To write out an RTL HDL or SystemC file optimized for simulation,
use the following command:

dc_shell> wite rtl
[-format [verilog | vhdl | systent]
[-sinmulation]
[- debug_node]
[-output [design_sch rtl.vhd | design sch rtl.v
desi gn_sch rtl. cc]]

where

« The - out put option specifies the output file name.

 The-f or mat option specifiesthe outputformatas Verilog, VHDL,
or SystemC.

« The -si nmul ati on option specifies the output format as
optimized for simulation speed.

« The - debug_nopde option specifies that the simulation RTL
output contains additional code to print diagnostics and enhance
debugging of the RTL simulation model. The - debug_node
option canonly be usedwiththe - si nul at i on option. The debug
enhancements include

- A process that traces the execution of the FSM generated by
SystemC Compiler

The process contains variables that you can monitor during
simulation for the current state of the FSM, the behavioral
design loop currently being executed, and the number of clock
cycles spent in the loop.

- Warnings about registers set to unknown values and
multiplexers with invalid values on their control lines

Using SystemC Compiler

2-22

- Warnings about input ports with values that are assumed to be
constant because the bc_dont _regi ster _i nput _port
command is applied to the input port, but the values are
changing during simulation

- A trace of all reads and writes to memories

- Atrace of all I/O operations that the design executes
(To generate 1/O traces, set the bc_add_i o_t r ace variable
to true before executing the schedul e command.)

Specifying VHDL Packages

If you are writing a VHDL RTL file, you can use the - use_packages
option of thewite_rtl command to specify a list of VHDL
packages to use in the RTL output. To specify VHDL packages, enter

dc_shell> wite rtl
-format vhdl
-out put design sch rtl.vhd
-rtl _script design sch rtl.scr
-use_packages {dwo2. dw02_conponents,
synopsys. attri but es}

Specifying Verilog Include Files

If you are writing a Verilog RTL file, you can use the
-incl ude_fil es option to specify a list of Verilog include files to
use in the RTL output. To specify include files, enter

dc_shell> wite rtl
-format veril og
-out put design sch rtl.v

-rtl _script design sch rtl.scr
-include files {ny_nult.v, test_decl. v}

Using SystemC Compiler
2-23

Compiling and Writing a Gate-Level Netlist

At this point in the flow, the behavioral description has been
synthesized into RTL. You can prepare the design for either place
and route or physical synthesis.

Preparing for Place and Route

Use the conpi | e command to create a gate-level netlist for place
and route. The conpi | e command performs logic synthesis and
optimization on the current design.

dc_shell > conpile
-map_effort [low | medium | high]

Use the following command to write the gate-level netlist:

dc_shell> write
- hi erarchy
-output cnult_netlist.db

For verification at the gate level, write a Verilog (or VHDL) simulation
file using the following command:

dc_shell > wite
-format veril og
- hi erarchy
-output cnult_netlist.v

Using SystemC Compiler

2-24

Preparing for Physical Compiler

Physical Compiler accepts an RTL or gate-level input and performs
logical and physical synthesis. This process results in placed gates.

To use Physical Compiler for physical synthesis, you need to perform
behavioral synthesis of the design using SystemC Compiler with a
target library that contains physical information in .lef or .pdb format.
For information about using Physical Compiler, see the Physical
Compiler documentation.

Preparing RTL for Physical Synthesis

To perform physical synthesis from an RTL netlist with Physical
Compiler, you need to provide a synthesizable RTL netlist and a
constraints file in Tcl format.

After you execute the SystemC Compiler conpi | e_syst ent,
bc tinme_desi gn, and schedul e commands, use the following
command to write the synthesizable RTL database file:

dc_shell> wite -format db
- hi erarchy
-output crnult_rtl.db

Use the following command to write the synthesizable Verilog file and
a Tcl constraints script for an HDL-based flow:

dc_shell> wite rtl -format veril og
-output crnult_rtl.v
-rtl _script synrtl.tcl

For verification of the RTL, write a Verilog (or VHDL) simulation file
using the following command:

Using SystemC Compiler
2-25

dc_shell> write
-format veril og
- hi erar chy
-output crnult_rtl.v

Preparing Gate-Level for Physical Synthesis

To perform physical synthesis from a mapped, gate-level database
with Physical Compiler, you need to provide a .db file.

After you execute the SystemC Compiler conpi | e_syst ent,
bc_time_desi gn, and schedul e commands, use the following
conpi | e command to create a mapped, gate-level netlist of the
design:

dc_shell > conpile
-map_effort [low | medium | high]

Use the following command to write the gate-level netlist:

dc_shell> wite -format db
- hi erar chy
-output cnult_gate.db

For verification at the gate level, write a Verilog (or VHDL) simulation
file using the following command:

dc_shell > wite
-format veril og
- hi erar chy
-output cnult_gate netlist.v

Using SystemC Compiler

2-26

Timing and Area Estimation

This chapter describes how SystemC Compiler calculates timing and
area estimates before scheduling the design. It also explains how to
influence the estimation of timing and area.

This chapter contains the following sections:

Understanding Clock Cycle, I/O, and Operation Relationships
Setting Your Timing Environment
Timing the Design

Interpreting the Timing and Area Resource Report

Timing and Area Estimation
3-1

Understanding Clock Cycle, I/0, and Operation
Relationships

Your behavioral description defines the 1/O protocol of your design
and the operations required to execute the required functionality.

Operation Delay and Clock Cycle

To understand how SystemC Compiler uses timing and area
estimates, you need to understand the relationships between
operation delays and the clock period.

SystemC Compiler produces a circuit that is synchronous. The
synchronous design uses edge-triggered flip-flops and a
single-phase, single-clock clocking scheme.

Each process in the behavioral description is sensitive to the positive
or negative edge of a single clock, which is defined with the

creat e_cl ock command. The relevant clock edge is called the
active clock edge. At the active clock edge,

* Inputs to registers are sampled
* Outputs change

In addition to the edge-triggered flip-flops, the design contains
combinational logic. The combinational logic is used to implement
components, multiplexers, and finite-state machine (FSM) logic.

The combinational logic resides between registers. The
combinational logic must compute its output data before the data is
sampled by the registers on the next active clock edge. Therefore,

Timing and Area Estimation

3-2

your choice of a clock period determines how much combinational
logic SystemC Compiler can place in each clock cycle. This in turn
affects the architecture produced by SystemC Compiler.

/O Protocol

You define the I/O protocol in your behavioral description by
specifying when data is read from the input ports and when data is
written to the output ports. Inputs are read and outputs are written at
the active clock edge.

Active edges are represented in the behavioral description by wait()
statements. The number of wait() statements between I/O reads and
writes determines the number of clock cycles between them.

Example 3-1 shows the I/O protocol of the complex number multiplier
highlighted in bold. Figure 3-1 shows a timing diagram of the I/O
protocol implied by this SystemC description.

Example 3-1 Complex Multiplier I/O Protocol

/'l cmult.cc inplenentation file
#i ncl ude "systent. h"
#i nclude "cnult. h"
void cnult _hs :: entry()
{
sc_int<8> a, b, c, d;
/[llnitialize and reset if reset asserts
ready for_data.wite(false);
out put _data_ready.wite(false);
real _out.wite(0);
i magi nary_out.wite(0);
wait(); //required clock before while |oop
while (true)
{
ready for _data.wite(true);
out put _data ready.wite(false);

Timing and Area Estimation
3-3

wait _until (new data. del ayed() == true);
ready for _data.wite(false);

/'l Read four data values frominput port
a = data_in.read();

wait();

b = data_in.read();

wait();

c = data_in.read();

wait();

d = data_in.read();

wait();

/] Cal cul ate and wite output ports

real _out.wite(a * ¢ - b * d);
imaginary out.wite(a * d + b * c);

out put _data ready.wite(true);

wait () ;

Figure 3-1 Timing Diagram of the Complex Multiplier I/O Protocol

T

ready for_data J .

new_data :
data_in : Xaxbxcxdé
output_data_ready l—l
real_out §><a *c-b*d
imaginary_out §><a *d+b*c

Timing and Area Estimation
3-4

Operations and Clock Cycles

Operations in a behavioral description manipulate data received from
the input ports to produce the output data, as required by the design
functionality. SystemC Compiler determines in which clock cycle it is
possible to execute each operation, and then it executes the
operation in the most beneficial clock cycle. This is called operation
scheduling.

Example 3-2 shows the arithmetic expressions of the complex
number multiplier highlighted in bold. Figure 3-2 shows the individual
operations that compose the expressions and also shows one
possible schedule that maps the operations to clock cycles.

Example 3-2 Complex Multiplier Arithmetic Operations

/'l cnmult.cc inplenentation file
#i ncl ude "systent. h"
#include "crmul t. h"
void cnult_hs :: entry()
{
sc_int<8> a, b, c, d;
//lnitialize and reset if reset asserts
ready for _data.wite(false);
out put _data ready.wite(false);
real _out.wite(0);
I magi nary_out.wite(0);
wait(); //required clock before while |oop
while (true)
{
ready for_data.wite(true);
out put _data_ready.wite(false);
wait_until (new_data. del ayed() == true);
ready for_data.wite(false);
/'l Read four data values frominput port
a = data_in.read();
wait();
b = data_in.read();
wait () ;

Timing and Area Estimation
3-5

c = data_in.read();

wait();

d = data_in.read();

wait();

/] Cal culate and wite output ports
real _out.wite(a * c - b * d);

i magi nary out.wite(a * d + b * c);
out put _data_ready.wite(true);
wait();

Figure 3-2 Operations of the Complex Multiplier

Expressions Arithmetic operations Schedule
a*c b * d 2__;@\ Cycle 8 arce b*c
: Cycle 9 a*d b*d
a*d+b*c g E@/v
Cycle 10 @*c)-(b*d)

—;®\
Cycle 11

(@a*d)+(b*c)

Timing and Area Estimation
3-6

Setting Your Timing Environment

Set your timing environment before you use either the
bc_time_desi gnorbc_margi n commands. You need to define
the clock period, and you can optionally set the input delay, wire load,

and operating conditions.

Setting Clocks

Define the clock period in the units of the technology library using the
creat e_cl ock command. To create a 20 time unit clock, enter

dc_shell > create _clock c/k -period 20

To display the current clock setting, use the r eport _cl ock
command to generate a clock report similar to Example 3-3. Enter

dc_shel Il > report _cl ock

Example 3-3 Report Clock

dc_shel I > report _cl ock

EE R I b I S b R R I I b S R R S I S R I I
Report : cl ocks

Design : cmult_hs

Ver si on: 2000. 11- PROD

Dat e : Fri Dec 15 11:37:14 2000
EE IR I I b b b b R b I I I
Attributes:

d - dont _touch_network

f - fix_hold

p - propagated cl ock
G - generated_cl ock

d ock Peri od Wavef or m Attrs

Timing and Area Estimation
3-7

To remove a clock, use the r enove_cl ock command. Enter

dc_shel | > renove_cl ock cl k

You can also remove all clocks by using the - al | argument. Enter

dc_shel | > renove_cl ock - al

Setting Input Delays

Inputs to the design may be coming from other circuits on or off the
chip. These inputs will not arrive exactly at the active clock edge,
rather they will arrive some time after the active edge. You can use
theset _i nput _del ay command to specify the exact time after the
active clock edge when the inputs will arrive. This constraint is
optional, but it is highly recommended that you set it to enable you
to reach timing closure later in the flow.

For example, to set an input delay of 1.0 for the data_in port with
respect to the clk clock, enter

dc_shell > set _input _delay 1.0 -clock clk data_in

The delay value specifies the input delay, which is in the units of the
technology library. SystemC Compiler assumes that the specified
Inputs, in this case data_in, are available at the specified input delay
after the active clock edge. SystemC Compiler uses this information
to compute the combinational path delays.

The - cl ock option specifies the name of the clock; the specified
input delay is added to its active edge. If the design has only one
clock, it is not necessary to use the - cl ock option.

Timing and Area Estimation

3-8

The port or list of ports option defines the input ports in the current
design to which the input delay is assigned.

You can use the all_inputs() function in place of a port list to
automatically extract the port names. For example,

dc_shell > set _input_delay 1.0 -clock clk
all _inputs() - clk

The all_inputs() function returns all input port names, and minus clk
removes the clock name from the list of all inputs.

Setting Operating Conditions

Use the set _operating _condi ti ons command to set the
interconnect model as part of the operating conditions. The operating
conditions are specified as best case, worst case, and typical case.
If you do not specify an operating condition, the technology library
default typical case is used. For example, to set the operating
conditions to worst case, enter

dc_shel | > set _operating_conditions WORST

Although the set _oper ati ng_condi ti ons command is optional,
it is highly recommended that you select the same operating
conditions that you will supply to other tools in the backend flow.

Listing Libraries

To list the names of libraries you have in memory, their file names,
and path, use the | i st command with the - | i b option. Enter

dc_shell> list -lib

Timing and Area Estimation
3-9

Example 3-4 shows a typical list of libraries.

Example 3-4 Listing Libraries

dc_shell> list -lib

Li brary File Pat h

cba_core t c6a_cbacore. db [renot e/ dt g332/ scp/ src/\
2000. 11- SCC2/ 2000. 11- scc2/\
I'ibraries/syn

dwo1l. sl db dw01l. sl db [renot e/ dt g332/ scp/ src/\
2000. 11- SCC2/ 2000. 11- scc2/\
I'ibraries/syn

dw02. sl db dw02. sl db [renot e/ dt g332/ scp/ src/\

2000. 11- SCC2/ 2000. 11- scc2/\
I'ibraries/syn

gtech gtech. db [renot e/ dt g332/ scp/ src/\
2000. 11- SCC2/ 2000. 11- scc2/\

I'ibraries/syn

standard. sl db standard. sl db [renot e/ dt g332/ scp/ src/\
2000. 11- SCC2/ 2000. 11- scc2/\

I'ibraries/syn

Listing Operating Conditions

To list the operating conditions defined in a technology library, use
thereport | i b command. Enter

dc_shell > report |lib cba core

Example 3-5 shows a patrtial library report.

Timing and Area Estimation
3-10

Example 3-5 Library Report (Partial)

dc_shell > report _|ib cba_core

Rk b Sk b R SRR Sk Sk Sk b S R R R e

Repor t
Li brary:
Ver si on:
Dat e

Li brary

library
cba _core
2000. 11- PRCD

Wed Nov 22 14:18: 34 2000

Rk b Sk b R SR kS kR R S R

Type

Tool Created
Dat e Created

Li brary

Comment s

Ti me Uni

Capaci ti
Pul I'i ng
Vol t age
Current
Leakage
Bus Nanmi

Ver si on

t

ve Load Unit
Resi stance Unit

Uni t

Uni t

Power Unit
ng Style

Operating Conditions:

Technol ogy
v3. 3b

Fri Aug 9 17:02:36 1996

tcba_r06

Operating condition (25.00 C, 5.00 V, typical)

1ns

1. 000000pf

1ki | o- ohm

v

1mA

Not specified.
%[%] (default)

Process Tenp

| nt er connect

Nare Li brary
typ_25_5.00 cba_core
4.50 cba_core

typ_-40_

1.00 25.00
1.00 -40. 00

Timing and Area Estimation
3-11

Setting Wire Loads

SystemC Compiler uses statistically generated wire load models to
estimate the wire lengths of nets, their capacitance, resistance, and
area. The wire load models, provided in the technology library, define
a fanout-to-length relationship. If you do not specify a wire load, the
technology library default is used.

Usethe set _w re_| oad command to specify the wire load model.
Although this constraint is optional, it is recommended that you use
the appropriate wire load model for the size of the design you are
going to synthesize.

dc_shell > set _wire | oad 90x90 -lib cba core

Example 3-6 shows a partial report of a wire load model in the
cba_core technology library. The report was generated by the
report |i b command. For example,

dc_shell > report _lib cbha core

Example 3-6 Wire Load Model (Partial)

Wre Loadi ng Model :

Nanme : tc6al20n®
Locati on : cba_core
Resi st ance : 0
Capaci t ance : 0.02
Ar ea : 1. 4375
Sl ope : 2.5
Fanout Length Poi nts Average Cap Std Devi ation
1 2.50
2 5. 00
10 25. 00

Timing and Area Estimation

3-12

Timing the Design

SystemC Compiler performs timing to obtain the bit-level timing
through the components that are necessary to implement the
operations in the behavioral description. It also reserves time from
the clock period for hardware that is placed on every timing path
during synthesis. The reserved time is called the timing margin or
cycle margin.

Timing Through the Components

To perform timing of the design, use the bc_ti ne_desi gn
command. The bc_ti me_desi gn command computes the timing
delays through all chains of operations in the behavioral description.
Operations are chained when the output of one operation is used by
another operation. Enter,

dc_shell > bc_tinme_design

You need to run the bc_t i me_desi gn command only once. You
may want to force it to recompute the timing delays, for example after
you change the timing environment. Enter

dc_shell > bc_tine_design -force

While the bc_t i me_desi gn command is executing, it displays
messages that show which component it is currently building. When
SystemC Compiler finishes executing the command, it generates a
timing report showing the computed delays through all chains of
operations. Example 3-7 shows a partial timing report for the complex
number multiplier.

Timing and Area Estimation
3-13

Example 3-7 Timing Report (Partial)

Curul ative delay starting at nul 36:

mul _36 = 6.357016
add_36 = 10.150984
I mginary out 36 = 10.150984
Curul ative delay starting at add_36:
add_36 = 8.784022
i magi nary_out 36 = 8.784022
Cumul ative delay starting at data_in_26:
data_in_26 = 0.000000
mul _36 = 6.357016
mul _35 = 6.357016
add_36 = 10.150984
sub_35 = 10.150984
I maginary_out 36 = 10.150984
real out 35 = 10.150984

A detailed description of the report is provided in “Interpreting the
Timing and Area Resource Report” on page 3-17.

Computing the Clock Cycle Margin

The bc_ti me_desi gn command reserves time in the clock period
as a clock cycle margin for the hardware that SystemC Compiler adds
to everytiming pathinthe design during synthesis. SystemC Compiler
extracts the required time to be reserved from the target technology
library. The clock period less the reserved clock cycle margin is
available for combinational logic.

The timing path starts at the clock pin of a register, passes through
the combinational logic, and terminates at the data input pin of a
register. Figure 3-3 shows a typical timing path.

Timing and Area Estimation
3-14

Figure 3-3 Typical Timing Path

Leading Multiplexer Trailing
register register

D Q '/gbinational D Q
\\—\lC)giC:/_/

> >

CLK T CLK

Multiplexer
control signal
from FSM

CLK>Q FSM MUX Register
delay delay setup

777777777777777777777 delay
«—p Clock period - margin 4—Ppet— Ppt—»p

»
»

Clock period

Each timing path, as illustrated in Figure 3-3, contains common
hardware components. SystemC Compiler reserves a clock cycle
margin in the clock period for the following components:

* Register margin

The leading register requires time at the beginning of the clock
period to respond to the clock edge and make the data available
on its Q output pin. This is called clock-to-Q delay.

Data must arrive at the D input pin to the trailing register a certain
time before the end of the clock cycle. This is called setup time.

The register margin is also referred to as the flip-flop (FF) margin,
because registers are implemented as FFs from the target library.

Timing and Area Estimation
3-15

e Multiplexer margin

The trailing register can get its input from several different
sources. A multiplexer controls which of the different sources
provides inputto the register. The reserved timing marginincludes
time for the multiplexer.

« FSM margin

At each clock cycle, the FSM generated by SystemC Compiler
moves into a new state. The reserved timing margin includes time
for the FSM to decode its state and generate the control signals
to control the data path portion of the synthesized design.

The bc_ti ne_desi gn command reports the clock cycle margin
value based on the current target library. SystemC Compiler looks for
all available flip-flops in the target library and uses the average
clock-to-Q delay and setup delay. Example 3-8 shows the relevant
data in the report.

Example 3-8 Clock Margin in the Resource Estimate Report

Cl ock Cycle Margin : 2.86 (Default)
FSM : 0. 55
MUX : 1.21
FF : 1.11
Clock Uncertainty : 0. 00

To control clock cycle margin calculation, see “Controlling Margin
Calculation” on page 5-12.

Timing and Area Estimation

3-16

Interpreting the Timing and Area Resource Report

SystemC Compiler uses operation delays during scheduling to
estimate timing. It uses area estimates of components thatimplement
the operations, multiplexers, and registers to calculate the total area
of the synthesized design.

SystemC Compiler reports timing and area resource estimates in two
ways:

* The report is automatically displayed when you run the
bc tinme_desi gn command.

* The resource report is displayed when you run the
report _resource_esti mat es command after SystemC
Compiler has calculated timing and area estimates.

A complete example of a resource estimate report is provided in
“Estimated Resources” on page B-6.

Evaluating the Resource Estimate Report

The resource estimate report shows paths through chains of
operations and the delays at all points in the path. The reportis divided
into sections, where each section reports on the paths starting at a
specific operation.

Figure 3-4 shows a partial report, the related behavioral description
fragment, and the related data flow diagram.

Timing and Area Estimation
3-17

Figure 3-4 Estimated Resources Report (Partial)

Cumul ative delay starting at data_in_32: <—— Starting point

data_in_32 = 0.000000
mul 36 = 6.340029
mul 36 2 = 6.340029 <«—— Intermediate
mul 35 2 = 6.340029 Rgmzm
add_36 = 10.138293 | P
i magi nary_out 36 = 10.138293
sub 35 = 10.417433
real _out 35 = 10.417433 ¢

Ending points

Related code fragment

32 d = data_in.read();

33 wait();

34 /] Cal cul ate and wite output ports
35 real out.wite(a * ¢c - b * d);

36 i magi nary_out.wite(a * d + b * c);

Related data flow diagram

, (atain 327

mul_35 2 v
, /‘

This report shows paths in the design starting at the input read of the
data_in port on line 32 of the behavioral description. Starting from
this input read, the maximum bit-level delay to any output of the

Timing and Area Estimation
3-18

operation add_361is 10.1 time units. Operation add_36 is the addition
on line 36. Indentation in the report indicates intermediate points in
the same timing path.

Looking at Parallel Paths

The resource estimates report indicates parallel paths by using the
same level of indentation.

Figure 3-5 shows a data flow graph of the two parallel paths in the
related code fragment. The relevant code and lines of the report are
highlighted in bold. The add_36 and sub_35 operations have the
same level of indentation, indicating they are parallel paths starting
at the output of the mul_35_2 operation.

Timing and Area Estimation
3-19

Figure 3-5 Parallel Paths in the Estimated Resources Report (Partial)

Cumul ative delay starting at data_in_32: <—— Starting point

data_in 32 = 0.000000
mul 36 = 6.340029
mil _36_2 = 6.340029
mil _35 2 = 6.340029
Parallel ~_yadd_36 = 10.138293
paths i magi nary_out 36 = 10.138293

—» sub_35 = 10.417433 \
real _out 35 = 10.417433 ¢

Related code fragment

Ending points

32 d = data_in.read();

33 wait();

34 /] Cal cul ate and wite output ports
35 real _out.wite(a * ¢c - b * d);

36 I magi nary_out.wite(a * d + b * ¢);

Related data flow diagram

N , e
b ¢
.
A b
add_36

Timing and Area Estimation
3-20

Area Estimates

The area section of the report displays the area estimates for all the
components (processors) that can implement that operation.
Example 3-9 shows the timing and area resource report with an
addition operation that has two possible components; an asterisk
indicates the component used to calculate the timing. By default, the
smallest component is used for the estimate.

Example 3-9 Estimated Resource Report

Area for processors that can inplenent nul 36
(* = used for timng):
*DW2_nul t (nbw) = 2750. 742432

Area for processors that can inplenent add 36
(* = used for timng):
*DW1_add(rpl) = 94.239998
DW1 addsub(rpl) = 503.678986

Note:
The target technology library specifies the units of time and area.

Timing and Area Estimation
3-21

Timing and Area Estimation
3-22

A

Scheduling and Scheduling Constraints

This chapter describes how to use the SystemC Compiler 1/0
scheduling modes and other methods to improve scheduling. During
the scheduling step in synthesis, SystemC Compiler determines the
specific clock cycle in which to execute the 1/0O operations, arithmetic
operations, and memory accesses. This chapter contains the
following sections:

Scheduling for Synthesis
Selecting an 1/0 Scheduling Mode
Performing Scheduling

Analyzing the Scheduling Report
Adding Scheduling Constraints

Constraining Resource Allocations

Scheduling and Scheduling Constraints
4-1

Scheduling for Synthesis

The main synthesis step is scheduling the design. During scheduling,
SystemC Compiler schedules I/O operations, arithmetic operations,
and memory accesses into specific clock cycles, as shown in Figure
4-1.

Figure 4-1 Scheduling Into Specific Clock Cycles

Behavioral code

wait_until (start.delayed() == true);
A = portl.read() * port2.read();
B = port3.read() * portd.read();

C=A+ B,
if (C<0) {...}
/0 Arithmetic operations Scheduled operations
portl Cycle Operation
port2 Schedule 1 read inputs
—>

2 | @
| ©
s
s | ©

Before executingthe schedul e command, the design must be timed.
If you have notexecutedthe bc_ti ne_desi gn command, SystemC
Compiler executes it before it starts the schedul e command.

port3 __

port4d -~

Scheduling and Scheduling Constraints

4-2

Operation Scheduling

During scheduling, SystemC Compiler selects the most beneficial
clock cycle in which to execute each operation in the behavioral
description. Figure 4-2 shows a sample schedule for the operations
in the complex number multiplier example.

Figure 4-2 Operation Scheduling

Cycle Operation
1 a = data_in.read()
2 b = data_in.read()
3 ¢ = data_in.read()
4 d =data_in.read() (axc) (bxc)
5 (axd) (bxd)
6 (axc)-(bxd)
7 (axd)+(bxc)
8 real_out.write() imaginary_out.write()

SystemC Compiler ensures that the set of operations that are placed
into the same clock cycle can be executed within the clock period that
you specify. SystemC Compiler uses the timing information from the
bc time_desi gn command to determine the timing.

SystemC Compiler schedules operations to minimize the latency (the
number of clock cycles) to execute the synthesized design.

Scheduling and Scheduling Constraints
4-3

Resource Sharing

SystemC Compiler shares resources whenever possible. This means
If two operations can execute on the same component, SystemC
Compiler uses one component to execute both operations. This part
of the schedule command is called resource allocation. Figure 4-3
shows a possible allocation for the complex number multiplier, based
on the schedule shown in Figure 4-2.

Figure 4-3 Resource Allocation Reservation Table

Resource

Port Port Port
Cycle data_in Multiplier 1| Multiplier 2| Adder/Subtracton real_out imaginary_out
1 a = data_in.read()

2 b = data_in.read()

3 ¢ =data_in.read()

4 d = data_in.read() axc bxc

5 axd bxd

6 (axc)-(bxd)

7 (axd) +(bxc)

8 real_out.write() | imaginary_out.write()

Resource allocations are typically expressed as a reservation table.
The columns represent individual components and the rows
represent clock cycles. The location of an operation in the table
indicates the component that performs the operation and the clock
cycle when the operation is executed.

Scheduling and Scheduling Constraints
4-4

SystemC Compiler shares resources whenever it is beneficial to do
so. Sharing resources means allowing the resource to accept inputs
from multiple sources, and sharing may require additional
multiplexers that can increase the overall area of the synthesized
design. SystemC Compiler shares resources ifit results in areduction
of the overall area of the synthesized design; otherwise, it does not
share resources.

Inferred Registers

SystemC Compiler infers registers for the following behavioral
constructs:

Output ports

SystemC Compiler places a register immediately before each
output port of the synthesized design. This ensures that the output
data is held stable over the clock cycle when the outputs are
asserted.

Signals

Signals are used in a behavioral description to communicate
between processes in the same design. Registers are used to
implement signals.

Variables

Variables that have data created in one clock cycle and used in
a later clock cycle are assigned a register to hold the data. The
duration when the data must be held is called the lifetime of the
variable.

Scheduling and Scheduling Constraints
4-5

Variables can be defined in the behavioral description. In addition,
SystemC Compiler automatically infers variables for the
intermediate results of complex, single-line expressions. For
example,

X =a+b+c

This expression has one variable x thatis defined in the behavioral
description. SystemC Compiler infers an additional variable for
the result of a + b. If the intermediate result has a lifetime beyond
a clock cycle, SystemC Compiler also assigns a register to store
the result.

Register Sharing

Registers that are inferred for output ports and signals are dedicated
registers. Registers that are inferred to hold variables can be shared
between variables, similar to components that are shared by
operations.

If two variables have lifetimes that do not overlap, a single register
can be used to hold both variables. When the data of one variable
becomes irrelevant before the data of a second variable becomes
relevant, their lifetimes do not overlap. The irrelevant data no longer
needs to be stored in the design, and the data can be overwritten with
the relevant data when it becomes available.

SystemC Compiler performs lifetime analysis on each variable to
determine if registers can be shared. Variable lifetime is measured
from the first clock cycle when it is produced to the last clock cycle in
which it is used.

Scheduling and Scheduling Constraints

4-6

Figure 4-4 shows a reservation table representation of register
sharing for the complex number multiplier. Notice how the variable
lifetimes are represented and how the variables with non-overlapping
lifetimes share the same register.

Figure 4-4 Register Allocation Reservation Table

Registers
Cycle
R1 R2 R3 R4 R5

1 Automatically generated
variables for intermediate results:

2
vli=(axc)

3 v2=(bxc)

a |4 v3=(axd)

vd=(bxd)

4

|] b voi=vl-v4d=(axc)-(bxd)

v6=v2*tv3=(axd)+(bxc)

5 L d |

vl M 5
6 | v4 | v2
v3 M
7
V5
8 V6

SystemC Compiler shares registers when sharing reduces the overall
area of the synthesized design.

Controller (FSM) Generation

When SystemC Compiler shares a component or register, it
automatically inserts multiplexers at their inputs, if needed. A
multiplexer is inserted if the component or register needs to accept
its inputs from multiple sources. Figure 4-5 shows a shared

Scheduling and Scheduling Constraints
4-7

component, and Figure 4-6 shows a shared register. In both cases,
each port gets its input from one of two possible sources. A multiplex
Is inserted on each port to enable this switching.

Figure 4-5 Shared Component

Controller

Figure 4-6 Shared Register

Controller

SystemC Compiler synthesizes a controller, in the form of a
finite-state machine (FSM), that supplies the multiplexer signals to
correctly switch multiplexers at the appropriate clock cycles. The
controller is also used to generate the control signals for the
components and the registers. Figure 4-7 shows how the controller
might supply the control signal for a multiplexer and the load enable
signal for a register.

Scheduling and Scheduling Constraints
4-8

Figure 4-7 FSM Control Signals

EN
New Data —p ¢—
New Data —1, |_>D Q |_>
aLK Control |l er CLK
Controller
Load enable with a Loagle?ﬁblﬁ with an
multiplexer enabie flip-tiop

The final synthesized design has a data path that contains a netlist
of components, multiplexers, registers, and an FSM to control the

data path. Figure 4-8 shows a representative fragment of the
synthesized design.

Figure 4-8 Synthesized Design Representation

input —

3
Y

m [——>

input —)/(Reg Select

Select
PN
Clk— |

Enable

AV

Op |—

Y

—> | output

Controller

Scheduling and Scheduling Constraints

4-9

Controlling Synthesis

By default, SystemC Compiler performs scheduling and allocation to
minimize design latency and area. You can control the synthesis to
better achieve your design objectives. Constraining scheduling and
resource allocation is described in more detail in “Adding Scheduling
Constraints” on page 4-31 and “Constraining Resource Allocations”
on page 4-55.

Selecting an 1/0 Scheduling Mode

For scheduling, SystemC Compiler considers every port or signal
read or write statement in the behavioral code to be an I/O operation.
Variables are considered to be local to a process. Variable read and
write statements are not considered as 1/O.

I/O operations are special in that they are the design’s interface to
external design modules and testbenches.

In the behavioral code, the wait() and wait_until() statements
delineate clock cycles. All input ports are read during a clock cycle,
while the data from the output ports appear at the active edge of the
next clock cycle, as illustrated in Figure 4-9. This figure shows simple
behavioral code statements, the clock (in this case, a positive-edge
sensitive design is assumed), and the resulting I/O operations.

Scheduling and Scheduling Constraints

4-10

Figure 4-9 Behavioral Code and I/O Operation

Behavioral
Code

wai t () ;
A=in_1read() ;

out _1.write(A+A);
wai t () ;
B=in_1.read() ;

out_1.wite(A+B);
wai t () ;

C=in_1l.read();
out_1.wite(A+Q);
ﬁwait();

n1 A ¥ B)\ c \
I

>< A+A >< A+B >< A+C ><

Clock \ | | | | | | | j| |

Inputs must be stable during the entire clock cycle so the synthesized
circuit behavior matches the original behavioral description.

SystemC Compiler provides cycle-fixed and superstate-fixed modes
for scheduling I/O operations. You need to setan I/O scheduling mode
for the bc_check _desi gn and schedul e commands.

Scheduling and Scheduling Constraints
4-11

Cycle-Fixed 1/0 Scheduling Mode

In cycle-fixed I/0O scheduling mode, SystemC Compiler preserves the
cycle-to-cycle behavior of I/O as defined in the behavioral description,
as shown in Figure 4-10.

Figure 4-10 Cycle-Fixed I/O Mode

wai t () ;
A=in_1lread() ;
out_1.wite(A+A);
wai t () ;
B=in_1read() ;
out_1.wite(A+B);
wai t () ;
C=in_1.read();
out_1.wite(A+Q);

Behavior of - t0);

behavioral | | |

code in_1 A VB [c | ><

out 1 >:< A+A >:< A+B >< A+C ><
Behavior of the } ! \ \
synthesized ! ! ! l |
circuit in in_1 >< A X B >< C X X
cycle-fixed ‘ ‘ ‘ : :
I/0 mod ‘ ‘ ‘ ‘ ‘
% outa) L A+A § A+B [A+C |
cock [[1 I L [1 T 1

Using Cycle-Fixed I/0O Scheduling Mode

The goal of cycle-fixed 1/0 scheduling is to allow simulation of the

SystemC behavioral description and the synthesized design side by
side with no differences in observed I/O behavior. Cycle-fixed mode
Is a good choice when you want to specify cycle-accurate behavior

Scheduling and Scheduling Constraints
4-12

and you are confident that the operations between 1/0O can be
completed in the number of cycles that you specify. The cycle-fixed
I/O mode gives you complete control over the 1/0O schedule so you
can use the same testbench for behavioral simulation and for verifying
the results of synthesis.

In cycle-fixed I/O scheduling mode, 1/O operations are constrained
to occur in the same cycle in the synthesized design as in the original
behavioral description. The operations required to compute the
outputs from the inputs must be completed in the number of cycles
between the inputs and outputs that are specified in the source code,
but SystemC Compiler determines the exact clock cycle inwhich each
operation is performed.

Cycle-fixed I/0O scheduling is appropriate, for example, if input data
always arrives at a fixed frequency and the output is required in a
fixed number of cycles from the input arrival. Specify the I/0O schedule
in the behavioral description, and direct SystemC Compiler to use
cycle-fixed mode to schedule the design.

In cycle-fixed 1/0 scheduling mode,

« Each wait() statement generates a clock cycle.

« Signal read and write operations remain in the cycle where the
source code defines them.

* Operations thatare not I/O can float from cycle to cycle as allowed
by data and control dependencies, and by constraints.

» Ifthe operations that compute an output from the input data cannot
be accommodated within the number of clock cycles between the
input and output, SystemC Compiler issues an error message.

Scheduling and Scheduling Constraints
4-13

For coding rules and recommendations about coding style using this
mode, see Chapter 3, “Behavioral Coding Guidelines” in the
CoCentric™ SystemC Compiler Behavioral Modeling Guide.

Superstate-Fixed I/O Scheduling Mode

In superstate-fixed mode, SystemC Compiler preserves the logical
relationship of read and write operations, but it can add clock cycles
to lengthen the time between I/O operations. Figure 4-11 shows an
example where SystemC Compiler takes five clock cycles to read A
and perform the multiplication, three to read B and perform the
addition, and so forth. Therefore, the I/O schedule differs from the
original behavioral code because several clock cycles are added.

The segment between two wait() statements in the behavioral
descriptionis called a superstate. This segment executes in one clock
cycle in the behavioral simulation, but may execute in several clock
cycles in the synthesized design.

I/O operations that occur between a pair of consecutive wait()
statements in the behavioral description belong to the same
superstate. Input reads can be scheduled at any clock cycle in the
superstate, but outputs appear after the last clock cycle of the
superstate. Notice that A*A in Figure 4-11 appears at the output at
the end of the superstate.

Scheduling and Scheduling Constraints

4-14

Figure 4-11 Superstate-Fixed I/0O Mode

wait();
A=in_1.read() ;
out_l1.wite(A*A);
wait();
B=in1.read() ;
out_1.wite(A+B);
wait();
C=in_1l.read();
Behav_lor of out_l1.wite(A+Q);
behavioral —Wait();

code

. EEEEE

out_1 >< >< A*A >< A+B >< A+C ><

in_1 >< A >< . B >< C >< ><
Behavior of the out 1 >< A*A ><A+BX A+C ><
synthesized ! ! ! !
circuitin ‘
superstate-fixed A can be read from
I/O mode in_1 in any of these cycles

Using Superstate-Fixed I/O Scheduling Mode

The superstate-fixed I/O scheduling mode is useful for specifying the
sequence of I/O operations while retaining some flexibility in the
length of the schedule. In some cases this allows you to change the
length of the schedule to minimize the hardware required for
implementing the design.

Scheduling and Scheduling Constraints
4-15

Use superstate-fixed mode when latency-based design exploration
Is important for your design. It allows you to quickly perform clock
period, latency, and resource tradeoffs without modifying the
behavioral description.

Use wait() statements in superstate-fixed I/O scheduling mode to
segment the process into superstates, as illustrated in Figure 4-11
on page 4-15.

Because a superstate corresponds to multiple clock cycles, you
cannot determine the exact cycle when the inputs are read; the exact
cycle can only be determined after SystemC Compiler schedules the
design. When you use superstate-fixed scheduling mode, use
handshaking for all data transfers to and from the circuit.

For coding rules about this mode, recommendations about placing
clocks in your SystemC source code, and details about handshaking,
see Chapter 3, “Behavioral Coding Guidelines” and Chapter 6, “Using
Handshaking in the Circuit and Testbench” in the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

Comparing the I/O Scheduling Modes

Figure 4-12 shows a comparison of the simulation of the original
SystemC code with simulations of the possible results of SystemC
Compiler when using different I/0O scheduling modes.

Scheduling and Scheduling Constraints

4-16

Figure 4-12 Source Code and I/O Scheduling Mode Simulation

Original Source Code
int A ¥ B | c | b

out_1) [A+A | a+B | A+C

Cycle-Fixed Mode

int A ¥ B Y c | b

out_1) [A+A) A+B | A+C

Superstate-Fixed Mode

Scheduling and Scheduling Constraints
4-17

Performing Scheduling

After you select an appropriate scheduling /0O mode, perform
scheduling by executing the schedul e command. Enter

dc_shel | > schedul e

By default, SystemC Compiler schedules with the cycle-fixed 1/0
mode. If you want to schedule with the superstate-fixed 1/0O mode,
enter

dc_shel | > schedul e -i 0o_node superstate_fixed -effort nedi um

Scheduling Objectives

By default, the schedul e command makes tradeoffs to achieve a
design schedule with the fastest latency as the top priority, and it tries
to create the smallest area as a secondary priority. To change the
default scheduling priorities, apply scheduling constraints before
using the schedul e command.

Using Timing-Constrained Scheduling

With timing-constrained scheduling, SystemC Compiler minimizes
the latency of the design in the superstate-fixed I1/O mode. In the
cycle-fixed I/O mode, the latency is determined by the number of
wait() statements in the SystemC description.

Latency is defined as the number of clock cycles required to execute
one iteration of a loop or to execute the set of operations.

Scheduling and Scheduling Constraints

4-18

In timing-constrained scheduling, SystemC Compiler does the
following:

» Calculates the minimum number of cycles required to execute the
loop or set of operations. The number of cycles is the minimum
latency.

* Minimizes the hardware required to achieve the minimum latency

This scheduling technique is most beneficial for designs that have

short latency requirements. Short latency is achieved by creating a
parallel design implementation. This may require more area than a
minimum area design.

Using Resource-Driven Scheduling

You can direct SystemC Compiler to perform resource-driven
scheduling instead of timing-constrained scheduling. When
performing resource-driven scheduling, SystemC Compiler
minimizes hardware resources such as adders, multipliers,
multiplexers, and registers while trading off latency. Because this
changes the latency that is specified in the behavioral description,
this method can be used only with the superstate-fixed I/O mode.

