Last changed: 25/July/2003 by Ney Calazans

R8 PROCESSOR — ARCHITECTURE AND ORGANIZATION SPECIFICATION
AND DESIGN GUIDELINES

Fernando G. Moraes & Ney L. V. Calazans

1 HISTORY

The R8 processor research effort is an initiative of the Hardware Design Support Group (GAPH). GAPH
is a research group at the Computer Science Graduate Program (PPGCC), in the Faculty of Computer Science
(FACIN), part of the Pontifical Catholic University of Rio Grande do Sul PUCRYS), located in Porto Alegre,
capital of Rio Grande do Sul dtate, in Brazil.

In the start of 1997, a major revision of the then 13-year old Computer Science undergraduate curriculum
started to be applied. The new curriculum significantly enhanced the hardware contents taught with regard to the
previous one. Also, the hardware courses track in the curriculum was designed to expose students very early to
hardware design using mostly professional tools. The reasoning to do so is exposed in detail in [1]. The basic idea
is to propose a processor implementation as practical work to be developed along several semesters. Fird, the
students have to produce a processor description from a detailed specification, implementing it in a hardware
description language (currently, VHDL). Validation of their design is achieved by functiona smulation. This
happens in the third semester of the curriculum. A following course requires the students to start from their
previous semester design and transform their implementation into a pipelined processor with the same architecture
(register bank, ingtruction set, etc.). In a subsequent course, input-output capabilities and memory hierarchy
considerations are added to the same design.

Every semester, a different processor specification is prepared. Specifications differ from one another in
some aspects, the main ones being the requirement of unified memory or Harvard organization and obvioudy
instruction set. However, all processors share common characteristics of being load-store, 16-bit RISC-like
architectures, with a bank of 16 16-bit registers, and the instruction word length being fixed at 16 bits. These
characteristics define the Rx clan. The first of these specifications was the R1 processor, proposed to the first class
of students taking the Computer Organization course of the new curriculum, in the first semester of 1998. The R8
has been the eighth of these processors, and the R12 specification is currently under preparation.

Each new specification gives rise in fact to severa processor implementations, and variations on the
specification define a family of processors. The R8 family occupies a special position in the Rx clan, since it has
been used in various research works outside the scope of undergraduate courses. Today, hardware
implementations of the R8 basic architecture are available, and various implementations are validated at severa
abdtraction levels. Up to four instances of the R8 processor have been implemented on FPGA -based prototyping
boards, providing a multiprocessing platform to the research work on system-on-chip (SoC) and network-on-chip
(NoC) subject aress.

This document is based on the original R8 specification handled to the students and is intended as the
basis for formalizing the R8 family, providing a“gold” specification for its very first member, named smply R8.
The definition of design methods and tools to support the R8 architecture must rely upon this specification,
including the assembler and simulator tools, the C compiler and the embedded operating system kernel for the R8
processor. Also, it is expected that from this other specifications may branch to define other members of this
processor family.

The rest of this document is organized as follows. Sections 2to 4 present the basic Instruction Set
Architecture (ISA) of the R8 processor. Next, Sections 5 to 10 detail a possible organization for the
implementation of the R8 processor 1SA. Section 11 give some hints on how to use the R8 processor software
development environment available today, while Section 12 provide references to other documents.

2 GENERAL CHARACTERISTICS

L oad-store architecture: the logic and arithmetic instructions are executed among internal registers only, while
the memory access instructions execute either the reading from (load) or the writing to (store) one memory
position.

Register bank: due to the load/store architecture option, the processor must have arelatively large set of data
manipulation general-purpose registers, to reduce the number of memory accesses (this always represents a
time penalty with regard to the processor interna operation). This characteristic differs from an accumulator
based architecture, which keeps al data in memory, performing logic and arithmetic instructions among
contents in memory and contents of one or a few specia registers, named accumulators. Consider, for
example the following C language line: f or (i =0; i <1000; i ++).Here incase'i 'isstored in memory,
2,000 memory access operations are needed to execute this line, performing read and write operations at each
iteration. In case i ' is first read and stored in a register, just register operations are needed, without using
memory most of the time during the f or command execution!