Forthistype of scheduling, SystemC Compilerincreasesloop latency.
Increasing the latency of a loop distributes operations across more
cycles, allowing greater resource sharing. Because fewer resources
are allocated, this type of scheduling reduces area.

To implement resource-driven scheduling, use the
- ext end_I| at ency option with the schedul e command.

Scheduling and Scheduling Constraints
4-19

Analyzing the Scheduling Report

After you run the schedul e command, usether eport _schedul e
command to generate a scheduling report. For example,

dc_shel | > schedul e -io_nbde superstate fixed

-effort nmedi um

dc_shel | > report _schedul e

Schedule Summary Report

Example 4-1 shows a report generated by the r eport _schedul e
command for the complex number multiplier.

In the schedule report in Example 4-1,

The timing summary indicates the latency in clock cycles for one
loop iteration. In this example, the entry loop takes 8 cycles, the
loop beginning on line 17 takes 7 cycles, and the loop beginning
on line 22 takes 1 cycle.

The report also indicates that the loop beginning on line 22 has a
continue statement that occurs in cycle 3 and a loop exit that may
occur in cycle 2.

The area summary shows the total estimated design area and the
FSM summary (number of control state, basic transitions, control
inputs, and control outputs).

The resource types show the total number of registers in the
design, the number of operations, the associated synthetic library
cell, and the 1/O ports. The bit-width of each resource type is
included in the report.

Scheduling and Scheduling Constraints

4-20

Example 4-1 Schedule Report Summary

[*****report _schedul e*****/

ER Rk b Ik b R R R Ik O S O R Rk O kS S Rk bk b b R Rk I kR R Rk kS b o

Dat e : Wed Nov 8 13:18:51 2000
Ver si on : 2000. 11- PROD
Desi gn : cmult_hs

Rk b Ik b R R I Ik O O IR R S O kS bk b R Rk b b O S S R R kS b Sk b b

Rk b Sk b Sk I R R Sk O O S O SRR kb O b

* Summary report for process entry: *
IR R Ik S bk S S R S R S I I I R S S S O

O ock period 20.00
Loop timng information

=T 0 8 cycles (cycles 0 - 8)
loop _17. . . 7 cycles (cycles 1 - 8)
loop_22. . . 1 cycle (cycles 2 - 3)
(continue) skip_short_branch_1.............. (cycle 3)
(exit) BEXIT_L22 1. i (cycle 2)

Esti mat ed conbi nati onal area 6127
Estimat ed sequential area 1734
TOTAL 7861

9 control states

11 basic transitions
2 control inputs

7 control outputs

8-bit register........... 3
16-bit register.................... 1
Oper at or Types

(8_8->16)-bit DW2_nmult............ 2
(16_16->16)-bit DW1_add........... 1
(16_16->16)-bit DW1_sub........... 1

Scheduling and Scheduling Constraints

4-21

I1/O Ports

1-bit input port................... 1
1-bit registered output port....... 2
8-bit input port................... 1
16-bit registered output port...... 2

Schedule Report of Operations

The - oper at i ons option reports the scheduling and allocations of
operations in a reservation table format. Enter

dc_shel |l > report _schedul e -operations

Example 4-2 on page 4-24 shows areport of the scheduled operations
for the complex number multiplier. It reports all /O operations,
arithmetic operations, and loops that are scheduled in the design.
SystemC Compiler reports loops in the design as resources to show
the clock cycle in which they are scheduled.

In the reservation table, resources are listed in the horizontal axis,
and the clock cycles in which the resources are used are listed in the
vertical axis. Operations are placed within the reservation table in the
row that corresponds to the clock cycle in which they are executed,
and the column that corresponds to the resource that executes it.

Scheduling and Scheduling Constraints

4-22

In the reservation table, resource type and operation names are
abbreviated. The abbreviations are expanded in the report as follows

Rn means to read from an I/O resource at line number nin the
description. For example, the reportin Example 4-2 shows incycle
2 that the new_data port is read according to line 22 in the
description. This is indicated by R22 in the row labeled 2 and the
column labeled p5.

Wn means to write to an 1/O resource at line number nin the
description. In cycle 3 of Example 4-2, the output is written to the
ready_for_data portin line 23 in the description. This is indicated
by W23 in the row labeled 3 and the column labeled p2.

0on means an arithmetic operation is performed at line number n
in the description. In cycle 5 of Example 4-2, the multiply operation
in line 35 is performed with DWO02_mult. This is indicated by 035
in the row labeled 5 and the column labeled r407.

Ln means a loop begin, loop end, loop continue, or loop exit
boundary. A loop begin means the cycle in which the loop starts,
and a loop end means the cycle in which the loop ends. A loop
continue means the cycle in which the decision is made to branch
back for the next iteration of the loop. A loop exit means the cycle
in which the decision is made to exit the loop and jump to the loop
end cycle. The number after the loop is a sequential number
assigned by SystemC Compiler, and it indicates a loop boundary
abbreviation rather than a line number in the description. In
Example 4-2, L6 is the beginning of the loop specified on line 17
in the description, L7 is the end of this loop, and L8 is the loop
continue boundary for this loop, and L9 is the loop exit decision.
Notice that L6 loop begin and L9 exit decision are in cycle 2. The
L8 loop continue decision and the L7 loop end decision are in
cycle 3.

Scheduling and Scheduling Constraints
4-23

Example 4-2 Report Schedule Operations

Rk b Sk b o b R R I O O R IRk kb ok b I b

* (Operation schedul e of process entry: *
Rk S bk S bk S R Ik I S I Rk I Ik Rk S S

Resource types

| oop...... | oop boundari es
pO........ 16-bit registered output port inmginary_out
pl........ 1-bit registered output port output_data_ready
p2........ 1-bit registered output port ready_for_data
p3........ 16-bit registered output port real _out
pa........ 8-bit input port data_in
p5........ 1-bit input port new data
r3s5. (8_8->16)-bit DW2_ rmult
r120...... (16_16->16)-bit DW1_add
r350...... (16_16->16)-bit DW1_sub
r407...... (8_8->16)-bit DW2_mult
D D
D D w w
w w 0 0
0 0 2 2
1 1 _ _
p p - - m m p p p p
0 0 a s u u o} o} o} o
r r d u I I r r r r
t t d b t t t t t t
------- B T e T e e T T

cycle | loop| p4 | p5 | r120 | r350 | r407 | r35 | pO | pl | p2 | p3

0 |..LO..|..... ... oo oo oo oo | W4, | . W2, |.\W1.]. W3
1 |..L3..]..... ... oo oo o oo ... |.\20.|.WO.|.....
2 ..l |.R22.|...... oo o oo
|..L6..|..... ... oo oo o oo
3 |..L8..|.R26.|..... oo oo o oo |.Ves.|.....
.. L7..]..... ... oo oo o oo
4 ... |.R28.|..... oo oo o oo
5 |...... |.R30...... oo oo |.035. . |......
6 |...... |.R32.|..... oo | .035b.|.035a.......
7 |.036..]...... | .036b. |.036a.|.W86.|. 7.]..... | . W85
8 |..L5..]..... ... oo oo o oo
.. L4 . |..... ... oo oo o oo
.. L2]..... ... oo oo o oo
.. L1 |..... ... oo oo o oo

Scheduling and Scheduling Constraints
4-24

Qperati on nane

abbrevi ati ons

LO........ | oop boundaries entry_desi gn_|l oop_begin
L1........ | oop boundaries entry_design_| oop_end

L2........ | oop boundaries entry_design_| oop_cont

L3........ | oop boundaries |oop_17/1o0op_17_desi gn_| oop_begin
L4........ | oop boundaries |oop 17/1oop_17 design_| oop_end
L5........ | oop boundaries |oop 17/1oop_ 17 desi gn_| oop_cont
L6........ | oop boundaries |oop_17/1o00p_22/1o0op_22_desi gn_| oop_begi n
L7........ | oop boundaries |oop 17/1oop_22/1oop_22 design_| oop_end
L8........ | oop boundaries |oop 17/1oop_22/1o0op_22 desi gn_| oop_cont
L9........ | oop boundaries loop_17/1oo0op_22/EXI T_L22_1
R22....... 1-bit read | oop_17/1o0op_22/ new data_22

R26....... 8-bit read loop_17/data_in_26

R28....... 8-bit read loop_17/data_in_28

R30....... 8-bit read loop_17/data_in_30

R32....... 8-bit read loop_17/data_in_32

W1....... 1-bit wite ready_for_data_11

W2....... 1-bit wite output_data_ready_12

W3, 16-bit wite real out 13

W4. 16-bit wite inmaginary_out_14

Wo. 1-bit wite loop_17/ready_for_data_19

W2o. 1-bit wite loop_17/output_data ready 20

V3. 1-bit wite loop_17/ready_for_data_23

WB5. 16-bit wite loop_17/real out_ 35

WB6. 16-bit wite loop_17/inmagi nary out 36

WB7....... 1-bit wite loop_17/output_data ready 37
035....... (8 _8->16)-bit MIT_TC OP loop_17/mul 35
036....... (16_16->16)-bit ADD TC OP | oop_17/add_36
o35a...... (8 _8->16)-bit MIT TC OP loop_17/mul 35 2
035b...... (16_16->16)-bit SUB TC OP | oop_17/sub_35
o36a...... (8 _8->16)-bit MIT_TC OP loop_17/mul 36
036b...... (8 _8->16)-bit MIT TC OP loop_17/mul 36 2

Scheduling and Scheduling Constraints
4-25

Schedule Report of Variables

To generate useful reports of variables, operations, and abstract
FSM, use r eport _schedul e command options.

The - var i abl es option reports the scheduled lifetimes of variables
and register allocations in a reservation table format. Enter

dc_shell > report _schedul e -vari abl es

Example 4-3 shows areport of the variables from the complex number
multiplier. It lists the storage resources. These are automatically
generated registers. It also lists the variables that are stored in the
registers and the cycles in which a variable occupies a register.
Variable names are abbreviated in the reservation table, for example
v0, and are expanded in the “Data value name abbreviations” section
of the report where vO means the output of the multiplication at line
35 (mul_35/2).

Variables in the scheduling report do not necessarily match the
variables in the original behavioral description. SystemC Compiler
introduces variables for data that needs to be stored across several
clock cycles, and it removes variables specified in the behavioral
description if its lifetime does not span clock edges.

Scheduling and Scheduling Constraints

4-26

Example 4-3 Report Schedule Variables

Rk b Sk b o O R R O Sk O S S S SR Ik

*

Regi ster usage of process entry:

*

Rk b S b o S R R R O Sk O S S b S I SR Ik

St or age resource types

r357....... 8-bit register
ra28....... 16-bit registe
ri271...... 8-bit register
r1272...... 8-bit register
------- e T g
cycle | r428 | r1271 | r357
| (16) | (8) | (8)
0 [... ... [...t [......
1 [... ... [...t [......
2 [... ... [...t [......
3 [.. ... [..v2. ...t
4 [... ... |..v2...]..v3.
5 [..vO0..]..v2...]..v3
6 [..v1l..]..v2...]..v3
7 [.. ... [...t [......
8 [.. ... [...t [......

vO......
vi......
V2. 8-bit data val ue
v3...... 8-bit data val ue
vad. 8-bit data val ue
vb...... 1-bit data val ue

r
.
| r1272
| (8)

[... ...

[... ...

| ..v5.

[...t
S IR
S IR

| ..v4..

16-bit data value loop_17/mul _35/Z
16-bit data value loop_17/sub_35/Z

| oop_17/data_in_26/n
| oop_17/data_in_28/n
| oop_17/data_in_32/n
| oop_17/100p_22/ U2/ Z

et
et
et

Rk Ik kR I R R I Sk S S S S R S S O SRR S bk b b O R R

Scheduling and Scheduling Constraints
4-27

Schedule Report of the FSM

The- abst ract _f smoptionreportsthe FSM generated by SystemC
Compiler in a state table format. Enter

dc_shell > report _schedul e -abstract _fsm

Example 4-4 on page 4-29 shows the scheduled abstract FSM report
for the complex number multiplier.

The state table is a textual representation of the FSM'’s state diagram.
Each row corresponds to a state transition and includes

The name of the present state is represented as s_n_n. The state
name is automatically created by SystemC Compiler.

The name of the branch condition that transitions out of the
present state. The branch conditions are described after the state
table.

The next state that the FSM reaches when it executes the
transition.

The actions column lists the actions that are executed by the
synthesized design ifthis transition is performed. The action name
a_nis automatically created by SystemC Compiler. The
description of the action provides the operation being executed
in this transition and the associated line of code. For example,
Example 4-4 showsthes_0_ O present state and lists the following
four actions that are executed in this state:

- a_6 imaginary_out_14 (write), I/O write to port imaginary_out
on line 14 of the behavioral description

- a_10 output_data_ready_12 (write), I/O write to port
output_data_ready on line 12 of the behavioral description

Scheduling and Scheduling Constraints

4-28

- a_15ready for_data_11 (write), I/O write to port
ready_ for_data on line 11 of the behavioral description

- a_19real_out 13 (write), I/O write to port real _out on line 13
of the behavioral description

Example 4-4 Report Schedule Abstract FSM

EE R b b b b I R R S I I R R I R I R S b I I I I I b
* State table style report for process entry: *
EE R b S b R b I R R S R R I R I R b b I I b

pr esent next
state input state actions

a 6 imginary out 14 (wite)

a_10 output_data ready 12 (wite)

a_15 ready for_data 11 (wite)

a 19 real _out 13 (wite)

s 0.1 c2 s 12

a_9 loop 17/ output_data_ready 20
(wite)

a_14 loop_17/ready for_data 19
(wite)

a 0 loop_1l7/data_in_26 (read)
a_13 loop_17/ready for_data 23
(wite)

a_4 loop _17/1o0p_22/ new data_22
(read)
s 12 c6 s 2 3
a_4 loop_17/1o0op_22/ new data_22
(read)
| oop_17/data_in_28 (read)
| oop_17/data_in_30 (read)
4 |1 oop_17/mul _35
(operation)
s 16 c9 s 17 a3 loop_17/data_in_32 (read)
a_27 loop_17/mul 35 2
(operation)
a_35 loop_17/sub_35 (operation)
s 17 clo0 s 138
a 5 loop_17/imginary_out 36
(wite)
a_ 8 loop_17/output_data ready_ 37

4 c7 a_l
5 c8 a_?2
a_?

Scheduling and Scheduling Constraints
4-29

(wite)
a 18 loop_17/real _out 35 (wite)
a_21 |l oop_17/add_36 (operation)
a 30 loop_17/mul _36 (operation)
a 33 loop_17/mul _36_2
(operation)
s 18 cll s 12 a9 loop_17/output_data ready_ 20
(wite)
a_14 loop_17/ready for_data 19
(wite)
s 2 3 cl2 s 14 a 0 loop _17/data_in_26 (read)
a_13 loop_17/ready for_data 23

(wite)

s 2 3 cl3 s 14 a_4 loop 17/1oop_22/ new data_22
(read)

s 2 3 cla s 2 3 a_4 loop_17/1oop_22/ new data 22
(read)

+++++ ¢c15 s _ 0 0 a_6 imaginary_out_14 (wite)
a_10 out put _data ready 12
(wite)
a_15 ready for_data 11 (wite)
a 19 real _out 13 (wite)

*kkkkkkkk k% Branch COﬂdItIOﬂS * k k k k ok ok k %k k%
state condi tion source

cl true

c2 true

c3 (and true

(branch 1 of conditional |oop_17/1oop_22/SPLIT_L22_1))
c5 (and true
(branch 1 of conditional |loop_17/1o0op_22/SPLIT L22 1))
c6 (and true
(not (branch 1 of conditional |oop_17/1oop_22/SPLIT L22 1)))
c7 true

c8 true

c9 true

cl10 true

cll true

cl2 (branch 1 of conditional |loop_17/1oo0p_22/SPLIT L22 1)

cl3 (branch 1 of conditional |oop_17/1oo0p_22/SPLIT L22 1)

cl4 (not (branch 1 of conditional |oop_17/1oop_22/SPLIT L22 1))
cl5 true

Scheduling and Scheduling Constraints
4-30

The branch conditions section of the report describes the branch
conditions under which state transitions are made. Each branch
condition is described with the combination of logical events that
trigger it. For example, condition c6 happens when branch 1 of the
conditional on line 22 of the behavioral description is not taken.

Adding Scheduling Constraints

You can constrain the clock cycles in which operations and loops are
scheduled with the set cycles commands (set _cycl es,

set_m n_cycl es,and set _nmax_cycl es). These commands
allow you to control the number of clock cycles between two
operations or loop boundaries.

Matching Cells to Operations and Loops

To constrain the number of cycles between a pair of operations or
loops during synthesis, you need to specify the cells that indicate the
operation or loop. This section describes how to determine the cell
that corresponds to an operation or loop in your behavioral
description.

Naming Conventions

SystemC Compiler uses a hierarchical naming convention when
creating cells. Levels of hierarchy are loops and preserved functions.
To identify an operation further, the line number in the source code
Is used. For example,

cnult_entry/l oop_73/sub_88

Scheduling and Scheduling Constraints
4-31

where cmult_entry is the name of the process, within the process
loop_73 is the beginning of a loop at line 73 in the source code, and
sub_88 is the subtract operation that implements the subtract
operation on line 88 in the source code.

To constrain two operations to be two cycles apart, use the
set _cycl es command, for example:

dc_shell > set _cycles 2 -fromcnult_entry/l oop_73/sub_88
-to_end cnult_entry/l oop_73/sub_88

Using Line Labels

If you use the default names of cells generated by SystemC Compiler,
the set _cycl es command is sensitive to the line numbers in the
behavioral description. When you add or delete lines from the
behavioral description, you will need to update the set _cycl es
command definitions.

Alternatively, you can add labels to lines that contain operations or
loops that you want to constrain. SystemC Compiler then replaces
the line number with your label in the cell name. This makes the cell
names independent from their source code line numbers.

Use a C language label or SystemC Compiler| i ne_| abel compiler
directive to label lines in the behavioral description, and refer to these
labels in constraints.

For example,

/1 C | anguage | abel
Clabel: y.wite(a + b + c + d);

/| SystenC Conpiler |line_|label directive
y.wite(a + b + ¢ +d); // synopsys line_label ny_I|abel

Scheduling and Scheduling Constraints

4-32

Use either line label syntax so the cell name representing the output
write operation to porty is named y_my_label instead of line number
names such asy_23.

If more than one operation is on the same line that is labeled as
my_label, a suffix such as _2, 3, and so forth are added to the cell
names. In the example, the addition operations are add_my _label,
add _my label 2, add my label 3, and add_my label 4.

To constrain two of the addition operations to be 5 clock cycles apart,
use the following set _cycl es command:

dc_shell > set _cycles 5 -fromadd ny | abel -to add_ny | abel _3

Using Find

You canuse thef i nd command to locate cellsinadesign. Thefi nd
command returns all the design or library objects that match the
specified names.

dc_shell> find type {nanme_list}

[- hi erarchy]

[-flat]
The type specifies the object to be found. The value of type can be
design, clock, port, reference, cell, net, pin, cluster, library, lib_cell,
lib_pin, multibit, operator, module, implementation, or file.

By default, the f i nd command returns all objects that match the type
and name_list in the current level of design hierarchy. Use the

- hi er ar chy option to return all objects matching the type and
name_list within all levels of hierarchy of the current design. If you
use the - hi er ar chy option, the type must be design, lib_cell, net,
cell, or pin.

Scheduling and Scheduling Constraints
4-33

dc_shell> find cell sub 35 -hier

You can limit the search to a particular operation by using a wildcard
specification, for example:

dc_shell> find cell *rmul* -hier

The - f | at option specifies that the command finds only objects in
the leaf cells. You need to also use the - hi er ar chy option when
using the - f | at option, for example

dc_shell> find cell *sub* -hier -flat

Reporting Hierarchy

You can also use the r eport _hi er ar chy command to show the
design hierarchy. Enter

dc_shel |l > report _hi erarchy

Example 4-5 shows a hierarchy report before scheduling. Each level
of hierarchy is indented. In this example, the top-level hierarchy is
cmult_hs, the second level is entry _design, and so forth.

Scheduling and Scheduling Constraints

4-34

Example 4-5 Report Hierarchy Before Scheduling

kkhkkhkkhkkhkhkkhkhkhkkhkhkkhhkhkkhkkhhkhkkhhkhkhkhkkhhkhkkhkkhhkhkkhhkkhkkhkkhkhh*k

Report : hierarchy

Design : crmult_hs

Ver si on: 2000. 11- PRCD

Dat e . Fri Dec 15 11:09:01 2000

R I b b b b S S S S R Sk Sk S S S Rk kS S S S b

Information: This design contains unmapped | ogic. (RPT-7)
Warni ng: 10 unresol ved references are not included in this
report. (RPT-2)

cmult _hs
entry_design
| oop_17 design
| oop_22 design

GTECH _BUF gt ech
GTECH_NOT gt ech
groupl

Example 4-6 shows a hierarchy report after scheduling the same
design.

Scheduling and Scheduling Constraints
4-35

Example 4-6 Report Hierarchy After Scheduling

kkhkkhkkhkkhkhkkhkhkhkkhkhkkhhkhkkhkkhhkhkkhhkhkhkhkkhhkhkkhkkhhkhkkhhkkhkkhkkhkhh*k

Report : hierarchy

Design : crmult_hs

Ver si on: 2000. 11- PRCD

Dat e . Fri Dec 15 11:10:49 2000

R I b b b b S S S S R Sk Sk S S S Rk kS S S S b

Information: This design contains unmapped | ogic.

cmult _hs
GTECH _BUF
GTECH_NOT
GTECH OR2
cnmult _hs _fsmblock dsg O
GTECH_AND2
GTECH_NOT
GTECH OR2
GTECH OR3
GTECH CR4
GTECH_OR5
cmult_hs r
cmult _hs rd 1

d9oo

O_
cmult _hs rd 1 1

O_

1_

9_
0
cmult _hs rd 8
cmult _hs rd 8
cmult _hs rd 8 2
cmult _hs rd 16 0 0
cmult _hs rd 16 1 0O
cmult_hs rd 16 2
groupl O

0
0

Scheduling and Scheduling Constraints

4-36

gt ech
gt ech
gt ech

gt ech
gt ech
gt ech
gt ech
gt ech
gt ech

(RPT-7)

Constraining Loops and Operations

To constrain the latency through the body of a loop or to specify the
latency between two operations in a loop, use one or more of the
set _cycles,set_mn_cycl es,andset _max_cycl es
commands. These three commands use the same options to specify
constraints, which are described in “Using the Set Cycles Commands
and Options” on page 4-42

Place constraints on cells after running the conpi | e_syst ent
command and before running bc_check_desi gn or schedul e
commands.

Constraining Between Two Operations

To set a constraint of a fixed number of cycles between two
operations, usetheset cycl es command. To selectthe operations
you want to constrain, place line labels on the lines of behavioral
description that contain the operations, and use the f i nd command
before you use one of the set cycle commands.

For example, to set a constraint of 4 clock cycles between the two
addition operations on lines line labels M and N in Example 4-7, use
the following commands:

dc_shel Il > opl find -hier cell *top/add_ M
dc_shel | > op2 find -hier cell *top/add_ N*
dc_shell > set _cycles 4 -fromopl -to op2

Scheduling and Scheduling Constraints
4-37

Example 4-7 Constraining Between Two Operations
void top(){

%it();
X = in_1.read();
outl.wite(calc_Mx)); //synopsys |abel M

wait () ;

X = in_1.read();

out_2.wite(calc_N(x)); //synopsys |abel N
wai t ();

Constraining a Loop

The schedul e command sets the minimum latency for each loop by
default, which usually results in the largest area. You can define a

larger cycle budget for a loop to maximize resource sharing. Example
4-8 shows a loop that SystemC Compiler can schedule in two cycles

by using two adders.

Example 4-8 Constraining a Loop
void top(){

wai t ();

| oopl: for (int i =0; i < 4; i++){
X =in_1.read() + in_2.read();
wait () ;

X =X +in_3.read();

wai t () ;

outl.wite(calc_Mx));}

Scheduling and Scheduling Constraints
4-38

You can force sharing of a single adder resource by setting a
constraint of 4 cycles on the loop. Enter

dc_shell> loopl = find -hier cell *top/loopl
dc_shell > set _cycles 4 -frombeginning |oopl -to_end | oopl

Constraining Nested Loops

SystemC Compiler schedules designs from the innermost loop to the
outermost loop. Constraints placed on the outermost loop in a loop
hierarchy do not propagate to the inner loops. Itis recommended that
you constrain the inner loop first, then constrain the next outer loop,
and so forth. Constrain the outermost loop last.

Example 4-9 shows a code fragment with three nested loops.
Example 4-9 Nested Loops With Operations

iéépl: while (true){

/1l 1 operation
| oop2: for (int i =0; i < 4; i++){

}}.1 operation
ibpr: while (out _ready == 1){

}}.3 oper ati ons

}

Figure 4-13 illustrates the effects of setting different cycle constraints
on the nested loops in Example 4-9.

Scheduling and Scheduling Constraints
4-39

Figure 4-13 Resources With Loops

set_cycles 5 set_cycles 3

-frombegin .../l oopl -frombegin .../1o0p3
-to_end .../loopl -to_end .../l o0p3
Cyclel loopl [Op loopl| Op
| Cycle2 -------- loop2 - oo| oop2 | op|
Cycle3 --------------- oopz | oplopl op | loop3| OP
oyelea op
oydes op

On the left side of Figure 4-13, placing a constraint of 5 on the
outermost loop (loopl) creates a design latency of five cycles, but it
requires three resources for the design. The unconstrained innermost
loop (loop3) dictates area, which is implemented in one cycle using
three resources. The constraint on the outer loop does not propagate
to the innermost loop. Therefore, this loop implements in the shortest
possible latency, wasting two unused cycles in loop1.

Onthe right side of Figure 4-13, the innermost loop (loop3) has a loop
constraint of three cycles. SystemC Compiler uses one resource and
distributes the three operations over three cycles. This constraint on
the innermost loop fully utilizes the five cycles intended for the design.

Scheduling and Scheduling Constraints

4-40

Placing Constraints Across Loop Boundaries

Infinite loops, while loops, and for loops form a level of hierarchy for
SystemC Compiler, and it schedules each hierarchical unit
separately. Therefore, operations in one loop cannot reference
operations in other loops.

SystemC Compiler does not budget cycles across loop boundaries.
Do not set constraints between an operation in one loop and an
operation in another loop. Instead, do the following steps:

1. Place a constraint between the operation in a loop and the loop
end.

2. Place another constraint between the end of the first loop and the
beginning of the second loop.

3. Place athird constraint between the beginning of the second loop
and the operation in the second loop.

The following commands show how to pass a constraint between
loops for the code segments in Example 4-10.

dc_shell > set _cycles 2 -fromcnult_entry/l abel 1
-to_end crnult_entry/l pl

dc_shell > set _cycles 1 -fromend cnult_entry/l pl
-to_beginning cnult_entry/l p2

dc_shel |l > set _cycles 2 -from beginning cnult_entry/lp2
-to cnult_entry/l p2/1 abel 2

Scheduling and Scheduling Constraints
4-41

Example 4-10 Passing a Constraint Between Loops

/] SystenC

| p1: for (condl) {

wait();

| p2: for (cond2) {

}

Using the Set Cycles Commands and Options

The set _cycl es,set_m n_cycl es,and set _nmax_cycl es
commands have the same options, described in the following
sections. Use the set _cycl es command to define a fixed number
of cycles between two operations. Use the set _m n_cycl es to
define a minimum number of cycles between two operations. Use the
set _max_cycl es to define a maximum number of cycles between
two operations.

It is easy to overconstrain the schedule by improperly using these
commands. For example, if the latency specified by

set _max_cycl es isless than that specified by set _m n_cycl es,
scheduling fails. If this occurs when executing the schedul e
command, review the error messages and the constraints, and
remove the constraints that make scheduling impossible.

Scheduling and Scheduling Constraints

4-42

You can set the following options for the set cycles commands:

[- process process _nane]

[cycl e of fset]

[[-from| -from.beginning | -fromend] from operation]
[[-to | -to_beginning | -to_end] to_operation]

The - pr ocess option specifies the process to which this command
applies. Use this option if your behavioral description has multiple
processes.

The cycl e_of f set option specifies the number of cycles by which
you are constraining the two operations. The number must be a
positive integer, and a negative integer is invalid. If you set the
cycl e_of f set tozero, itimplies that the two operation can happen
in the same cycle.

The-fromand-from begi nni ng options (functionally equivalent
options) specify that the beginning of an operation is selected. In the
case of a loop, select the first cycle of the loop. In the case of a
multicycle operation, select the first cycle of the operation. In the case
of a single-cycle operation, select the cycle of the operation.

The - f r om_end option specifies that the ending of an operation is
selected. In the case of a loop, select the last cycle of the loop. In the
case of a multicycle operation, select the last cycle of the operation.

The -t o and -t o_begi nni ng options (functionally equivalent
options) specify the last cycle of an operation or loop boundary to
constrain. In the case of a loop, select the first cycle of the loop. In
the case of a multicycle operation, select the first cycle of the
operation. In the case of a single-cycle operation, select the cycle of
the operation.

Scheduling and Scheduling Constraints
4-43

The-t o_end option specifiesthatthe end of an operationis selected.
In the case of a loop, select the last cycle of the loop. In the case of
a multicycle operation, select the last cycle of the operation.

Pipelining a Loop

You can increase the throughput of your design by pipelining loops.
When aloop is pipelined, SystemC Compiler synthesizes the design
so that the loop iterations overlap when the synthesized design is
operating. Pipelining loops reduces the overall runtime latency of the
synthesized design. By default, loops are not pipelined. Figure 4-14
shows code for a loop with a latency of 6 clock cycles and its
nonpipelined latency.

Figure 4-14 Nonpipelined Loop

nm _ Ioop whil e(true)(
i = mem.index[inl];

prod = a[i] * b[i];
z[i] = prod;

out z. vvrlte(prod)
wai t();

c [LML LS LML LY

read a[i] and b[i]| prod = a[i] * b[i] Z[i] = prod

read afi] and b[i]| prod = a[i] * bi] Z[i] = prod

Loop iteration 1
Latency = 6

Loop iteration 2

To pipeline a loop, use the pi pel i ne_| oop command so SystemC
Compiler generates the required loop pipelining controls in the FSM
during scheduling. The pipeline controls tasks such as filling and
flushing the pipeline and overlapping loop iterations.

Scheduling and Scheduling Constraints

4-44

For the pi pel i ne_| oop command, you specify the loop name, the
initiation interval, and the latency of the loop you want SystemC
Compiler to pipeline. The initiation interval is the number of clock
cycles until the start of the next loop iteration, and loop latency is the
number of clock cycles required to complete one loop iteration.

Figure 4-15 shows the effect of pipelining of the same loop code from
Figure 4-14 with an initial interval of 2 and a latency of 6.

Figure 4-15 Pipelined Loop

J Latency =6 R

o 0 L
read a[i] and b[i]| prod = a[i] * b[i] z[i] = prod

< > read a[i] and bJi]| prod = ali] * b[i] z[i] = prod

Initiation interval = 2 read ai] and b[i]| prod = a[i] * bfi] Z[il = prod

To pipeline a loop,

1. Schedule the design without pipelining to determine the loop
latency, which is provided in the scheduling report timing
summary.

2. Determine the initiation interval based on your behavioral
description, as described in “Determining the Initiation Interval”
on page 4-47.

3. Use the pi pel i ne_| oop command to specify the pipeline
values.

4. Runthe schedul e command again and compare the results, or
use BCView and look at the generated FSM.

Scheduling and Scheduling Constraints
4-45

Use the f i nd command to extract the full loop path name. Enter the
following commands to pipeline the loop and report the schedule:

dc_shell > [oop label = find -hier cell *calc_| oop*

dc_shel | > pi peline_| oop | oop_I| abel
-init _interval 2
-l atency 6

dc_shel |l > report _schedul e -sunmary

Note:

In superstate-fixed scheduling mode, you can set the latency with
either the pi pel i ne_I oop orthe set _cycl e command.

Example 4-11 shows the schedule summary report with pipelined
loop information of 2 cycles for the initiation interval and 6 cycles for
the pipeline latency for the calc_loop.

Example 4-11 Pipelined Loop Timing Summary (Partial)

O ock period 20.00
Loop timng information:

=T 0 8 cycles (cycles 0 - 8)
L 00p _17. . 7 cycles (cycles 1 - 8)
calc_loop.(initiation interval)...2 cycles
(pipeline latency)...... 6 cycles
(cycles 1-7)

You can change the initiation interval and latency of pipelined loops
to explore tradeoffs such as throughput and area. A smaller loop
iteration means a higher loop throughput.

Scheduling and Scheduling Constraints
4-46

Restrictions and Limitations For Pipelining Loops

Pipelining a loop has the following restrictions:

1.

The loop latency must be an integer multiple of the initiation
interval. For example, a loop latency of 6 can have an initiation
interval of 1, 2, or 3, and a loop latency of 10 can have an initiation
interval of 1, 2, or 5.

A pipelined loop cannot contain other loops unless the nested
loop is unrolled.

Aloop exitisimplicitly constrained to occur only within the initiation
interval.

For further information, see Chapter 3, “Behavioral Coding
Guidelines” in the CoCentric™ SystemC Compiler Behavioral
Modeling Guide.

Determining the Initiation Interval

To determine the initiation interval, consider the design throughput
requirements and the

Loop carry dependencies
Memory and I/O accesses
Loops with handshake signals

Exit from a pipelined loop

Scheduling and Scheduling Constraints
4-47

Loop Carry Dependencies

Loop carry dependencies are data values produced in one iteration
of a loop that are consumed by a subsequent iteration. A loop carry
dependency can restrict the initiation interval. Figure 4-16 shows a
loop with a latency of 5 that produced a resultin loop iteration 1, which
Is needed in iteration 2. The result from iteration 1 is not available
until the end of cycle two. An initiation value of 1 is, therefore, not valid.

Figure 4-16 Invalid Loop Initiation Value

: w + Initiation = 1
Latency : —% s
= 5 + * *
P+ + s
v| - + +
) - +
Iteration 1
Iteration 2 _

Iteration 3

Figure 4-17 shows a corrected version of the loop with an initiation
interval of 2. The loop latency is extended to six to satisfy the
requirement that the loop initiation must be an integer multiple of the

latency.

Figure 4-17 Valid Loop Initiation Value

Latency
=6

Scheduling and Scheduling Constraints

4-48

*

*

l Initiation = 2

*

+|+

*

*| %

+
+

Iteration 1

+|+

Iteration 2

Iteration 3

Memory and I/O Accesses

When you pipeline aloop, the original order specified in the behavioral
description for reading and writing to the same memory, signal, or
port is preserved. Simultaneous reading and writing to the same
memory, signal, or port are not possible from different loop iterations.
Figure 4-18 illustrates several reads (RD1, RD2, and RD3) from and
a write (WR1) to the same memory. This loop cannot be pipelined,
because it is attempting to simultaneously read from the same
memory in different loop iterations.

Figure 4-18 Invalid Memory and I/O Access

Latency RDL + Initiation = 1
_, i |RD2[¢RDL
: [RD3 RD2
v |[VR1 RD3
Iteration 1 WR1

Iteration 2

If the memory has two ports (for example, a dual-port RAM), the
pipelining shown in Figure 4-18 is valid. If WR1 and RD1 are
accessing the same memory location, however, there is a loop-carry
dependency from WR1 to RD1. In that case, the initiation interval
must be changed to 3, as shown in Figure 4-19, to resolve the
loop-carry dependency.

Scheduling and Scheduling Constraints
4-49

Figure 4-19 Valid Memory and I/O Access

i [RDL Initiation = 3
Latency
RD3
V\R1 ¢ RD1
RD2
v RD3
Iteration 1 WR1

Iteration 1

Pipelining a Loop With Handshake Signals

A loop with handshake signals can require modification of the loop
code before you can pipeline the loop. Figure 4-20 shows a code
example that contains a handshake signal output_rdy. A function call,
which requires 4 cycles to execute, is between the two writes to the
handshake signal. Before iteration 2, the output_rdy signal is already
a l. Initeration 2, however, the output_rdy.write(0) cannot occur until
the iteration 1 output_rdy_write(1) has occurred. This loop, therefore,
cannot be pipelined.

Figure 4-20 Handshake Signal Preventing Loop Pipelining

calc_loop : while (true){ .
output_rdy.wite(0); Latency W) Iteration=4
wait(); — :
result.wite(func(inl)); =8
output _rdy.wite(1);
wait();

v W W

Iteration 1

WL

Iteration 2

Scheduling and Scheduling Constraints
4-50

You can change the order of the code in aloop with handshake signals
to change the latency and initiation interval. This allows the loop to
be pipelined, and it improves the throughput. Figure 4-21 shows the
reordered loop code from Figure 4-20. It moves the raising and
lowering of the output_rdy signal closer together. The loop latency is
extended to 6, allowing an initiation interval of 2.

Note:
In this situation, you might need to rewrite the code to enable
pipelining. Changing just the initiation interval and latency will not
enable pipelining.

Figure 4-21 Pipelined Loop With Handshake Signal

output _rdy.wite(0);
wait(); Latency Initiation =2
calc_loop : while (true){ =6
result.wite(func(inl)); i
output _rdy.wite(1); W
wai t () ; F WD
out put _rdy.wite(0);
wait () v W
} Iteration 1 W
WL
Iteration 2 WO
Iteration 3

Scheduling and Scheduling Constraints
4-51

Exit From a Pipelined Loop

A loop exit can occur only within the initiation interval of a pipelined
loop, because the semantics of the behavioral description forbid the
next iteration from being launched. To preserve the semantics, a
check is made to determine if the current iteration is the last iteration.
If it is the last iteration, the loop is exited before the next iteration
begins. Figure 4-21 illustrates an invalid exit and a valid exit from a
pipelined loop.

Figure 4-22 Exit From a Pipelined Loop

Invalid exit Valid exit
* * llnitiation * * llnitiation
N [= P [Exit =2
: ! Latency:
pA N =T el I
vl - [+ ¢+ v| - [Exit
teration 1/EX1 1 iteration 1 |+
Iteration 1 Iteration 1

To exit a pipelined loop within the initiation interval, use a while loop
with an implicit conditional exit or a for loop with an implicit conditional
exit, because the exit condition of these loops are evaluated in the

first cycle of the loop.

Scheduling and Scheduling Constraints

4-52

Determining Current Scheduling Constraints

To determine all scheduling constraints, use the
report _schedul i ng_constrai nt s command to display all

SystemC Compiler scheduling constraints on the current design.

dc_shel |l > report _schedul ing_constraints

This command reports constraints you set with the following
commands:

« set _cycles

« set_nmax_cycles

e set_mn_cycles

« pipeline_loop

« preschedul e

« chain_operations

« dont_chai n_operations

Scheduling and Scheduling Constraints

4-53

Removing Scheduling Constraints

If you want to remove scheduling constraints, use the
renove_schedul i ng_constrai nt s command to remove the
explicit constraints.

dc_shel | > renove_schedul i ng_constraints
[- process process_nane]

If you do not specify a process, the default is all processes.

The renove_schedul i ng_const rai nt s command removes
constraints set with the following commands:

« set _cycles

« set_nmax_cycles

e set_mn_cycles

e set_mn_cycles

« preschedul e

« dont_chai n_operations

The renove_schedul i ng_const rai nt s command does not
affect timing constraints or constraints inferred from the source

description.

Scheduling and Scheduling Constraints
4-54

Constraining Resource Allocations

SystemC Compiler shares resources whenever possible. You can
constraint the amount of resource sharing.

Setting Common Resources

For your design, you might want to instruct SystemC Compiler to
share resources. You can do this with the set _common_r esour ce
command. It provides control to reduce area by allowing you to specify
the implementation of a set of operations on a given number of
resources.

dc_shel | > set _common_r esource
[-process process_nane] {operation_nanes}
[-m n_count m n_resources]
[-max_count max_resources]
[-force_sharing]
[- excl usi ve]

The - pr ocess option specifies the process to which this command
applies. The default is to apply the command to all behavioral
processes in the current design.

The - m n_count option specifies the minimum number of available
resources for operationsin oper at i on_nanes. You can specify this
option only in combination with the schedul e command using its

- ext end_I at ency option. During resource driven scheduling, this
prevents SystemC Compiler from increasing the latency of a design
to the pointwhere the design can be scheduled with only one resource
of each type.

Scheduling and Scheduling Constraints
4-55

For example, the commands in Example 4-12 schedule the design
so that cycles are added to allow the operations add_2, add_27,
add_33, sub_5, and sub_21 to be implemented on two resources.