Regular format for instructions: dl instructions have exactly the same size, occupying 1 memory word each.
The instruction contains the operation code and the operands specification, in case they exist.

Few addressing modes.

Thus, the R8 processor is a RISC-like machine, but still missing some characteristics so common in most
RISC processors, such as pipelines. The main specific organizational characteristics of this multi-cycle processor
are:

Address and data size are basically of 16 hits.

Memory addressing is performed on aword basis (i.e. each memory address corresponds to the identifier of a
position containing 16 bits of information).

The register bank contains 16 general-purpose registers, each of 16 bits.
There are 4 status flags named: negative, zero, carry, and overflow.

The instruction execution takes place in 2 to 4 clock cycles, i.e. the average clock per ingtruction (CPl) for any
program executed is aways a number between 2 and 4.

3 INSTRUCTION SET

The very simple instruction set defines the following instruction classes:
Logic and arithmetic binary instructions (2-operand): addition, subtract, AND, OR, Exclusive-OR.
Logic and arithmetic binary instructions with short constants: addition and, subtraction.
Unary logic and arithmetic instructions: |eft and right shifts and bitwise inversion.
Half-word register |oads with a constant: loads for higher half and for lower half.
Stack pointer register initialization and return from subroutines.

Null instruction: instruction that does nothing (useful for dimensioning waiting loops and specific memory
Space reservation).

Halt instruction: to suspend the instruction execution flow.
Load instruction: to read a memory word content to some general-purpose register.
Store instruction: to store a 16-bit content in some general-purpose register to a place in memory.

Jumps and subroutine cals with relative addressing, with short or long displacements and with absolute
register addressing.

Stack insertion and removal instructions. to manipulate values stores in the top of the stack maintained by the
processor.

-3-

Tablel- R8 processor instruction set architecture.

INSTRUCTION FORMAT

INSTRUCTION
15-12 11 - 8 7 -4 3-0 SEMANTICS

ADD Rt, Rs1,Rs2 0 R target R sourcel R source2 Rt € Rsl + Rs2 ; Inz; lcv
SUB Rt, Rs1,Rs2 1 R target R sourcel R source2 Rt € Rsl - Rs2 ; Inz; lcv
AND Rt, Rs1,Rs2 2 R target R sourcel R source2 Rt € Rsl and Rs2 ; Inz
OR Rt, Rs1,Rs2 3 R target R sourcel R source2 Rt € Rsl or Rs2 ; Inz
XOR Rt, Rs1,Rs2 4 R target R sourcel R source2 Rt < Rs1 xor Rs2 ; Inz
ADDI Rt, cte8 5 R target Constant Rt € Rt + ("00000000" & constant) ; Inz ; lcv
SUBI Rt, cte8 6 R target Constant Rt € Rt - ("00000000" & constant) ; Inz ; lcv
LDL Rt, cte8 7 R target Constant Rt € RtH & constant
LDH Rt, cte8 8 R target Constant Rt € constant & RtL
LD Rt, Rs1,Rs2 9 R target R sourcel R source2 Rt € MEMP (Rs1+Rs2)
ST Rt, Rs1,Rs2 A R target R sourcel R source2 MEMP (Rs1+Rs2) € Rt
SLO Rt, Rs1 B R target R sourcel 0 Rt[15:0] ¢ Rs1[14:0] & 0; Inz
SL1 Rt, Rsl B R target R sourcel 1 Rt[15:0] ¢ Rs1[14:0] & 1; Inz
SRO Rt, Rsl B R target R sourcel 2 Rt[15:0] € 0 & Rs1 [15:1]; Inz
SR1 Rt, Rsl B R target R sourcel 3 Rt[15:0] € 1 & Rs1 [15:1]; Inz
NOT Rt, Rsl B R target R sourcel 4 Rt € not (Rsl); Inz
NOP B 0 0 5 No action
HALT B 0 0 6 Suspends the instruction fetch and execution flow
LDSP Rs1 B 0 R sourcel 7 SP & Rsl (initializes the stack pointer)
RTS B 0 0 8 PC €MEMP(SP+1) ; SP&<SP+1
POP Rt B R target 0 9 Rt € MEMP(SP+1) ; SP<SP+1
PUSH Rt B R target 0 A MEMP(SP)€Rt; SP<SP-1
JMPR Rs1 C 0 R sourcel 0 PC ¢« PC + Rsl (does not depend upon any flags)
JMPNR Rsl C 0 R sourcel 1 if (n =1) PC ¢ PC + Rsl
JMPZR Rsl C 0 R sourcel 2 if z=1) PC € PC + Rsl
JMPCR Rsl C 0 R sourcel 3 if (c =1) PC € PC + Rsl
JMPVR Rs1 [} 0 R sourcel 4 if (v =1) PC € PC + Rsl
JMP Rs1 C 0 R sourcel 5 PC € Rsl (does not depend upon any flags)
JMPN Rs1 C 0 R sourcel 6 if (n =1) PC € Rs1
IMPZ Rs1 C 0 R sourcel 7 if (z =1) PC € Rs1
JMPC Rs1 C 0 R sourcel 8 if (c =1) PC € Rs1
JMPV Rs1 C 0 R sourcel 9 if (v =1) PC € Rs1
JSRR Rs1 C 0 R sourcel A MEMP(SP)€¢-PC; SP<SP-1; PC4¢ PC+ Rsl
JSR Rs1 C 0 R sourcel B MEMP(SP)¢PC; SP<SP-1; PC € Rsl
JMPD displacement D 0 Displacement (10 bits) PC €« PC + signal_ext & displacement
JMPND displacement E 0 Displacement (10 bits) if (n =1) PC €« PC + signal_ext & displacement
JMPZD displacement E 1 Displacement (10 bits) if (z=1) PC € PC + signal_ext & displacement
JMPCD displacement E 2 Displacement (10 bits) if (c =1) PC € PC + signal_ext & displacement
JMPVD displacement E 3 Displacement (10 bits) if (v =1) PC € PC + signal_ext & displacement
JSRD displacement F Displacement (12 bits) MEMP(SP)&PC; SP<SP-1;