Example 4-12 Commands for Minimum Resource-Driven Scheduling

dc_shell > ops = {"add_2" "add_27" "add_ 33" "sub5" "sub_21"}
dc_shel |l > set _conmon_resource ops -mn_count 2
dc_shel |l > schedul e -extend_| at ency

The- max_count option specifies the maximum number of available
resources for operation in oper at i on_nanes. SystemC Compiler
terminates scheduling and issues an error message if it cannot find
a schedule that uses resources fewer than or equal to the specified
max_count value.

Example 4-13 shows the commands to schedule the design so that
cycles are added to allow the operations add_2, add_27, add_33,
sub_5, and sub_21 to be implemented on three or fewer resources.

Example 4-13 Commands for Maximum Resource-Driven Scheduling

dc_shell > ops = {"add_2" "add_27" "add_33" "sub5" "sub 21"}
dc_shel | > set _conmon_resource ops -max_count 3
dc_shel |l > schedul e -extend_| at ency

The -f or ce_shari ng option is used in combination with the

- max_count option. It forces SystemC Compiler to share the
operations even if the cost functions indicate that this would increase
the area of the design. Without this option, SystemC Compiler could
disregard the - max_count option if the sharing results in a design
with a larger area, for example if resource sharing introduces large
multiplexers.

Scheduling and Scheduling Constraints

4-56

Example 4-14 shows the commands to schedule the design so that
cycles are added to allow the operations add_2, add_27, add_33,
sub_5, and sub_21 to be implemented on three or fewer resources
with forced sharing of resources.

Example 4-14 Commands for Forced Maximum Resource-Driven
Scheduling

dc_shell > ops = {"add_2" "add_27" "add_33" "sub5" "sub 21"}

dc_shel | > set _common_resource ops -nmax_count 3
-force_sharing

dc_shel | > schedul e -extend_| at ency

The set _common_r esour ce command affects the scheduling of
operations. Operations grouped into common resources are
scheduled in non-overlapping cycles to allow them to be shared on
the same resource.

SystemC Compiler attempts to increase the number of cycles
(latency) to meet specified resource goals, but these increases in
cycles must not violate timing constraints. Timing constraints take
priority over resource goals. If the resource goals are not met within
the defined timing constraints, SystemC Compiler issues an error.

Setting Exclusive Registers

During your design, you might want a variable to remain in a single
register at all times; for example, a variable that you later scan out.
You can accomplish this by using a signal instead of a variable. In
that case, SystemC Compiler creates a dedicated register to hold the
signal value.

To control register sharing, use the set _excl usi ve_use
command. When you apply this command to a variable, it directs
SystemC Compiler to dedicate a single register to hold the variable.

Scheduling and Scheduling Constraints
4-57

After executing the conpi | e_syst ent command and before
executing the schedul e command, enter

dc_shel | > set _excl usi ve_use vari abl e_nane

You can use the - shar ed option with the set _excl usi ve_use
command to direct SystemC Compiler to force register sharing by
assigning the variable to an existing register. Enter

dc_shel | > set _excl usi ve _use vari abl e _nanme -shared

If it is not possible to find a register with variables that do not overlap
lifetimes with the specified variable, SystemC Compiler will not force
sharing.

Scheduling and Scheduling Constraints

4-58

Optimizing Latency and Area

This chapter describes how to influence the optimization of latency
and area to improve the quality of results produced by SystemC
Compiler.

This chapter contains the following sections:

Exploring Architectures and Improving the Quality of Results
Controlling Operation and Implementation Selection
Operation Chaining

Removing Unnecessary Registers

Using Multicycle Operations

Using Preserved Functions

Using DesignWare Components

Optimizing Latency and Area
5-1

Exploring Architectures and Improving the Quality of
Results

Exploring architectures means trading off the clock speed, latency,
and resources for a design. Use the visualization capabilities of
BCView and the various timing and scheduling reports to find
opportunities to improve the quality of results of your design.

Looking at Architectural Tradeoffs

Figure 5-1 shows different implementations of a design that performs
two multiplications, one addition, and one subtraction. The figure
shows you how to explore different architectural possibilities by
setting constraints, using command options, and selecting different
components from the synthetic library.

Optimizing Latency and Area

5-2

Figure 5-1 Architectural Exploration

Architecture 1 Architecture 2 Architecture 3 Architecture 4 Architecture 5 Architecture 6

Clock 10ns Clock 10ns Clock 20ns Clock 20ns Clock 10ns Clock 10ns
2 small 2 fast 2 slow Latency Latenc L ipelined

multipliers multipliers multipliers extended exter%/ded zorgﬁlfi);)ﬁ)iz:ge
1 adder 1 adder 1 adder + lslow 1 pipelined 1 adder
1 subtracter 1 subtracter 1 subtracter multiplier multiplier > subtracters

chain 1 adder + 1 adder
1 subtracter 1 subtracter
chain
In Figure 5-1,

 Architecture 1

Architecture 1 is implemented with the bc_ti ne_desi gn
command default of smallest area and the schedul e command
default of fastest latency. The clock period is set to 10ns. This
architecture requires 5 clock cycles or 50ns.

The multiplication operations require more than one clock cycle
to execute, which makes them multicycle operations. Multicycle
operations increase latency, because their inputs must be
registered prior to the start of the multicycle operation.

Optimizing Latency and Area
5-3

Architecture 1 shows an empty first clock cycle when the inputs
to the multipliers must arrive. Finding multicycle operations is
described in “Identifying Multicycle Operations” on page 6-51

Architecture 2

Eliminating multicycle operations can reduce the latency of your
architecture. In Architecture 2, the bc_ti ne_desi gn command
Is used with the - f ast est option to select faster components.
The multiply operations can now be executed in a single clock
cycle, reducing the latency of the architecture to 3 cycles or 30ns.
However, faster components are usually larger, so you need to
tradeoff a larger area for the faster latency. These commands are
described in “Controlling Operation and Implementation
Selection” on page 5-7.

Architecture 3

If your design allows a slower clock period, you can eliminate
multicycle operations by increasing the clock period. In
Architecture 3, the clock period is set to 20ns. The slower multiply
operations are not multicycle and their inputs do not need to be
registered. The addition and the subtraction operations are quick
enough to be executed in the same cycle, even though they are
data-dependent. This reduces the overall latency of the
architecture to 2 cycles or 40ns. The scheduling optimization that
places several data-dependent operations in one cycle is called
operation chaining, and itis described in “Operation Chaining” on
page 5-8.

Architecture 4

If you are concerned about reducing the area rather the improving
the latency, use the schedul e command in the superstate-fixed
I/O scheduling mode with the - ext end_| at ency option to

achieve Architecture 4. SystemC Compiler stretches the latency

Optimizing Latency and Area

5-4

of the loop, so that the multiply operations can share the same
multiplier. This architecture has one less multiplier and a latency
of 3 cycles or 60ns. Reducing area is described in “Using
Resource-Driven Scheduling” on page 4-19.

Architecture 5

You can eliminate multicycle operations without increasing the
clock period by using pipelined components to implement the
operation. Architecture 5 illustrates the use of a 2-stage pipelined
multiplier. For this alternative, use the schedul e command with
the - ext end_|I at ency option so the two multiply operations can
share the same pipelined multiplier. This architecture can be
implemented with a 10ns clock in 5 cycles, which is a total of 50ns.
In your behavioral description, use the map_t o_oper at or
compiler directive to instruct the bc_t i me_desi gn command to
map a function to a specific component. You can also use the
set _dont _use command to prevent the bc_ti nme_desi gn
command from using certain undesirable components. These
commands are described in “Controlling Operation and
Implementation Selection” on page 5-7.

Architecture 6

If you are concerned about throughput, loop pipelining may be
appropriate for your design. Architecture 6 shows two overlapping
iterations of a loop that are pipelined with an initiation interval of
1 clock cycle and a latency of 3 clock cycles. The fast multipliers
are used to achieve the highest throughput and fastest latency
possible. Loop pipelining usually results in larger area designs,
because components and registers need to be duplicated to
provide the resources to execute the overlapping iterations of the
loop. How to pipeline a loop is described in “Pipelining a Loop” on
page 4-44.

Optimizing Latency and Area
5-5

Architectural Exploration Guidelines

Explore the architecture of your design looking for opportunities to
improve the quality of results by using these general guidelines.

Use the BCView Selection Inspector detailed area breakdown to
find opportunities to reduce area by selecting components and
implementations, described in “Controlling Operation and
Implementation Selection” on page 5-7.

Check for under utilization of resources, described in “Resource
Utilization” on page 6-32. To improve resource utilization, use
component selection and operation chaining.

Look for operation chaining opportunities, described in
“Identifying Chaining Opportunities” on page 6-53.

Look for multicycle operations, described in “Identifying Multicycle
Operations” on page 6-51. In place of multicycle components, use
preserved functions, described in “Creating Preserved Functions”
on page 5-25. Or use pipelined components, described in “Finding
and Implementing Pipelined Components” on page 5-37.

Analyze critical paths and try to reduce the delay by using
preserved functions, described in “Using Preserved Functions”
on page 5-23.

Look for loop pipelining opportunities, described in “Pipelining a
Loop” on page 4-44.

Map arrays to memory, described in Chapter 7, “Using Register
Files and Memories for Arrays.

Optimizing Latency and Area

5-6

Controlling Operation and Implementation Selection

For timing estimation, SystemC Compiler uses the components and
implementations with the minimum area by default. The smallest
components are typically the slowest components. For example, if
the design description contains an addition operation (+) and the
default synthetic libraries are in use, SystemC Compiler implements
the design with the DWO01_add operation with the ripple carry (rpl)
implementation because it has the smallest area.

To control implementation selection, use one of the following
methods:

» Restrict the choice of component by using the set _dont _use
command on components or implementations that you do not
want used for estimation.

dc_shel |l > set _dont _use {object [|ist}

The object_list specifies a list of objects (library cells, modules,
or implementations) that are excluded in the design. The object
names must contain a library prefix. For example, if you do not
want SystemC Compiler to consider the bk or csm
implementations in the dw01.sldb synthetic library to reduce the
execution time of the bc_ti ne_desi gn command, you can
exclude them with the following commands:

dc_shel | > set _dont use dwOl. sl db/*/ bk
dc_shel | > set _dont _use dw01l1. sl db/*/csm

To decide which synthetic library architectures you might want to
exclude, see the descriptions in the DesignWare documentation.

Optimizing Latency and Area
5-7

« Usethebc tinme_desi gn command with the - f ast est option
to instruct SystemC Compiler to use the fastest component
available in its timing estimates.

If you want to remove the set _dont _use command after defining
it, use the renove_at tri but e command. For example,

dc_shell > renove_attri bute dwOl. sl db/*/csm set _dont _use

Operation Chaining

Operation chaining is the process of scheduling multiple,
data-dependent operations in the same clock cycle if the total delay
Is less than the clock period. SystemC Compiler automatically looks
for opportunities to chain operations to deliver higher performance
designs.

Operation Chaining With Bitwise Timing

SystemC Compiler schedules multiple data dependent operations
into the same clock cycle if the total bitwise delay is less than the
clock period.

Figure 5-2 shows the bitwise operation chaining possibility for
z=a+b+c-dusing a clock period of 10 ns. The low order bits of
a + b can be used to compute the low order bits of a + b + ¢, before
the entire computation of a + b is finished. Therefore, the two addition
and subtraction operations can be combined into a chain. Their total
delay can be less than 10ns, even if the individual operations have a
6ns delay.

Optimizing Latency and Area

5-8

Figure 5-2 Bitwise Timing for Operation Chaining

z=a+b+c-d

You cannot chain into a multicycle operation because its inputs must
be registered, but you can chain out of a multicycle operation.

Optimizing Latency and Area
5-9

Determining Operation Chaining

You can determine chained operations by looking at the resource
estimates report (described in “Interpreting the Timing and Area
Resource Report” on page 3-17). Figure 5-3 shows a partial resource
estimates report of the complex number multiplier. The cumulative
delay starting at data_in_32 shows the timing path to the sub_35
subtraction operation is 10.4, and the mul_35_2 operation is 6.3. It
appears that the subtraction operation delay is 3.8. However, looking
further in the report for the individual delay of the sub_35 operation,
the operation delay is actually 9.1.The subtraction operation delay of
3.8 is the incremental delay contributed by sub_35 to the chain of
data-dependent operations starting at data_in_32.

Figure 5-3 Chained Operations in the Estimated Resources Report (Partial)

Curul ative delay starting at data_in_32:

data_in_32 = 0.000000
mul _36 = 6.340029
mul _36_2 = 6.340029
mul _35 2 = 6.340029
add_36 = 10.138293
i magi nary_out 36 = 10.138293
sub_35 = 10.417433
real out 35 = 10.417433

Cumul ative delay starting at sub_35:
sub_35 = 9.158618
real out 35 = 9.158618

Optimizing Latency and Area
5-10

Controlling Operation Chaining

You control operation chaining with the bc_enabl e_chai ni ng
variable, which is set to true by default. You can set this variable to
false to prevent operation chaining. For example,

dc_shell > bc_enabl e _chaining = "fal se"

SystemC Compiler automatically implements operation chaining
when the schedul e command runs. To force SystemC Compiler to
chain certain operations, use the chai n_oper ati ons command
before scheduling. However, the chai n_oper ati ons command is
ignored if the delay through the operations exceeds the cycle time.
For example, to chain the operations labeled add_1, add_2, and
sub 1, enter

dc_shell> add 1 = find -hier cell *add 1*
dc_shell> add 2 = find -hier cell *add 2*
dc_shell> sub 1 = find -hier cell *sub_ 1*
dc_shell > chain_operations {add 1 sub 1 add 2 }

Similarly, to prevent SystemC Compiler from chaining a particular set
of operations with each other, use the dont _chai n_operati ons
command. For example, to force the operations labeled opl, op2,
and op3 to be scheduled in different clock cycles, enter

dc_shell> op 1 find -hier cell *op 1*
dc_shell> op 2 = find -hier cell *op 2*
dc_shell> op 3 = find -hier cell *op 3*

dc_shel Il > dont _chai n_operations {op_1 op 2 op 3}

Optimizing Latency and Area
5-11

SystemC Compiler chains input port reads into an operation by
default, even if you specify the operation inputs are not to be chained
with the dont _chai n_oper at i ons command. To disable chaining
of an input port read into an operation, set the

bc _chain_read i nto_oper variable to false. Enter

dc_shell > bc_chain_read_into_oper = "fal se"

SystemC Compiler provides a similar variable for memories,
bc_chai n_read_i nt o_nmem Input port reads are chained into a
memory by default, even if the memory .sldb file declares they are
not chainable. To disable chaining of an input port read into memory,
setthe bc_chai n_read i nt o_nemvariable to false. Enter

dc_shell > bc_chain_ read into nem= "false"

In some cases it may appear as though two operations can be
chained, but SystemC Compiler is failing to do so. The most common
reason for this is cycle margin, as described in the next section.

Controlling Margin Calculation

The bc_ti ne_desi gn command reserves time in the clock period
as aclock cycle margin for the hardware that SystemC Compiler adds
to everytiming pathinthe design during synthesis. SystemC Compiler
extracts the required time to be reserved from the target technology
library. The clock period less the reserved clock cycle margin is
available for combinational logic.

The timing path starts at the clock pin of a register, passes through
the combinational logic, and terminates at the data input pin of a
register. Figure 5-4 shows a typical timing path.

Optimizing Latency and Area

5-12

Figure 5-4 Typical Timing Path

Leading Multiplexer Trailing
register register

D Q '/gbinational D Q
\\—\lC)giC:/_/

> >

CLK T CLK

Multiplexer
control signal
from FSM

CLK>Q FSM MUX Register
delay delay setup

777777777777777777777 delay
«—p Clock period - margin 4—Ppet— Ppt—»p

»
»

Clock period

Each timing path, as illustrated in Figure 5-4, contains common
hardware components. SystemC Compiler reserves a clock cycle
margin in the clock period for the following components:

* Register margin

The leading register requires time at the beginning of the clock
period to respond to the clock edge and make the data available
on its Q output pin. This is called clock-to-Q delay.

The trailing register requires data to arrive at its D input pin a
certain time before the end of the clock cycle. This is called setup
time.

The register margin is also referred to as the flip-flop (FF) margin,
because registers are implemented as FFs from the target library.

Optimizing Latency and Area
5-13

e Multiplexer margin

The trailing register can get its input from several different
sources. A multiplexer controls which of the different sources
provides inputto the register. The reserved timing marginincludes
time for the multiplexer.

« FSM margin

At each clock cycle, the FSM generated by SystemC Compiler
moves into a new state. The reserved timing margin includes time
for the FSM to decode its state and generate the control signals
to control the data path portion of the synthesized design.

The bc_ti ne_desi gn command reports the clock cycle margin
value based on the current target library. SystemC Compiler looks for
all available flip-flops in the target library and uses the average
clock-to-Q delay and setup delay. Example 5-1 shows the relevant
data in the resource estimate report.

Example 5-1 Clock Margin in the Resource Estimate Report

Cl ock Cycle Margin : 2.86 (Default)
FSM : 0. 55
MUX : 1.21
FF : 1.11
Clock Uncertainty : 0. 00

The FSM margin is computed based on the FSM coding style that is
specified with the bc_f sm codi ng_st yl e variable. The default for
this variable is the one_hot coding style. To compute the register
margin, SystemC Compiler looks for all available flip-flops in the target
library and uses the average clock-to-Q delay and setup delay unless
you specify the - pr ef er r ed_FF option of the bc_mar gi n
command. To specify a particular flip-flop to use for the margin
calculation, enter

Optimizing Latency and Area

5-14

dc_shell > bc_margin -preferred FF FF_nane

You can see the value for the clock cycle margin in the report
generated by the bc_t i ne_desi gn, bc_margi n, or
report _resource_estimat es commands.

Figure 5-5 shows a situation where OP1 and OP2 cannot chain
because the total delay, including margin, exceeds the clock period.

Figure 5-5 Chaining Operation Timing

‘Clock period = 15ns

Clock Mock margin = 2.5ns
———r—>

7ns 6ns

Cycle time = Clock period - clock margin =15 - 2.5 =12.5ns
Logic delay = OP1 delay + OP2 delay =7 + 6 = 13ns

Logic delay > cycle time, therefore OP1 cannot chain into OP2

If the clock margin is too conservative, you can make improvements
in either of the following ways:

* Remove slower flip-flops from consideration by applying a
set _dont _use command for them before executing the
bc_time_desi gn command. For example,

dc_shel |l > set _dont __use ny_[ib/dff_sl ow
dc_shell > bc_tinme_design

« Manually override the default value by applying the bc_mar gi n
command after the bc_ti me_desi gn command completes.
Confirm the new value by examining the end of the report
produced by the r eport _resource_esti mat es command
(Example 5-2 on page 5-21).

Optimizing Latency and Area
5-15

For example,

dc_shell > bc_tinme_design
dc_shell > bc_margin -global 1.5
dc_shell > report _resource_esti mates

If you provide the global margin value, FSM, multiplex, and register
delay is set to 1/3 of the global margin. For example, if you set the
cycle margin to 6:

bc_margin -gl obal 6

Cycle margin : 6.00

FSM : 2.00
MUX : 2.00
FF : 2.00

You can use the following options with the bc_mar gi n command:

dc_shell >bc_margi n[-process process_nane] [-gl obal margi n]
[-reg margin] [-fsmmargin] [-mux nmargin] [-preferred_ FF
cell _nane] [-report]

The - process process_nane option specifies the process to
which it applies. The defaultis to apply the command to all behavioral
processes in the current design.

The - gl obal nar gi n option specifies the total clock cycle margin
to be used by SystemC Compiler for the current design.

The - f sm nmar gi n option specifies the amount of timing margin to
be used for FSM decoding logic.

The - mux nar gi n option specifies the amount of timing margin to
be used for MUX delay.

Optimizing Latency and Area

5-16

The -reg mar gi n option specifies the amount of timing margin to
be used for setup and clock-to-Q pin delay inside flip-flop.

The -preferred_FF cel |l _nane option specifies the flip-flop
name from the current target library which is used to determine setup
and clock-to-Q delay.

The - report option generates the detailed information of the
flip-flops in the current target library that you can set with the
- pref erred_FF option.

Optimizing Latency and Area
5-17

Removing Unnecessary Registers

By default, SystemC Compiler saves the value of input ports in
registers after they are read if the value is used in a later clock cycle.
When an input portis a static value (for example, amode-select signal
or coefficient value) that never changes during normal operation of
your design, the registers are unnecessatry.

You can remove these redundant registers from your design and save
area by instructing SystemC Compiler that these input values are
static and they do not need registers.

Use the bc_dont _regi ster _i nput _port command to specify
which ports are static. For example, to prevent registers on ports
namel, name2, and name3, enter

dc_shel |l > bc_dont _register_input_port
{namel nane2 nane3}

The ports you list with this command will not have their input data
registered, and they chain directly into operations in the design.

Note:
If a port is specified as static, its value should change only during
the reset state. If the value changes at any other time, the circuit
might operate incorrectly because SystemC Compiler constructs
an architecture that treats the signal as static.

Optimizing Latency and Area

5-18

Using Multicycle Operations

SystemC Compiler uses the timing estimates to determine whether
to implement single cycle or multicycle operations. If the hardware
delay is less than the clock period, SystemC Compiler implements a
single cycle operation and may be able to chain single cycle
operations together in the same clock cycle; otherwise, SystemC
Compiler implements a multicycle operation.

You do not have to indicate whether to schedule operations as
multicycle or single cycle. SystemC Compiler schedules these
operations automatically if the clock cycle, scheduling constraints,
and target technology indicate that multicycling is necessary.

If an operation has a delay greater than the clock period and you are
allowing multicycle, SystemC Compiler automatically schedules it as
a multicycle operation, as shown in Figure 5-6.

Figure 5-6 Multicycle Operation

z=a*b

cycle n I 10 ns
12 ns

cycle n+1 I 10 ns

z

In Figure 5-6, the multiplication hardware has a maximum delay of
12 ns, but the clock is only 10 ns. If you use this multiplier in a system
that has a clock of 10 ns, the multiplier becomes a multicycle
operation.

Optimizing Latency and Area
5-19

A multicycle operation affects implementation in these ways:

The inputs to the multicycle operation must be held stable for as
many clock cycles as necessary. For example, in Figure 5-6 the
inputs must be held stable for two clock cycles, so they are
registered.

The results are valid in the register corresponding to variable Z
two cycles after the input data is valid.

You need to pass the correct multicycle constraints into logic
optimization.

Optimizing multicycle paths can impact Design Compiler runtime.

SystemC Compiler automatically handles all of these requirements
based on the clock period and timing estimates it calculates for the
hardware operations.

Reporting Multicycle Operations

You can use the report _mul ti cycl es command to report
multicycle operations for your scheduled design. Example 5-2 shows
a partial report, where

The cstep (clock step) indicates the first clock cycle in which the
multicycle operation is used.

The cycle latency is the number of cycles for the multicycle
operation.

The cluster is the automatically created resource name for the
component executing the multicycle operation, which is expanded
at the end of the report to show the multicycle resource.

Optimizing Latency and Area

5-20

« The design name is the name of the synthetic operation that is
multicycled.

* The self delay is the operation delay.

Example 5-2 Multicycle Report (Partial)
Cl ock period: 10.00 & margin: 0.00

| oop_17/ add_36
cstep: 8
cycle latency: 2
cluster: r46
desi gn name: DW1 add
sel f delay: 13.62

R I I b bk kS S S b Rk Sk S S S S b b b S R S S S S b b b S S S S Rk S S S

* Multicycle operators for process cnult _entry: *

R I I b bk kS S b R Rk S S S S b S S R S S S S S b b b S S S Rk kS S S R

r46: DW1_add
| oop_17/ add_36

Increased Latency of Multicycle Operations

In many situations, multicycle operations cause an undesirable
increase in area or latency. A multicycle operation can increase
latency, because

* Anextraclockisrequired before the operation to register the input
data and keep the inputs stable for the duration of the multicycle
operation.

« If a multicycle operation is in the first clock cycle of a conditional
statement, the conditional evaluation needs to be evaluated at
least 2 clock cycles earlier.

Optimizing Latency and Area
5-21

Figure 5-7 shows a code fragment containing a conditional if
statement. When the multiply operation is not multicycle, the entire
code fragmentcan be implemented in 1 clock cycle. When the multiply
operation is multicycle, the latency increases to 4 clock cycles,
because the if condition must be evaluated in the first cycle before
the input data is read, the input data is read and registered in the
second cycle, and the multiply operation takes 2 cycles.

Figure 5-7 Multicycle Operations in Conditional Statements

Related code fragment

cond = inl.read();
i f(cond == yes) {
A=B* C
out.write(A);
wai t () ;
}
else {...};
Cycles No multicycling Multicycle multiply
1 inl |if |[A |B |* Jout inl | if
2 A|B
3
.. * L - - - - -
4 out

Optimizing Latency and Area

5-22

Replacing Multicycle Components

It is highly recommended that you replace multicycle components
whenever possible to improve latency.

To replace the multicycle components with a faster combinational
component, use the - f ast est option with the bc_t i me_desi gn
command.

If the combinational version is too slow, replace the multicycle
componentwith either a preserved function or a pipelined component,
as described in the next sections.

Using Preserved Functions

You can reduce the design complexity and runtime and improve the
quality of the resulting hardware by using preserved functions,
importing netlists from other tools such as Module Compiler, and
using custom DesignWare parts.

Preserved functions allow you to create complex components. By
default, SystemC Compiler creates inline code for functions and
removes the level of hierarchy the functions might represent. You can
direct SystemC Compiler to preserve a function instead of inlining it.

For each preserved function, SystemC Compiler creates a level of

hierarchy during elaboration. During synthesis, the level of hierarchy
Is compiled into a component that is treated exactly the same way as
any other combinational component, such as an adder or a multiplier.
Only functions that describe purely combinational RTL designs can
be preserved.

Optimizing Latency and Area
5-23

When to Preserve Functions

Use a preserved function when you want to do the following:

Preserve a complex function as an operation

Group components that belong in the same cycle into one
operation so SystemC Compiler treats the encapsulated function
as a single operation

Incorporate custom netlists into your design (for example,
preexisting combinational and pipelined parts)

Precompile parts and enable more accurate timing estimation

Precompile groups of operations that would otherwise take more
than one cycle with aggressive compile strategies

Use the preserved function as a resource that can be shared

Create a pipelined component for an operation

Determining Which Functions to Preserve

During your early attempts to synthesize a design, it might not be
obvious where preserved functions are needed. Run an initial timing
estimation or schedule the design to help you identify functions for
which you might want to preserve hierarchy. After identifying these
functions, you can preserve them.

To determine which functions to preserve and to compile them,

1. Apply the preserve_functi on compiler directive to functions

that you already know you want to maintain as separate
hierarchies.

Optimizing Latency and Area

5-24

2. Compile and elaborate the entire design using the
conpi | e_syst ent command.

3. Check the timing estimations or run an initial schedule to find out
which other operations might be best keptin their own hierarchies.

For example, look in the resource estimate report for operations
that should always be chained into one clock cycle or for groups
of logic that have an unrealistic delay estimation. (See “Evaluating
the Resource Estimate Report” on page 3-17.) You can usually
improve the delay estimation later by precompiling groups of logic
with user-defined constraints.

4. Group the logic and operations you want as a preserved function
into a function, and insert the pr eserve_f uncti on compiler
directive into your code, as described inthe CoCentric™ SystemC
Compiler Behavioral Modeling Guide.

5. After elaboration, set the clock period, run the
conpi | e_preserved_functi ons command, and time the
design.

Creating Preserved Functions

For each preserved function, SystemC Compiler creates a level of
hierarchy during elaboration. As a result, right after elaboration you
can see the hierarchy, write out elaborated preserved functions, and
compile them. Treat a preserved function as you would any other
combinational RTL design.

To preserve a function where the function is defined in the design
description, annotate it with the pr eser ve_f unct i on compiler
directive, as shown in Example 5-3. Note that the
preserve_functi on directive must be the first line in the function
body.

Optimizing Latency and Area
5-25

Example 5-3 Creating a Preserved Function
/1 SystenC code fragnent

my_add (const sc_int<8> a,
const sc_int<8> b) {
I synopsys preserve_function
/ I Function code bl ock
return (atb);

If the preserved function is defined in a separate file, declare the
preserved function in the header file, as shown in Example 5-4. Place
the preserve_functi on compile directive on the function
declaration. This compiler directive alerts SystemC Compiler that the
preserved function is defined in another file.

Example 5-4 Defining a Preserved Function in a Separate File

/1 SystenC code fragnent

/'l preserve.h header file

SC_MODULE(pre_exampl e) {
/1l Declare ports

/'l Decl are nmenber functions

bool funcl(); /* synopsys preserve_function */
/| Decl are processes in the nodul e

void entry();

/| Constructor

SC CTOR (pre_exanple) {

}
s

For details about creating preserved functions, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

Optimizing Latency and Area
5-26

Preserving a Function

Figure 5-8 shows the standard flow for preserving a function.

Figure 5-8 Flow for Preserving Functions

Elaborate
design

Yes A& No

:

netlist
?

read_preserved_
function_netlist

. [

(optional)

p TiMe -

'

compile_preserved_
functions

design

Y

Schedule
design

v

Compile
design

The typical flow is to elaborate the top-level design, compile the
preserved functions, read in any precompiled netlists that are used
to implement the preserved functions, then time and schedule the
design. If you do not have a precompiled netlist, compile all the
preserved functions as described in “Compiling Preserved Functions”

on page 5-29.

Optimizing Latency and Area

5-27

Using a Precompiled Netlist for a Preserved Function

You can read in an existing precompiled, mapped netlist for a
preserved function. The mapped netlist must be in .db format and
generated with the conpi | e_preserved_functi ons command
or by another Synopsys tool.

To use precompiled netlists as preserved functions,

1. Elaborate the top-level design with the conpi | e_syst ent
command.

2. Execute theread_preserved function_netli st
command. This command reads in netlists of all preserved
functions in the designated design library. Or you can read in each
preserved function netlist separately.

3. Time and schedule the design.

Example 5-5 shows the most commonly used options for the
read_preserved _function_netlist command.

Example 5-5 Using the read_preserved_function_netlist Command

dc_shel | > conpil e_systent ny_desi gn

dc_shell > read_preserved_function_netlist funcl
-design_library ny Iib

dc_shell > read_preserved function_netlist func2
-design_library ny other_Iib
-return_port new return_port_nane

You can provide one or more preserved function names to read. If
you do not specify a preserved function name, this command reads
all preserved functions in the designated design library. The must be
an existing .db file named func_name.db file in the designated design
library. To provide more than one function name, enclose the names
in braces ({ }).

Optimizing Latency and Area

5-28

The - desi gn_1 i br ary option specifies a design library where the
preserved functions are stored. If you do not specify a design library,
it reads from the default design library typically named WORK. When
you designate a design library name, use thedefi ne_design_|ib
command to map the logical library name to a physical UNIX path
before executing the r ead _preserved function_netli st
command.

For example,

dc_shel |l > define_design _lib /library nanel
-path /renote/design_libraries/libraryl
dc_shell > read _preserved function_netlist funcl
-design_library ny Iib

The - ret ur n_port option specifies the name of the port to use for
the return value of the preserved function. The default return port
name of func_name-return is used when you do not specify a return
port name.

If the preserved function is a pipelined netlist that was created with
either the conpi | e_preserved _function_netli st or

pi pel i ne_desi gn command, the

read _preserved function_netlist command automatically
determines that the netlist is pipelined and not combinational.

Compiling Preserved Functions

Whenyou do not precompile preserved functions, SystemC Compiler
automatically compiles them during timing of the design with default
compilation strategy and constraints.

Optimizing Latency and Area
5-29

You can compile the preserved functions before timing a design to
check the results of compilation for preserved functions and make
adjustments to get the timing and area you want, if necessary, before
performing timing estimation.

Example 5-6 shows the most commonly used options for the
conpi | e_preserved_functi ons command. Define the clock
period with the cr eat e_cl ock command before executing the
conpi | e_preserved_functi ons command.

Example 5-6 Using the compile_preserved_functions Command

dc_shell > create_clock -nanme clk -period 20
dc_shel |l > conpil e _preserved functions {funcl func2}
[-wite]
[-design_|ibrary nylib]
[conpil e _effort high]
[-stages nunber of stages]
[-include_script constraints. scr]

The list of function names specifies preserved function names that
are to be compiled. The default is to compile all preserved functions
in the current top-level design.

The - wr i t e option specifies to write out each elaborated and
compiled design to a file as function_name.db for reuse. The .db files
are written in the default design library, or use the

- desi gn_I i br ary option to specify the design library in which the
designs are to be written.

Use the - conpi | e_ef f ort option to specify a compilation effort of
| ow, medi um or hi gh. The default is medi um

When the - st ages option is used, SystemC Compiler automatically
runs retiming on the preserved function to generate pipelined
preserved functions. Without this option, only combinational

Optimizing Latency and Area

5-30

preserved function are created. This option specifies the number of
pipeline stages for the preserved functions. The number of stages is
one more than the number of registers encountered on any path from
any data input port to any data output of the preserved function. The
minimum possible value is 2.

The -i ncl ude_scri pt option includes a user-defined dc_shell
synthesis script file that contains constraints and compilation
commands to enable customized compilation of preserved function
into components. (For information about using these scripts, see
“Using Scripts” in Appendix A.)

Using Preserved Functions for Behavioral Synthesis

Figure 5-9 shows where preserved function fit in the SystemC
Compiler command flow.

Optimizing Latency and Area
5-31

Outputs

Figure 5-9 Command Flow With Preserved Functions
Inputs Commands
Target and
synthetic Behavioral Code
libraries

SystemC
Compiler

T2,

Constraints

Timing and Area
|

conpi |l e_systent

bc_check_desi gn

Exterr_lally read_preserved_
compiled function_netlist
netlists

——

conpil e_preserved_
functions

bc_time_design
-y

conpile

Gate-Level Netlist I

Optimizing Latency and Area
5-32

Constraints
Latency
Pipeline

Elaborated .db File

- Hierarchical .db File I

| Timed .db File

Reports I

—» BCView and reports I
- RTL .db File |
> Cyc!e-accgratg

HDL simulation file

> RTL HDL file |

Limitations of Preserved Functions

This section describes the restrictions placed on functions that can
be preserved.

The following sequential constructs are not allowed in preserved
functions:

* Sequential DesignWare parts, such as memories and pipelined
parts, although the preserved function itself can be pipelined

* A wait() statement
» Signal reads and writes
* Rolled loops

* Preserved functions (no nesting of preserved functions)

Bit-Width Restrictions

You can describe inlined functions without restricting the bit-width.
For preserved functions, however, you need to define the bit-width of
every formal parameter and variable used in the functions as a
SystemC data types such as sc_int<n>, sc_uint<n>, and sc_bv<n>.

Hierarchy
Preserved functions cannot contain lower levels of hierarchy (such
as other preserved functions or rolled loops).

The conpi | e_preserved _functi ons command automatically
flattens the design by default.

Optimizing Latency and Area
5-33

You cannot call other preserved functions from a preserved function;
however, you can have a function call to nonpreserved functions
inside a preserved function. The nonpreserved function call will be
inlined.

During elaboration, SystemC Compiler checks for hierarchical
elements in a preserved function. It issues an error message if you
try to call another preserved function or a warning (unresolved
reference) if you use a netlist that contains hierarchy.

Sequential Logic

Sequential logic such as rolled loops and wait() statements are not
allowed in preserved functions. SystemC Compiler issues an error
message when structures of these types are encountered.

Using DesignWare Components

In addition to preserved functions, you can also use DesignWare
components to create a level of hierarchy in your design. The
map_t o_oper at or compiler directive performs an action similar to
the preserve_functi on compiler directive with the following
additional benefits:

* Enables use of memories
« Enables use of standard DesignWare components

DesignWare components cannot contain hierarchy; however, they
can contain other DesignWare components that have been compiled
down to gates.

Optimizing Latency and Area

5-34

Example 5-7 shows code that uses a DesignWare component. For
more information about creating a SystemC description that uses
DesignWare components, see the CoCentric™ SystemC Compiler
Behavioral Modeling Guide.

Example 5-7 Using DesignWare Components
/| SystenC code fragnent

sc_int<8> ny_add (const sc_int<8> A,
const sc_int<8> B)

{
//snps map_to_operator MJLT2 _TC OP
/] snps return_port_nane Z
/I Functi on code bl ock
return (A*B);
}

Listing DesignWare Components
To list the available DesignWare components,
1. Executetheli st -1ibs command to listthe available libraries.

2. Execute thereport _synl i b command to list the available
components in a DesignWare library.

For example,

dc_shell> list -libs
dc_shel |l > report _synli b standard. sl db

Example 5-8 shows fragments of the synthetic library report. For
details about this report, see the DesignWare documentation.

Optimizing Latency and Area
5-35

Example 5-8 Reporting DesignWare Components

Li brary Type : Synthetic

Tool Created : 2000. 11- PROD

Date Created : Fri Oct 27 20:38:23 PDT 2000
Li brary Version : 1998. 08

Oper at or Types:

ABS OP abs
ADD TC O _OP add
Operators:
Oper at or Ports Dir
ABS OP A in
z out
ADD TC O _OP A in
B in
c in
z out
Synt heti ¢ Mdul es:
Modul e
DW1_ADD AB design_library: DW1
DW1_ADD ABl design_library: DW1
Modul e Pins:
Attributes:
c - clock_pin
Default Stall Pin
Modul e Pi ns Dir Wdth Val ue Pin Attributes
DW1_ADD AB A in 1
B in 1
S out 1
caut out 1

Optimizing Latency and Area
5-36

in
in
out
out

DW1_ADD AB1

gmw:D
Yl

Mbdul e Bi ndi ngs:

Modul e Bi ndi ng
DW1 add bl bound_operator: ADD UNS OP
Pin Associ ations (nodul e, oper):
A A
B, B
a,"o"
SUM Z

b2 bound_operator: ADD TC OP
Pin Associ ations (nodul e, oper):
A A
B, B
a,"o"
SUM Z

Finding and Implementing Pipelined Components

Multicycle operations increase latency, because they require an extra
clock cycle to register the input data to keep it stable. To improve
latency, you can replace a multicycle component with a pipelined
component. Changing to a pipelined component instead of a
multicycle component also provides the opportunity to pipeline the
loop, as described in “Pipelining a Loop” on page 4-44.

To find and implement a pipelined component,

1. Execute thereport_synli b command to list the components
available in a DesignWare library.

2. Choose a pipelined component.

Optimizing Latency and Area
5-37

3. Modify your behavioral description to use the pipelined
component with the map_t o_oper at or compiler directive.
Example 5-7 on page 5-35 shows an example.

4. Start again at the beginning of the SystemC Compiler command
flow and execute the conpi | e_syst ent command (“Compiling
and Elaborating the Source Code” on page 2-5).

For example, if you want to replace a multiplier with a pipelined
multiplier, use the report _synl i b command to find a pipelined
multiplier component. Example 5-9 shows a fragment of the report
for the DWO02 synthetic library that lists some of the multiplier
components where

« DWO02_mult2 is a nonpipelined multiplier
« DWO02_mult_s_stage is a 2-stage pipelined multiplier
« DWO02_mult_3 stage is a 3-stage pipelined multiplier

Example 5-9 Listing Pipelined Components

DW2 nult2 design_ library: DW2
HDL paraneter: A width = width('A)
HDL paraneter: B width = width('B')

Paraneter: PRODUCT width = B width + A width

DW2 nult 2 stage design_library: DW2
cl ocki ng_schene: positive_edge
resource: Pl
resource: P2
HDL paraneter: A width wi dth(’A)
HDL paraneter: B wi dth wi dth(’'B')
Paraneter: PRODUCT width = B width + A width

DW2 nult 3 stage design_library: DW2
cl ocki ng_schene: positive_edge
resource: Pl
resource: P2
resource: P3
HDL paraneter: A width = width('A)

Optimizing Latency and Area
5-38

HDL paraneter: B w dth

= wdth('B)
Paraneter: PRODUCT_w dth =

B width + A width

You might choose, in this case, to replace a DW02_mult2 component
with a 2-stage pipelined component, DW02_mult_2_stage.

Optimizing Latency and Area
5-39

Optimizing Latency and Area
5-40

Analyzing Designs With BCView

After you time and schedule your design, use BCView to review
common scheduling errors, evaluate the results of scheduling, and
evaluate ways to improve the latency and area of your design.

This chapter includes the following sections:

Using BCView

Using BCView Windows

Recommended Usage for BCView

Examining Scheduling Errors

Evaluating the Architecture Generated by SystemC Compiler

Exploring Architectural Improvements

Analyzing Designs With BCView
6-1

Using BCView

SystemC Compiler has a graphical analysis environment called
BCView, which you can use to

« Evaluate your synthesized architecture

« Understand how it corresponds to the original behavioral
SystemC description

« Zoom in on specific features of the architecture, such as
operations, components, and dataflow paths

» Tune your synthesis constraints to improve the synthesized
architecture

* Analyze scheduling errors

Preparing Designs for BCView

To use BCView, you must set a variable that causes SystemC
Compiler to generate the analysis information used by BCView. Set
the bc_enabl e_anal ysi s_i nf o variable to true before using the
conpi | e_syst ent command. Enter

dc_shell > bc_enabl e_analysis_info = true
dc_shel | > conpil e_systent design. cc

The default value of the bc_enabl e_anal ysi s_i nf o variable is
false.

Analyzing Designs With BCView

6-2

Starting BCView

To start BCView from the dc_shell, enter

dc_shell > bc_view

For additional information and other ways to start BCView, see
“Starting BCView” in Appendix A.

Removing BCView Analysis Information

After your analysis is complete and if you want to reduce the size of
the .db file, use the r enove_anal ysi s_i nf o command to delete
the analysis information. Deleting this information means you cannot
use BCView on the design unless you execute the preparation steps
again.

Using BCView Windows

BCView uses cross-linked windows to graphically show information
about

» Source code

* Resource allocation and operation scheduling

« The FSM generated by SystemC Compiler

» Clock-cycle (also called a control step) and resource utilization
e Scheduling errors

The cross-linking allows you to select an object in one window and
view specific information about it in the other windows.

Analyzing Designs With BCView
6-3

Note:

BCView is not a graphical front end to SystemC Compiler. Also,
itis nota design-entry tool, and it does not give explicitinformation
about your SystemC coding style.

Figure 6-1 shows an example of the five BCView windows.

Analyzing Designs With BCView
6-4

Figure 6-1 BCView Windows

sger 1 — L

Data Miew

Scheadul by Ervor Anakzel

Eile Wiew Hierarchy Window Help

A o | |||l 2l-|¥]r|F
ol e e)l 7|Aa| | | '

OPEM EREY NEXT, FOLLEW FIM| FIN| EOE

FILE... FFIIE: FFIE: SELECTED SELECTED | TEMT (ejipp

Text Indication: Mulf

28 f/ main funtionali : -
20 while {true) { Data ¥iew FESM Window Help Scheduling
30 Error
31 #F this start si x i (AR G Il

an ig hlock_ready.w a Gf Gfl@l n% ’E (o Ei} '! Analyzer
33 acknowledge_data

4 : liig st o

Code Q
Browser = ig sh
— =ig

ag —\I

39 wait();
40 if (ig write block SeiEe | Sttt | | oescee. | THE | SR
41 offset = 0d; § o _ o W Selected Object 1 011 ————- —
4z elze Object Name: ig_write_block_40 =
43 offset = 0; Hierarchical Mame(s): VD_igfentry/loop_2 9/ig_write_block_40 =
A4 Object Class: data node
45 if (3kip_inp==fa Description: .
46 /4 sample data FSM 83tep_4 N Selection

. - utput Available: 0.00 ns

47 mhlock_intra_in . Resource i wnite_ block | INSPECTON
48 nmacroblock_int Viewer ' -
49 alternate_scanflf | 0 | Lt M ----- End Of List -—---
5o quantiser scal
g1 — .

=

Ei Data Miew Select Window Help

55 L E3 T

@ || o] @] ald|d|alal w|=| ¥]

57

ss Wil |20 Loops ---»------E--—---Halaaaaﬁﬁ+ + brporintm fu B
Ea @ = —T—T T —

EE B |0 N

62 ha, |)

er — = = Reservation

4 M| femd Table

e |

33

&7 —

68

69 ?
‘I I . e =
Path !

[Register limits: (1, 448) |

!

Analyzing Designs With BCView
6-5

The BCView windows are

Reservation Table

Allows you to view resource allocation, scheduling information,
and data dependencies between operations and registers. The
table displays allocated resources on the horizontal axis and the
clock cycles on the vertical axis. Operations are placed in the
reservation table in the column corresponding to the resource on
which it is executed and the row corresponding to the clock cycle
in which it is executed. The row and column with a percentage
(%) heading show the percentage of the clock cycle or resource
that is used by the operation.

Code Browser

Displays the behavioral SystemC source file. Whenever you
select an object in another window, the line of code corresponding
to that object is highlighted in the Code Browser window.

FSM Viewer

lllustrates the FSM generated by SystemC Compiler in a
traditional bubble diagram format. You can step through the state
transitions, view the actions that the synthesized architecture
executes on each transition, and see the corresponding lines of
the source code and allocated resources highlighted in the Code
Browser and the Reservation Table windows. You can also view
the conditions and actions related to a selected transition in the
FSM Viewer window.

Selection Inspector

Shows detailed information about an object selected in any of the
other windows, including the object name, hierarchy, class,
description, fanins, and fanouts.

Analyzing Designs With BCView

6-6

Scheduling Error Analyzer

Shows conflicts between user constraints and the inherent
constraints in the behavioral description that result in scheduling
errors during synthesis, so you cano graphically determine the
cause of some of these errors. If there are no scheduling errors,
this window is not displayed.

You can also find information about BCView in the Synopsys man
pages.

Analyzing Designs With BCView
6-7

Recommended Usage for BCView

Use BCView to quickly find common scheduling errors and to
evaluate the results of synthesis. Figure 6-2 shows a recommended

usage for BCView.

Figure 6-2 BCView Recommended Usage

Edit code
e T .

Schedule MO gehequling Error|
modify constraints

2 Analyzer
Yes I ‘

~Evaluate —_Yes

|

|

_ |
Revise code or N

Measure QOR*:

Analyze

Analyze

““_Architecture Step through /O protocol and area, latency, register
\1/_' FSM branches I/O paths resources allocation

No f |

Im rov!e*x Yes Check Improve with Improve with
: ArchFthecture > Reservation multicycle and |» resource Ar}{:\lyze
\? / Table % column | = chaining sharing critical paths
|
No [©
v * QOR = Quality of Results

(Finish compile to gates>

Analyzing Designs With BCView
6-8

Examining Scheduling Errors

The Scheduling Error Analyzer window in BCView presents a graph
of the operations involved in a scheduling failure, providing you with
agraphical description of whatis wrong. Thiswindow displays a graph
that shows only the operations, data dependencies, and constraints
(both user-defined and inherent) involved in the scheduling failure.

The Scheduling Error Analyzer window shows a visual representation
of the conflicts that resulted in the scheduling error. Using the
Scheduling Error Analyzer window, you can quickly analyze
constraints and your code to determine where and why a scheduling
failure occurred.

Identifying Errors to Analyze

You can use the Scheduling Error Analyzer window to examine the
following scheduling errors:

« Unsatisfiable timing constraints (HLS-51)

The design fails to schedule because conflicting timing constraints
cannot be met. For example, a design using the superstate-fixed
I/0 mode might have aset _cycl es command (see
“Constraining Loops and Operations” on page 4-37) that
overconstrains the design.

* Fixed I/O schedule is unsatisfiable (HLS-52)

The design fails to schedule in cycle-fixed 1/0 mode because it
contains insufficient wait statements. For example, a design might
contain two wait statements separating input and output
operations, but the computation of the outputs from the inputs
requires three clock cycles.

Analyzing Designs With BCView
6-9

When one of these two errors occurs, a message similar to Example
6-1 prompts you to use BCView.

Example 6-1 HLS-52 Error Message

Error: Fixed IO schedule is unsatisfiable (HLS 52)
The scheduling errors can be anal yzed with BCVi ew
type "bc_view [-output <out _db file>]"

Using the Scheduling Error Analyzer

When a scheduling error occurs and you are prompted to use
BCView, you can start BCView immediately from the dc_shell prompt
and use it to examine the causes for the error.

Toreview a scheduling error in the Scheduling Error Analyzer window,

1. Start BCView.

dc_shel | > bc_vi ew

2. Readthe Selection Inspector window. This window usually directs
you to the error.

3. Determine the two operations that bound the problem area.

4. Examine the graphical information to determine the mismatch
displayed.

5. Fix the code or modify the constraints.

6. Reschedule the design.

Analyzing Designs With BCView

6-10

Viewing the Selection Inspector Window

The Selection Inspector window (Figure 6-3) displays detailed
information about the scheduling error and about operations and
constraints that are selected in the Scheduling Error Analyzer
window. This window also often provides information about correcting
the error.

To display the initial error message in the Selection Inspector window,

* Choose Data > Show Error Message in the Scheduling Error
Analyzer window (Figure 6-3).

Figure 6-3 Selection Inspector With Error Information

Describe Fanouts

Describe Fanins

Describe Selected Object

Next Select

Previous Select

————— Selected Object 1 of 1 ——-—- =
SEA = Unsatisfiable Fixed Schedule (HLS-52)
. BLC failed to schedule wour design in cycle_fixed mocle.
Schedullng SEA has identified the following areas where
Error you could insert wait statements into your HDL
Analyzer code:

1 weaits between data_in_25

Information about and real_out_35
how to correct the —|

error

Fead Hist &
| Ready

Analyzing Designs With BCView
6-11

Determining the Operations That Bound the Error

In the Scheduling Error Analyzer window, a node represents a data
operation (I/0O, memory read/write, or arithmetic) or a control
construct (loop or conditional statement). Nodes appear as bubbles,

ovals, or rectangles (Figure 6-4).

The scheduling failure occurs between operations represented by the
top and bottom nodes in the Scheduling Error Analyzer window.

Figure 6-4 Scheduling Error Analyzer With Bounding Op

Reset View
Expand all edges one level
Expand all edges recursive

erations

Enable/Disable Info Tips

Display error message
in Selection Inspector

Expand selected edge one level Overview of SEA
Expand selected edge recursive
scheduling Error snalyzer

Data Miew Hierarchy o Wingow gHelg

aglg|al =/~ %] |F|s B2

Zoom To Fit — |]

ZoomIn2X | <
Zoom Out 2X |

Zoom By Box

Edges show__— %’

the conflicting
constraints »= 4

Il
o

___ Top and bottom
nodes represent
operations that
bound the
scheduling failure

A

I;l
1| [1»

Ready N |

Analyzing Designs With BCView
6-12

Examining the Graphic Information

Examine the information in the Scheduling Error Analyzer window
(see Figure 6-5) and view the related code and detail in the Code
Browser and Selection Inspector windows to determine the cause of
the error. Clicking on the top and bottom rectangles will highlight the
place in the code, in the Code Browser window, that is causing the
problem.

Understanding the Scheduling Error Analyzer Display

The Scheduling Error Analyzer (Figure 6-5) shows a scheduling error
between two operations or control constructs.

Figure 6-5 Scheduling Error Analyzer Paths and Clock Cycles

]l

Data Wiew Hierarchy Window Help

Scheduling Error Analyzer I

a|glglal =¥ 3| El 2]

[

1. User-defined constraint (set_cycles)

2. Path between the two operations
and inherent constraint (minimum
cycles to schedule successfully)

_{I" 3. Clock cycles that need to be
| ,H inserted during scheduling

Ready

| e

Analyzing Designs With BCView
6-13

In Figure 6-5,

1.

The edge on the right shows the user-defined constraint (the

number of cycles specified by a SystemC Compiler constraint
such as the set _cycl es command or by the number of wai t
statements in the SystemC code between the two operations).

The edge on the left shows the path between the two operations
formed by inherent data and control dependencies and the
minimum number of cycles required by SystemC Compiler to
schedule the operations successfully. You can click the curved
edge to expand it and analyze the path further.

The horizontal lines segmenting the left edge show clock cycles
(control-steps) that need to be inserted during scheduling.

The edges that represent constraints appear in BCView as described
in Table 6-1.

Table 6-1 Edges Representing Constraints

Constraint Representation
User-defined constraints Curved red edges
Inherent constraints (data dependencies) Straight black edges
Derived constraints Curved black edges

Derived constraints are edges that represent a set of inherent data
flow and control constraints. Derived constraints summarize the
combined effect of the individual constraints in the set. Be default,
the Scheduling Error Analyzer window does not expand derived
constraints. You can click a derived edge to expand it and show the
set of inherent constraints.

Analyzing Designs With BCView

6-14

Reading Labels on Edges and Nodes

The delay implied by a constraint appears as an arithmetic
expression, such as >= 6, next to the related edge. The label shows
the minimum, maximum, or exact number of clock cycles that
separate the nodes, as follows:

>=n

Indicates the minimum number of control-step boundaries that
must separate the nodes.

==n

Indicates the exact number of control-step boundaries that must
separate the nodes.

<=n

Indicates the maximum number of control-step boundaries that
must separate the nodes.

In Figure 6-5 on page 6-13, the Scheduling Error Analyzer window
indicates that the code between the two operations that bound the
problem requires at least four clock cycles, but it is constrained to

three cycles.

In the case of multicycle operations, the labels appear next to nodes.
Labels on nodes that represent multicycle operations appear as >n,
where nis the minimum number of clock-cycles that the operation
spans. For example, a multicycle operation with a delay of two clock
cycles has a label >1.

Analyzing Designs With BCView
6-15

Viewing Information About Individual Objects

You can enable the Info Tips feature, which pops up a summary of

information regarding the object currently under the pointer. You can
click an object to view more details about it in the Selection Inspector
window.

To enable Info Tips,

» Do one of the following:
- Choose View > Info Tips.

- Click the Info Tip toolbar button.

B

A check mark appears next to the menu command when itis enabled.

Obtaining More Detailed Information

You can obtain more detailed information by

« Expanding derived edges

* Analyzing displayed information about constraints
* Reviewing the related SystemC code

To expand a derived edge (shown as a curved, black line),

» Do one of the following:
- Double-click the edge to expand it.

- Select the edge, then click one of the expand toolbar buttons.
| w | 3 F |

Analyzing Designs With BCView
6-16

The Scheduling Error Analyzer window expands the derived edge to
show all constraints and nodes contained within it (Figure 6-6). The
new edges are selected.

Figure 6-6 Expanded Derived Edge

Data Miew Hierarchy Window Help

a|g|d|)| 2 |F] ¥ E e

|
[

A

Multicycle operation that spans at
least two clock cycles

I
iy

Clock cycle lines help you to
[; visualize the clock boundaries

I;I
1| II»

Ready [[[

In Figure 6-6 the expanded edge shows two multicycle operations
that span at least two clock cycles. Notice the clock cycle lines that
show the clock boundary.

To analyze detailed information about a constraint,

1. Select an edge.

2. Read the information in the Selection Inspector window.

Analyzing Designs With BCView
6-17

Figure 6-7 shows the Selection Inspector window after selection of
the first edge (above the multicycle operation) in Figure 6-6.

Figure 6-7 Selection Inspector Window With Edge Information

Data Miew Window Help

2 3 \ e |

INE auTE
————— Selected Object 1 0f 3 —=-—-—- . o
Object Mame: sprec_19 Description of why
Hierarchical Mameds): criult_hsfentryfsprec_19 / Operations ool

Ohject Class: edge .
Description: / be chained
The two operations cannot be chained.

Thiz can occur because either

- one of the operations is multicycled

—or there exists a timing path that includes
these operations but exceeds the clock cycle
delay

- ar you have specified a dont_chain_operations cammand
with the —from or —into option

Control dependency < Identification of
Igﬂrrn“u?a;g—'gﬁﬂ control dependency
—— = between operations
Ready Hist 1

The information in Figure 6-7 identifies the edge as having a control
dependency and describes possible reasons why the two operations
must be separated by a clock cycle. In this case, one of the operations
Is multicycled. The data_in_28 operation supplies an input to
mul_35_ 2. Because mul_35_2 is multicycled, its inputs must be
registered. This implies an inherent control dependency to prevent
the two operations from chaining. Therefore, data_in_28 must be
available one clock cycle before mul_35 2, so the data can be
registered. (For details about multicycle operations, see “Using
Multicycle Operations” on page 5-19.)

To review the related SystemC code,

1. Click the operation in the Selection Inspection window to select it.

Analyzing Designs With BCView

6-18

2. View the code in the Code Browser window.

After you select the multicycled operation in Figure 6-6, the Code
Browser window shows the information in Figure 6-8.

Analyzing Designs With BCView
6-19

Figure 6-8 Code Browser With Behavioral Code

Open file —— Find selected
Previous file Find text
Next file

Follow selected
(from other windows)

Push in a level of hierarchy

Pop out a level of hierarchy
Exit BCView

Text Indication: Multicycle Op Count MulCyc Opst
1 7/ cmult_hs. cc implementation file

include "systemc. h"

#
#include "cmult hs h"

void cmult_hs :: entry()
{

=0

sc_int<8r a, b, o, d, e; 0

FfInitialize and reset if reset asserts

ready_for datz. write(false);

output_data ready. write(false);

real out.write (0} ;

imaginary_ouk, write (0);

walt(); //need clock to initialize before while loo

oo oo

while (true)

1
ready for data. write(true);
output_data ready. write(false);

g s o e }

=0

ready for data. write(false);

#f Read four data walues from input port
= data_in. read(); I
walt(); n
haie gy Seresd® " Associated code of error in SEA
= data_in. read{);
walt();
d = data_in. read();
walt{);
FfCaleulate and write outpe ports
real out writefa *+ c - b * di;
imaginary_out. wrlte(a *d+h dj;
output_data_ready. write (true);
walt ()

2
3
4
5
3
T
8
q
10
11
12
13
14
15
16
17
15
19
20
21
2a walt_wntil {new_data. delayed() == true);
23
2
25
25
27
28
29
30
31
32
33
3
35
36
37
38
39

L

‘IE oo o o oo o O
‘|‘

Analyzing Designs With BCView
6-20

Fixing the Code and Rescheduling

Use a text editor to modify the source code. When you are finished,
reschedule the design.

To fix the code in Figure 6-8 on page 6-20, adding an additional wait
statement in the SystemC code between the b = data_in.read() and
real_out.write(a * ¢ - b * d) statements will solve the problem.

Evaluating the Architecture Generated by SystemC
Compiler

Use the FSM Viewer, Reservation Table, Code Browser, and
Selection Inspector windows to review the results of a successful
schedule. First review the FSM structure. You can then evaluate
information about how the design is scheduled and explore ways to
reduce latency and area.

When you view the design, focus on one type of information at a time
to avoid the confusion that can occur if you try to evaluate all of the
information for all operations at once.

Analyzing Designs With BCView
6-21

Reviewing FSM Operation

SystemC Compiler generates a Mealy FSM. In BCView, bubbles
represent states and arcs represent state transitions, as shown in
Figure 6-9. Actions that the synthesized design executes are
annotated on the state transition when they occur.

Figure 6-9 FSM Viewer With States and Transitions

FSM Viewer ; entry
| Data wiew ESM Window Help
' f (u] E 4@
ala||al Bl =] El]
A A A ? A A A A A
Zoom To Fit—— Show all
Zoom In 2X — Show selected
Zoom Out 2X — Next transition
Zoom By Box __| Next Branch
Condition/Action
Window
Follow Selection
State (flow through loops)
Transition

Analyzing Designs With BCView

6-22

Use the FSM Viewer window to review the Mealy machine by first
stepping through the FSM, then reviewing state transitions and
actions in detail.

Stepping Through the FSM

When you step through the state machine in the FSM Viewer window,
you view the cycle-by-cycle behavior of the design and can correlate
the transitions with the code highlighted in the Code Browser window.

To step through the FSM,

1.

Click an arc in the FSM Viewer window to select the transition
where you want to start.

Examine the highlighted code in the Code Browser window.

Press the Tab key or click the Next transition toolbar button to
advance to the next transition.

D{,ED
Review the highlighted code in the Code Browser window (Figure
6-8 on page 6-20).

As you traverse through the state machine, one or more lines are
highlighted in the Code Browser window because the transition
may execute operations in more than one line of code.

To choose an alternate transition from a state that has multiple
transitions, press Ctrl-Tab or click the Next branch toolbar button.

=]

-+
o o

Analyzing Designs With BCView
6-23

Reviewing State Transitions and Actions

Use the FSM Conditions/Actions window to analyze the details of the
condition when the transition occurs and the actions performed during
the transition.

To review state transitions and actions,

1. Inthe FSM Viewer window, click a transition to select it.
2. Do one of the following:

- Choose FSM > Conditions/Actions Window.

- Click the Conditions/Actions toolbar button.

The Conditions/Actions window is displayed, showing the conditions
for the selected transition to execute and the actions that occur. Figure
6-10 shows an example of a selected transition and the
corresponding Conditions/Actions window.

The information presented in the Conditions/Actions window is similar
to the information presented in the Abstract FSM report generated
by ther eport schedul e command. An example of this report and
information about it is available in “Schedule Report of the FSM” on
page 4-28.

Analyzing Designs With BCView

6-24

Figure 6-10 Selected Transition With Conditions and Actions

Data Yiew Q=

ConditionsfActions Window... w

Window Help

Blext Transition TaEB
Mext Branch Ctrl+TAB

=

Select Fanin i
Select Fanout

inor_reduction_ L45

{inor reductic

FEM Conditions/&ctions : entry 1 s_Z_6

Wiy Window Help

Transition:

=_3_ 6 —r =5 4_7

| conditions

| Actions

| walid_data_52; wariableld

] | morc_redoction_I45:zl2
IDlspIay the cclff +

Analyzing Designs With BCView

6-25

Evaluating the Scheduled Design

Use BCView to evaluate the area and latency of a scheduled design.
The Reservation Table window provides a graphical representation
of the design structure and resource usage, including timing and data
dependency information.

Understanding the Reservation Table Window

Using the Reservation Table window, you can analyze area,
resources, latencies, operator sharing, clock-cycle utilization,
chaining, combinational delays, paths in the design, registers, and
loops.

The Reservation Table Window is shown in Figure 6-11

Analyzing Designs With BCView

6-26

Figure 6-11 Reservation Table Window

% Resource

utilization W Input ports Outputports__ Logic operations

]

Reservation Table: entry

Select MWindow Help

2| /let|g|a|Rl w|e| v

v
Loops +EEmE-EmB B I-El-l-l-l-l-lwl-lx-l-ldl skl [+ Fanborlintim o o
* I
I &l <l Al o]

Clock L 9% of clock cycle used Status bar L_Data dependencies I Operations
cycle

Analyzing Designs With BCView
6-27

Table 6-2 briefly describes the symbols that appear in the Reservation

Table window.

Table 6-2 Reservation Table Symbols

Analyzing Designs With BCView

6-28

Symbol What it represents
Gray oval Operat_ion with zero delay, for example a port
operation.
Operation with a combinational delay, where the
Gray box height of the box is proportional to the delay.
Grav b Operation with combinational delay, where the
y bar .)
length of the bar is proportional to the delay.
Arrow Data dependency (fanin or fanout).
Arc User or inherent constraint.
Light blue Derived edge. See “Examining Paths” on page 6-38.
line
Light grey bar Percentage of clock cycle used for chain delay.

(in % column)

In the Reservation Table window in Figure 6-11, columns represent
resources, and rows represent the clock cycles. The objects in the
table represent operations and other actions that the synthesized
architecture performs. Each object is positioned in the column
representing the resource that executes itand in the row representing
the clock cycle inwhichitis executed. This Reservation Table displays
the Inverse Quantization design from the CoCentric SystemC
Compiler Behavioral Modeling Guide.

Information about individual objects is displayed in the status bar or
in pop-up Info Tips, as described in “Viewing Information About
Individual Objects” on page 6-16.

Use the Reservation Table toolbar buttons to perform the functions,
which are shown in Figure 6-12.

Analyzing Designs With BCView
6-29

Figure 6-12 Reservation Table Toolbar Buttons

Select Fanin
undo— Select Fanout
Redo Expand Selection
Reset View Design Summary i
v v i v v v
) : | :a
o R R| k| ¥ i
A A A A
Zoom To Fit
Show/hide resources Zoom In 2X
Zoom Out 2X
<+— Loop resources Zoom By Box
Zoom Selected

<— Port resources

<+— Memory resources

<+— Register resources

<— Single-cycle resources

<— Multicycle resources

<— Pipelined resources

<— Multiplex resources

<— Logic resources

<— Derived edges (data dependencies)

|7 | & [| | [[0 |09

Note: Click these icons to change the display by showing or hiding resources.

Analyzing Designs With BCView
6-30

Viewing Resources, Latencies, and Operation Sharing

Resources appear in the top row of the Reservation Table window.

Symbols in the column headers represent the different resources in
the design such as components, input ports, output ports, memories,
and logic operations. Use these columns to review resource utilization
and latency, and to identify shared resources.

Showing or Hiding Resources

You can hide information in the Reservation Table to concentrate on
particular data. To hide or display resources, do one of the following:

» Click the corresponding button in the vertical toolbar at the left
side of the Reservation Table window (Figure 6-12 on page 6-30).
Choosing a particular resource type causes that type of resource
to be shown or hidden in the Reservation Table.

 Choose View > Show/Hide Resources > Resource.

Resource is the type of resource you want to either hide or display
(for example, Loops).

Analyzing Designs With BCView
6-31

Resource Utilization

To review resource utilization, move the pointer over a column in the
first (%) row of the window. To improve the quality of results, look for
resources that are not fully used. The thickness of the bar, pointed to
by the arrow in Figure 6-13, is proportional to the resource usage. If
the usage is 100%, the box is filled.

The status bar displays the percentage of the total clock cycles in
which that resource is active, as shown in Figure 6-13.

Figure 6-13 Resource Ultilization in Reservation Table

Selected memory
resource

REeservation Table : entry

Data Miew Select Window Help
2] 3
') c‘ulmjl él?il@f i
@ % Loogps (el e e B e [B B+ B+ (B e (e i ol ol o il i+ + oo i it s cqu
— A
B |0
+a
1
g | 2
| °
— 1l 4
? 5
¥
— 7
% &
_'v 9
10
? 1 = =
— 12k | = e
I'\;\A 4| | »
Resource Utilization: 15% 4 |Register limits: (1, 448)

L Memory resource utilization

Analyzing Designs With BCView
6-32

Resource Delays

To determine resource delays, move the pointer across the resource
column headers. The name of each resource and its delay appear in
the status bar and Info Tips window as you move the pointer, as shown
in Figure 6-14.

Figure 6-14 Resource Delay in Reservation Table
Selected operator

Reservation Table : entry
Data View 5Select Window Help

r) * H :“"I
8] /€S| /|)| || v
% Loops [BHI+B+E-Br BB B BB B BB B BB--8-8-8-E-EgfE + |~ [oncoininni ququsass 2
5 I —
i soEE |+(Operation) Bit width: {(6_6-=6) Delay: 1.44

el |4 || B2] a%] 0] | 5

-
1] [~

+ (Dperation) Bit width: (6_6-=6) Delay: 1.44 |Register limits: (1, 448)

Analyzing Designs With BCView
6-33

Operation Delay

To view operation delay, observe the height of the rectangle
representing an operation. Figure 6-15 shows an enlarged section of
an add operation in the Reservation Table. The height represents the
operation’s delay.

Figure 6-15 Operation Delay in Reservation Table

=

il A <lal

L T R L R

T

M

-

- .4
B . [k :

- -..,w-.
]

b §

Then, click an operation and read the detailed information in the
Selection Inspector window, shown in Figure 6-16.

Figure 6-16 Operation Delay Detail in Selection Inspector

I Selection Inspector ..I

| Data View Window Help

FREW REHT:
SELECT | SELECT

————— Selected Object 1 of 1 ———--
Object Mame: +
Object Clazs: Operation:+
Description:
L0 _anddd
Bit wicth: {6_G-+6)
Delay: 1 4dins)
Area; 55400

Ll

Analyzing Designs With BCView
6-34

Shared Resources

To identify shared resources, select a resource by clicking on it, as
shown in Figure 6-17. The operations allocated to that resource and
the corresponding clock cycles become highlighted in blue. In this
example, the resource is used in clock cycles 0, 4, 5, 9, 12, and 13.
Multiple entries in the same column indicate a shared resource.

Figure 6-17 Shared Resources in Reservation Table

Selected output port resource

Reservation Table : entry

Data Wiew Select Window Help

o| || alelg|alal Bl v E]

% Lops DBBD-DBDBDDB DD B DDA G Akt + + o corine int i qu g ser 2]
SR

gl) L]

e || € <]| E] 2% 0]

-
q [

|Register limits: (1, 448)

Analyzing Designs With BCView
6-35

Viewing Clocks, Chaining, and Combinational Delay

The second column (%) of the Reservation Table window shows
clock-cycle utilization, as shown in Figure 6-18 on page 6-37. The
bars in a row (clock cycle) show the percentage of the clock cycle
used for the delay of either a chain of operations or a single,
unchained operation occurring in that specific clock cycle. Multicycle
operations do not appear in the clock utilization column.

Find chained operations in the clock utilization column and review
detailed information about the chains in the Selection Inspector
window.

To find chained operations,

» Do one of the following:
- Choose Select > Chained Operations.

The Reservation Table window highlights the chains in the
design.

- Select the horizontal bar that represents the delay of a chain in
the clock utilization column.

The corresponding operations and their resources become
highlighted, as shown in Figure 6-18.

Analyzing Designs With BCView

6-36

Figure 6-18 Operation Delays in Clock Cycles

Selected chained operation

Reservation Table ; entry -
Data Yiew Select Window Help
) x | i
o| || /|| R|R] v ¥ F
I@ 4 Loops ”I"DD””””DH““‘EH + o+ m‘ncormcintmiqu;
% T e
= 0 -
=N
1 = L=
&,
2l*| 3
4F —
I v = = Bl
5
Y1 ..
% ?E j- = = = - ’,.‘r.’-_lf-.“"—’:“"::-— T |
] = NS S dgpan ==
5 'I:(;) L s =
; g =5
? 10 Chain delay: end timesf{clock period - timing margin) = 15.94/420.00 - 1.16)' e
I% 11 . . i T
SR =i e 5
.13 Ry
TR |
4 o[
» Chain delay: end times{clock period - timing marginy = 15.94/(20.00 - 1.16) |Register limits: (1, 448)
Selected chained operation details

The Selection Inspector window displays detailed information about

the highlighted chains.

To locate and evaluate chain delay,

1. Enable Info Tips and the status bar (see “Viewing Information

About Individual Objects” on page 6-16).

2. Move the pointer over a delay bar.

Analyzing Designs With BCView
6-37

The status bar and Info Tips show the total delay. Figure 6-18 on
page 6-37 shows an example.

Examining Paths

The Reservation Table uses derived edges to show the existence of
a path between two operations or registers when you hide objects in
the path. Displaying derived edges helps manage complexity in the
Reservation Table window.

You can use derived edges to view the connectivity between objects
and to narrow your review to a specific path.

Understanding Derived Edges

Derived edges appear as blue lines connecting two objects in the
Reservation Table window. A derived edge appears when hidden
objects exist along the path between two objects. Figure 6-19 shows
an example of a derived edge.

Analyzing Designs With BCView

6-38

Figure 6-19 Derived Edge Example

Input | Adder | Register Input | Adder |Register

O~
\ When you hide this register,

the register disappears and
a blue derived edge
appears, which connects
the input and the adder

, \
]]

Actual Path Path With Hidden Register

Derived edges are enabled by default when you open the Reservation
Table window. They appear when you hide resources or operations.
You can expand a derived edge to see the operations and registers
it contains or hide a derived edge to further simplify the display.

To display the objects hidden by a derived edge,

» Do one of the following:
- Double-click the derived edge.

- Select the derived edge and click the Expand Derived Edge
toolbar button.

m

- Select the derived edge and choose View > Expand Selected.

Analyzing Designs With BCView
6-39

To hide all derived edges,

» Do one of the following:

- Click the Show/Hide Derived Edges toolbar button at the left
side of the window.

- Choose View > Show/Hide Dependencies > Derived

(expandable) Edges.

Viewing Connectivity

Use derived edges to view the connectivity between two objects, for
example, input-to-output paths.

To see input-to-output paths,

1. Use the toolbar buttons at the left side of the window to hide all
resources except I/0O ports.

2. Observe the derived edges that result. These edges indicate the
paths from input to output ports.

Viewing Isolated Paths or Objects

You can view individual paths or objects by either expanding the
appropriate derived edges or zooming to isolate them.

To view a specific path using derived edges,

1. Display the derived edges between the objects of interest.

2. Select the derived edge that represents the path you want to
examine and then expand it.

Analyzing Designs With BCView

6-40

To view a selected object or path by zooming,

1. Select the object or path you want to examine.
2. Do one of the following:

- Clickthe Zoom Selected toolbar button at the top of the window.

iy

- Choose View > Zoom Selected.

The Reservation Table window shows only the selected objects, so
you can concentrate on that specific set of objects.

To restore the previous contents of the window,

e Choose View > Undo.

To restore the initial contents of the window,

e Choose View > Reset.

Analyzing Designs With BCView
6-41

Reviewing Register Use

Viewing register allocation and sharing can help you determine
whether you can accomplish further area reduction.

The Reservation Table displays registers as rectangles spanning at
least one clock cycle, as shown in Figure 6-20.

Figure 6-20 Registers in the Reservation Table

Data Miew Select Window Help

ﬂﬂJ

?MMWMEWEEES

olrml @il@fld‘l@l@l

tocimqass ¥ & & F & I‘Hf!‘ffm!‘m!‘mﬂ_

-

Selected
register

]
R
e
o
]
A
]

e==—r

L

= o - o [= P
1

= ;.-5II!IIIII." | !. II

1133 (Register) Bit width: 1

|Renister limits: (1, 448)

— Registers

When you select a register, the clock cycles in which it is used are

highlighted. The register symbol appears at the top of each column
containing a register. The lower-right corner of the Reservation Table
window shows the bit-width range of the displayed registers. You can

limit the registers display by setting the bit-width range.

Analyzing Designs With BCView

6-42

To simplify the default view of the Reservation Table window, register
resources are hidden. To show registers, do one of the following:

* Choose View > Show/Hide Resources > Register.

» Click the Show/Hide Registers button in the toolbar.

i i

To choose the size of the registers displayed,

1. Choose Data > Register Bitwidth.

2. Inthe dialog box that appears, enter the values that represent the
upper and lower limits of the bit-widths you want to display.

3. Click OK.

When you select a register in the Reservation Table window, the
operation that produces the value stored in the register becomes
highlighted in the Code Browser window.

Analyzing Designs With BCView
6-43

Viewing Loops

Loops occupy a column on the left side of the Reservation Table
window. Figure 6-26 shows just that area of the Reservation Table
for the Inverse Quantization design from the CoCentric SystemC
Compiler Behavioral Modeling Guide. Each vertical box in the Loops
column represents a loop in the design. Boxes within boxes indicate
nested loops, so you can view the hierarchy of the loops in your
design.

Figure 6-21 Loops in the Reservation Table

FA Loops

Loop: entry_design
(main function, no exit)

<—— Loop: while at line 30
(infinite, no exit)

Loop: at line35, no label
Exit

Loop: main_loop_design

fl«—— Loop: at line 93
W« Exit

Exit

Loop: at line161, no label
Exit

Analyzing Designs With BCView
6-44

An exit from a loop appears as a horizontal red line spanning the
width of the loop box in the clock cycle where the exit is scheduled,
as shown in Figure 6-21 on page 6-44. A single loop can have multiple
exits, and the exits do not always occur at the end of a loop. For
example, in a SystemC design a break statement in the code causes
an exit from a loop.

Identifying Loop Names

Use Info Tips to identify the name of the loop represented by each
vertical box and to see information about the loop exits.

To use Info Tips,

1. Choose View > Display > Info Tips.

2. Move the pointer over a loop or exit to display summary
information about the object. Figure 6-22 shows an example of a
loop and a loop exit displayed by Info Tips.

Analyzing Designs With BCView
6-45

Figure 6-22 Loop Information Tips

% Loops |
. L
0
.|
Al T : =i
3
4
=0 : . .
. 4—{ Loop: main_loop_design
= I
g < (c9) Loop Exit: loop_30/main_loop/EXIT_L88

Viewing Loop Details

For more detailed information about a loop, such as the latency of
the loop, the number of states created for the loop, and the resources
used in the loop, use the Selection Inspector window.

To see detailed information about a loop,

» Click the box that represents the loop.

Detailed information appears in the Selection Inspector window.
Figure 6-23 shows the first section of detailed loop data for a
selected loop in Figure 6-22 on page 6-46.

Analyzing Designs With BCView

6-46

Figure 6-23 Loop Details in Selection Inspector

Data Miew Window Help

————— Selected Okject 1 of 1 ————-
Object Nare: Loop: main_loop_design =
Object Class: Loop

Description:

State Count for this loop: 5

Csteps: 5-10

Loop latency: 5

Fesource Summary:
Total Operator Area: 47269.00
carrector_calc 13

carrector_cale: 243,00
cuantiser {1

cuantiser: 8439.00
cuantisation {13

guantisation: 34463.00
saturation §1)

saturation: 908.00
+i2)

o401 _acdd: 554.00

401 _add: 652.00
inc 1)

D01 _ine: 375.00
mismatch §17)

mizmatch: 1571.00
Mernories £23

lsi_B_7: -

lsi_B_7: -

Total Datapath Register Area: 151916.00
445 -hit reqisters {1}

r165: 50973.00 ll
Ready Hist

To view information for all loops in a design,

Choose Select > Resources (Columns) > Loop.

The Code Browser, FSM Viewer, and Selection Inspector
windows display and highlight the code, states, state transitions,
and detailed information related to the design loops.

Analyzing Designs With BCView
6-47

Viewing Operations in a Loop
To find and review operations in a loop,

1. Select a loop by clicking the box that represents it.
2. Choose Select > Loop Operations.

All operations in the selected loop become highlighted in both the
Reservation Table window and the Code Browser window.

3. Choose View > Zoom Selected.

The Reservation Table window displays an isolated, zoomed-in
view of the selected loop operations, as shown in Figure 6-24.

4. To revert to the normal Reservation Table view, click the Reset
View button in the toolbar (see Figure 6-12 on page 6-30).

Figure 6-24 Loop Operations Zoomed View
]

Data Wiew Select Window Help

of &) aledlctlafa] =le]] &
i M + | + |corlincmislgualqualsat] 4|

i

0
I
§
§

|

|

oo) S ol = Lo Do O

=]
L)

[
=

I
[]
T

—
=

I»IL

Reqister limits: (1, 448)

-

[Zllele Flele]= &]av0
mll
0
(0
0
()
(
|] |

Analyzing Designs With BCView
6-48

Identifying Constraints and Data Dependencies

Dark lines between scheduled operations and registers in the
Reservation Table window show how operations depend on data from
previous operations or registers.

Arcs between operations in the Reservation Table window represent
constraints. They might be specified by a designer or inherent in the
code.

Viewing Data Dependencies

The fanin of an operation (an arrow going into an operation) indicates
the operation’s dependency on a previous operation. The fanout of
an operation (an arrow going out of an operation) indicates where the
operation’s output data is used.

To view fanins to an operation,

1. Click the operation you are interested in to select it.
2. Do one of the following:

- Click the fanin toolbar button at the top of the Reservation Table
window.

L:'EL'\

- Choose Select > Fanin.

To view fanouts from an operation,

1. Click an operation to select it.

2. Do one of the following:

Analyzing Designs With BCView
6-49

- Click the fanout toolbar button at the top of the Reservation
Table window.

[

wuv

- Choose Select > Fanout.

To view fanins to and fanouts from an operation,

1. Click an operation to select it.

2. Choose Select > Fanin/Fanout.

Viewing Constraints

By default, constraints do not appear in the Reservation Table
window. When they are displayed, a check mark appears next to the
type of constraints in the View menu.

To display and highlight user constraints,

» Choose View > Show/Hide Dependencies > User Constraints.

The Reservation Table window displays any user constraints.

To display and highlight inherent constraints, that is constraints
present in the code.

e Choose View > Show/Hide Dependencies > Inherent
Constraints.

The Reservation Table window displays any inherent constraints.

When you select (highlight) user and inherent constraints, additional
information about the highlighted constraint appears in the Selection
Inspector window.

Analyzing Designs With BCView

6-50

Exploring Architectural Improvements

This section describes how to use BCView to identify areas where

you can make architectural improvements to reduce latency or area.
For more information about improving timing and area results, see

Chapter 3, “Timing and Area Estimation.”

Reducing Latency

The following are methods you might use to reduce latency:

« Usethe-fastest optionwiththebc_ti nme_desi gn command.
 Remove multicycle operations.

* Increase chaining.

* Use pipelined components.

« Vary the clock period.

Use BCView to identify multicycle operations, chaining opportunities,
underutilized clock cycles, and to evaluate critical paths.

Identifying Multicycle Operations

Multicycle operations increase latency because they require an extra
clock cycle to register the inputs to keep them stable, and they cannot
be chained with other operations. Use BCView to identify multicycle
operations that you can eliminate to reduce latency.

To identify multicycle operations,

» Do one of the following:

Analyzing Designs With BCView
6-51

- Choose Select > Resources > Multicycle. All multicycle
operations become highlighted in the Reservation Table
window.