PC<& PC + signal_ext & displacement

The following conventions have been adopted in the above Table:

RtH:
RtL:
&:
<

most significant eight bits of Rt
least significant eight bits of Rt
bit vectors concatenation

register assignment of a value or of contents of a memory position

-4 -
MEMP(x): memory position contents at the address x

Rt : Rtarget [destiny]

Rs1: Rsourcel

Rs2: Rsource2

Inz: activate the storage of the values of the negative and zero status flags
lcv: activate the storage of the values of the carry and overflow status flags

4 ARCHITECTURE REGISTERS

The processor contains the following control and data storage registers:

IR (instruction register): a 16-bit register that stores the present instruction code (opcode) and their specific
operands.

PC (program counter): a 16-bit register that contains always the memory address of the next instruction to be
executed.

SP (stack pointer): a 16-bit register that stores the top of stack address, controlling the calling and return from
subroutines. The SP must be nitialized by each program intending to use subroutines with the LDSP
instruction, which loads a value in SP that represents the primary top of the stack for the program.

RO to R15 @eneral-purpose registers): 16 genera-purpose data manipulation registers. The register bank
formed by these registers has a write port and two read ports. This means that it is possible to write in some
register while at the same time two data are read from other registers in the bank. The outputs of the register
bank are the output busses SOURCEL (S1) and SOURCE2 (S2).

N, Z, C, V @tatus flags): 4 status bits controlling signal, zero, carry and overflow conditions of logic,
arithmetic and memory instructions. These flags are used to store information to be tested by conditional jump
instructions and conditional calls to subroutines. The flags state is determined by logic, arithmetic and memory
read operations (loads).

Other registers may be necessary to implement the organization. Examples appear in Section 6 of this
document, where a suggestion of organization is advanced.

5 RELATIONSHIP BETWEEN PROCESSOR AND EXTERNAL MEMORY

Figure 1a illustrates the relationship between the R8 processor and its external memory. The processor
receives two signals from the external world: clock, intended to synchronize the interna events of the processor
hardware; and reset, which puts the processor in a starting state, able to begin instruction execution by fetching
instructions from the first address of the external memory, namely address 0000h.