- Examine the lengths of the objects in the Reservation Table
window. Any object that spans more than one row (clock cycle)
Is a multicycle operator.

- Select an operation that is not a register, and check the
information in the Selection Inspector window. The Selection
Inspector window describes the multicycle operator.

When you select multicycle components, the Code Browser, FSM
Viewer, and Selection Inspector windows display and highlight the
code, state transitions, and detailed information specific to the
multicycle operations. By default, the Code Browser window displays
the source code corresponding to multicycle components in red.

Analyzing Designs With BCView

6-52

Identifying Chaining Opportunities

The maximum delay of an operation can be significantly shorter than
the clock period. When this is the case, several operations can be
scheduled in the same cycle. This scheduling optimization is called
operation chaining. For a description of operation chaining and
bit-level timing, see “Operation Chaining” on page 5-8."

Use BCView to identify opportunities to chain operations, which can
reduce latency.

To identify chaining opportunities,

1. Lookfordatadependencies (edges)that cross clock cycles (rows)
in the Reservation Table window. These might indicate chaining
opportunities.

2. Select an operation with a data dependency.

3. View the fanins and fanouts, as described in “Viewing Data
Dependencies” on page 6-49, to evaluate chaining opportunities.
For information about advance chaining techniques, see Chapter
8, “Advanced Techniques.”

Analyzing Designs With BCView
6-53

Viewing Clock-Cycle Utilization

The % column in the Reservation Table window is a histogram of the
delays. The bars represent the amount of delay for the chained or
unchained single-cycle operation in that clock cycle. Examine this
histogram to determine how a design utilizes the clock cycle. White
space on the right side of the column indicates that the clock cycle is
not fully used and can be shortened.

Figure 6-25 Clock Cycle Utilization

Clock cycle utilization is shown in the % column

w*

0
1
2
3
4
5
G
T
g
9

Analyzing Designs With BCView

6-54

Reducing Area

You can improve the area by increasing resource sharing. Use
BCView to examine resource sharing in the design and to review the
area detail in the design summary (described in “Viewing the Design
Summary” on page 6-61).

Two possible ways to increase resource sharing are to increase
latency or to use SystemC Compiler commands to force sharing.

Figure 6-26 shows an example of a design with little resource sharing
and the corresponding design summary. This design uses 10
multipliers and 11 adders, resulting in an area of 33,826.

Adding constraints to increase the latency of the example in Figure
6-26 increases resource sharing and reduces the area. Figure 6-27
shows the effect of stretching a loop from 6 cycles to 10 cycles using
the set _cycl es command (see “Constraining Loops and
Operations” on page 4-37). This reduces the area to 14,855 by using
only 3 multipliers and 3 adders.

Analyzing Designs With BCView
6-55

Figure 6-26 Little Resource Sharing

Data View Select Window Help

This design uses 10 multipliers and 11 adders

Reservation Table: reset_loop

ol |#]| a|KLRR| ¥]

7

O O

% Loops 3 lnraM«lq*********+++++++++++'

L

] [][d]E0 2% 0]

=
-

e |

[cE, * 8.38) main_loop/mul_152

|Register limits: (1, 16

PREW NERT,
SELEGT | SELECT,

————— Selected Object 1 of 1 -—---
Object Mame: Loop: reset_loop_design
Ohject Class: Loop

Description:

Carresponds to Process reset_loop
Clock Period: 12.50

Scheduled in Superstate Mode

SREA SUMMARY:

[E]

Total Estimated Area: 33G26.00
Estimated Combinational Area:; 30314.00 [39.62%)
- Datapath Area: 29191.00
{96..30% of combinational, §6.30% of total)
- Mux Area: 1123.00
{3.70% of comhinational, 3.32% of total)

Estimated Sequential Area; 3512.00 [10.36%]
- Cantrol Register Area: §5.00
(2.42% of sequential, 0.25% of total)
- Datapath Register Area; 2504.00
{71.30% of sequential, 7.40 % of total)

Analyzing Designs With BCView

6-56

| _ __ _-— Fort Begister Area: 92300 _ |

Total estimated area is 33826

Figure 6-27 Shared Resources

The design now uses 3 multipliers and 3 adders

Data View Select Window elp
o|-|@) aldlgal] wls| ¥ E .
[@] % Loops D D D--a-a-a |t + + [
|_ %o
% 0 oo ®
= 1 N —
T : N =R s S
& Eaemed
¥ 4 T a——
/(I ——
E 5 o —
S| 7 St
¥ 0= -
=10 T W
11} e =:-—=_--—'
| -
[c9, *, 8.38) main_loop/mul_152 Register limits; {1, 16)

FREW NEXT, Fy Fal
SELECT BEDEGT, INZ ouTs

Selected Object 1 of 1
Ohject Mame: Loap: reset_loop_design
Ohject Class: Loap

Description:

Carresponds to Process reset_loop
Clock Period: 12.50

Scheduled in Superstate hode

AREA SUMMARY:
Total Estimated Area: 14555.00

[E]

Total estimated area is 14855

Estimated Combinational &rea: 11147.00 [75.04%)]
- Datapath &rea: 9096.00
(@1.60% of combinational, B1.23% of total)
- Mux Area: 2051.00
(16.40% of combinational, 13.61% of total)

Estimated Sequential Area: 3708.00 [24.96%]
- Contral Register Area: 170.00
#.58% of sequential, 1.14% of total)
- Datapath Register Area: 2615.00
(F0.52% of sequential, 17.60 % of total)

Analyzing Designs With BCView
6-57

Figure 6-28 Shareable Resources That Are Not Shared

This design uses 2 multipliers and 3 adders

Reservation Table : main
Data View Select Window Help
) x o
o| &) aletlglalal la]] ™~
o —
|_@ % Loops BDB-DBD-D-D-€-@€4e€aeaad + + + =
% 1 1
|I+
@ |E| o O b O
| L =
=]
T °
T s, — - |
E2p —— g =
[-5 S N — e S R el Ty I —='
¥ s ——
L e e ~ | | | |
| 7 N
—1 8 B
ﬁi g @ O
I'% | O
1
+
=l =
|Register limits: (1, 18)
|
————— Selected Object 1 of 1 ——-—- :I'
Object Mame: Loop: main_design _|I
Object Class: Loop
Description:
Corresponds to Process main
Clock Period: 10.00
Scheduled in Superstate Mode
AREA SUMMARY: . .
Total Estimated Area: 3689.00 Total estimated area is 3689
Estimated Combinational Area: 2261.00 [61.29%]
- Datapath Area: 1657.00
(32.13% of combinational, 50.34% of total)
- Mux &rea: 404.00
(17.87% of comhinational, 10.95% of total)
Estimated Sequential Area; 1428.00 [38.71%]
- Caontral Register Area: 79.00
(9.93% of sequential, 2.14% of total)
- Datapath Register Area; 707.00
49.51% of sequential, 19.17 % of total)
- FPart Register Area: 642.00
(44.96% of sequential, 17.40% of total) :I
+

Ready

Hist z

Analyzing Designs With BCView
6-58

Figure 6-28 shows a case in which it appears that resources, like
adders and multipliers, can be shared but they are not. You can force
sharing using the set _common_r esour ce command (see “Setting
Common Resources” on page 4-55) with the - nax_count and
-force_shari ng options.

Figure 6-29 shows the design after forcing resource sharing using
the set _common_r esour ce command.

Analyzing Designs With BCView
6-59

Figure 6-29 Forced Resource Sharing

vation Table : main

The design now uses 1 multiplier and 1 adder

Data View Select Window Help
o||i]| alef]ala || v] T
E % Loops B»B-D-D-D-D-4-4-4-€-€-€-€-€-G4 " +, =
%] ——_—
[ii;[:q oo oo
| 1 e
— |
W 4 | e =
i 5 e e e S i e e S e H | =k
= 7 ~ e
—1 8 N
.jg_ g9 ‘=>‘..‘..gnp—f~——=~—4ﬁl
54110 =
11 _
| 5
Register limits: (1, 18]

FREW WERT Fa Fint
ZELECT | SELECT DESCRIF. INE ouTE

Selected Object 1 of 1
Ohject Mame: Loap: main_design
Ohject Class: Loop

Descriptian:

Corresponds to Process main
Clock Period: 10.00

Scheduled in Superstate Mode

ARES SUMMARY:
Total Estimated Area: 3146.00

L]

Total estimated area is 3146

Estimated Combinational Area: 1672.00 [53.15%]

€

- Datapath Area: 1066.00 <

<

(63.76% of combinational, 33.88% of total)

Operator area decreases with sharing.

- Mux Area: BOB.00

<

Estimated Sequential Area; 1474.00 [46.35%]
- izontrol Register Area: 79.00
(5.36% of sequential, 2.51% of total)
- Datapath Register Area: 753.00

- FPort Register Area: 642.00
(43.55% of sequential, 20.471% of total)

(36.24% of comhinational, 19.26% of total)

(91.09% of sequential, 23.94 % of total)

Multiplexer area increases with sharing

r

Ready

Hist 2

Analyzing Designs With BCView
6-60

Reviewing Critical Paths

Reviewing critical paths can help identify opportunities for reducing
latency or area.

To review a critical path,

1. Inthe Reservation Table window, click any resource, like an output
port or a register to select it.

2. Choose Select > Transitive Fanin.

All paths leading into that resource become highlighted in the
Reservation Table window.

Viewing the Design Summary

The design summary reports the area and resources, area
breakdowns, and clock period information. Review this information
to ensure your design criteria is achieved.

To display the design summary,

» Do one of the following in the Reservation Table window:

- Choose Data > Design Summary.

- Click the Design Summary toolbar button. ;;_E

Figure 6-30 shows the detailed information displayed in the Selection
Inspector window.

Analyzing Designs With BCView
6-61

Figure 6-30 Design Summary in Selection Inspector Window

Ohject Mame: Loop: entry_design
Ohject Class: Loop

Description:

Corresponds to Process entry

Clock FPeriod: 156.50

Timing kdargin: 1.16

Usable Portion of Clock Period: 17.34
Scheduled in Superstate MMode

L bl

ARES SUMMARY:
Total Estimated Area: 320331.00
Estimated Combinational Area: 132046.00 [41.22%]
- Datapath Area: 37320.00
(43.86% of combinational, 15.08% of total
- Mux Area: 74126.00
(96.143% of combinational, 23.14% of total)

Estimated Sequential Area: 185255.00 [56.75%)
- Control Register Area: 1934.00
(1.03% of sequential, 0.60% of total)
- Datapath Register &rea: 1835852.00
(37.63% of sequential, 57.33 % of total)
- Port Register Area: 2433.00
(1.33% of sequential, 0.76% of total)

State Count for this loop: 2
Csteps: 0-14
Loop latency: 14

Resource Summary:
Total Qperator Area: 57520.00
+(2)

D01 _add: 682.00

D01 _add: 584.00
corrector_calc (1)

corrector_calc: 243.00
saturation ()

saturation: 309.00

saturation: 9309.00
guantization (1)

fuantisation: 34463.00

intra muft (13 =
| Ready Hist 4 o

Analyzing Designs With BCView
6-62

UsingRegisterFilesand MemoriesforArrays

This chapter describes how to implement large arrays as register files
and memories to improve area, latency, and optimization time. It
describes how to use, constrain, and obtain reports for register files
and memories. It also describes how to generate a memory wrapper,
which provides the interface to describe the memory 1/0 and
sequential behavior of a vendor-provided memory for SystemC
Compiler.

This chapter contains the following sections:

» Comparing Array Implementations
« Mapping Arrays to Register Files
« Mapping Arrays to Memory

« Generating Memory Wrappers

Using Register Files and Memories for Arrays
7-1

Comparing Array Implementations

By default, SystemC Compiler generates registers for arrays and
logic for indexing into the arrays (including multidimensional arrays)
in the behavioral code, as shown in Figure 7-1. SystemC Compiler
generates dedicated indexing logic for each read from or write to an
array. This can result in increased area for the indexing logic.

Figure 7-1 Array Generation

Registers

indexing jﬁ |

logic -

—
Data E
—\

)
Address }
)

Address

\\//

>

T

| 7
L

You can improve the quality of result for designs with large arrays by
mapping an array to a register file or memory. If your design includes
large arrays (more than 1024 elements) that are not mapped to a
register file or memory, SystemC Compilerissues a warning because
large unmapped arrays can cause long runtimes during elaboration
and scheduling.

Using Register Files and Memories for Arrays

7-2

If you have large arrays (more than 1024 elements), we strongly
recommend mapping them to register files or memory. If you have
smaller arrays, compile the design without mapping the arrays. If you
do not achieve the results you want, map all or some of the arrays to
register files or to memory.

Comparing Arrays, Register Files, and Memories

It is generally more efficient to map arrays to memory than to register
files because a memory uses less area than the equivalent register
file. However, unless you have ready access to the appropriately
sized memory and all the models you need (a vendor library for
synthesis and a behavioral model for simulation), it is easier to map
arrays to register files.

Register files are similar to memories except that SystemC Compiler
builds the read and write ports and the register array on-the-fly. Figure
7-2 shows the architecture of a register file.

Figure 7-2 Register File Architecture

Data: Array write port Array master Data |Array read port
Address ‘Address D
e Do — |
Data |Array write port |] bata | Array read port
Address | — Address D

Using Register Files and Memories for Arrays
7-3

A memory (RAM) contains address decode logic that is transparent
to your design. Figure 7-3 illustrates a typical dual-port memory. A
memory is a single component that includes indexing and
multiplexing logic as well as memory cells.

Figure 7-3 Dual-Port Memory Operations

DI Di_,

AdO Adr_| Me

Wen | Cell Wen | Cell
R/W port 0 - .

Di

Di
Adr_| Mem| Do aqy
Wen | Cell Wen | Cell

|
|
|
| Address port 0 Di Di
|
|

3
W)
S

<
©
3
o
S

Adr_| Mem| DO agr | Mem|Do
Wen | Cell Wen | Cell

Write enable 0 Diq Di
r

5

Adr_| Mem| DO agr | Mem
’_ _________ Wen | Cell Wen | Cell

Di Di
Port 1 Adr_| Mem| DO aqr | Mem
Wen | Cell Wen | Cell

R/W port 1

=

|

o

Di Di
Adr_| Mem| DO agy | Mem | Dc
Wen | Cell Wen | Cell

Di Di
Adr_| Mem| DO aqy
Wen | Cell Wen | Cell

Di Di__
Adr_| Mem| DO aqr |
Wen | Cell Wen | Cell

B

Address port 1

<
©
3
w)
o

Write enable 1

<
)
3
w)
<]

Using Register Files and Memories for Arrays

7-4

Table 7-1 shows the primary differences between implementing
arrays as individual registers, register files, or memories.

Table 7-1 Comparing Arrays, Register Files, and Memories

Individual Registers

Register Files

Memories

Best for small arrays and
are created by default

Generates registers and
dedicated indexing logic
for each array access

Can cause long
elaboration and
optimization times

Does not extend design
latency

Best for designs that allow
substantial resource sharing

Generates shareable array
read and write ports rather
than dedicated indexing
logic

Require more area than
memories

May extend design latency if
delays through the
combinational address
decode logic of the
generated read and write
ports are significant. This
can happen with large
arrays.

More efficient and require less
area than individual registers or
register files

Eliminates all indexing logic for
array access. Access ports are
internal to the memory

Smallest area solution. Also
produces the fastest SystemC
Compiler runtimes

Extends design latency
because each memory access
requires one or more cycles to
complete

Using Register Files and Memories for Arrays

7-5

Array Implementation Recommendations

When you can choose the array implementation for a design, the
recommendations are:

1. Implementsmall arrays withindividual registers. Thisis the default
mode for SystemC Compiler.

2. Implement large arrays as memories.

3. If an appropriate memory cell is not available or the latency
constraints do not allow for the use of memories, use register files.

Mapping Arrays to Register Files

Mapping arrays to register files works best for designs that allow for
substantial resource sharing. This is because SystemC Compiler
generates array read and write operations for each array access.
These operations are allocated on shareable array read and write
port resources that SystemC Compiler synthesizes. Sharing the
register file read and write ports means that fewer copies of address
decode logic are necessary than if one dedicated copy was made for
each array access. This can happen if the array is not mapped to a
register file or memory.

Mapping All Arrays to Register Files

To map all arrays in your code to register files, set the
bc_use_registerfil es variable to true before using the
conpi | e_syst ent command.

dc_shell > bc_use registerfiles = true

dc_shel | > conpil e_systent design. cc

Using Register Files and Memories for Arrays
7-6

Mapping Specific Arrays to Register Files

To map specific arraysto register files, you needtousether esour ce
compiler directive with the map_to_regi sterfil es attribute in
your SystemC code to specify the arrays that are to be mapped to
register files.

Example 7-1 shows a section of code that uses the r esour ce
compiler directive and the map_to_regi sterfil es attribute to
map the real and imag arrays to two separate register files. In this
example, the resources RAM_A and RAM_B are arbitrary names, the
variable keyword defines the arrays that are mapped to the register
file, and the map_to_regi sterfil es variable is set to true to
indicate that the resource is a register file.

Example 7-1 Defining a Register File for a Specific Array

void fft::entry()

{
/| Define arrays to inplenent.
sc_int<16> real [16];
sc_int<16> i mag[16];

/* snps resource RAM A: variables = "real ",
map_to registerfil es="TRUE"; */
/* snps resource RAM B: variables = "img",

map_to registerfil es="TRUE"; */
}

For more information about mapping specific arrays to register files
and accessing them efficiently, see the CoCentric™ SystemC
Compiler Behavioral Modeling Guide.

Using Register Files and Memories for Arrays
7-7

Understanding the Effects of Mapping to Register Files

Minimize the number of array read and write operations just as you
would minimize memory accesses. For example, rather than reading
an array element twice, store the content of an array element in an
intermediate variable. For more information, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

If SystemC Compiler determines that two array writes can access the
same array element (the same location in the register file), SystemC
Compiler schedules them in different clock cycles to prevent access
conflicts that might corrupt data held in the register file.

Reporting Array Access Conflicts

After running the conpi | e_syst ent command on your design, use
the bc_report _arrays command to report the conflicting and
nonconflicting accesses to arrays mapped to register files. The
command is

dc_shel |l > bc_report _arrays

Example 7-2 on page 7-9 shows a typical report about conflicting and
nonconflicting array accesses. In this example,

» The fourth line in the conflicting accesses shows a conflicting
access, imag_read_180 2, imag_read_183 indicating that the
second read of array imag_read on line 180 conflicts with the first
read of array imag_read on line 183.

» There are no conflicting accesses across iterations of pipelined
loops.

Using Register Files and Memories for Arrays

7-8

» The second line in the non-conflicting accesses shows that the
imag_read on line 180 does not conflict with the image_read on
line 183.

* There are no nonconflicting accesses across iterations of
pipelined loops.

» The last four lines of the report indicate accesses that SystemC
Compiler cannot determine if they conflict or not. By default,
SystemC Compiler schedules these accesses in separate clock
cycles to avoid the possibility that they might conflict.

Example 7-2 Report of Array Conflicts

Conflicting accesses in process 'entry’

(
(
(
(
(
(
(i
(i
(i
(i
(i
(i
(i

(real read 179,
(real read 179,
(real _read 179 2,
(real _read 179 2,
(real _read 179 2,
(real _read 179 2,
(real _read 182,
(real _read 182 2,
(real _read 182 2,
(real _read_208,
(real _read_210,
(real read 210,
(real _wite 182,

are as foll ows:
mag_read_ 180,
mag_read_ 180,

i mag_read_183)
imag wite 186)

mag_read 180 2,
mag_read 180 2,
mag_read 180 2,
mag_read 180 2,
mag_read 183,
mag_read 183 2,
mag_read 183 2,

i mag_read_183)

i mag_read 183 2)
imag wite 183)
img wite_ 186)

img wite_ 186)

img wite 183)
img wite_ 186)

mag_read 209, imag wite 218)
mag read 211, imag _ wite 218)
mag_read 211, imag wite 220)
mag wite 183, imag wite 186)
real read _182)
real _wite 185)
real read 182)
real read 182 2)
real wite 182)
real _write_185)
real _write_185)
real _wite_ 182)
real _write_185)
real _wite 217)
real _wite 217)
real wite 219)
real _wite 185)

Using Register Files and Memories for Arrays
7-9

Conflicting accesses across iterations of pipelined | oops
i n process 'entry’ are not found.
Non_conflicting accesses in process 'entry’ are as foll ows:
(imag_read_ 180, imag_read_180_2)
(imag_read 180, imag_read 183 2)
(imag_read 180, imag wite 183)
(imag_read 183, imag_read 183 _2)
(imag_read 183, imag wite 183)
(imag_read 209, imag_read 211)
(imag_read 209, imag wite 220)
(imag wite 218, imag wite 220)
(real _read 179, real _read 179 2)
(real _read 179, real _read 182 2)
(real _read 179, real _wite 182)
(real _read 182, real _read 182 2)
(real _read 182, real wite 182)
(real _read 208, real read _210)
(real _read 208, real _wite_ _219)
(real _wite 217, real _wite_219)
Non_conflicting accesses across iterations of pipelined
| oops in process 'entry’ are not found.
Unable to resolve all accesses in process 'entry’.
The foll ow ng accesses nmay conflict:
I mg_read 254
real read 253

Allowing Multiple Accesses in the Same Cycle

In some cases, SystemC Compiler cannot automatically determine
whether two array accesses conflict or not, for example if the array
access indices come from input reads. In such cases, SystemC
Compiler schedules the two accesses in separate clock cycles by
setting a precedence constraint between the two. The two accesses
are scheduled in the order in which they appear in the behavioral
description.

Using Register Files and Memories for Arrays

7-10

If you know that no conflicts can occur and want to schedule the two
accesses in the same cycle, remove the precedence inserted by
SystemC Compiler with the i gnore_array_precedences
command orthei gnore_array_| oop_precedences command.
The commands are

dc_shell > ignore_array_precedences
-fromset from operations
-to_set to_operations

dc_shell > ignore_array_| oop_precedences
oper ati ons

Example 7-3 shows two array reads and two array writes. The indices
for the array reads are obtained from input ports of the design.
SystemC Compiler cannot determine if the two array writes access
the same location, and it schedules them in two separate clock cycles.

Example 7-3 Accesses That May or May Not Conflict
|l oopl : while (c < 45) {

i ndex1l = in_a.read();
I ndex2 = in_b.read();
i ndex3 = in_c.read();
i ndex4 = in_d.read();

a[indexl1l] = x; [// synopsys line_|abel WRL
a[index2] =vy; [/ synopsys line_|abel WR2
wait();

out f = a[index3]; // synopsys line_| abel RDl
c =c + 1,

X =X + 2;

y =y +Xx

wait () ;

If you are sure that the two accesses never conflict, you can inform
SystemC Compiler by using the i gnore_array_pr ecedences
command. For example,

Using Register Files and Memories for Arrays
7-11

dc_shel |l > ignore_array_precedences \
-from set
{ ny_process/Iloopl/ ARRAY WRITE RAM A VWRL } \
-to_set
{ ny_process/l oopl/ ARRAY WRITE RAM A W2 }

If you pipeline loop1 in Example 7-3 with a latency of 3 cycles and an
initiation interval of 1 cycle, the array read of the first iteration needs
to happen in the same clock cycle as the array writes of the second
iteration, as shown in Figure 7-4.

Figure 7-4 Multiple Accesses in the Same Cycle That May Conflict

Iteration 1 Iteration 2 Iteration 3
WR1 WR2
RD WR1 WR2
RD WR1 WR2
RD

SystemC Compiler cannot determine if the indices conflict, so it
prevents the accesses from being scheduled in the same cycle. This
prevents loopl from being pipelined with an initiation interval of 1
cycle.

To inform SystemC Compiler that the accesses do not conflict, enter

dc_shell > ignore_array_| oop_precedences \
-from set
{ ny_process/| oopl/ ARRAY WRITE RAM A RD1 }
-to_set
{ ny_process/Il oopl/ ARRAY WRI TE RAM A VRI1
ny_process/ | oopl/ ARRAY WRI TE RAM A VR2 }

Using Register Files and Memories for Arrays
7-12

This allows SystemC Compiler to pipeline loop1 with an initiation
interval of 1 clock cycle as shown in Figure 7-4.

Identifying Register File Operations

Forthe i gnore_array_ precedences and

I gnore_array_| oop_precedences commands -from set
and -t o_set arguments, you need to identify the register file
operations.

When you map an array to a register file, SystemC Compiler creates

three types of operations:

 An ARR_READ operation that represents each array read
operation

« An ARR_W\RI TE operation that represents each array write
operation

 AnARR_NMASTERoperation that represents the register file for the

array

Each write to or read from an array creates an instance of the
ARR_WRITE or ARR_READ cells, which are identified as
ARR_WRITE* or ARR_READ* where the asterisk represents a
unique instance number. Figure 7-2 on page 7-3 illustrates the
register file architecture with these operations.

Using Register Files and Memories for Arrays
7-13

Finding Array Operation Cells

For the i gnore_array_precedences and

I gnore_array_| oop_precedences command -from set and
-t 0_set arguments, you can use the f i nd command to locate the
cells to set the precedence. For example, to find the ARR_READ*
and ARR_WRITE?* cells and instruct SystemC Compiler to ignore
precedence between these cells, enter

dc_shell> opl = find (cell -h "*ARR READ*")

dc_shell> op2 = find (cell -h "*ARR WRI TE*")

dc_shell > ignore_array_precedences -fromset opl
-to_set op2

dc_shel | > schedul e

Note that the i gnore_array_precedence command is used
before the schedul e command.

Using Register Files and Memories for Arrays

7-14

Mapping Arrays to Memory

Mapping arrays to memory is more efficient than using register files
or registers. A memory is a single component that includes the
indexing and multiplexing logic as well as the memory cells (illustrated
in Figure 7-3 on page 7-4).

Preparing to Use Memories

To use a vendor or custom memory in a design, you need to prepare
interface files to incorporate the memory into your design. You need
to perform the following memory preparation steps only once:

1. From the memory vendor, obtain the following memory files:

- Avendor cell library (in .db format) that describes the boundary
(ports, their names, their types, and number of bits) and
electrical properties (capacitance and timing diagram
information)

- A Verilog (.v) or VHDL (.vhd) simulation model

If you do not have a vendor memory cell library, you can create
an exploratory memory wrapper, described in “Creating a
Memory Wrapper for an Exploratory Memory” on page 7-67.

Most memory vendors provide both a Synopsys .db file and a
Jibfile. If you have only the .lib file of the vendor memory library,
you can convertit to a .db format by using the Synopsys Library
Compiler tool.

Using Register Files and Memories for Arrays

7-15

2. Use the SystemC Compiler Memory Wrapper Generator

(described in “Generating Memory Wrappers” on page 7-34) to
generate the following additional files that are needed by SystemC
Compiler for synthesis based on the memory cell you have
chosen:

- ADesignWare synthetic library (.sl and .sldb) that describes the
sequential cycle-by-cycle behavior of the memory buses and
signals

- An HDL structural wrapper (.v or .vhd) interface that is used by
the conpi | e command to compile the wrapper to gates

. Add the synthetic library .sldb file generated by the Memory

Wrapper Generator to the synt heti c_Ii brary variable. For
example, for the memory r6_16_wrap_6x16, enter

dc_shell > synthetic_library = synthetic_ library +
ré6_16 wap_6x16. sl db

. Addthe synthetic library .sldb file created by the Memory Wrapper

Generator and the vendor memory library .db file (if you have one)
tothel i nk_Ii brary variable. For example, to add the
r6_16_wrap_6x16.sldb synthetic file and the r6_16.db vendor
memory library, enter

dc_shell> link _library =1lin
{r6 16 wap 6x16.sldb, r6_16

. When you create the wrapper files with the Memory Wrapper

Generator, if you set the Design Library field of the Wrapper
Properties dialog box, described in “Defining the Memory Wrapper
Properties” on page 7-52, to something other than the WORK
directory, you need to define the design library with the

defi ne_desi gn_I i b command.

Using Register Files and Memories for Arrays

7-16

For example, enter

dc_shel |l > define_design lib ny _design I|ibrary
-path /export/design Iibraries/ny_design_library

where my_design_library is the name of your design library and
/export/design_libraries/my_design_library is the name of a
directory on a hard drive that will hold the library.

6. Use the anal yze command to analyze the memory wrapper
Verilog .v or VHDL .vhd source file in your design library. The
anal yze command executes quickly, so you can use it in your
dc_shell command script without a performance penalty. Enter

dc_shell > analyze -f verilog r6 16 wap_6x16.v

If your design library is something other than WORK, you need to
specify the - I i br ar y option with the anal yze command. Enter

dc_shell> -library ny _design_|library
anal yze -f verilog r6_16 wap 6x16.v

Now you are ready to use the memory. Elaborate the SystemC file
with the conpi | e_syst ent command and proceed with the rest of
the SystemC Compiler flow.

Using Memory in Your Design

To use memory in your design, declare an array of variables and use
ther esour ce compiler directive with the map_t o_nodul e attribute
in your code. Example 7-4 shows a local memory declaration, where
the resources RAM_A and RAM_B are arbitrary names, the variable
keyword defines the array variables mapped to the memory, and
map_t o_nodul e definesthe memorywrapperr6_16 wrap_6x16 for
the memory that you created with Memory Wrapper Generator.

Using Register Files and Memories for Arrays
7-17

Example 7-4 Declaring a Local Memory Resource

void fft::entry() {
/1 Define menories to inplenent.
sc_int<16> real [16];
sc_int<16> i mag[16];
/* snps resource RAM A: variables ="real", map_to_nmodule ="r6_16_w ap_6x16"; */
/* snps resource RAM B: variables ="inmag", map_to_nmodule ="r6_16_w ap_6x16"; */

(For details about declaring local and shared arrays, resource
selection, and accessing memory arrays, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.)

Now, you are ready to proceed with the next steps in the SystemC
flow. Usethe conpi | e_syst ent and other commands to synthesize

your design.

Getting Memory and Library Information

To locate memory models in libraries and obtain information about
the memories, use one or more of the following commands.

Using the list Command

To display and check the current definition ofthet arget _|i brary,
link _I'ibrary,search_path,synthetic_|ibrary,andother
variables, use the | i st command. For example,

dc_shell> list synthetic |library

SystemC Compiler displays the current synthetic libraries, for
example

synthetic |ibrary = {"dw0l. sl db" "r6_16 wap_ 6x16. sl db"}

Using Register Files and Memories for Arrays

7-18

Using the report_synlib Command

To report the contents of the synthetic library, use the
report_synli b command. Enter

dc_shell > report _synlib library [{nodul e |ist}]

The synthetic library report displays:

« Alist of all operations and their pins

« Alist of all modules with their pins, parameters, attributes,
implementations, and bindings

* Alist of all external implementations and external bindings
« Alist of DesignWare subblocks declared in the library

The specified library must be already loaded into SystemC Compiler
or be in the sear ch_pat h definition.

By default, all modules are reported, or you can specify a list of
modules to report.

Figure 7-5 shows a typical report of a synthetic library for a memory
wrapper. For more information about this report, see the DesignWare
documentation

Example 7-5 Report of Synthetic Memory Wrapper

EIE R R I I S R R R R R R R I R O I

Report : library
Library: r6_16 wap_6x16. sl db
Ver si on: 2000. 05

Dat e . Fri Sep 29 10:25:00 2000

Li brary Type . Synthetic

Tool Created : 2000. 05

Date Created : August 01, 2000
Li brary Version . Not Specified

Using Register Files and Memories for Arrays
7-19

Synt heti ¢ Modul es:

Modul e
ré_16_w ap design_library: WORK
cl ocki ng_schene: positive_edge
resource: SO _pO0 (count=1)
resource: S1 _p0 (count=1)
Modul e Pins:
Attributes:

c - clock_pin
Default Stall Pin

Modul e Pi ns Dir Wdth Val ue Pin Attributes
ré_16_wap dia in 16

aadr in 6

doa out 16

wea in 1

oea in 1

cl ka in 1 c

Modul e | npl enent ati ons:
Attri but es/ Paranet ers:
v - verify_only
V - verification inplenentation
u - dont _use
r - regular_licenses
| - limted_ |licenses
d - design_library
S - priority set id
p
I

- priority
eg - |egal
Modul e | mpl enent ati ons Attributes/Paraneters
ré_16_wap wr ap

Modul e Bi ndi ngs:

Modul e Bi ndi ng
ré_16_wap read_port0O bound _operator: MEM READ SEQ OP
State: O

Pin Associations (nodul e, oper):

Using Register Files and Memories for Arrays
7-20

aadr, ADDR
wea, " 0"
cl ka, CLK
use_resource: SO0_pO
Unbound oper pin 'CLK is bound to "1"

State: 1
Pin Associations (nodul e, oper):
doa, Q
cl ka, CLK

use_resource: Sl _pO
Unbound oper pin 'CLK is bound to "1"

wite port0O bound operator:
MEM WRI TE_SEQ OP

State: O
Pin Associations (nodul e, oper):
aadr, ADDR
dia, D
wea, " 1"
cl ka, CLK

use_resource: SO0_pO
Unbound oper pin 'CLK is bound to "1"

Using Register Files and Memories for Arrays
7-21

Using the bc_report_memories Command

To report specific information about the memories in the available
synthetic libraries, use the bc_r eport _nmenori es command. Enter

dc_shell > bc_report_nenories -synthetic_libraries

The -synt hetic_| i brari es option displays information about
memories available in the synthetic libraries declared by the
synthetic_|i brary variable.

Figure 7-6 shows a report of a memory wrapper synthetic library. This
report shows a memory (actually a memory wrapper) named
r6_16_wrap in the current synthetic libraries.

It has one read-write port that is accessed through an address port
named aadr. The memory read is a pipelined access that has a
latency of 2 cycles with an initiation interval of 1 cycle. The memory
write is a 1 cycle non-pipelined operation. The clock controlling this
synchronous memory is named clka.

Example 7-6 Report of a Synthetic Library

Menory nodul es available in synthetic libraries

| Port 1 RW | aadr | 2-state, 1-cyc
| access, pipe

| 1-state, 1l-cyc | cl ka |
| access, nonpipe | |

Using Register Files and Memories for Arrays

7-22

To report specific information about the memories instantiated within
an elaborated behavioral design, use the bc_report_nenori es
command with the - used_nenor i es option after executing the
conpi | e_syst ent command. Enter

dc_shel |l > conpil e_systent fft_nem cc

dc_shell > bc_report_menories -used_nenories

Figure 7-7 shows a report of memories used in an FFT design. This
report shows two memories, RAM_A and RAM_B, of type
r6_16_wrap instantiated in the design. Both memories have address
ranges 0 to 15 and a data width of 16 bits. The read-write port
accessed through address bus aadr is used in both memories. The
behavioral process entry performs read and write accesses to both
memories.

Example 7-7 Report of Memories Used in a Design

Mermory instances used in design

| ré_16_wap / RAMB [| Process [
| [0 - 15] X 16 | Address | entry [
| Port 1 R'wW [aadr | R W [
| ré_16_wap / RAMA [| Process [
| [0 - 15] X 16 | Address | entry [
| Port 1 R'wW [aadr | R W [

Using Register Files and Memories for Arrays
7-23

Using Asynchronous Memories

SystemC Compiler only uses memories with synchronous interfaces.
This means there must be at least one register in the path from the
inputs of the memory to the outputs. When you have an asynchronous
memory, this is not the case. Because SystemC Compiler interfaces
with the memory wrapper that you place around the memory rather
than the actual memory, you can insert registers between the inputs
of the memory wrapper and the inputs of the memory.

The Memory Wrapper Generator can be used to automatically insert
registers inthe wrapper, if you define the memory to be asynchronous
(see “Defining the Memory Type and Properties” on page 7-40).
Figure 7-5 illustrates the input register placement and wrapper
interface the Memory Wrapper Generator tool generates for an
asynchronous memory.

Figure 7-5 Asynchronous Memory With Registered Input

Memory wrapper

\
\
A h |
5 synchronous
Inputs of @ » vendor =# Outputs of
wrapper | ol memory wrapper
LK |
| \
| \
Lo - - - _

You can also insert registers on the outputs of an asynchronous
memory using the Memory Wrapper Generator tool (see “Adding
Registers to the Memory Wrapper” on page 7-58). Figure 7-6
illustrates a wrapper around an asynchronous memory with registers
inserted on both the input and output.

Using Register Files and Memories for Arrays

7-24

Figure 7-6 Manually Adding Registers to an Asynchronous Memory

Memory wrapper

\
o Asynchronous =
]
Inputs of *—» @ » vendor N —»# Outputs of
wrapper > > wrapper
| - 2 memory -8 |
\ \
| |
Lo - - - - . . . _

Allowing for Vendor Memory Timing

If you are using a synchronous vendor memory, it is possible that the
memory has logic between its I/O ports and its internal registers, as
shown in Figure 7-7. The delay specifications for this logic are typically
provided in the timing diagrams of the memory vendor’s datasheet.

Figure 7-7 Memory Access Time Specification

Memory wrapper

\ \
| Synchronous vendor memory |
\ \
Inputs of | | Outputs of
_ .. utputs o
| — e m —» < —p — >
wrapper u wrapper
| > > |
\ \
<+« ~ D —
‘ ’ / K ‘
Lo S N _/i _________ 4
Registers
input logic vendor memory output logic
internal to internal to
the vendor the vendor
memory memory

Using Register Files and Memories for Arrays
7-25

You need to provide the input and output delay specifications to
SystemC Compiler, so it can reserve time in the clock cycle to allow
for computation of this logic. Use the set _nenory_i nput _del ay
and set _nenory_out put _del ay commandsto specify the vendor
memory input delay and output delay. SystemC Compiler uses these
delays when computing the values for the address, data, and control
lines leading into the memory, and to ensure that the values arrive at
the ports of the memory at the appropriate time.

Setting Memory Input Delay for Vendor Memory Timing

To set the input delay on a memory according to the vendor timing
specification, use the set _nenory_i nput _del ay command.

dc_shell > set _nenory_i nput _del ay [del ay_val ue]
[-external ext_del ay val ue] [-nanme nem nane]

The delay value specifies the input delay, which must be a positive
number in the units of the technology library.

The - ext er nal option specifies the external input delay, which must
be a positive number in the units of the technology library. The
external input delay is applicable if the vendor memory is positioned
external to the design. You can move a memory out of the design by
executing the ext er nal i ze_cel | command (see “Externalize a
Cell” on page 8-8). The external input delay accounts for a delay that
occurs to transfer the input signal to the external memory. For
example, this might account for the delay through an I/O pad taking
the signal off-chip.

Using Register Files and Memories for Arrays

7-26

The - nane option specifies the resource for one or more memories
to which this command applies. The default is to apply the command
to all memories in the current design. If you are specifying more than
one memory name, enclose the list of names in double-quotes or
braces.

Example 7-8 shows an example of the r esour ce directive in the
behavioral description that specifies the memory and the

set _nmenory_i nput _del ay command to set the internal input
delay to 3.5 and the external input delay to 3.

Example 7-8 Set Memory Input Delay

/* snps resource RAM A: variables = "real ",
map_to _nodule = "r6_16_wap"; */

dc_shell > set _nenory_input _delay -nane RAM A 3.5 -ext 3

Setting Memory Output Delay for the Vendor Timing
Specifications

To set the output delay of a memory according to the vendor timing
specification, usetheset _nenory_out put _del ay command. The
set _menory_out put _del ay command allows you to specify a

delay due to logic on the outputs of a memory. You can also use this
command to specify an additional delay to access an external, off-chip

memory.
dc_shel | > set _nmenory_out put _del ay [del ay_val ue] [-external
ext _del ay val ue] [-name nem nane]

The delay value specifies the output delay, which is the output delay
of the memory. The delay value must be a positive number in the
units of the technology library.

Using Register Files and Memories for Arrays
7-27

The - ext er nal option specifies the external output delay. The
external output delay is the delay caused by positioning the memory
external to the design. You can move a memory out of the design by
executing the ext ernal i ze_cel | command (see “Externalize a
Cell” on page 8-8). The external delay can represent delay elements
such as I/O pad and off-chip delays.

SystemC Compiler reserves time in the clock cycle for the total of the
internal and external memory delays, and it only schedules
operations that use the output data of the memory that can fit in the
remainder of the clock cycle.

The - nane option specifies one or more memories to which this
command applies. The default is to apply the command to all
memories in the current design. If you are specifying more than one
memory name, enclose the list of names in double-quotes or braces.

Constraining Read and Write Operations on Memory

The number of memory read or write operations that can access the
same memory simultaneously depends on the type of memory and
the number of ports it has.

» Single port memories perform only one read or write in each clock
cycle.

* Multiple port memories can perform several memory read and
write operations at the same time, depending on the configuration
of the ports, such as read ports, write ports, and read/write ports.