The R8 control unit generates microinstructions (mnst) to execute instructions in a clock cycle by clock
cycle basis. Each microinstruction is responsible for commanding the actions executed by the datapath, such as
register access selection, ALU operation and/or external memory access to fetch data or instructions.

After an instruction fetch, the datapath informs to the control unit the code of the current instruction
under execution (the content d the IR register) and the values of the status flags (flags). The datapath is also
responsible for the communication with the external memory. The signals employed for the exchange of
information between the R8 processor and the external memory are: data (a 16-bit bidirectiona bus transporting
data and instructions) and address (a 16-bit bidirectiona bus containing a memory addresses to access).

The memory access control is performed by the control unit through signa ce and rw. The signa ce
indicates, when its value is 1, that an operation of information transfer is occurring between the processor and the
memory, while signd rw indicates if this operation is areading (rw=1) or writing (rw=0) operation.

It is important to note that the datapath and the control unit work at distinct edges of the clock signd. In
one clock edge (e.g., the rising edge) the control unit generates a microinstruction, and in the next edge (in this
case at the falling edge) the datapath executes the microinstruction, by modifying its registers. With this schema
the control and data information will be sampled when they are effectively stable, for a sufficiently low clock

frequency.

-5-

Figure 1b represents the first hierarchical level of the R8 processor, by means of the hardware description
language. In this Figure the processor blocks are connected by signals, and are instantiated by means of port map
commands.

PROCESSOR

entity processor is
port(ck,rst: in std_|logic;
data: inout regl6;

PROCESSOR address: out regl6;
ce,rw. out std_logic);
q end processor;
Ll
> CONTROL
UNIT | architecture processor of processor is
External memory signal flag: reg4;
4 ce ~ signal uins: mcroinstruction;
IR| # mnst rw ¢ signal ir: regl6;
flag e begin
v RAM g
dp: datapath
»O data port map(uins=>uins, ck=>ck, rst=>rst,
—» DATAPATH ,\ instruction=>ir,
address [/ addr ess=>addr ess, data=>data,
flag=>flag);
r ctrl: control _unit
port map(uins=>uins, ck=>ck, rst=>rst,

clock reset flag=>flag, ir=>ir);
ce <= uins.ce;
rw <= uins.rw,

end processor;

(a) Block diagram of the processor-memory interface (b) VHDL description of the R8 processor first hierarchical level

Figure 1 — Relationship between the R8 processor and the eternal memory.

6 INSTRUCTION EXECUTION IN THE DATAPATH

The instruction execution in the R8 processor requires from 2 to 4 clock cycles. The distinct machine
cycles are defined as follows:

Cycle 1: instruction fetch. Common to dl instructions.

Cycle 2 : decoding and operand fetch. Common to all instructions.

Cycle3: ALU operation. Common to al instructions, except for HALT and NOP.

Cycle4 : instruction execution. Depends on the specific type of operation, may not exist.

6.1 Instruction Fetch Cycle

In this cycle occurs the reading of the instruction code pointed by the PC register in the external memory,
goring the code in the | R register and incrementing the PC to point to the next instruction. In microprogramming
pseudo code this is represented in a micro-assembler notation as IR ¢ MEMP(PC); PC++; Figure 2 illustrates the
interconnection of hardware components necessary to the execution of the instruction fetch cycle.

+1 PC reg [29QeSS Memory NG | 23 (=To [M—
&l J (external to J >
the
processor)

Figure2 - Hardware needed to execute the instruction fetch.

6.2 Decoding and Operand Fetch Cycle

In the second clock cycle of each instruction the register source operands are read from the register bank,
independently of whether the instruction employs these registers or not. These operands are called sourcel and

6

source2. The source registers values are respectively stored in the temporary registers RA and RB. Bits 7 to 4 of
the IR register address register sourcel.

Register source2 can be addressed by bits 3 to 0 or by bits 11 to 8 of the IR register. When the instruction
under execution involves the target register address as a source operand, IR bits 11 to 8 address source2
Example: the ADDI ingtruction, when an immediate constant is added to the contents of a given register and the

results are stored back in the same source register. Figure 3 illustrates the hardware components for the reading of
source registers from the register bank and their interconnections.