« Memoriesthatallow pipelined accesses can overlap memory read
and write operations, where a second memory access can be
initiated before the first memory access is completed.

Using Register Files and Memories for Arrays

7-28

The number of cycles required for a sequence of memory read or
write operations depends on the type of memories and the access
patterns on the memories. Typical memories perform a read in two
clock cycles and a write in one clock cycle.

SystemC Compiler automatically pipelines memory accesses if the
memory allows it. Figure 7-8 illustrates pipelined memory accesses,
where two reads happen in three cycles and two writes happen in
two cycles. Notice the pipelining where the second read begins in the
same cycle as the second stage of the first read.

Figure 7-8 Pipelined Memory Accesses

write
Cycle 1 | adr0

write
Cycle 2 | adr1|| read

adr O

Cycle 3 read

adr 1

Cycle 4

Reporting Conflicting Memory Accesses

If the memory being used has multiple ports and allows for multiple
simultaneous memory accesses, SystemC Compiler can schedule
several memory accesses in the same cycle. However, it will not
schedule two memory accesses to the same memory location in the
same cycle. SystemC Compiler tries to determine if two memory
accesses can conflict, that is access the same memory location. If
they never conflict, SystemC Compiler allows them to be scheduled
in the same cycle.

Using Register Files and Memories for Arrays
7-29

To generate a report about which memory accesses conflict and
which do not conflict, usethebc_r eport _nenori es command with
the-conflictingor-non_conflictingoptions. For example,
to list the nonconflicting pairs, enter

dc_shell > bc_report_nenories -non_conflicting

Example 7-9 shows a typical memory report of nonconflicting
accesses.

Example 7-9 Report Nonconflicting Memory Accesses

Non_conflicting accesses in process 'entry’ are as follows:

(imag_read_180, inmag read 180_2)
(imag_read_180, inmag read 183 2)
(inmag_read_180, inmag wite_ 183)
(inmag_read_183, inmmg read 183 2)
(inmag_read_183, inmag wite 183)
(imag_read_209, imag_read_211)

(imag_read_209, inmag wite_ 220)
(imag_wite 218, imag_wite_ 220)
(real _read_179, real _read 179 2)
(real _read_179, real read 182 2)
(real _read_179, real _wite_182)
(real read_182, real read 182 2)
(real _read_ 182, real _wite_182)
(real read_208, real read_210)

(real _read_208, real _wite_ 219)
(real _wite 217, real _wite_ _219)

Non_conflicting accesses across iterations of pipelined | oops
in process 'entry’ are not found.

Unable to resolve all accesses in process 'entry’

The followi ng accesses may conflict:

i mag_read_254
real _read 253

Using Register Files and Memories for Arrays

7-30

Using the ignore_memory precedences Command

If SystemC Compiler determines that two memory accesses can
conflict (access the same memory location), it sets a precedence
constraint so that they do not execute in the same clock cycle. It also
ensures that they execute in the order in which they appear in the
behavioral description.

In certain situations, SystemC Compiler cannot make a static
determination about whether two memory accesses conflict. This can
happen when the index expressions for the memory accesses
depend on runtime information such as the value on input ports of
the design. In these situations, SystemC Compiler considers it
possible for these memory accesses to access the same locations
atthe same time, and itinserts precedence constraints as if they were
conflicting accesses.

If you are sure that the accesses do not conflict, use the

I gnore_nenory_precedences command so SystemC Compiler
is allowed to schedule the two accesses in the same clock cycle. This
results in a smaller latency for the design. Enter

dc_shel |l >ignore_nenory_precedences [- process process_nane]
-fromset fromoperations -to_set to _operations

The - pr ocess option applies this command to only the process
process _name. If this option is not specified, this command applies
to all behavioral processes.

The -from set and -t o_set options remove all precedence
constraints inserted from memory accesses in the
from operations settothoseintheto_operations.

Using Register Files and Memories for Arrays
7-31

For example, to remove precedence conflicts between memory
accesses to arrays, read and imag, enter

dc_shell> opl = find (cell -h "*read read*")

dc_shell> op2 = find (cell -h "*imag_read*")

dc_shel Il > ignore_nenory_ precedences -fromset opl
-to_set op2

dc_shel | > schedul e

Note that the i gnore_nenory_precendences command is used
before the schedul e command.

Using the ignore_memory _loop_precedences
Command

When a loop containing memory accesses is pipelined, it is possible
that memory writes in one loop iteration introduce dependencies with
memory reads in subsequent iterations, as illustrated in Figure 7-9.

Figure 7-9 Invalid Schedule With Loop Carry Dependency
Behavioral description Iteration 1 Iteration 2 Iteration 3
i =0; x = mem[0]
square_loop : while (i < 100) {
x = menfi]; a = X*x; X =mem|[1]
a=Xx* x;
b =2* x; b = 2*x; = X*X; X =mem|[2]
c=a+b+1;
menfi+1] = c; c=a+b+1; b = 2*x; a/gx*x;
i ++;
mem[l]:/é c=a+b+1; b = 2*x;
i#F em[2]:)z;/ c=a+b+1;
'7’ mem|[3] =c;
i++;

Loop carry dependencies

Using Register Files and Memories for Arrays

7-32

SystemC Compiler automatically inserts loop-carry dependencies to
prevent these violations. If your design has pipelined loops, the
reports generated by the bc_r eport _nenor i es command with the
-conflicting and-non_conflicting options has a section
that lists pairs of memory accesses that are determined to conflict (or
not conflict) across iterations of the pipelined loop.

If SystemC Compiler determines that a pair of memory accesses
across loop iterations can access the same memory location, or if it
cannot determine that they do not access the same memory location,
then SystemC Compiler automatically inserts a precedence
constraint to ensure that the loop-carry dependency is not violated.

If you are sure that the two accesses never access the same location,
usethei gnore _nenory | oop_precedences command to direct
SystemC Compiler to remove the precedence constraint.

dc_shel | > ignore_nenory_ | oop_precedences
[- process process _nane] {operations}

The operations option defines the memory access operations that
you allow SystemC Compiler to assume do not conflict across
iterations of the pipelined loop that contains them. For example,

dc_shell> opl = find (cell -h "*read read*")

dc_shell> op2 = find (cell -h "*img_read*")

dc_shel Il > ignore_nenory_| oop_precedences { opl, op2 }
dc_shel | > schedul e

Note thatthei gnore_nenory | oop_pr ecendences commandis
used before the schedul e command.

Using Register Files and Memories for Arrays
7-33

Generating Memory Wrappers

This section describes how to generate memory wrappers using the
Memory Wrapper Generator graphical user interface (GUI) tool
included with SystemC Compiler.

Understanding the Memory Wrapper Generator Tool

SystemC Compiler requires that the memories used in the design be
described as synthetic DesignWare components. Most memory
vendors do not provide memories as synthetic DesignWare
components, therefore the Memory Wrapper Generator tool is
provided with SystemC Compiler to encapsulate vendor memories
as DesignWare components. This tool generates a memory wrapper
(in Verilog or VHDL format) and a synthetic library description

(in the Synopsys .sldb format) for use with SystemC Compiler.

SystemC Compiler uses the Verilog/VHDL wrapper file to instantiate
the memory in the design during elaboration and the .sldb file to
determine the characteristics of the memory.

The Memory Wrapper Generator tool also enables you to insert
custom logic in the memory wrapper, if it is required to interface with
the memory.

You can use the Memory Wrapper Generator tool in two ways:

* Toencapsulate an existing memory model from a memory vendor,
described in “Creating a Memory Wrapper for a Vendor Memory”
on page 7-39.

Using Register Files and Memories for Arrays

7-34

» To create an exploratory memory interface to experiment with
different memory architectures that you might want to use,
described in “Creating a Memory Wrapper for an Exploratory
Memory” on page 7-67.

Using the Memory Wrapper Generator Tool

Startthe Memory Wrapper Generator tool from a directory where you
have write permission. You will need to save your memory wrapper
files in this directory.

For example, to change to the directory my _desi gn and start the
Memory Wrapper Generator tool,

» Enter the following at the UNIX prompt:

uni X% cd ny_desi gn
uni x% memw ap &

When the Memory Wrapper Generator window is initially displayed it
Is empty, as shown in Figure 7-10.

Note:

If the Memory Wrapper Generator window does not display, see
“Starting the Memory Wrapper Tool” on page A-14.”

Using Register Files and Memories for Arrays
7-35

Figure 7-10 Empty Memory Wrapper Window

Memory Wrapper — Wrapper

Fle Edit

!_l_lj Z| »|aw 2|

Figure 7-11 shows an example of the Memory Wrapper window after
a wrapper is created.

Using Register Files and Memories for Arrays
7-36

Figure 7-11 Completed Memory Wrapper

Insert logic

New file

Input register

Open file

Save file
Properties edit

EET T

Schematic
area

Waveform
area

Memory

operation T e - Pt |

selection

Control pins list for

Output register
Open help

- Memor

selected memory operation

Using Register Files and Memories for Arrays
7-37

The three display areas in the Memory Wrapper window show the
following information after you create a wrapper:
Schematic Area

The top display area shows a schematic of the memory wrapper.
Waveform Area

The lower-left display area shows the waveforms for each of the
memory operations of the memory wrapper.

Control Pins List

The lower-right display area shows the control pins list with items
like a chip enable or write enable that are associated with a
wrapper memory operation you select in the Waveform Area.

Logical Port

The Memory Wrapper Generator groups vendor memory pins into
physical ports and connects them to logical ports in the memory
wrapper. Logical ports refer to ports in the memory wrapper, and
pins and physical ports refer to the vendor memory.

One memory wrapper logical port includes the address bus, data
bus, and control signals to access one physical port of the vendor
memory.

Using Register Files and Memories for Arrays

7-38

Creating a Memory Wrapper for a Vendor Memory

The Memory Wrapper Generator saves the current memory wrapper
specificationina.wrapfile. Thisfile encapsulates all of the information
necessary to generate the synthetic library file (.sldb) and the HDL
wrapper file needed by SystemC Compiler. You can read in and
modify a .wrap file that was previously created using the Memory
Wrapper Generator.

The general steps for creating a memory wrapper for an existing
vendor memory are

1. Define the type and properties of the memory.

2. Assign vendor memory pins to the logical ports of the memory
wrapper.

3. Define properties of the wrapper and add control pins to the
wrapper, if necessary.

4. Edit the wrapper by adding or deleting logic or registers and
specifying the waveforms.

5. Save the wrapper files.

Using Register Files and Memories for Arrays
7-39

Defining the Memory Type and Properties

To define the type and properties of the memory,

1. Choose File > New in the Memory Wrapper window.

(To open a previously saved .wrap file, choose File > Open.)
The Memory Selection dialog box is displayed (Figure 7-12).
Figure 7-12 Memory Selection Dialog Box

—

—

—

Using Register Files and Memories for Arrays
7-40

2. Click Vendor Memory.

The Memory Selection from a DB File dialog box (Figure 7-13) is
displayed.

Figure 7-13 Memory Selection from a DB File Dialog Box

Memory Selection from a DE File _I

Current DB file:

|fremcutefdtg32Elfcj|:|hnsnnfmemguiframsfsync_ra Browse...

Selected Library Mame

Isync_rams IH
aelect aor specify a memary model
IrameEZ IH

Cancel

a. Enter a .db file name in the Current DB File text field, or click
on Browse to select a .db file.

b. Check that the correct vendor library is selected in the Selected
Library Names field.

c. Enter or select a memory model name from the vendor library.
For example, the ram8x32 memory model is selected in Figure
7-13 from the sync_rams vendor library.

d. Click OK.

The Memory Definition dialog box (Figure 7-14) is displayed for
the selected vendor memory. To list the contents of a library and
other related commands, see “Getting Memory and Library
Information” on page 7-18.

Using Register Files and Memories for Arrays
7-41

Figure 7-14 Memory Definition Dialog Box

Memory Definition

Memory
wrapper
definition

Vendor ——
memory
description

Using Register Files and Memories for Arrays
7-42

3. The memory model name you selected from the vendor library is
displayed in the Memory Name field.

a.

Select the Synchronous type if the vendor memory has a clock.
Otherwise, select Asynchronous. (See “Using Asynchronous
Memories” on page 7-24.)

. Enter or choose the number of clock cycles for the memory read

and write latency. Memory latency depends on the type of
memory, and you can obtain it from the memory vendor
datasheet. For synchronous memories, enter the number of
clock cycles the vendor memory model requires to complete
one read and one write operation.

. In the Logical Ports section, enter the number of logical ports

in the memory wrapper for each of following types:

Read-Write ports A read-write portis a logical port that you can

use to perform either a memory read or a
memory write, but not both at the same time.
The physical ports associated with a
read-write logical portare typically an address
bus, a data in bus (for the memory write), a
data out bus (for the memory read), and the
control lines.

Read ports A read port is a logical port that you can use

only to perform a memory read. The physical
ports that it typically connects to are an
address bus, adata out bus (for the data being
read out of memory), and the control

lines.

Using Register Files and Memories for Arrays
7-43

Write ports A write port is a logical port that you can use
only to perform a memory write. The physical
ports that it typically connects to are an
address bus, a data in bus (for the data being
written to memory), and the control lines.

d. In the Logical Ports section, enter the address bit-width and the
data bit-width. The address and data bit-widths are common to
all ports.

Result: Figure 7-15 shows the completed memory definition.

Using Register Files and Memories for Arrays

7-44

Figure 7-15 Completed Memory Definition

Memory Definition

Using Register Files and Memories for Arrays
7-45

4. Click the Next button to display the Memory Pin Definition dialog
box (Figure 7-16).

Assigning Memory Pins to the Wrapper Logical Ports

The Memory Pin Definition dialog box (Figure 7-16) shows the
assignment of the vendor memory pins to the logical ports in the
memory wrapper. Use the Memory Pin Definition dialog box to assign
or reassign vendor memory pins to the correct memory wrapper
logical ports.

Using Register Files and Memories for Arrays

7-46

Figure 7-16 Memory Pin Definition Dialog Box

Memory
wrapper
definition

Vendor

memory
description

A Nemory Pin Kame | Width | Type | 1/ |
|_=_|® Part 0, Read write | |22 adr G unassigned |
() Address o di 32 unassigned |
...(®) Data Input B do 32 unassigned O
..... (%) Data Output TN WER unassigned |
L.dP Controls FIH FEN unasszigned |
@ Clock
-G Global Cantrols
- Unused by BC
=-J¥] Unassigned Pins
A Piris... TierEits | Writie Bire | Welete Eits |
Cancel | Help |

When you are creating a wrapper from a memory in a .db file, all the
pins are initially unassigned (as in Figure 7-16).

Using Register Files and Memories for Arrays

7-47

To assign pins for a memory in a .db file,

1. Assign pins to the correct categories by dragging unassigned
vendor memory pins (on the right side of the Memory Pin Definition
dialog box) to the appropriate memory wrapper logical port
categories (on the left side of the dialog box).

a.

Selectand drag all vendor address pins to the memory wrapper
logical port address category.

. Select and drag all vendor data input pins to the logical port

data input category.

. Select and drag all vendor data output pins to the logical port

data output category.

. Select and drag each vendor control pin such as write enable

(wen) and read enable (ren) to the logical port controls category.
When assigning control pin assignedto alogical port are signals
that are used only for accesses to that specific physical port.

. Select and drag any signals that are used for all memory

accesses and are not associated with a single port to the Global
Controls wrapper category. Global Controls are pins that are
relevant for accesses to all the physical ports.

Select and drag any other signals such as test pins that are not
used by SystemC Compiler to the Unused by BC category. You
can expand the Unused by BC category hierarchy, and choose
the appropriate category for the unused pins.

Memory Wrapper Generator extracts the clock name from the
vendor memory .db file.

Shortcut:

While assigning or reassigning pins, you can select multiple
pins using the Shift-click method (for consecutive selection) or
the Control-click method (for nonconsecutive selection), or by
drawing a rectangle around the pins with the mouse.

Using Register Files and Memories for Arrays

7-48

Result: When all vendor pins are assigned to a logical port
wrapper category, a green circle with an OK is displayed next to
the Port Address, Data Input, Data Output, Clock, and
Unassigned Pins wrapper categories. After you assign all vendor
pins, the vendor pins field is empty. Figure 7-17 shows a
completed memory pin definition.

Figure 7-17 Completed Memory Pin Definition

Moy Fin Datiniticn

[Lionor Fin Mame | widh | Tvpe [wa |
=1 i Fuort 01, Read write
o i Adren
i1 i Dala npu
i i Oada Ooatpu
- oot
= il Cloci
& Goanl Cosirds
i Urnaed by BG
W Unannagiad P

Using Register Files and Memories for Arrays
7-49

2.

In some cases, the vendor memory’s pin are not explicitly grouped
into buses inthe memory library file. In step 1, you assigned these
individual pins to logical port categories, and now you need to
specify the order (MSB to LSB) of these pins with respect to pins
of the correspond logical port.

For example, if the vendor memory has pins ADDRX, ADDRY,
ADDRZ, and ADDRW, and you placed these in the address
category of logical port 0, you need to specify the order in which
these pins map to the bits of the logical port’'s address bus.

To specify the ordering of the address and data pins (MSB to LSB),

a. Select the appropriate category (Address, Data Input, or Data
Output).

b. Change the order of the vendor pins by dragging the pins within
the vendor pin list or by clicking the Pin Name column header.
Clicking the Pin Name column header reverses the order of the
pins from MSB to LSB, or from LSB to MSB.

Click on the Next button to display the Wrapper Properties dialog
box (Figure 7-18).

Using Register Files and Memories for Arrays

7-50

Figure 7-18 Completed Wrapper Properties Dialog Box

Wrapper Properties

Cll (]

ramg=dZ_wrap

|_AcdPin.. | | Deete Pins | |_propetties |
| <geck | | cancel | [hep |

Using Register Files and Memories for Arrays
7-51

Defining the Memory Wrapper Properties

The Wrapper Properties dialog box (Figure 7-18) shows the
connections between the memory vendor cell and the wrapper. You
can use the Wrapper Properties dialog box to further specify the
wrapper interface and see how the wrapper pins are connected to
the memory cell.

Initially, a wrapper pin or bus is created and connected to the memory
pin or bus for each memory pin or bus that is notlocated in the Unused
by BC category in the Memory Pin Definition dialog box.

You can also use the Wrapper Properties dialog box to add extra
control pins to the wrapper. These extra control pins can be for test
logic or for adding extra control or decode logic at a later time.

To define the wrapper properties,

1. Select positive or negative to define the clock edge used by the
memory. This must be the same as the active clock edge that you
use in your behavioral description.

2. In the Wrapper Name text field, enter the name of your wrapper
module. By default, the Memory Wrapper Generator uses the
Memory Name you defined as the memory name (Figure 7-15 on
page 7-45) with an additional _wrap as the name.

3. Inthe Design Library field, enter the design_library name
representing the design library where SystemC Compiler places
the design for your wrapper when you analyze the wrapper VHDL
(or Verilog) files. This is also the design library in which the
synthetic library (.sldb) that contains your wrapper expects to find
the design for your wrapper. Designate the WORK library unless
you have a particular library where you want the files written. You
can use any name except a reserved Synopsys library name such
as “DWO01.”

Using Register Files and Memories for Arrays

7-52

The design_library name is the logical name of a library where
you want the files written. You can map this logical library name
to a physical UNIX directory with the defi ne_design_Ilib
command before you analyze the wrapper VHDL or Verilog files
during synthesis. For example,

dc_shel |l > define_design_lib ny _design I|ibrary
-path /export/design Iibraries/ny_design_library

Result: Figure 7-18 shows a completed wrapper properties.

. Add pins as necessary. (You can add only global control pins to
the wrapper. You cannot add pins to the vendor memory. For
details about global control pins, see “Assigning Memory Pins to
the Wrapper Logical Ports” on page 7-46.)

a. Click the Add Pin button.
b. Fill out the displayed dialog box and click OK.
Delete pins as necessary (you can only delete wrapper pins).

a. Select the pins you want to delete.
b. Click the Delete Pins button.

Change the default control pin connections as necessary (you can
change only the connections of control pins).

a. Click a wrapper pin.
b. Drag the pinto the memory pin with which youwantto connectit.

A new connection removes any previous connections and
connects the two pins.

When you connect a wrapper control pin to a memory control
pin, the wrapper pin inherits the properties of the memory pin,
for example the memory port that it is associated with and
whether it is an input pin or an output pin.

Using Register Files and Memories for Arrays
7-53

7. Disconnect wrapper pins, as necessary, by clicking them and
dragging them to an open area.

8. Click the Next button to display a Wrapper Summary dialog box
(Figure 7-19).

Figure 7-19 Wrapper Summary

wWrapper Summary

Using Register Files and Memories for Arrays

7-54

9. If the displayed summary information is correct, click Finish.

When you are finished, the wrapper is displayed in the Memory
Wrapper main window (Figure 7-20).

Figure 7-20 Memory Wrapper Displayed in Main Window

I Memory Wrapper — rams

File Edit Help

D[|Q| & 308 [8]

Schematic
of memory wrapper
M
E
M |
0
D 0 D
Y
Vendor
memory
clk T
[wiren *
- clk [w|wren —I
Timing

celected memory " Kk 2 D0
operation do Wm do W

o L o] .
e,
"
“.....“‘.

i A, . ST, . o o e
REll gt gt gt C e
e teTeta et
S

Men“”y Mg A A i L]

. |
opleratllon) +l[=] Read - Port 0 Write - Port 0 /
selection ta hemory Wrapper GUI Application | |

Control pin list
for selected
memory operation

Using Register Files and Memories for Arrays
7-55

Reviewing the Memory Wrapper

The upper display area (the schematic in Figure 7-20) shows how
the vendor memory is embedded in the wrapper.

The lower-left display area shows the timing waveforms of the
selected memory operations, for example a memory read from port
0. You can click on the Memory Operation Selection tabs to select
another memory operation. All control pin names and waveforms
refer to the wrapper, not the pins on the vendor memory. All
information you enter in the waveform display area applies to the
wrapper.

The lower-right display area (the port control pin list) displays the list
of available control pins for the memory operation that you select and
Is shown in the waveform to the left. Initially all control pins are marked
with a check mark (displayed in the waveform). To deselect a control
pin, click the box next to it to remove the check mark.

Editing the Waveform Values

The waveform display shows the cycle-by-cycle protocols for a
memory read or write operation on a logical port. For example, Figure
7-21 shows the timing protocol for a memory read from the logical
port 0. The waveform shows that the adr, do, wen, and ren signals
are involved in a memory read. The address of memory to be read
Is asserted on the adrbus in the second cycle. At the same time, wen
Is asserted and renis deasserted. This completes the memory read
request and the data is placed on the do bus in the next clock cycle.

Using Register Files and Memories for Arrays

7-56

Figure 7-21 Read Port Protocol Waveforms

Memory

- Memaory Wrapper

D|=|e| £ 3|88

operation eI T s - rorta |

selection
tab

The first and last cycles of the waveforms show the values of the
various signals when there are no requests. These are called the
inactive values and can be low, high, or don’t care. Editable
waveforms are drawn in red.

Using Register Files and Memories for Arrays
7-57

To edit the waveform state,

1. Double-click on the pin’s waveform to change its state from don’t
care to high or low.

Each double-click changes the state from don’t care to high to low
in a circular fashion.

2. Click on the Read or Write Port tab to select another operation on
the same port or an operation on a different port.

Adding Registers to the Memory Wrapper

You can add registers within the wrapper to the input or output of the
memory. Adding these registers is required for an asynchronous
memory to convert it to a synchronous memory. (See “Using
Asynchronous Memories” on page 7-24.)

Adding registers increases the latency of memory accesses. For
example, in the asynchronous memory shown in Figure 7-20 with
registered inputs and outputs, the latency of a memory read is 2 clock
cycles: one to register the inputs and the second to register the output
data from the memory read. The output data is available at the data
output port of the memory wrapper in the third clock cycle.

Using Register Files and Memories for Arrays

7-58

Figure 7-22 Manually Adding Registers to an Asynchronous Memory

Memory wrapper

o Asynchronous =
() [
wgu;;eorf *—» ‘g » vendor —» B
(@]
) memor wrapper
> y > &

il
\
\
\
—»* Outputs of
\
\
\
|

To add or delete input registers or output registers between the
wrapper and the memory, do one of the following:

1. Choose Edit > Register Type

2. Click the Input Register button or the Output Register button on
the toolbar

il“ Input Register ‘ :I"l Output Register

The added registers are functional registers. Do not use them as
testability registers.

Adding Custom Logic to the Memory Wrapper
To insert custom logic between the wrapper and the memory,

1. Do one of the following:

- Choose Edit > Insert Logic

Using Register Files and Memories for Arrays
7-59

2.

- Click the Insert Input Logic button on the toolbar.

+
Bl
The Code Editor dialog box is displayed with default code
(Figure 7-23).

In the Code Editor dialog box, select the Verilog or VHDL

language. The Memory Wrapper Generator displays the default
code. The default code lists the connection between each wrapper
port and the corresponding memory port. To insert logic, write it
as you would write RTL. Note, however, the code must be Verilog
or VHDL.Figure 7-23 shows an example of default Verilog code.

Figure 7-23 Code Editor Dialog Box With Default Code

3.

Cande LG
Coaiey Tor e lngic

(11 Dedaddt MR vl jan COaC nes

IT Nednadl smgnal anssgnesn iz Tor consec bnd roabrol pinse
almiirp 3 (PN) bgin W _omll = W @i
alwiays & | O) baogii C3_oet = C3; &l
pabearye & (OE) berpn T _owf = OF; sad

¥ eriing " WHEL

Loiiome Ll | (] e

Enter Verilog or VHDL code for the custom logic.

Use this Code Editor dialog box to edit the default code and
combinational logic.

Using Register Files and Memories for Arrays

7-60

4. Click OK to complete the logic insertion. A box labeled as Logic
Is inserted in the Schematic window to indicate the custom logic.

To remove custom logic between the wrapper and the memory,

* Choose Edit > Insert Logic. The Insert Logic command becomes
unchecked (it toggles), and the logic is removed.

To change custom logic between the wrapper and the memory,

1. Double-click on the Logic box in the Schematic window.

The Code Editor dialog box is displayed.

2. Edit the contents and click OK.

If you are adding registers or custom logic into the wrapper, you must
ensure that the latency of the read/write operations and the waveform
specified match the behavior of the memory with the wrapper. If they
do not match, you must go back and edit the latency or the waveforms.

Viewing and Editing the Wrapper Properties

If you want to review or edit any of the memory wrapper dialog boxes,
choose the Edit > Edit Properties command or click on the Properties
button in the tool bar.

A | Properties

Figure 7-30 shows the Properties window with the Memory Definition
dialog box displayed. You can select the Memory Definition, Memory
Pin Definition, Wrapper Properties, and Wrapper Summary dialog
boxes by clicking on the tabs at top.

Using Register Files and Memories for Arrays
7-61

The properties are described in

» “Defining the Memory Type and Properties” on page 7-40

« “Assigning Memory Pins to the Wrapper Logical Ports” on page
7-46

« “Defining the Memory Wrapper Properties” on page 7-52

» “Reviewing the Memory Wrapper” on page 7-56

Using Register Files and Memories for Arrays
7-62

Figure 7-24 Properties Dialog Boxes

Selection tabs

Using Register Files and Memories for Arrays
7-63

Saving the Memory Wrapper Files

After specifying the waveforms, save the wrapper (.wrap) file, the
associated synthetic library (.sldb) file, and the Verilog (.v) file. For
details about file types, see “Preparing to Use Memories” on page
7-15.

You can save just the .wrap file and read it into the Memory Wrapper
Generator tool at a later time to create the .sldb, .sl, or .v files.

By default, the Memory Wrapper Generator tool uses the memory
name with _wrap for the file names, for example, memory_wrap.sldb
and memory_wrap.v

To save the wrapper and associated files,

1. Tosave justthe memory wrap.wrap file, choose File > Save. You
can also save the .wrap file using the File > Save As command.

2. To save the memory wrap.sl, memory wrap.sldb, and
memory_wrap.V files, choose File > Export Wrapper. Figure 7-25
shows the Export Wrapper dialog box.

Using Register Files and Memories for Arrays

7-64

Figure 7-25 Export Wrapper Dialog Box

Save in: IE rams

ramdx3Z_wrap.sl
ramaxaz_wrap.sldb
ramix3z_wrap.vhd
ramdx=3Z_wrap_Gx3z.sl
ram@x3Z_wrap_gx3Z2.vhd

File name: Iram Sxac_wrap Save

Save as fype: |‘JHDL Wrapper + Testhench |E| Cancel

Yerilog Wrapper + Testbench
YHOL Wrapper

Yerilog Wrapper

WHOL Testhench

Yerilog Testhench

[Check here

3. Inthe Export Wrapper dialog box, select the Save as type to be
Verilog Wrapper or VHDL Wrapper.

You can also use this command to save a testbench for the
memory wrapper, which is described in “Generating a Memory
Wrapper Testbench” on page 7-79.

Note:
This command saves a synthetic library .sl file. This file contains
the DesignWare Developer source code that was used to
generate the .sldb file. It is included for reference only. It is not
used by SystemC Compiler, and you can delete it.

Using Register Files and Memories for Arrays
7-65

Using Generated Vendor Memory Wrappers
With SystemC Compiler

To run SystemC Compiler using a vendor memory,

1.

In the source code, use the r esour ce compiler directive to map
an array to the memory wrapper. Example 7-10 shows declaration
ofaresource named RAM A, accessed by the array variable mensa,
and its wrapper module is r anBx32_wr ap. For details about
declaring and accessing memories, see the CoCentric™
SystemC Compiler Behavioral Modeling Guide.

Example 7-10 Memory Array Definition

/1 SystenC code fragnent

/1l Declare the nenory access array
Sc_i nt<32> nema[256] ;

/* synopsys resource RAM A :

vari ables = "nema",

map_to_nodul e = "ranBx32_wrap"; */

Map the design library name you designated when creating the
memory wrapper files to a physical UNIX directory. For example,

dc_shell > define_design_lib ny _design_|ibrary
-path /export/design |ibraries/ny_design |ibrary

Run SystemC Compiler anal yze command to analyze and
elaborate the memory wrapper file into the design library you
specified in step 2.

dc_shel |l > analyze -f verilog ranBx32 wap.v

-library ny _design _Ilibrary
Add the memory .sldb file generated by Memory Wrapper
Generator to the synt heti c_| i brary variable. For example,

Using Register Files and Memories for Arrays

7-66

6.

dc_shell > synthetic_library = synthetic_library +
ramBx32_wrap. sl db

Add the memory library with the .db filesto thel i nk_| i brary
variable.

dc_shell> link_library = link_library + ranBx32. db

You are now ready to run conpi | e_syst ent on your design.

Creating a Memory Wrapper for an Exploratory Memory

The Memory Wrapper Generator creates a unique file format called
a .wrap file. This file encapsulates all of the information necessary to
generate a synthetic library (.sldb) for a exploratory memory. You can
use this .sldb file for architectural exploration of memories with single
or dual ports, a read/write versus a separate read and write port, and
various address and data bit widths.

The general steps for creating a memory wrapper are

1.
2.

Define the type and properties of the memory.

Define properties of the wrapper and add control pins to the
wrapper, if necessary.

Edit the wrapper by adding or deleting logic or registers and
specifying the waveforms.

Save the wrapper.

Using Register Files and Memories for Arrays
7-67

Defining the Memory Type and Properties

To define the type and properties of the exploratory memory wrapper,

1. Choose File > New.

(To open a previously saved .wrap file, choose File > Open.)
The Memory Selection dialog box is displayed (Figure 7-12).

Figure 7-26 Exploratory Memory Selection Dialog Box

Memorw Selection _I

Create a dummy memary for exploring
E=ploratory memaory... memary architectures.

Select a vendar memory model from an

Mendor Memory.. | gxisting db file.

| Cancel

2. Click the Exploratory Memory button.

The Memory Definition dialog box (Figure 7-27) is displayed for
an exploratory memory. Because a physical memory does not
actually exist, the Memory Description field displays “Uninitialized
Memory” to indicate no information is available.

Using Register Files and Memories for Arrays
7-68

Figure 7-27 Exploratory Memory Definition Dialog Box

IMemory Definition

Memory
wrapper
definition

Exploratory——
memory,

no
description

3. Enter the properties for the wrapper interface that SystemC
Compiler uses.

a. Enter a name in the Memory Name text field.

Using Register Files and Memories for Arrays
7-69

b. Select the Synchronous type if the wrapper has a clock.
Otherwise, select Asynchronous.

c. Enter the number of clock cycles the wrapper requires to
complete one read operation and one write operation.

d. In the Logical Ports section, enter the number of logical ports
(for example, for a single-port or dual-port memory). The
following briefly describes the port information:

Read-Write ports A read-write portis a logical port that you can
use to perform either a memory read or a
memory write, but not both at the same time.
The physical ports associated with a
read-write logical port are typically an address
bus, a data in bus (for the memory write), a
data out bus (for the memory read), and the
control lines.

Read ports A read port is a logical port that you can use
only to perform a memory read. The physical
ports that it typically connects to are an
address bus, adata out bus (for the data being
read out of memory), and the control
lines.

Write ports A write port is a logical port that you can use
only to perform a memory write. The physical
ports that it typically connects to are an
address bus, a data in bus (for the data being
written to memory), and the control lines.

e. Inthe Logical Ports section, enter the address bit-width and the
data bit-width. The address and data bit-widths are common to
all ports.

Result: Figure 7-28 shows the completed Memory Definition
example.

Using Register Files and Memories for Arrays
7-70

Figure 7-28 Completed Exploratory Memory Definition

Memory Definition

explore1Zx24

4. Click the Next button to display the Memory Pin Definition dialog
box (Figure 7-16).

Using Register Files and Memories for Arrays
7-71

Figure 7-29 Exploratory Memory Pin Definition Dialog Box

Mamary Pin Definition

Pin Mame | width | Type =N
EI.' Fort 0, Read write (1B 00 1z address I
= Addrass B i) 24 data [
Data Input B dol 24 data 0
ElS
"'.' Eaﬁt‘ Olutput B ot contral I
i g k”” rols 0 Clock clock [
oc
- Global Controls
- Unused by BC
i Unassighed Fins
Memory
wrapper
definition
Memory
cell description
required
from vendor
Add Pins... | | Tie Pins | | Untie Pins | \ Delete Fins |
| « Back I Mext = I | Cancel I | Help I

Based on the input and output ports you defined, the Memory
Wrapper Generator tool generates a pin definition list required
from the memory vendor for a matching memory cell.

Using Register Files and Memories for Arrays
7-72

Assigning Pins to the Memory Logical Ports

Default pins and buses are initially created and assigned
automatically. The Memory Pin Definition dialog box shows the ports
and control pins used in the memory wrapper, and it shows the pins
that would be required in a vendor memory to match the wrapper
interface.

A green circle with an OK is displayed next to the Port Address, Data
Input, Data Output, Clock, and Unassigned Pins categories in the
wrapper define. This means there is no pin assignment action
required.

Click the Next button to display the Wrapper Properties dialog box
(Figure 7-18).

If you need to add additional pins, click on the Add Pins button.

Using Register Files and Memories for Arrays
7-73

Figure 7-30 Exploratory Wrapper Properties Dialog Box

wWrapper Properties

(e -

explorel2x2d wrap

I e N
[oz [G [[Wy |

Using Register Files and Memories for Arrays

7-74

Defining the Exploratory Memory Wrapper Properties

The Wrapper Properties dialog box shows the connections between
the wrapper and a memory of this type.

To define the wrapper properties,

1. Select positive or negative to define the clock edge used by the
exploratory memory, which should be the same as your design.

2. In the Wrapper Name text field, the name of the wrapper is
displayed.

3. Inthe Design Library field, enter a name representing the design
library in which the wrapper design will reside.

The name is a design library that contains the analyzed structural
wrapper. Enter the WORK design library, if you do not have a
designated library name. You can use any name except a
reserved Synopsys library name such as “DW01.”

4. Add pins as necessary (you can add only global control wrapper
pins, not memory pins). This step is not usually needed for
exploratory memories.

5. Click the Next button to display a Wrapper Summary dialog box
(Figure 7-31).

Using Register Files and Memories for Arrays
7-75

Figure 7-31 Exploratory Memory Wrapper Summary

Wrapper Summary

If the displayed summary information is correct, click Finish.

Using Register Files and Memories for Arrays
7-76

When you are finished, the wrapper is displayed in the Memory
Wrapper main window (Figure 7-20).

Figure 7-32 Exploratory Memory Wrapper in Main Window

Memaory wrapper — fictl

Fle Edit

D] £] 3|88

Schematic

Waveform

|+[[*] Read - Port 0

Port control pin list

Using Register Files and Memories for Arrays
7-77

Reviewing and Editing the Exploratory Memory Wrapper

You can review and edit the memory wrapper for a exploratory
memory using the commands in “Viewing and Editing the Wrapper
Properties” on page 7-61.

Saving the Exploratory Memory Wrapper Files

After specifying the waveforms, save the .wrap and .sldb files.
To save the wrapper,

1. Choose File > Save, which saves the .wrap file.

2. Choose File > Export Wrapper, and select the Save as type to be
Verilog Wrapper or VHDL Wrapper, which saves the .sldb file and
the Verilog or VHDL wrapper description file. “Saving the Memory
Wrapper Files” on page 7-64 shows this dialog box and provides
additional details about exporting wrapper files.

After the exploratory memory is generated, you can use it the same
way as a vendor memory, described in “Using Generated Vendor
Memory Wrappers With SystemC Compiler” on page 7-66.

Using Register Files and Memories for Arrays

7-78

Generating a Memory Wrapper Testbench

After you generate the memory wrapper, it is important to verify that
it meets the memory vendor’s specifications. Checking the wrapper
after you generate it can save verification and redesign time later in
the design cycle.

The Memory Wrapper Generator tool can automatically create a
self-checking simulation testbench and test case to verify that the
memory wrapper is correctly specified and generated. The testbench
performs a sequence of writes to and reads from the memory.
Generating the memory wrapper testbench requires that you have a
Verilog or VHDL memory simulation model, which is typically supplied
by the memory vendor.

To verify your memory wrapper, use the automatically created test
design and testbench to run behavioral simulation of your memory
wrapper.

The memory wrapper testbench generated files use your specified
memory wrapper name with an additional _D as the file names, for
example memory_wrap_D.v.

To test your wrapper with a memory wrapper testbench,

1. Choose File > Export Wrapper (Figure 7-25 on page 7-65), select
the Save as type to be Verilog Testbench or VHDL Testbench,
which saves the following files:

- A sample design containing memory operations,
memory_wrap_D.v or memory_wrap_D.vhd

This file contains a behavioral design that reads data from its
input port, writes the data into the memory, reads it back from
the memory, and writes it to its output port.

Using Register Files and Memories for Arrays
7-79

- Aself-checking simulation testbench, memory _wrap_D_tb.vor
memory_wrap_D_tb.vhd

This file writes a number of values to the sample design and
reads values back from the sample design. It compares each
value read from the sample design to the expected value.

To create a very simple test case that writes and reads only one
value, enable the “Check here to create simple test only” option
in the Export Wrapper dialog box, and save the testbench files
again.

- A dc_shell script file, memory _wrap_D_v.scr or
memory_wrap_D_vhd.scr

This script contains the dc_shell commands to synthesize the
sample design. You can customize the script.

Run the memory wrap_D_v.scr script in dc_shell.

This synthesizes the sample design and generates a structural
RTL design.

Simulate the RTL design with the generated wrapper file and the
memory simulation model. For example, to simulate a Verilog RTL
design with VCS, readinthe* D tb.v,* D.v,andthe*_D.scrfiles.

This simulation reveals any problems with the memory wrapper
specification. If problems are detected, you need to correct the
memory wrapper definition and generate a revised memory
wrapper to produce a valid memory testbench simulation.

Using Register Files and Memories for Arrays

7-80

Advanced Techniques

This chapter explains advanced features and techniques you can use
to further improve scheduling and the quality of results.

This chapter contains the following sections:

» Using Multiple Files to Describe a Design
» Speculative Execution
» Setting a Specific Implementation for Components

e Externalize a Cell

Advanced Techniques
8-1

Using Multiple Files to Describe a Design

If your design has multiple modules that are defined in separate files,
you can use either the #include directive or preserved functions to
bring the external files into the primary design.

Using #include

To bring separate files in a primary design file, you can use the
#include directive. This is useful if you want to include the same files
in several designs. For example, you may have IP that is used in
many designs. However, this is not a recommended C programming
style, because using the #include directive increases the size of your
program.

Using Precompiled Netlists
External precompiled netlists in the form of .db files can be brought
into your primary design with the preserved function capability.

To bring the precompiled netlist into the primary design,

1. Addthe preserve_functi on compilerdirective to afunctionin
your behavioral description that represents the external
precompiled netlist.

2. Elaborate the design with the conpi | e_syst ent command.
Enter

dc_shel | > conpil e_systent primary _design. cc

3. Read in the precompiled netlists with the
read_preserved_functi on command. This command maps
the precompiled netlist to the preserved function.

Advanced Techniques

8-2

Enter

dc_shel |l > read _preserved function_netli st
nodul el_el ab. db

dc_shel |l > read _preserved function_netli st
nodul e2_el ab. db

4. Use the | i nk command to link the design. Enter

dc_shell > link

If your precompiled netlist is in a directory that is not defined as a
design library, use the def i ne_desi gn_I i b command to map the
directory to a design library before using the
read_preserved_function_netlist command.

For example, to map modulel.db and module2.db files in the libraryl
directory to the library_namel design library, enter

dc_shell > define_design_lib /ibrary nanel
-path /renote/design |ibraries/libraryl

dc_shel | > conpil e_systent primary _design. cc

dc_shel |l > read _preserved function_netlist nodul el el ab. db
-design_library library nanel

dc_shel |l > read _preserved function_netlist nodul e2 el ab. db
-design_library library nanel

dc_shell > |ink

How to create and use preserved functions is described in “Using
Preserved Functions” on page 5-23. Also see the coding guidelines
in the CoCentric™ SystemC Compiler Behavioral Modeling Guide.

Advanced Techniques
8-3

Speculative Execution

You can reduce the length of critical paths that contain conditional
operations by allowing SystemC Compiler to perform speculative
execution. Thebc_enabl e_specul ati ve_execut i onvariableis
set to false by default. To enable speculative execution, set this
variable to true before executing the schedul e command. Enter

dc_shel | > bc_enabl e_specul ati ve_execution = "true"
dc_shel |l > schedul e -i o_nbde superstate fixed

When speculative execution is enabled, conditional operations are
precomputed before the results of the conditional branches are
known. Results of branches that are not executed are ignored. This
applies only to data path operations, such as

I f (condition)
y =z +qQ;
el se
y =2- 4G

The original behavioral description, for example, could contain
reading of an input port, an add, a subtract, and writing the results to
an output port that must occur in the same clock cycle, as shown in
Example 8-1.

Advanced Techniques

8-4

Example 8-1 Executing Without Speculative Execution

\'N;ai't();
wait () ;

cond_bool = in_port.read() + b;
I f (cond_bool)

Z =X -Y;
el se

Z =Y - X

out _port.wite(z);
wait();

Synthesis of the code in Example 8-1 requires control chaining.
Control chaining is when the condition controlling the selection of a
branch execution happens in the same cycle as operations in that
branch. This happens in Example 8-1 because the following occur in
the same clock cycle:

 The read of in_port

e The computation of cond_bool

* The selection of the appropriate branch

* The execution of the appropriate subtraction
* The write to the output

Enabling speculative execution allows SystemC Compiler to
restructure the code internally similar to Example 8-2, where the
changes are shown in bold. When you enable speculative execution,
control chaining is preempted and the length of the critical paths are
reduced.

Advanced Techniques
8-5

Example 8-2 Executing With Speculative Execution

X1 =X - vy,
wait () ;
X2 =y - X;
wait () ;
cond_bool = in_port.read() + b;
i f (cond_bool)
z = X1,
el se
Z = X2;

out _port.wite(z);
wait();

Setting a Specific Implementation for Components

Use the bc_set _i npl enent at i on command to define a specific
iImplementation for an operation before executing the
bc_time_desi gncommand. Thisoverridesthebc_ti nme_desi gn
command default implementation selection for that operation. For
example, to specify the DWO01_add, cla implementation for the add
operation on line 114, enter

dc_shell > bc_set _inplenentation entry/main_| oop/add 114
-nodul e DW1_add
-inpl enentation cla
dc_shell > bc_tinme_design
The - nodul e option specifies the synthetic component from a
DesignWare library, and the - i npl enent at i on option specifies the
specific implementation of that component. The implementation is
used for the add_114 operation.

Advanced Techniques

8-6

You can use the bc_set _i npl enent at i on command to list all
possible implementations for an operation. For example, to list the
possible implementations for the add_114 operation, enter

dc_shell > bc_set _inplenentation entry/main_| oop/add 114
-list _valid

You may inadvertently restrict sharing of multifunctional units when
you use the bc_set _i npl enent at i on command. For example, if
you specify an DWO01_add implementation for an add operation, you
are not allowing sharing of the DW01_addsub implementation for that
add operation with another subtraction operation.

You can also use the bc_set i npl enent ati on command to
define an implementation for all operations of the same type. Use the
f i nd command to extract the full path to the operations. For example,
to find all the add operations and specify that the DWO01_add, cla
implementation is used, enter

dc_shell > bc_set _inplenmentation find (cell {*add*} -hier)
-nodul e DW1_add
-inmpl ementation cla

Advanced Techniques
8-7

Externalize a Cell

Externalizing a cell in your design means to make itan external model,
for example a memory model.

The external cell outputs become inputs to your design, and the
external cell inputs become outputs of your design. Figure 8-1
illustrates the rl cell before and after making it external.

Figure 8-1 Externalize a Cell

my_design
RAM Ly rldo rl_addr |- »
rl
addr_ do rl di ——»
d | rl o
Original cell Externalized cell

To externalize a RAM cell,

Modify your behavioral description to map an array to a RAM.
Schedule the design.

Use the conpi | e command to compile the design into gates.

kw0 b E

Usethe externali ze cell command to externalize the RAM
cell.

Advanced Techniques

8-8

For example,

dc_shel | > schedul e -i o_node super
dc_shell > conpile
dc_shel |l > externalize cell RAMA

Advanced Techniques
8-9

Advanced Techniques
8-10

A

Setting Up SystemC Compiler

This appendix describes the basic information and commands you
need to know to set up and start SystemC Compiler in the following
sections:

« Defining Environment Variables and Paths

» Defining Libraries and Other Variables

« Starting the SystemC Compiler Command Interface

» Issuing SystemC Compiler Commands

» Using Scripts

» Using compile_systemc Command Preprocessor Options
« Starting BCView

« Starting the Memory Wrapper Tool

Setting Up SystemC Compiler
A-1

« Getting Command, Variable, and Error Help

Defining Environment Variables and Paths

Before you can start SystemC Compiler on your workstation, you
need to define the SYNOPSYS, SNPSLM_LICENSE_FILE, and
SYSTEMC_CPP environment variables. Define the SNYOPSYS
environment variables as the path to the SystemC Compiler
installation.

set env SYNOPSYS pat h

where path is the Synopsys synthesis products installation (for
example, on your system it could be /usr/releases/bin/synopsys)

set path = ($SYNOPSYS/ spar cOS5/ syn/ bi n $pat h)
setenv SNPSLMD LI CENSE FI LE your Iicense_key path
setenv SYSTEMC CPP "path options -1include_path"

where path options is one of the following:

* the GNU C++ Compiler version 2.95.2 or later compiler options
are:

-trigraphs -E -C -U_GNUC__
-U_ _GNYG__ -W, -no-gcc, -pedantic

or

» the Sun SparcWorks C++ Compiler version 5.0 or later compiler
options are:

-E -xCC - Xc

Setting Up SystemC Compiler

A-2

The include_path is the path to the SystemC include directory with

the systemc.h header file (part of the SystemC Class Library
installation).

Defining Libraries and Other Variables

SystemC Compiler uses the same variables as Design Compiler to
set up synthesis. The following table shows the important variables
that define a synthesis setup.

Variable Description Example Definition

target_library Technology Library {“tc6a_cbacore.db”}
synthetic_library DesignWare Library {“dw01.sldb” “dw02.sldb"}
link_library Link Library {*" “} + target_library + synthetic_library

search_path Search Path search_path + ./CC + ./DB + ./
(By default, search_path includes the
current working directory and the
$SYNOPSYS/libraries/syn path.)

You can define SystemC Compiler variables in a .synopsys_dc.setup
file, from the command interface shell, or in your command script.

Setting Up SystemC Compiler
A-3

SystemC Compilerreadsthe .synopsys_dc.setup filesinthe following
order:

Search Path Typical Variable Definitions

${SYNOPSYS}admin/setup/.synopsys_dc.setup Site setup definitions
~/.synopsys_dc.setup User setup definitions

J.synopsys_dc.setup Project setup definitions

For details about these variables, the .synopsys_dc.setup file,
choosing a target technology, a wire load model, and operating
conditions, see the Design Compiler Command-Line Interface Guide
and the Synopsys man pages.

Starting the SystemC Compiler Command Interface

To invoke the SystemC Compiler command interface, change to the
working directory containing your design source and enter the
dc_shell command at the system prompt:

uni X% dc_shel |

This command launches the command interface, reads the
.synopsys_dc.setup files, and displays a dc_shell prompt.

Creating a command.log File

SystemC Compiler records the commands you enter at the command
prompt in the command log file. A new command log file is created
each time you launch dc_shell. Remember to save each log file with
a different file name before starting another command interface shell,
otherwise it will be overwritten

Setting Up SystemC Compiler

A-4

By default, the site-wide .synopsys_dc.setup file defines the
command_log_file as

command_log file = "./comuand. | 0og"

After you run an interactive session of SystemC Compiler, you can
use the command.log file to create and customize a command script
file (see “Using Scripts” on page A-6.)

Recording Your Command Session

To record the commands you issue and the system responses in a
log file for later evaluation, at the UNIX prompt, pipe the output of the
dc_shell command to the UNIX tee command. The tee command
copies the output of your screen to the designated log file. For
example,

uni x% dc_shell | tee filenane. |l og

Issuing SystemC Compiler Commands

After you launch the SystemC Compiler tool, you enter commands
at the dc_shell prompt, for example

dc_shel | > conpil e_systent ny_design. cc

If SystemC Compiler is able to execute the command successfully,
the system response is 1. However, if SystemC Compiler cannot
execute the command, the system response is 0 and an error
message informing you of the problem is displayed.

Setting Up SystemC Compiler
A-5

Listing SystemC Compiler Variables

You can list all of the SystemC Compiler variables for behavioral
synthesis and their current settings by using the following command
at the dc_shell prompt:

dc_shell> list -variables bc

Using Scripts

A script file, also called a command script, is a sequence of dc_shell
commands in a text file. Command scripts enable you to execute
dc_shell commands automatically.

Creating Scripts

To create a command script, create a text file of the commands you
want to enter at the dc_shell prompt. Or, you can use a saved
command.log file and modify the commands for your current
synthesis run.

Setting Up SystemC Compiler

A-6

Script Example

Example A-1 shows an example command script you can use as a
guide to create a script that suits your requirements.

Example A-1 SystemC Compiler Command Script

/* define variables */
bc_enabl e_anal ysis_info = "true"

target library
synthetic_library
link_library
search_path

'tc6a_cbacore. db"}

"dwol. sl db" "dw02. sl db"}

{"*"} + target _library + synthetic_library;
sear ch_pat h;

{
{

cl ock_nane
cl ock_peri od

20

read dwol. sl db
read standard. sl db

/* parse and el aborate SystenC code */
conpi l e_systent cnult.cc

/* wite elaborated db file */
wite -f db -hier -o cnmult_el ab. db

/* set constraints on the chip */
create_cl ock clock_name -p clock_period

/* estimate timng and report estimates */
bc_tinme_design
report_resource_estimtes

wite -hier -o crmult _tined.db

/* check design for coding style */
bc_check_desi gn

/* display time stanp to see scheduling time */
sh date

/* schedul e and report scheduling */
schedul e -io super -effort medi um
report_schedul e

sh date

Setting Up SystemC Compiler
A-7

/* wite design database and rtl code */

wite -hier -f verilog -o cmult_rtl.v

wite -hier -f db -0 cmult_rtl.db

/* conpile to gates & wite gate-level database */
sh date

conpile

sh date

wite -hier -f db -0 cnult_gate.db

/* report tinming, resources, and area */

report timng

report_resources
report_area

qui t

Using the Script

You can provide a command script when you start dc_shell or use
the i ncl ude command from dc_shell.

To provide a command script named command.scr when you start
dc_shell, enter the following at a UNIX prompt:

uni X% dc_shell -f conmand. scr

To run the same command script from a dc_shell prompt, enter

dc_shel | > i ncl ude oonmand. scr

For more information about creating and using commands scripts,
see the Design Compiler Command-Line Interface Guide

Setting Up SystemC Compiler
A-8

Using UNIX Shell Commands

You caninclude a UNIX shell command in a SystemC Compiler script
by preceding it with sh, for example

sh date

Note:
The UNIX shell command response is 0 for success or 1 to
indicate an error, which is the reverse of SystemC Compiler
responses.

Using compile_systemc Command Preprocessor
Options

The conpi | e_syst ent command uses a standard C++ compiler’s
C++ preprocessor. The preprocessor is defined by the
SYSTEMC_CPP environment variable, which is set to the GCC
compiler by default (see “Defining Environment Variables and Paths”
on page A-2).

You can also define preprocessor options with the following
conpi | e_syst ent command options:

dc_shel | > conpil e_systent

[-cpp cpp_program
[-cpp_options options]
desi gn. cc

Use the - cpp option to specify a C++ preprocessor to use with the
conpi | e_syst ent command other than the default.

Setting Up SystemC Compiler
A-9

This option directs the conpi | e_syst ent command to use the
specified C++ preprocessor. Otherwise, it uses the C++ preprocessor
that is defined by the SYSTEMC_CPP environment variable.

You can also specify conpi | e_syst ent command preprocessor
options withthe - cpp_opt i ons argument. For example, the options
can be used as

dc_shel |l > conpil e_systent -cpp
"/fusr/local/bin/g++ -trigraphs -E-C-U_GNUC__ -U__GNYG
-W, - no-gcc, - pedantic” cnult.cc
where usr/local/bin is the path to the g++ executable and the other
terms within the double-quotes are g++ preprocessor options. The
preprocessor options may be different for your system. Enclose the
cpp_program specification in double-quotes.

You can also use the - cpp_opt i ons option to specify C++
preprocessor arguments you want the conpi | e_syst ent
command to pass to the C++ preprocessor.

For example, to pass arguments to the C preprocessor without
changing the designated preprocessor, enter

dc_shel |l > conpil e_systent -cpp_options
"-DMACX -1/u/systent/include" cnult.cc

where DMACX defines a C preprocessor macro and instructs the C
preprocessor to look for header files in the directory /u/systemc/
include.

For information about GCC or SparcWorks compiler options, consult
the compiler documentation.

Setting Up SystemC Compiler

A-10

Starting BCView

You can start BCView from within the SystemC Compiler environment
or from a UNIX shell. Before using the SystemC Compiler

conpi | e_syst ent command, set the bc_enabl e_anal ysi s
variable to true so SystemC Compiler generates the additional
analysis information used by BCView. See “Preparing Designs for
BCView” on page 6-2 for details.

If you are running BCView on a remote system, set the display to your
system, for example

uni x% set env DI SPLAY host nane: 0.0

Starting BCView From dc_shell

Start BCView from within dc_shell either after a successful schedule
or after scheduling errors occur.

To start BCView from dc_shell,

« Enter the following at the dc_shell prompt:

dc_shel |l > bc_view

[-output out_db file]

[-project file project file_nane]
[-dont _start]

This generates a project settings file, opens an xterm window, and
starts BCView. Use the options if you want to also specify the project
file name or create the .proj file without starting BCView.

For more information about the bc_vi ewcommand and its options,
see the Synopsys man pages.

Setting Up SystemC Compiler
A-11

Starting BCView From a UNIX Shell

You can start BCView from a UNIX shell if the project settings file is
available.

To start BCView from a UNIX shell,

1. Produce a .db file with analysis information at appropriate stages
in the design flow (for example, after the schedul e command).

2. Create a project settings file (.proj file).
To do this from dc_shell, enter
dc_shell > bc_view -dont _start

3. Issue the following command:

uni x% bc_view -f file. proj

Using BCView in Your Script

You can incorporate BCView directly into your design flow by
including it in your script. Example A-2 shows part of a script that
includes BCView in the flow. The BCView related lines are bold.

Example A-2 Using BCView in a Script

bc_enabl e _analysis info = "true"
conpi |l e_systent design. cc

schedul e -i0 superstate

... (successful schedul e)
bc_vi ew

Setting Up SystemC Compiler
A-12

Opening BCView Windows

When you start BCView for post-scheduling analysis, it automatically
displays the FSM Viewer, HDL Browser, Selection Inspector, and
Reservation Table windows.

When you start BCView in error analysis mode, it automatically
displays the Selection Inspector, Code Browser, and Scheduling Error
Analyzer windows. To open BCView in error analysis mode, see
“Using the Scheduling Error Analyzer” on page 6-10.

To open a BCView window during a session,

* Choose Window > Create > window_name in any currently open
BCView window.

where window_name is the name of the window you want to open.

Setting Up SystemC Compiler
A-13

Starting the Memory Wrapper Tool

Before using the Memory Wrapper tool, set your display environment
variable. Then change to the directory that contains your memory
files to start the program.

To set the display environment variable,

» Enter the following at the UNIX prompt:

uni X% set env DI SPLAY host nane: 0. 0

To change directories and start the Memory Wrapper tool,

» Enter the following at the UNIX prompt:

uni X% cd ny_nenory _desi gn
uni X% memw ap &

See “Generating Memory Wrappers” on page 7-34 for details about
using the Memory Wrapper tool.

Setting Up SystemC Compiler

A-14

Getting Command, Variable, and Error Help

The CoCentric™ SystemC Compiler Quick Reference provides a list
of frequently used commands and variables.

You can also find information about the SystemC Compiler,
Behavioral Compiler, and Design Compiler commands, variables,
and errors in the online man pages, which are available using the
various access methods described in the following sections.

System Prompt

You can access online man pages for SystemC Compiler commands,
variables, and errors from the UNIX prompt by entering the following
command:

uni x% man conmand_nane | vari abl e_name | error_nane

Note: You need to add the ${SYNOPSY S}/doc/syn/man path to your
MANPATH environment variable.

SystemC Compiler Command Prompt

You can access online man pages for SystemC Compiler commands,
variables, and errors from the SystemC Compiler system prompt by
entering the following command:

dc_shell > help [command_name | vari abl e_nane | error_nane]

Setting Up SystemC Compiler
A-15

Setting Up SystemC Compiler
A-16

B

Complex Number Multiplier Example Files

This appendix shows the source code, command script, and
examples of reports generated by SystemC Compiler for the complex
number multiplier example. It contains the following sections:

o Complex Number Multiplier Source Code
e« Command Script

* Reports Created During Synthesis

Complex Number Multiplier Example Files
B-1

Complex Number Multiplier Source Code

Example B-1 shows the source code for the complex number
multiplier, which uses two-way handshaking.

Example B-1 Complex Multiplier Source Code

/*********************************/

/1 cmult.h header file

SC MODULE(crul t _hs) {
/] Declare ports
sc_i n<bool > reset;
sc_i n<bool > new dat a;
Sc_in<sc_bv<8> > data_in;
sc_in_clk clk;
sc_out <bool > ready_for_dat a;
sc_out <bool > out put _dat a_r eady;
sc_out<sc_int<16> > real out;
sc_out<sc_int<16> > imagi hary_out;

/1 Declare internal variables and signals

/'l Declare processes in the nodule
void entry();

/1 Constructor

SC CTOR (cmult _hs) {
/'l Register processes and
/1 define active clock edge
SC CTHREAD(entry, clk.pos());

/'l Watching for gl obal reset
wat chi ng(reset. del ayed() == true);

Complex Number Multiplier Example Files
B-2

/*********************************/

/1 cmult.cc inplementation file

#i ncl ude "systent. h"
#i nclude "cnult. h"

void cnult_hs :: entry()

{

sc_int<8> a, b, c, d;

//lnitialize and reset if reset asserts

ready for _data.wite(false);
out put _data ready.wite(false);
real _out.wite(0);

i magi nary_out.wite(0);

wait(); //required clock before while |oop
while (true)
{

ready for_data.wite(true);
out put _data ready.wite(false);

wait_until (new data. del ayed() == true);

ready for _data.wite(false);

/1 Read four data values from i nput
a = data_in.read();

wai t();

b = data_in.read();

wai t();

¢ = data_in.read();

wai t();

d = data_in.read();

wai t();

//Cal culate and wite output ports
real _out.wite(a * c - b * d);

i maginary out.wite(a * d + b * c);
out put _data ready.wite(true);

wai t();

Complex Number Multiplier Example Files
B-3

Command Script

Example B-2 shows the command script to synthesize and compile
the complex number multiplier to gates. It uses the commands and
writes files according to the steps recommended in Chapter 2, “Using
SystemC Compiler.”

Example B-2 Command Script for Complex Number Multiplier

[*****ryn_cnult.scr script*****/
/* define variables */
bc_enabl e_anal ysis_info = "true"

target library
synthetic library
link library
search_path

'tc6a_cbacore. db"}

"dwol. sl db" "dw02. sl db"}

{"*"} + target library + synthetic_library;
search_pat h;

{
{

"cl k"
20

cl ock_nane
cl ock_period

read dwol. sl db
read standard. sl db

/* parse and el aborate SystenC code */
conpil e_systent cnult.cc

/[* wite elaborated db file */
wite -f db -hier -o cnult_elab. db

/* set constraints on the chip */
create_clock clock _nanme -p clock _period

/* estimate timng and report estinmates */
bc_tinme_design
report_resource_estimates

wite -hier -o cnult _tined. db

/* check design for coding style */
bc_check_desi gn

/* display tine stanp to see scheduling tine */
sh date

Complex Number Multiplier Example Files
B-4

/* schedul e and report scheduling */
schedul e -io super -effort medi um
report_schedul e

sh date

/* write design database and rtl code */
wite -hier -f verilog -o cmult_rtl.v
wite -hier -f db -0 cmult_rtl.db

/* conpile to gates & wite gate-level database */
sh date

conpi l e

sh date

wite -hier -f db -0 cnult_gate. db

/* report timng, resources, and area */
report timng

report_resources
report_area

Complex Number Multiplier Example Files
B-5

Reports Created During Synthesis

You can create various reports during a typical synthesis session.
Examples of the reports created with the commands in Chapter 2,
“Using SystemC Compiler,” are shown in the following sections.

Estimated Resources

Example B-3 shows the report of resource estimates generated by
thereport _resource_esti mat es command.

Example B-3 Report Resource Estimates

[*****report _resource_estinmates*****/

Cunul ative delay starting at new data 22:
new data 22 = 0.000000
neq_L22 = 0.067000

Cumul ative delay starting at neq_L22:
neq_L22 = 0.067000

Cumul ative delay starting at data_in_30:
data_in_30 = 0.000000
mul _35 = 6.340029
sub_35 = 10.138293
real _out 35 = 10.138293

Cumul ative delay starting at real out 35:
real _out 35 = 0.000000

Cumul ative delay starting at mul _35:

mul _35 = 6.357016
sub_35 = 10.150984
real _out 35 = 10.150984

Area for processors that can inplenent nul _35 (* = used for timng):
*DW2_mul t (nbw) = 2750. 742432

Cumul ative delay starting at nmul 35 2:

mul _35 2 = 6.357016
sub_35 = 10.430123
real _out 35 = 10.430123

Complex Number Multiplier Example Files
B-6

Area for processors that can inplenment mul 35 2 (* = used for timng):

*DW2_mul t (nbw) = 2750. 742432
Cunul ative delay starting at imagi nary_out_36:
i magi nary_out _36 = 0.000000
Cunul ative delay starting at data_in_32:
data_in_32 = 0.000000
mul _35_2 = 6.340029
mul _36_2 = 6.340029
mul _36 = 6.340029
add_36 = 10.138293
i mginary_out_36 = 10.138293
sub_35 = 10.417433
real _out 35 = 10.417433

Cunul ative delay starting at mnul _36:

mul _36 = 6.357016
add_36 = 10.150984
i magi nary_out _36 = 10.150984
Area for processors that can inplenment nul _36 (* = used for timng):
*DWD2_nult(nbw) = 2750.742432
Cumul ative delay starting at add_36:
add_36 = 8.784022
i magi nary_out _36 = 8.784022
Area for processors that can inplenent add 36 (* = used for timng):
*DW1_add(rpl) = 94.239998
DW1 addsub(rpl) = 503.678986
Cumul ative delay starting at data_in_26:
data_in_26 = 0.000000
mul _35 = 6.357016
mul _36 = 6.357016
add_36 = 10.150984
sub_35 = 10.150984
i magi nary_out 36 = 10.150984
real _out 35 = 10.150984
Cumul ative delay starting at data_in_28:
data_in_28 = 0.000000
mul _36_2 = 6.357016
mul _35 2 = 6.357016
add_36 = 10.097484
i magi nary_out 36 = 10.097484

Complex Number Multiplier Example Files

B-7

sub_35 = 10.430123
real _out_35 = 10.430123

Cumul ative delay starting at sub_35:
sub_ 35 = 9.158618
real _out 35 = 9.158618

Area for processors that can inplenent sub 35 (* = used for timng):
DW1_sub(rpl) = 410.551453
*DW1_addsub(rpl) = 503.678986

Cunul ative delay starting at nul _36_2:
mul _36_2 = 6.357016
add_36 = 10.097484
i magi nary out 36 = 10.097484

Area for processors that can inplenment nmul 36 2 (* = used for timng):
*DWD2 _nult(nbw) = 2750.742432

Cycle Margin : 2.86 (Default)
FSM : 0. 55
MUX : 1.21
FF : 1.11
Cl ock Uncertainty : 0. 00

Complex Number Multiplier Example Files
B-8

Schedule Report

Example B-4 shows the schedule report generated by the
report _schedul e command.

Example B-4 Schedule Report

[*****report _schedul e*****/

EE R R R I R S I R R I R I R R I R R R R R I R S R R R R S O I O S

Dat e : Wed Nov 8 13:18:51 2000
Ver si on : 2000. 11- PROD
Desi gn : cmult_hs

EE R R R R R I I I I R I R I R R I R R I I I R R S R R R R I O I O S

EIE R I R I R I R I I I O R R R I O

* Summary report for process entry: *

EIE R I R I R I I O O R R R I O

d ock period 20.00
Loop timng information:

=T 01 0 8 cycles (cycles 0 - 8)
L oop 17, . . 7 cycles (cycles 1 - 8)
l00p _22. . . 1 cycle (cycles 2 - 3)
(continue) skip_short branch 1.............. (cycle 3)
(exit) EXIT L22 1. i (cycle 2)

Esti mat ed conbi nati onal area 6127
Esti nmat ed sequential area 1734
TOTAL 7861

9 control states

11 basic transitions
2 control inputs

7 control outputs

Complex Number Multiplier Example Files
B-9

Regi ster Types

8-bit register..................... 3
16-bit register.................... 1
Oper at or Types

(8_8->16)-bit DW2_nmult............ 2
(16_16->16)-bit DW1_add........... 1
(16_16->16)-bit DWI1 sub........... 1
I/O Ports

1-bit input port................... 1
1-bit registered output port....... 2
8-bit input port................... 1
16-bit registered output port...... 2

Complex Number Multiplier Example Files
B-10

Area Report

Example B-5 shows the report of area generated by the
report _area command.

Example B-5 Report Area

[*****report _area*****/

EIE R R I I R R R R R R R I R O

Report : area
Design : cmult _hs
Ver si on: 2000. 11- PROD

Dat e : Wed Nov 8 13:19:25 2000

R b Sk b o R R O S O I SRRk Ik S kb O

Li brary(s) Used:

cba_core (File: /u/bcp/|I MAGES/ rhei _dcshell PRODIibraries/syn/

t c6a_cbacore. db)

Nunmber of ports:
Nunber of nets:
Nunber of cells:
Nunber of references:

Conbi nati onal area:

Nonconbi nati onal area:
Net | nterconnect area:

Total cell area
Tot al area:

45

303
232

1303.
371.
5836.

1675.
7511.

31

439941
780029
250000

219971
469727

Complex Number Multiplier Example Files
B-11

Timing Report

Example B-6 shows the report of timing generated by the
report _tim ng command.

Example B-6 Report Timing

[*****report timng*****/

I nformation: Updating design information... (Ul D 85)

R S I S S S S R R S I I S S S S O b I
Report : timng
-path ful
-del ay max
-max_paths 1
Design : cmult_hs
Ver si on: 2000. 11- PROD
Dat e : Wed Nov 8 13:19:22 2000

R b ok b S R R I O O R Rk Ik S kb

Operating Conditions:
Wre Load Mddel Mbde: top

Startpoint: fsmblock cell/entry ctl_state/entry_ctl _state[4]
(rising edge-triggered flip-flop clocked by clk)
Endpoi nt: inaginary_out _reg/imgi nary_out _reg[15]
(rising edge-triggered flip-flop clocked by clk)
Path G oup: clk
Path Type: nmax

Des/ C ust/ Port Wre Load Mdel Li brary
cnmult _hs tc6al20n® cba_core
Poi nt I ncr Pat h
clock clk (rise edge) 0. 00 0. 00
cl ock network delay (ideal) 0. 00 0. 00
fsmblock cell/entry ctl_state/entry_ctl_state[4]/CLK (fdnba2)

0. 00 0.00 r
fsmblock _cell/entry ctl_state/entry_ctl_state[4]/Q (fdnba2)

1.28 1.28 r
U79/Y (invia0) 0.63 1.91 f
U9/ Y (or2cl) 0.77 2.68 r
U67/Y (bufla2) 0.74 3.43 r

Complex Number Multiplier Example Files
B-12

U4/ Y (aoda2) 0.85 4.28 r
r141/ Al 4] (crmult_hs DW2 rmult 8 8 1) 0. 00 4.28 r
r141/ Us7/Y (and2a2) 0.51 4.78 r
r141/ U1/ U3140_1 4 0/ CO (fala0) 0. 66 5.44 r
r141/ U1/ U3140_2_5 0/ S (fala0) 0. 86 6.30 r
r141/ U1/ U3140_3 5 0/ S (fala0) 0.78 7.09 f
r141/ U1/ U3220_4_5/ S (hala0) 0. 60 7.69 f
r141/ U1/ w9720/ Al 0] (cnult_hs DW1 add 11 1) 0. 00 7.69 f
r141/ U1/ W720/ U0_1_0/Y (or2c0) 0. 36 8.05r

[7m -More--[nfA

[K r141/U1/W9720/U0_3 0/Y (and2bl) 0. 47 8.51r
r141/ U1/ W9720/ U0_5 0/Y (xnor2a2) 0.59 9.10 f
r141/ U1/ W9720/ SUM 0] (crnult_hs DW1 add 11 1) 0. 00 9.10 f
r141/ PRODUCT[5] (cnult_hs DW2 nult 8 8 1) 0. 00 9.10 f
add_36/B[5] (crmult_hs DW1 add 16 0) 0. 00 9.10 f
add_36/ Ul_5/ CO (fala0) 0.73 9.83 f
add_36/Ul_6/CO (fala0) 0.64 10.47 f
add_36/Ul_7/CO (fala0) 0.64 11.11 f
add_36/Ul_8/ CO (fala0) 0.64 11.74 f
add_36/Ul_9/ CO (fala0) 0. 64 12.38 f
add_36/U1_10/ CO (fala0) 0. 64 13.02 f
add_36/U1_11/CO (fala0) 0. 64 13.65 f
add_36/U1_12/ CO (fala0) 0. 64 14.29 f
add_36/U1_13/ CO (fala0) 0. 64 14.93 f
add_36/Ul_14/ CO (fala0) 0. 67 15.60 f
add_36/Ul_15/Y (xor3a2) 0.51 16. 10 f
add_36/SUM 15] (cnult_hs DW1 add_16_0) 0. 00 16.10 f
U36/ Y (nx2a2) 0.34 16.45 f
U118/ Y (and2bil) 0. 27 16.72 f
i magi nary_out _reg/imagi nary_out _reg[15]/D (fdlal) 0. 00 16.72 f
data arrival tine 16. 72
clock clk (rise edge) 20. 00 20. 00
cl ock network delay (ideal) 0. 00 20. 00
i magi nary_out _reg/imagi nary_out _reg[15]/CLK (fdlal) 0. 00 20.00 r
library setup tine -0.27 19.73
data required tinme 19.73
data required tinme 19.73
data arrival tine -16.72
sl ack (MET) 3.01

Complex Number Multiplier Example Files
B-13

Report Resource

Example B-7 shows the report of resources generated by the
report _resour ce command after executing the conpi | e
command to do logic synthesis.

Example B-7 Report Resources

[*****report _resources*****/

EIE R R R I S R R R R R I I R O

Report : resources

Design : cmult _hs

Ver si on: 2000. 11- PROD

Dat e : Wed Nov 8 13:19:24 2000

EIE R R I S R R R R R R R R I R O I

Resource Sharing Report for design cmult_hs in file cnult.cc

| | | | Contai ned |

| Resource | Mdul e | Parameters | Resources | Contained Operations
| r139 | DW1_add | width=16 | | add_36

| ri141 | DWD2_rmul t | B width=8 | | mul _35 nul _35_2

| | | A wdth=8 | | nmul _36_2

| r143 | DWD2_rmul t | B width=8 | | mul _36

| | | A wdth=8 | |

| rl146 | DW1_sub | width=16 | | sub_35

| mpl enent ati on Report

		Current	Set
Cell	Modul e	I'nplementation	Inplenentation
add_36	DW1_ add	rpl	
nul _36	DWD2_nmul t	nbw	
ri141	DWD2_nmult	nbw	
sub_35	DW1 sub	rpl	

No mul tiplexors to report

Complex Number Multiplier Example Files
B-14

Index

Symbols

#include directive 8-2

A

all_inputs function 3-9
allocating,overview 1-9
analyze command 7-66
architectural exploration 5-2

evaluation 6-21

examples 5-2

guidelines 5-6
area 3-21

constraints 3-1

estimates 3-16, 3-17
array, large 7-2
asynchronous memories 7-24
attribute

map_to_modules 7-17

map_to_registerfiles 7-7

B

bc_chain_read_into_mem variable 5-12
bc_chain_read_into_oper variable 5-12
bc_check design command 2-10
bc_dont_register_input_port command 5-18

bc_enable_analysis_info variable 2-5, 6-2
bc_enable_chaining variable 5-11
bc_enable_speculative_execution variable 8-4
bc_margin command 5-15, 5-16
bc_report_arrays command 7-8
bc_report_ memories command 7-22, 7-30
bc_set_implementation command 8-6
bc_time_design command 2-11, 5-12
bc_use_registerfiles variable 7-6
bc_view command 6-3
BCView 6-1
analyzing scheduling errors 2-15
design evaluation 2-5
error analysis mode A-13
finding scheduling errors 2-15
overview 1-15
recommended flow 6-8
Reservation Table
chained operations 6-36
description 6-26
reading columns and rows 6-28
reviewing results 6-2
starting A-11
windows 6-5
FSM Viewer 6-6
HDL Browser 6-6
Reservation Table 6-6

IN-1

Scheduling Error Analyzer 6-7
Selection Inspector 6-6, 6-11
behavioral description
clock cycle and 1/0 3-3
bit-level timing 3-13
bitwise timing 5-8

C

calculating margin 5-12
cells to constrain 4-31
chain_operations command 5-11
chained
operations 5-11, 6-36
changing design name 2-7
clock
creation 2-8
period setting 2-8
clock cycle
code 4-10
compared to I/O 3-3
margin 3-14, 5-12
relation to operation delay 3-2
utilization 6-54
code browser, BCView 6-6
Code Editor, memory 7-61
combinational logic
definition 3-2
delay 3-2
command
log file A-4
command flow 2-4
overview 2-3
preserved functions 5-32
command script
complex multiplier B-4
commands
analyze 7-66
bc_check _design 2-10
bc_dont_register_input_port 5-18
bc_margin 5-15, 5-16

IN-2

bc_report_arrays 7-8
bc_report_memories 7-22, 7-30
bc_set implementation 8-6
bc_time_design 2-11, 5-12
bc_view 6-3

chain_operations 5-11

compile 2-24, 2-26
compile_preserved_functions 5-30
compile_systemc 2-6
create_clock 2-8, 3-7

dc_shell 2-3

define_design_lib 5-29
dont_chain_operations 5-11
elaborate 2-7

entry interface A-5
externalize_cell 7-26, 8-8

find 4-33

free 2-16
ignore_array_loop_precedences 7-11
ignore_array_precedences 7-11

ignore_memory_loop_precedences 7-33

ignore_memory_precedences 7-31
include A-8

link 2-7

list 7-18

list -libs 3-9, 5-35

order 2-4

pipeline_loop 4-45

read 2-20

read_lib 7-66
read_preserved_function_netlist 5-28
recording in a log A-5
remove_analysis_info 2-6, 6-3
remove_attribute 5-8
remove_clock 3-8

remove_design 2-16
remove_scheduling_constraints 4-54
report_area 2-16

report_clock 3-7

report_hierarchy 4-34

report_lib 3-10

report_multicycles 5-20

report_resource_estimates 2-12, 3-17, 5-15
report_resources 2-16
report_schedule 2-15, 4-20
abstract FSM 4-28
operations 4-22
report_schedule variables 4-26
report_scheduling_constraints 4-53
report_synlib 5-35, 7-19
report_timing 2-16
response 2-6
schedule 2-13, 2-14, 4-18, 4-31, 5-11
-extend_latency 2-13
script entry A-6
set_common_resource 4-55
set_cycles 4-37, 4-42
set_dont_use 5-7, 5-15
set_exclusive_use 4-57
set_input_delay 3-8
set_max_cycles 4-37, 4-42
set_memory_input_delay 7-26
set_memory_output_delay 7-26, 7-27
set_min_cycles 4-37, 4-42
set_operating_conditions 3-9
set_wire_load 3-12
UNIX shell commands A-9
UNIX shell entry A-9
write A-10
RTL .db 2-19
timed design 2-12
write_lib 7-66
write_rtl 2-20
compile_preserved_functions command 5-30
compile_systemc command 2-6
compiler directives
line_label 4-32
map_to_operator 5-34
preserve_function 5-24
resource 7-7, 7-17, 7-66
compiling gate-level netlist 2-24, 2-26
complex multiplier
command script B-4

source code B-2

components

sharing 4-7

constraints

environmental conditions 2-9
identifying cells 4-31

initial 2-8, 2-9, 3-1

latency 4-37

loop 4-38

memory 7-28

nested loops 4-39

removing 4-54

schedule 2-14, 4-18, 4-31
viewing 6-50

control constructs 6-12

control steps, in Scheduling Error Analyzer 6-15
create_clock command 2-8, 3-7

creating cells 4-31

critical path 3-19

determining 1-6
reviewing 6-61

cycle-fixed mode

description 4-13
description of 4-13
I/0 scheduling 4-12

D

data path

creation 1-10
in a circuit diagram 1-5

dc_shell A-4

dc_shell command entry 2-3
define environmental variables A-2
delay of an operation 6-53
deleting analysis information 6-3
design

checking 2-11
command order 2-4
constraints 2-9

flow

IN-3

resuming 2-3
resuming from RTL .db 2-17
SystemC Compiler 2-1
name changing 2-7
reducing complexity 5-23
summary reports 6-61
synchronous 3-2
timing 2-8
DesignWare
components 5-23
using 5-34
pipelined components 5-37
dont_chain_operations command 5-11
dont_start option A-12

E

elaborate command 2-7
entering commands 2-3
environmental variables

defining A-2
error analysis mode, BCView A-13
error messages A-15
errors

HLS-51 6-9

HLS-52 6-9

messages 6-10

scheduling 6-9
estimating time and area 2-11
example designs

file location 1-13
explore architecture 5-2

examples 5-2

guidelines 5-6
extend latency 4-19, 4-55
externalize_cell command 7-26, 8-8

F

fanouts, edges in Reservation Table 6-49

IN-4

find command 4-33
finding
array operation cells 7-14
cells 4-33
inherent constraints 6-50
Reservation Table objects 6-28
scheduling errors 6-9
user constraints 6-50
flip-flop
margin 3-15
flow recommended for BCView 6-8
for loops 4-41
free command 2-16
FSM
Conditions/Actions window 6-24
definition 4-8
in a circuit diagram 1-5
margin 3-16
FSM creation 1-10
FSM Viewer 6-6
usage 6-23
functions
all_inputs 3-9
preserve 5-23

G

gate-level netlist, writing out 2-24, 2-26
global margin value 5-16
goals, resource 4-55

H

handshake

pipelining loops 4-50
hardware allocation 1-9
HDL Browser 6-6
HDL file 2-20, 2-21
help A-15
hierarchy 5-23