IR(7:4 RSl 16x 16 || A jep
> bits

IR reg IR[3:0] R S general

purpose

IR[11:8] ; R_T.| registers

: ' S2
N =P RB =P
mux to select source2 ’

Figure 3 - Hardwar e to execute the operand fetch cycle. Instruction decoding is performed in parallel with instruction
operand fetch by the control unit, which isnot shown.

6.3 ALU Operation Cycle

The ALU operation cycle is aso common to all instructions, except for the halt instruction. Given the variety
of ingtructions, it is hecessary to insert multiplexersin the ALU inputs to correctly select operands.

The ALU operation result is always store in the RALU register and, depending on the executed operation the
flags values are stored in flip-flops (N, Z, C, V).

Figure 4 illustrates the hardware components interconnection for the ALU operation.

IR opA
RA [
ma
RALU =»
RB wlalu
opB
n',z',c'Vv —»
mb flags —>_>§
4 v
PC SP InIZ |LV

Figure4 - Hardwar e to execute the ALU operation cycle.

Table 2 below defines the value that ALU inputs opA and opB must assume, according to each instruction.

Table2 — Alu operand input specification for each instruction of the R8 processor.

Instructions OpA OpB
ADD, SUB, AND, OR, XOR, LD, ST, SHIFTS, NOT, LDSP RA RB
ADDI, SUBI, LDL, LDH IR RB
RTS, POP - SP
PC relative jumps and subroutine calls RA PC
Absolute jumps and subroutine calls RA -
Short displacement jumps and subroutine cals IR PC

6.4

Instruction Execution Cycle

6.4.1 Arithmetic, logic and immediate addressing instruction execution
- The fourth clock cycle of arithmetic and logic instructions stores the ALU result register RALU in the
register bank according to the destination register address. This cycle is called write-back.
- Figure5illustrates the hardware structure necessary for the execution of the fourth cycle for all logic and
arithmetic instructions.
End of the 4th clock cycle
v
RAM S L,
» memory 1%)(16 —>(RA]
address its
e | genens
processor) reé’iZEZ?Zink 32»-
e flags :’;2
7 > v
L
nz lev
End of the 1** clock cycle End of the 2" clock cycle End of the 3“ clock cycle

Figure5 — Datapath section and memory to illustrate the execution flow for logic, arithmetic LDL and LDH instructions.

6.4.2

The immediate addressing mode instructions imply that a given destination register (target) receives the
result of a given operation between the destination register itself and an 8bit constant. The immediate
addressing mode instructions are:

Load the upper byte of aregister (LDH): Rt < constant & RIL (the target register receives a
constant byte in the upper byte, maintaining the lower byte unchanged).

Load the lower byte of aregister (LDL): Rt € RtH & constant (the target register receives a
constant byte in the lower byte, maintaining the upper byte unchanged).

Addition/subtraction with the immediate mode: addition/subtraction of the contents of a given
register with an 8-bit constant: Rt < Rt +/- constant. Important: the instruction execution implies
completing with Os the 8 more significant bits of the constant to generate a 16-hit register.

Important: in order to load a genera-purpose register with a 16-bit constant, two instructions LDH and
LDL must be used in sequence. To read or write some data stored in a given 16-bit memory address 3
assembly language ingtructions are necessary: the first 2 to load the high and low parts of the address into
aregister (LDH and LDL, respectively) and a third instruction to execute the reading from or writing to
memory (LD or ST). An exampleis given below:

XOR RO,RO,RO ; loads RO with the constant 0000H

LDH R1,#03H

LDL R1,#27H ; store the value 0327H in register R1

LD R5, R1, RO ; storesinto R5 the contents of the memory address given by (R1+R0)

Memory read instruction execution (LD)

The semantics of this instruction is as follows. The destination register receives the contents of the
memory address given by the result of the sum of the two source registers (sources): Rt € MEMP(RsL +
Rs2). One of the sources can be used as a base register, while the other is used as a displacement from that
base address (offset).