HLS-51 error 6-9
HLS-52 error 6-9

I/O

define 3-3

mode selection 2-13

operations 4-10
ignore_array_loop_precedences command
7-11
ignore_array_precedences command 7-11
ignore_memory_loop_precedences command
7-33
ignore_memory_precedences command 7-31
implementation selection 5-7
include command A-8
inferring memories 7-15
inferring registers 4-5
infinite loops 4-41
Info Tips

finding scheduling errors 6-16

loop names 6-45
initial constraints, specifying 2-8
initial interval

pipelining, clock cycles 4-45, 4-46, 4-47
initiation interval 4-47
inputs to SystemC Compiler 1-12
invoking BCView A-11

L

labeling source code lines 4-32
large array 7-2
latency 4-57

definition 4-18

optimize 5-1
lifetime analysis of variables 4-6
line_label compiler directive 4-32
link command 2-7

link_library variable 2-5, A-3
list command 7-18
libraries 3-9, 5-35
log, creating file of commands A-4, A-5
loops
boundaries 4-41, 4-43
carry dependencies 4-48
constraining 4-37, 4-38
details 6-46
exits 6-45
for 4-41
infinite 4-41
names 6-45
nested
constraining 4-39
operations 6-48
pipelining 4-44
exit 4-52
restrictions 4-47
with handshake 4-50
with memory and /O 4-49
viewing 6-44
while 4-41, 4-52

M

man pages A-15
map_to_modules attribute 7-17
map_to_operator compiler directive 5-34
map_to_registerfiles attribute 7-7
margin

calculation 5-12

global value 5-16
maximum delay of a processor 6-53
memory

access 7-29

strategy 7-15

and registers 7-5

architecture exploring 7-35

assigning pins to wrapper logical ports 7-46

asynchronous 7-24

IN-5

basics 7-15

Code Editor 7-61

exploratory 7-35

exploratory wrapper 7-67

in a circuit diagram 1-5

inferring 1-11, 7-15

latency 7-43

pipelined accesses 7-29

pipelining loops 4-49

resources

constraining 7-28

starting wrapper GUI A-14

timing 7-25

vendor 7-34

vendor library 7-34

vendor wrapper 7-39

wrapper properties 7-52

wrapper testbench

Memory Wrapper Generator
testbench generation 7-79

Memory Wrapper Generator 7-16

tool description 7-34
methodology of SystemC Compiler 2-1
multicycle components

replacing 5-23
multicycle operations

definition 5-19

identifying 6-51

implementation 5-19

increased latency 5-21

latency increase 5-37
multiple modules 8-2
multiplexer

margin 3-16, 5-14

naming conventions
cells 4-31

netlists
levelized 2-21
precompiled 8-2

IN-6

nodes in SEA 6-12

@)
object_list 5-7
operations
chaining
bitwise 5-8
description 5-11
delay 3-2, 6-34
in Scheduling Error Analyzer 6-12
overview 3-5
selecting 5-7
operator
chaining
definition 5-8
optimize
latency and area 5-1
options
dont_start A-12
preprocessor A-9
outputs of SystemC Compiler 1-12
overview
SystemC Compiler
output 1-14

P

parallel paths 3-19
physical synthesis, preparation 2-25
pipeline
components 5-37
constraints
scheduling 4-45
loop 4-44
exit 4-52
overview 1-11
restrictions 4-47
pipeline_loop command 4-45
place and route, preparation 2-24
precedence

relations 7-31
precompiled netlist, creating 5-30
Precompiled netlists 8-2
preprocessor options A-9
preserve_function
compiler directive 5-23
restrictions 5-33
using 5-24
preserved functions 5-23
adding external files to primary design 2-8
bit-width restrictions 5-33
command
flow 5-32
compiling 5-30
creating 5-25
flow for using 5-27
identifying what to preserve 5-24
restrictions 5-33
processor chaining
definition 6-53
project settings file A-12

R

read command 2-20
read_lib command 7-66
read_preserved_function_netlist command
5-28
reducing runtimes 7-2
register file
inferring
overview 1-11
registers
allocation 4-6, 4-7
and memories 7-6
and RAM 7-5
bit width 6-42
dedicated 4-6
exclusive 4-57
file operators 7-13
inferred 4-5

margin 3-15, 5-13

removing unnecessary 5-18

sharing 4-6, 4-7

use 6-42
remove_analysis_info command 2-6, 6-3
remove_attribute command 5-8
remove_clock command 3-8
remove_design command 2-16
remove_scheduling_constraints command
4-54
removing scheduling constraints 4-54
removing unnecessary registers 5-18
report_area command 2-16
report_clock command 3-7
report_hierarchy command 4-34
report_lib command 3-10
report_multicycles command 5-20
report_resource_estimates command 2-12,
3-17, 5-15
report_resources command 2-16
report_schedule command 2-15, 4-20

abstract FSM 4-28

operations 4-22

variables 4-26
report_scheduling_constraints command 4-53
report_synlib command 5-35, 7-19
report_timing command 2-16
reports

array conflicts 7-9

clock margin 5-14

design summary 6-61

hierarchy 4-34

multicycle 5-21

nonconflicting memory accesses 7-30

pipelined loop timing summary 4-46

resource estimates 3-17

resource estimation, chained operations 5-10

schedule of FSM 4-28

schedule of operations 4-22

schedule of variables 4-26

IN-7

schedule summary 4-20

synthesis B-6

synthetic memory wrapper 7-19
Reservation Table 6-6

chained operations 6-36

clock-cycle utilization 6-54

derived edges 6-38

connectivity 6-40

description 6-26

hiding/showing resources 6-31

paths 6-38

reading columns and rows 6-28

register bit-width 6-42

register use 6-42

shared resources 6-35

viewing loop details 6-46

viewing loop exits 6-45

viewing loops 6-44

viewing operations in loops 6-48
reservation table 4-4
resource

delays 6-33

estimates report 5-10

setting goals 4-55

shared 6-35

sharing 4-4, 6-55, 6-59

utilization 6-32
resource compiler directive 7-7, 7-17, 7-66
resource estimate 3-17
resource-constrained scheduling 4-19
resource-driven scheduling 4-55
restrictions

pipelining loops 4-47

preserved functions 5-33
reviewing results with BCView 6-2
RTL

writing the .db file 2-19

writing the simulation file 2-21

IN-8

S

schedule command 2-13, 2-14, 4-18, 4-31
extend latency 4-19, 4-55
processor chaining 5-11

scheduling
constraints 2-14, 4-18, 4-31

removing 4-54
cycle fixed 1-8, 2-13, 4-11, 4-13
default 4-18
effort level 2-14
errors

finding 6-9
errors, using BCView 2-15
-extend_latency 4-19, 4-55
I/0 4-10
I/0 cycle-fixed mode 4-12
minimizing latency 4-3
objectives 4-18
operation 4-3
overview 1-7, 4-1, 4-2
performing 4-18
pipeline

constraints 4-45
resource sharing 4-4
resource-constrained 4-19
set_common_resource command 4-57
smallest area priority 2-13
summary report 4-20

superstate fixed 1-8, 2-13, 4-11, 4-14, 4-15,

4-16
-extend_latency 2-13
superstates, definition 4-16
timing-constrained 4-18
Scheduling Error Analyzer 6-7, 6-10
description 6-9
determining control steps 6-15
finding scheduling errors 6-16
nodes 6-12
scripts A-6
search_path variable 2-5, A-3
Selection Inspector 6-6

Selection Inspector Window 6-11, 6-37
set_common_resource command 4-55
set_cycles command 4-37, 4-42
set_dont_use command 5-7, 5-15
set_exclusive_use command 4-57
set_input_delay command 3-8
set_max_cycles command 4-37, 4-42
set_memory_input_delay command 7-26
set_memory_output_delay command 7-26,
7-27
set_min_cycles command 4-37, 4-42
set_operating_conditions command 3-9
set_wire_load command 3-12
setup variables A-3
sharing components 4-7
sharing registers 4-7
simulation

cycle-accurate levelized HDL netlist 2-21

writing out gate-level netlist 2-24, 2-25, 2-26
souce code, labeling lines 4-32
source browser 6-6
source code

complex multiplier B-2
speculative execution 8-4
starting

BCView A-11

memory wrapper GUI A-14

SystemC Compiler A-4
superstate-fixed mode

description of 4-16

I/0 scheduling 4-14
superstates, definition of 4-16
.synopsys_dc.setup file A-3
synthesis

controlling 4-10

preserved functions 5-31

reports B-6
synthesis flow 1-3
synthesizable RTL out

write command to generate 2-20

synthetic library
define 2-5
location 1-14
synthetic_library
variable 2-5
synthetic_library variable A-3
SystemC Compiler
design flow 2-1
I/O operations 4-11
output
RT-level 2-18, 2-19
timed .db file 2-12

T

target_library variable 2-5, A-3
technology library 1-13
location 1-13
time, units of measure 3-21
timed .db file
writing out 2-12
timing 1-6
bit level 3-13
constraints 3-1, 4-57
estimates 3-17
estimation 5-7

timing of memories 7-25
timing-constrained scheduling 4-18
tracing constraints 6-15

U

UNIX shell commands A-9
user constraints 6-14
using scripts 2-3

V

variables
bc_chain_read_into_mem 5-12
bc_chain_read_into_oper 5-12

IN-9

bc_enable_analysis_info 2-5, 6-2
bc_enable_chaining 5-11
bc_enable_speculative_execution 8-4
bc_use_registerfiles 7-6
environmental

defining A-2
lifetime analysis 4-6
link_library 2-5, A-3
search_path 2-5, A-3
setup A-3
.synopsys_dc.setup A-3
synthetic_library 2-5, A-3
target_library 2-5, A-3

vendor

technology library 1-13
verification, comparison of scheduling modes

4-16

IN-10

W

while loops 4-41
wrapper
exploratory memory 7-67
vendor memory 7-39
write
gate-level netlist for simulation 2-24, 2-25,
2-26
gate-level netlist for synthesis 2-24, 2-26
HDL file 2-20, 2-21
RTL .db file 2-19
timed .db file 2-12, A-10
timed design 2-12
write_lib command 7-66
write_rtl command 2-20

	Head1TOC - What’s New in This Release xxviii
	Head1TOC - About This Guide xxx
	Head1TOC - Customer Support xxxiii
	ChapTitleTOC - 1. Introduction to SystemC Compiler Behavioral Synthesis
	Head1TOC - Understanding What SystemC Compiler Does 1�3
	Head2TOC - Synthesis With SystemC Compiler 1�4
	Head2TOC - Timing 1�6
	Head2TOC - Scheduling 1�7
	Head2TOC - Allocating Hardware 1�9
	Head2TOC - Creating an FSM and Data Path 1�10
	Head2TOC - Pipelining Loops 1�11
	Head2TOC - Inferring Memories 1�11

	Head1TOC - Libraries and Other Inputs 1�12
	Head2TOC - Behavioral Description 1�13
	Head2TOC - Technology Library 1�13
	Head2TOC - Synthetic Library 1�14

	Head1TOC - Outputs From SystemC Compiler 1�14

	ChapTitleTOC - 2. Using SystemC Compiler
	Head1TOC - Usage and Commands 2�3
	Head1TOC - Defining Libraries 2�5
	Head1TOC - Compiling and Elaborating the Source Code 2�5
	Head2TOC - Preparing to Use BCView 2�5
	Head2TOC - Using the compile_systemc Command 2�6
	Head2TOC - Elaborating a Design With a Single Behavioral Module 2�7
	Head2TOC - Elaborating a Hierarchical Design With Multiple Behavioral
	Head2TOC - Modules 2�7
	Head2TOC - Elaborating a Design With Multiple Files 2�8

	Head1TOC - Assigning Timing and Area Design Constraints 2�8
	Head2TOC - Setting the Clock Period 2�8
	Head2TOC - Setting Other Initial Constraints 2�9

	Head1TOC - Checking the Design 2�10
	Head2TOC - Running Check Design 2�10
	Head2TOC - Changing the Code 2�10

	Head1TOC - Estimating Time and Area 2�11
	Head2TOC - Reporting Timing and Area Estimates 2�12
	Head2TOC - Saving the Timed Design 2�12

	Head1TOC - Scheduling the Design and Allocating Resources 2�13
	Head2TOC - Scheduling for Smallest Area 2�13
	Head2TOC - Changing the Effort Level 2�14
	Head2TOC - Setting Schedule Constraints 2�14
	Head2TOC - Using BCView to Analyze Scheduling Errors 2�15
	Head2TOC - Analyzing Scheduling Results 2�15

	Head1TOC - Generating Summary Reports 2�16
	Head1TOC - Removing Designs from SystemC Compiler Memory 2�16
	Head1TOC - Resuming Synthesis From a Saved .db File 2�17
	Head1TOC - Writing the RTL Files 2�18
	Head2TOC - Writing the RTL .db File 2�19
	Head2TOC - Writing a Synthesizable RTL HDL File 2�20
	Head2TOC - Writing an RTL Simulation File 2�21
	Head2TOC - Specifying VHDL Packages 2�23
	Head2TOC - Specifying Verilog Include Files 2�23

	Head1TOC - Compiling and Writing a Gate-Level Netlist 2�24
	Head2TOC - Preparing for Place and Route 2�24
	Head2TOC - Preparing for Physical Compiler 2�25
	Head3TOC - Preparing RTL for Physical Synthesis 2�25
	Head3TOC - Preparing Gate-Level for Physical Synthesis 2�26

	ChapTitleTOC - 3. Timing and Area Estimation
	Head1TOC - Understanding Clock Cycle, I/O, and Operation Relationships 3�2
	Head2TOC - Operation Delay and Clock Cycle 3�2
	Head2TOC - I/O Protocol 3�3
	Head2TOC - Operations and Clock Cycles 3�5

	Head1TOC - Setting Your Timing Environment 3�7
	Head2TOC - Setting Clocks 3�7
	Head2TOC - Setting Input Delays 3�8
	Head2TOC - Setting Operating Conditions 3�9
	Head3TOC - Listing Libraries 3�9
	Head3TOC - Listing Operating Conditions 3�10

	Head2TOC - Setting Wire Loads 3�12

	Head1TOC - Timing the Design 3�13
	Head2TOC - Timing Through the Components 3�13
	Head2TOC - Computing the Clock Cycle Margin 3�14

	Head1TOC - Interpreting the Timing and Area Resource Report 3�17
	Head2TOC - Evaluating the Resource Estimate Report 3�17
	Head2TOC - Looking at Parallel Paths 3�19
	Head2TOC - Area Estimates 3�21

	ChapTitleTOC - 4. Scheduling and Scheduling Constraints
	Head1TOC - Scheduling for Synthesis 4�2
	Head2TOC - Operation Scheduling 4�3
	Head2TOC - Resource Sharing 4�4
	Head2TOC - Inferred Registers 4�5
	Head2TOC - Register Sharing 4�6
	Head2TOC - Controller (FSM) Generation 4�7
	Head2TOC - Controlling Synthesis 4�10

	Head1TOC - Selecting an I/O Scheduling Mode 4�10
	Head2TOC - Cycle-Fixed I/O Scheduling Mode 4�12
	Head2TOC - Using Cycle-Fixed I/O Scheduling Mode 4�12
	Head2TOC - Superstate-Fixed I/O Scheduling Mode 4�14
	Head2TOC - Using Superstate-Fixed I/O Scheduling Mode 4�15
	Head2TOC - Comparing the I/O Scheduling Modes 4�16

	Head1TOC - Performing Scheduling 4�18
	Head2TOC - Scheduling Objectives 4�18
	Head2TOC - Using Timing-Constrained Scheduling 4�18
	Head2TOC - Using Resource-Driven Scheduling 4�19

	Head1TOC - Analyzing the Scheduling Report 4�20
	Head2TOC - Schedule Summary Report 4�20
	Head2TOC - Schedule Report of Operations 4�22
	Head2TOC - Schedule Report of Variables 4�26
	Head2TOC - Schedule Report of the FSM 4�28

	Head1TOC - Adding Scheduling Constraints 4�31
	Head2TOC - Matching Cells to Operations and Loops 4�31
	Head2TOC - Naming Conventions 4�31
	Head2TOC - Using Line Labels 4�32
	Head2TOC - Using Find 4�33
	Head2TOC - Reporting Hierarchy 4�34
	Head2TOC - Constraining Loops and Operations 4�37
	Head3TOC - Constraining Between Two Operations 4�37
	Head3TOC - Constraining a Loop 4�38
	Head3TOC - Constraining Nested Loops 4�39
	Head3TOC - Placing Constraints Across Loop Boundaries 4�41
	Head3TOC - Using the Set Cycles Commands and Options 4�42

	Head2TOC - Pipelining a Loop 4�44
	Head3TOC - Restrictions and Limitations For Pipelining Loops 4�47
	Head3TOC - Determining the Initiation Interval 4�47
	Head3TOC - Pipelining a Loop With Handshake Signals 4�50

	Head2TOC - Determining Current Scheduling Constraints 4�53
	Head2TOC - Removing Scheduling Constraints 4�54

	Head1TOC - Constraining Resource Allocations 4�55
	Head2TOC - Setting Common Resources 4�55
	Head2TOC - Setting Exclusive Registers 4�57

	ChapTitleTOC - 5. Optimizing Latency and Area
	Head1TOC - Exploring Architectures and Improving the Quality of Results 5�2
	Head2TOC - Looking at Architectural Tradeoffs 5�2
	Head2TOC - Architectural Exploration Guidelines 5�6

	Head1TOC - Controlling Operation and Implementation Selection 5�7
	Head1TOC - Operation Chaining 5�8
	Head2TOC - Operation Chaining With Bitwise Timing 5�8
	Head2TOC - Determining Operation Chaining 5�10
	Head2TOC - Controlling Operation Chaining 5�11
	Head2TOC - Controlling Margin Calculation 5�12

	Head1TOC - Removing Unnecessary Registers 5�18
	Head1TOC - Using Multicycle Operations 5�19
	Head2TOC - Reporting Multicycle Operations 5�20
	Head2TOC - Increased Latency of Multicycle Operations 5�21
	Head2TOC - Replacing Multicycle Components 5�23

	Head1TOC - Using Preserved Functions 5�23
	Head2TOC - When to Preserve Functions 5�24
	Head2TOC - Determining Which Functions to Preserve 5�24
	Head2TOC - Creating Preserved Functions 5�25
	Head2TOC - Preserving a Function 5�27
	Head3TOC - Using a Precompiled Netlist for a Preserved Function 5�28
	Head3TOC - Compiling Preserved Functions 5�29

	Head2TOC - Using Preserved Functions for Behavioral Synthesis 5�31
	Head2TOC - Limitations of Preserved Functions 5�33
	Head3TOC - Bit-Width Restrictions 5�33
	Head3TOC - Hierarchy 5�33
	Head3TOC - Sequential Logic 5�34

	Head1TOC - Using DesignWare Components 5�34
	Head2TOC - Listing DesignWare Components 5�35
	Head2TOC - Finding and Implementing Pipelined Components 5�37

	ChapTitleTOC - 6. Analyzing Designs With BCView
	Head1TOC - Using BCView 6�2
	Head2TOC - Preparing Designs for BCView 6�2
	Head2TOC - Starting BCView 6�3
	Head2TOC - Removing BCView Analysis Information 6�3

	Head1TOC - Using BCView Windows 6�3
	Head1TOC - Recommended Usage for BCView 6�8
	Head1TOC - Examining Scheduling Errors 6�9
	Head2TOC - Identifying Errors to Analyze 6�9
	Head2TOC - Using the Scheduling Error Analyzer 6�10
	Head3TOC - Viewing the Selection Inspector Window 6�11
	Head3TOC - Determining the Operations That Bound the Error 6�12
	Head3TOC - Examining the Graphic Information 6�13
	Head3TOC - Fixing the Code and Rescheduling 6�21

	Head1TOC - Evaluating the Architecture Generated by SystemC Compiler 6�21
	Head2TOC - Reviewing FSM Operation 6�22
	Head3TOC - Stepping Through the FSM 6�23
	Head3TOC - Reviewing State Transitions and Actions 6�24

	Head2TOC - Evaluating the Scheduled Design 6�26
	Head3TOC - Understanding the Reservation Table Window 6�26
	Head3TOC - Viewing Resources, Latencies, and Operation Sharing 6�31
	Head3TOC - Viewing Clocks, Chaining, and Combinational Delay 6�36
	Head3TOC - Examining Paths 6�38
	Head3TOC - Reviewing Register Use 6�42
	Head3TOC - Viewing Loops 6�44
	Head3TOC - Identifying Constraints and Data Dependencies 6�49

	Head1TOC - Exploring Architectural Improvements 6�51
	Head2TOC - Reducing Latency 6�51
	Head3TOC - Identifying Multicycle Operations 6�51
	Head3TOC - Identifying Chaining Opportunities 6�53
	Head3TOC - Viewing Clock-Cycle Utilization 6�54

	Head2TOC - Reducing Area 6�55
	Head2TOC - Reviewing Critical Paths 6�61

	Head1TOC - Viewing the Design Summary 6�61

	ChapTitleTOC - 7. Using Register Files and Memories for Arrays
	Head1TOC - Comparing Array Implementations 7�2
	Head2TOC - Comparing Arrays, Register Files, and Memories 7�3
	Head2TOC - Array Implementation Recommendations 7�6

	Head1TOC - Mapping Arrays to Register Files 7�6
	Head2TOC - Mapping All Arrays to Register Files 7�6
	Head2TOC - Mapping Specific Arrays to Register Files 7�7
	Head2TOC - Understanding the Effects of Mapping to Register Files 7�8
	Head2TOC - Reporting Array Access Conflicts 7�8
	Head2TOC - Allowing Multiple Accesses in the Same Cycle 7�10
	Head2TOC - Identifying Register File Operations 7�13
	Head2TOC - Finding Array Operation Cells 7�14

	Head1TOC - Mapping Arrays to Memory 7�15
	Head2TOC - Preparing to Use Memories 7�15
	Head3TOC - Using Memory in Your Design 7�17
	Head3TOC - Getting Memory and Library Information 7�18

	Head2TOC - Using Asynchronous Memories 7�24
	Head2TOC - Allowing for Vendor Memory Timing 7�25
	Head3TOC - Setting Memory Input Delay for Vendor Memory Timing 7�26
	Head3TOC - Setting Memory Output Delay for the Vendor Timing
	Head3TOC - Specifications 7�27

	Head2TOC - Constraining Read and Write Operations on Memory 7�28
	Head3TOC - Reporting Conflicting Memory Accesses 7�29
	Head3TOC - Using the ignore_memory_precedences Command 7�31
	Head3TOC - Using the ignore_memory_loop_precedences Command 7�32

	Head1TOC - Generating Memory Wrappers 7�34
	Head2TOC - Understanding the Memory Wrapper Generator Tool 7�34
	Head2TOC - Using the Memory Wrapper Generator Tool 7�35
	Head2TOC - Creating a Memory Wrapper for a Vendor Memory 7�39
	Head3TOC - Defining the Memory Type and Properties 7�40
	Head3TOC - Assigning Memory Pins to the Wrapper Logical Ports 7�46
	Head3TOC - Defining the Memory Wrapper Properties 7�52
	Head3TOC - Reviewing the Memory Wrapper 7�56
	Head3TOC - Editing the Waveform Values 7�56
	Head3TOC - Adding Registers to the Memory Wrapper 7�58
	Head3TOC - Adding Custom Logic to the Memory Wrapper 7�59
	Head3TOC - Viewing and Editing the Wrapper Properties 7�61
	Head3TOC - Saving the Memory Wrapper Files 7�64

	Head2TOC - Using Generated Vendor Memory Wrappers With SystemC Compiler 7�66
	Head2TOC - Creating a Memory Wrapper for an Exploratory Memory 7�67
	Head3TOC - Defining the Memory Type and Properties 7�68
	Head3TOC - Assigning Pins to the Memory Logical Ports 7�73
	Head3TOC - Defining the Exploratory Memory Wrapper Properties 7�75
	Head3TOC - Reviewing and Editing the Exploratory Memory Wrapper 7�78
	Head3TOC - Saving the Exploratory Memory Wrapper Files 7�78

	Head2TOC - Generating a Memory Wrapper Testbench 7�79

	ChapTitleTOC - 8. Advanced Techniques
	Head1TOC - Using Multiple Files to Describe a Design 8�2
	Head2TOC - Using #include 8�2
	Head2TOC - Using Precompiled Netlists 8�2

	Head1TOC - Speculative Execution 8�4
	Head1TOC - Setting a Specific Implementation for Components 8�6
	Head1TOC - Externalize a Cell 8�8

	AppTitleTOC - Appendix A. Setting Up SystemC Compiler
	Head1TOC - Defining Environment Variables and Paths A�2
	Head1TOC - Defining Libraries and Other Variables A�3
	Head1TOC - Starting the SystemC Compiler Command Interface A�4
	Head2TOC - Creating a command.log File A�4
	Head2TOC - Recording Your Command Session A�5

	Head1TOC - Issuing SystemC Compiler Commands A�5
	Head1TOC - Listing SystemC Compiler Variables A�6
	Head1TOC - Using Scripts A�6
	Head2TOC - Creating Scripts A�6
	Head2TOC - Script Example A�7
	Head3TOC - Using the Script A�8

	Head2TOC - Using UNIX Shell Commands A�9

	Head1TOC - Using compile_systemc Command Preprocessor Options A�9
	Head1TOC - Starting BCView A�11
	Head2TOC - Starting BCView From dc_shell A�11
	Head2TOC - Starting BCView From a UNIX Shell A�12
	Head2TOC - Using BCView in Your Script A�12
	Head2TOC - Opening BCView Windows A�13

	Head1TOC - Starting the Memory Wrapper Tool A�14
	Head1TOC - Getting Command, Variable, and Error Help A�15
	Head2TOC - System Prompt A�15
	Head2TOC - SystemC Compiler Command Prompt A�15

	AppTitleTOC - Appendix B. Complex Number Multiplier Example Files
	Head1TOC - Complex Number Multiplier Source Code B�2
	Head1TOC - Command Script B�4
	Head1TOC - Reports Created During Synthesis B�6
	Head2TOC - Estimated Resources B�6
	Head2TOC - Schedule Report B�9
	Head2TOC - Area Report B�11
	Head2TOC - Timing Report B�12
	Head2TOC - Report Resource B�14

	FigureTitleLOF - Figure 1�1 Behavioral Synthesis Compared to RTL Synthesis 1�3
	FigureTitleLOF - Figure 1�2 Structure of the Circuit Generated by SystemC Compiler
	FigureTitleLOF - During Behavioral Synthesis 1�5
	FigureTitleLOF - Figure 1�3 Scheduling Into Specific Clock Cycles 1�7
	FigureTitleLOF - Figure 1�4 Allocation of Resources 1�9
	FigureTitleLOF - Figure 1�5 An Algorithm and the Created Data Path and FSM 1�10
	FigureTitleLOF - Figure 1�6 SystemC Compiler Input and Output Flow 1�12
	FigureTitleLOF - Figure 2�1 SystemC Compiler Commands Use in the Flow 2�4
	FigureTitleLOF - Figure 3�1 Timing Diagram of the Complex Multiplier I/O
	FigureTitleLOF - Protocol 3�4
	FigureTitleLOF - Figure 3�2 Operations of the Complex Multiplier 3�6
	FigureTitleLOF - Figure 3�3 Typical Timing Path 3�15
	FigureTitleLOF - Figure 3�4 Estimated Resources Report (Partial) 3�18
	FigureTitleLOF - Figure 3�5 Parallel Paths in the Estimated Resources Report
	FigureTitleLOF - (Partial) 3�20
	FigureTitleLOF - Figure 4�1 Scheduling Into Specific Clock Cycles 4�2
	FigureTitleLOF - Figure 4�2 Operation Scheduling 4�3
	FigureTitleLOF - Figure 4�3 Resource Allocation Reservation Table 4�4
	FigureTitleLOF - Figure 4�4 Register Allocation Reservation Table 4�7
	FigureTitleLOF - Figure 4�5 Shared Component 4�8
	FigureTitleLOF - Figure 4�6 Shared Register 4�8
	FigureTitleLOF - Figure 4�7 FSM Control Signals 4�9
	FigureTitleLOF - Figure 4�8 Synthesized Design Representation 4�9
	FigureTitleLOF - Figure 4�9 Behavioral Code and I/O Operation 4�11
	FigureTitleLOF - Figure 4�10 Cycle-Fixed I/O Mode 4�12
	FigureTitleLOF - Figure 4�11 Superstate-Fixed I/O Mode 4�15
	FigureTitleLOF - Figure 4�12 Source Code and I/O Scheduling Mode Simulation 4�17
	FigureTitleLOF - Figure 4�13 Resources With Loops 4�40
	FigureTitleLOF - Figure 4�14 Nonpipelined Loop 4�44
	FigureTitleLOF - Figure 4�15 Pipelined Loop 4�45
	FigureTitleLOF - Figure 4�16 Invalid Loop Initiation Value 4�48
	FigureTitleLOF - Figure 4�17 Valid Loop Initiation Value 4�48
	FigureTitleLOF - Figure 4�18 Invalid Memory and I/O Access 4�49
	FigureTitleLOF - Figure 4�19 Valid Memory and I/O Access 4�50
	FigureTitleLOF - Figure 4�20 Handshake Signal Preventing Loop Pipelining 4�50
	FigureTitleLOF - Figure 4�21 Pipelined Loop With Handshake Signal 4�51
	FigureTitleLOF - Figure 4�22 Exit From a Pipelined Loop 4�52
	FigureTitleLOF - Figure 5�1 Architectural Exploration 5�3
	FigureTitleLOF - Figure 5�2 Bitwise Timing for Operation Chaining 5�9
	FigureTitleLOF - Figure 5�3 Chained Operations in the Estimated Resources
	FigureTitleLOF - Report (Partial) 5�10
	FigureTitleLOF - Figure 5�4 Typical Timing Path 5�13
	FigureTitleLOF - Figure 5�5 Chaining Operation Timing 5�15
	FigureTitleLOF - Figure 5�6 Multicycle Operation 5�19
	FigureTitleLOF - Figure 5�7 Multicycle Operations in Conditional Statements 5�22
	FigureTitleLOF - Figure 5�8 Flow for Preserving Functions 5�27
	FigureTitleLOF - Figure 5�9 Command Flow With Preserved Functions 5�32
	FigureTitleLOF - Figure 6�1 BCView Windows 6�5
	FigureTitleLOF - Figure 6�2 BCView Recommended Usage 6�8
	FigureTitleLOF - Figure 6�3 Selection Inspector With Error Information 6�11
	FigureTitleLOF - Figure 6�4 Scheduling Error Analyzer With Bounding Operations 6�12
	FigureTitleLOF - Figure 6�5 Scheduling Error Analyzer Paths and Clock Cycles 6�13
	FigureTitleLOF - Figure 6�6 Expanded Derived Edge 6�17
	FigureTitleLOF - Figure 6�7 Selection Inspector Window With Edge Information 6�18
	FigureTitleLOF - Figure 6�8 Code Browser With Behavioral Code 6�20
	FigureTitleLOF - Figure 6�9 FSM Viewer With States and Transitions 6�22
	FigureTitleLOF - Figure 6�10 Selected Transition With Conditions and Actions 6�25
	FigureTitleLOF - Figure 6�11 Reservation Table Window 6�27
	FigureTitleLOF - Figure 6�12 Reservation Table Toolbar Buttons 6�30
	FigureTitleLOF - Figure 6�13 Resource Utilization in Reservation Table 6�32
	FigureTitleLOF - Figure 6�14 Resource Delay in Reservation Table 6�33
	FigureTitleLOF - Figure 6�15 Operation Delay in Reservation Table 6�34
	FigureTitleLOF - Figure 6�16 Operation Delay Detail in Selection Inspector 6�34
	FigureTitleLOF - Figure 6�17 Shared Resources in Reservation Table 6�35
	FigureTitleLOF - Figure 6�18 Operation Delays in Clock Cycles 6�37
	FigureTitleLOF - Figure 6�19 Derived Edge Example 6�39
	FigureTitleLOF - Figure 6�20 Registers in the Reservation Table 6�42
	FigureTitleLOF - Figure 6�21 Loops in the Reservation Table 6�44
	FigureTitleLOF - Figure 6�22 Loop Information Tips 6�46
	FigureTitleLOF - Figure 6�23 Loop Details in Selection Inspector 6�47
	FigureTitleLOF - Figure 6�24 Loop Operations Zoomed View 6�48
	FigureTitleLOF - Figure 6�25 Clock Cycle Utilization 6�54
	FigureTitleLOF - Figure 6�26 Little Resource Sharing 6�56
	FigureTitleLOF - Figure 6�27 Shared Resources 6�57
	FigureTitleLOF - Figure 6�28 Shareable Resources That Are Not Shared 6�58
	FigureTitleLOF - Figure 6�29 Forced Resource Sharing 6�60
	FigureTitleLOF - Figure 6�30 Design Summary in Selection Inspector Window 6�62
	FigureTitleLOF - Figure 7�1 Array Generation 7�2
	FigureTitleLOF - Figure 7�2 Register File Architecture 7�3
	FigureTitleLOF - Figure 7�3 Dual-Port Memory Operations 7�4
	FigureTitleLOF - Figure 7�4 Multiple Accesses in the Same Cycle That May
	FigureTitleLOF - Conflict 7�12
	FigureTitleLOF - Figure 7�5 Asynchronous Memory With Registered Input 7�24
	FigureTitleLOF - Figure 7�6 Manually Adding Registers to an Asynchronous
	FigureTitleLOF - Memory 7�25
	FigureTitleLOF - Figure 7�7 Memory Access Time Specification 7�25
	FigureTitleLOF - Figure 7�8 Pipelined Memory Accesses 7�29
	FigureTitleLOF - Figure 7�9 Invalid Schedule With Loop Carry Dependency 7�32
	FigureTitleLOF - Figure 7�10 Empty Memory Wrapper Window 7�36
	FigureTitleLOF - Figure 7�11 Completed Memory Wrapper 7�37
	FigureTitleLOF - Figure 7�12 Memory Selection Dialog Box 7�40
	FigureTitleLOF - Figure 7�13 Memory Selection from a DB File Dialog Box 7�41
	FigureTitleLOF - Figure 7�14 Memory Definition Dialog Box 7�42
	FigureTitleLOF - Figure 7�15 Completed Memory Definition 7�45
	FigureTitleLOF - Figure 7�16 Memory Pin Definition Dialog Box 7�47
	FigureTitleLOF - Figure 7�17 Completed Memory Pin Definition 7�49
	FigureTitleLOF - Figure 7�18 Completed Wrapper Properties Dialog Box 7�51
	FigureTitleLOF - Figure 7�19 Wrapper Summary 7�54
	FigureTitleLOF - Figure 7�20 Memory Wrapper Displayed in Main Window 7�55
	FigureTitleLOF - Figure 7�21 Read Port Protocol Waveforms 7�57
	FigureTitleLOF - Figure 7�22 Manually Adding Registers to an Asynchronous
	FigureTitleLOF - Memory 7�59
	FigureTitleLOF - Figure 7�23 Code Editor Dialog Box With Default Code 7�60
	FigureTitleLOF - Figure 7�24 Properties Dialog Boxes 7�63
	FigureTitleLOF - Figure 7�25 Export Wrapper Dialog Box 7�65
	FigureTitleLOF - Figure 7�26 Exploratory Memory Selection Dialog Box 7�68
	FigureTitleLOF - Figure 7�27 Exploratory Memory Definition Dialog Box 7�69
	FigureTitleLOF - Figure 7�28 Completed Exploratory Memory Definition 7�71
	FigureTitleLOF - Figure 7�29 Exploratory Memory Pin Definition Dialog Box 7�72
	FigureTitleLOF - Figure 7�30 Exploratory Wrapper Properties Dialog Box 7�74
	FigureTitleLOF - Figure 7�31 Exploratory Memory Wrapper Summary 7�76
	FigureTitleLOF - Figure 7�32 Exploratory Memory Wrapper in Main Window 7�77
	FigureTitleLOF - Figure 8�1 Externalize a Cell 8�8
	TableTitleLOT - Table 6-1 Edges Representing Constraints 6�14
	TableTitleLOT - Table 6-2 Reservation Table Symbols 6�28
	TableTitleLOT - Table 7-1 Comparing Arrays, Register Files, and Memories 7�5
	ExampleTitleLOP - Example 3�1 Complex Multiplier I/O Protocol 3�3
	ExampleTitleLOP - Example 3�2 Complex Multiplier Arithmetic Operations 3�5
	ExampleTitleLOP - Example 3�3 Report Clock 3�7
	ExampleTitleLOP - Example 3�4 Listing Libraries 3�10
	ExampleTitleLOP - Example 3�5 Library Report (Partial) 3�11
	ExampleTitleLOP - Example 3�6 Wire Load Model (Partial) 3�12
	ExampleTitleLOP - Example 3�7 Timing Report (Partial) 3�14
	ExampleTitleLOP - Example 3�8 Clock Margin in the Resource Estimate Report 3�16
	ExampleTitleLOP - Example 3�9 Estimated Resource Report 3�21
	ExampleTitleLOP - Example 4�1 Schedule Report Summary 4�21
	ExampleTitleLOP - Example 4�2 Report Schedule Operations 4�24
	ExampleTitleLOP - Example 4�3 Report Schedule Variables 4�27
	ExampleTitleLOP - Example 4�4 Report Schedule Abstract FSM 4�29
	ExampleTitleLOP - Example 4�5 Report Hierarchy Before Scheduling 4�35
	ExampleTitleLOP - Example 4�6 Report Hierarchy After Scheduling 4�36
	ExampleTitleLOP - Example 4�7 Constraining Between Two Operations 4�38
	ExampleTitleLOP - Example 4�8 Constraining a Loop 4�38
	ExampleTitleLOP - Example 4�9 Nested Loops With Operations 4�39
	ExampleTitleLOP - Example 4�10 Passing a Constraint Between Loops 4�42
	ExampleTitleLOP - Example 4�11 Pipelined Loop Timing Summary (Partial) 4�46
	ExampleTitleLOP - Example 4�12 Commands for Minimum Resource-Driven
	ExampleTitleLOP - Scheduling 4�56
	ExampleTitleLOP - Example 4�13 Commands for Maximum Resource-Driven
	ExampleTitleLOP - Scheduling 4�56
	ExampleTitleLOP - Example 4�14 Commands for Forced Maximum Resource-Driven
	ExampleTitleLOP - Scheduling 4�57
	ExampleTitleLOP - Example 5�1 Clock Margin in the Resource Estimate Report 5�14
	ExampleTitleLOP - Example 5�2 Multicycle Report (Partial) 5�21
	ExampleTitleLOP - Example 5�3 Creating a Preserved Function 5�26
	ExampleTitleLOP - Example 5�4 Defining a Preserved Function in a Separate File 5�26
	ExampleTitleLOP - Example 5�5 Using the read_preserved_function_netlist
	ExampleTitleLOP - Command 5�28
	ExampleTitleLOP - Example 5�6 Using the compile_preserved_functions Command 5�30
	ExampleTitleLOP - Example 5�7 Using DesignWare Components 5�35
	ExampleTitleLOP - Example 5�8 Reporting DesignWare Components 5�36
	ExampleTitleLOP - Example 5�9 Listing Pipelined Components 5�38
	ExampleTitleLOP - Example 6�1 HLS-52 Error Message 6�10
	ExampleTitleLOP - Example 7�1 Defining a Register File for a Specific Array 7�7
	ExampleTitleLOP - Example 7�2 Report of Array Conflicts 7�9
	ExampleTitleLOP - Example 7�3 Accesses That May or May Not Conflict 7�11
	ExampleTitleLOP - Example 7�4 Declaring a Local Memory Resource 7�18
	ExampleTitleLOP - Example 7�5 Report of Synthetic Memory Wrapper 7�19
	ExampleTitleLOP - Example 7�6 Report of a Synthetic Library 7�22
	ExampleTitleLOP - Example 7�7 Report of Memories Used in a Design 7�23
	ExampleTitleLOP - Example 7�8 Set Memory Input Delay 7�27
	ExampleTitleLOP - Example 7�9 Report Nonconflicting Memory Accesses 7�30
	ExampleTitleLOP - Example 7�10 Memory Array Definition 7�66
	ExampleTitleLOP - Example 8�1 Executing Without Speculative Execution 8�5
	ExampleTitleLOP - Example 8�2 Executing With Speculative Execution 8�6
	AppExampleTitleLOP - Example A�1 SystemC Compiler Command Script A�7
	AppExampleTitleLOP - Example A�2 Using BCView in a Script A�12
	AppExampleTitleLOP - Example B�1 Complex Multiplier Source Code B�2
	AppExampleTitleLOP - Example B�2 Command Script for Complex Number Multiplier B�4
	AppExampleTitleLOP - Example B�3 Report Resource Estimates B�6
	AppExampleTitleLOP - Example B�4 Schedule Report B�9
	AppExampleTitleLOP - Example B�5 Report Area B�11
	AppExampleTitleLOP - Example B�6 Report Timing B�12
	AppExampleTitleLOP - Example B�7 Report Resources B�14