In the fourth clock cycle, the RALU register addresses the memory and the data read from memory is
directly stored in the register bank in register addressed by the bits 11 to 8 of register IR (IR[11:8]).

-8-
- A possible datapath organization to alow the execution of thisinstruction is presented in Figure 6.

End of the 4" clock cycle

mux to select origin of the
external memory address
A 4
R_S| S1
RAM —> RA s
address memor s - [R_S2| 16 X 16
> y » IR reg » bits | outalu
(external to r | general - RALU
= purpose
the register bank S2 o <
processor) —»[RB | >
lu
Address computed at the end of the 3" cycle / reading at the 4" cycle
End of the 1% clock cycle End of the 2" clock cycle End of the 3" clock cycle

Figure 6 — Datapath section and memory toillustrate the LD instruction execution.

6.4.3 Memory write instruction execution (ST)

The memory position addressed by the sum of the contents of two source registers (sources) receives the

contents of the destination register (target): MEMP(Rs1 + R2) < Ri.

- Inthefourth clock cycle, the register addressed by IR[11:8] is read, writing the contents of this register in
the address defined by the contents of the RALU register.

- A possible datapath organization to execute the memory store instruction is presented in Figure 7.

Mux to select between source2 or

Mux to select memory destination to be read for writing ‘

address origin s
\4 RAM R_s] S1
. —>»{ RA >
address memory Rs2 e X Ls H
(external to : bits D outaiy
the ¢ |[Trq| general - RALU =y
=» purpose o, <C i
processor) register bankl.ap| RB frimep
. i alu
Tristate enabled_ 'c_lt the - End of the§4‘" clock cycle
moment of writing ¥
Address computed a_t the end of the 3° clocfk cvcle / writina in the 4" clock fcvcle
End of the 1% clock cycle . Endofthe2™clockcycle | End of the 3° clock cycles

Figure7 - Datapath section and memory illustrating the hardware needed to execute the ST instruction execution.

6.4.4 Conditional and unconditional jump instructions

The destination address is computed in the third clock cycle of these instructions, being this information

stored in the RALU register.
- If the jump is conditional, and the corresponding flag bit is clear (flag=0), the instruction ends in the third

clock cycle.
If aconditional jump is executed, the PC register must receive the contents of the RALU register.

A possible datapath organization to execute conditional and unconditional jumpsis presented in Figure 8.

-9-
End of the 4" clock cycle: stores a new value on the PC register

If jump is absolute or register relative, reads RA; if
iimmediate relative, reads a 12-bit constant from IR A
RAM Iy
RSI
‘ Cdress mtemorly | 16x16 = RA |- 5
->IE > (external to bits = |outaly RALU—
‘ the general <
4 processor) A purpose
register bank
=» RB o
i lu
1 LY
st - H
_In the l cycle, _fetchesmthe] The ALU operates with the BC register in jumps, -~
instruction and in the 4" cycle, if defining the new value t loaded on the PC
flag=1, changes the PC contents e g the new value to be loaded on the
End of the 1" clock cyclei End of the 2" clock cyclé End of the 3° clock cycle!

Figure8 - Datapath section and memory to illustrate the hardwar e needed for the execution of unconditional and
conditional jumps.

6.4.5 Stack working and subroutine call instructions

The ingtructions that implicitly or explicitly manipulate the SP register Gtack pointer) are: register
contents insertion/removal on the stack (PUSH/POP), subroutine calls (JSR, JSRR, JSR), SPinitidization (LDSP)
and subroutine return (RTS). Figure 9 illustrates how the stack works.

memory memory memory memory
0 | __USER PROGRAM AREA 0 0 0
1 1 1 1
2 2 2 2
pc 3 3 3 3
—» 4 |LpsPR1| pc 4 |LbsPRi 4 |LDSP RL 4 | LDSPRY

5|isRR2 »5 |isrRr2 5 IsrRR2 pPC 5 |IsrRR2 pC
6 6 6 —»6
7 7 7 7

PC
100 [rTS 100 RTs ——100 |RTS 100 |RTS v
101 101 101 101
102 102 102 102
JSR R2 RTS
LDSP R1.|))
(suppose R1 (suppose R2
2FC containing 300) 2FC containing 100) 2FC 2FC A

2FD 2FD 2FD 2FD
2FE 2FE sp 2FE 2FE
2FF SP 2FF —»2FF sp 2FF

300 — 300 3005 ——»300 [SP
FFF FFF FFF FFF

- The program is stored from address 0 to address N. Thus, the program addresses grow with the
memory addresses.

- Thestack growsin asense inverse of that of the program memory. The reason for thisisto avoid
interference with the program data area.

- The contents of the SP register are always interpreted as the address of the first free stack
position for stacking new data.

Figure9 — lllustrating the functioning of stack operations.

A subroutine cal, also called jump to subroutine, is executed as follows:
- The destination jump address is computed in the third clock cycle, being stored in the RALU register.

6.4.6

-10 -
If the jump to subroutine is conditional and the respective flag is cleared (flag=0), the instruction is ended
in the third clock cycle.
If the jJump to subroutine must be executed, the PC register must receive the contents of the RALU
register, at the same time storing the previous PC contents on the top of the stack. Remember that the PC
has been incremented in the fetch clock cycle (the first of the instruction), and this is the vaue stacked.
After storing this value on the stack, the SP register is decremented, i.e.:

MEMP(SP)< PC;
SP&SP-1;
PC«& result at the RALU register (PC+offset or RS1 or PC+RS1)

A possible datapath organization to execute subroutine calls is presented in Figure 10.

STORES A NEW VALUE ON THE PC REGISTER (subroutine starting address)

OpA
q dtPC address
1 memory :) outalu
(external to | | RAL U
the <

processor)

DATA

PMEM(SP) € PC

—>[SPreal—

Puts PC contents on data| PC SP

Decrements SP at the end of the 4" cycle

Figure 10 - Datapath section and memory to illustrate the execution of subroutine call instructions.

The execution of the PUSH instruction is smilar to the subroutine call instructions:

MEMP(SP)< Rt; (stored in RB)
SP& SP-1;

Return from subroutine and pop instructions (top of stack data retrieval)

The fourth clock cycle of instructions RTS and POP address the data memory with the contents of the
RALU register (with SP+1), storing the result of the memory reading either in the PC register (RTS) or in
the register bank destination register (POP). The SP register is updated (SP < SP+1).

7/ DATAPATH ORGANIZATION

Aggregating the different previous figures, it is possible to obtain a complete R8 datapath that alows to

implement al instructions defined for this architecture. Thisis depicted in

Figure 11. Some additional elements were added for controlling subroutines cal and return, due to the

need of manipulating the SP register. The datapath sends to the control unit the output of the IR register aswell as
the contents of the status flags.

The datapath needs to receive 18 control signals from the control unit, organized into 4 signal classes:

Register write enable signas (8): wPC, wSP, wi R, wAB, wALU, wklag, wnz, wev.
External memory access controls (2): ce erw.

Multiplexers control signals (7): mpc (PC register data origin), msp (SP register data origin), mad (selects
which register addresses the external memory), mreg (register bank data origin), ms2 (selects which portion of
the IR register selects the second ALU operand), ma (ALU first operand data origin), mb (ALU second
operand data origin).

The operation executed by the arithmetic and logic unit (1): alu.

-11 -

Figure 12 illustrates the register bank organization, as a block diagram. It should be observed that the
multiplexer responsible for the selection of the second source register (S2) is inside the register bank block.

v
é O)-mreg

WydtRe: ‘
opA
RAM = D
P memory .| 16x16
gt (external to - gg!gal W ma S| outats
PC the purpose - RALU
" processor) register bank [S2
mpc I RB walu
| T 1).0RE
ms2 wreg wWAB -
n.z'.c',v >
mb flags_:i
/3 —>v
Ll
PC SP Iz lev
)
i:
[}

I=ST (in the 4" clock cycle store in memory the
target register contents)

Figure1l — Complete datapath organization (plusthe external memory). Here are represented all 18 control signals
that the control unit must generate and manage (in green, italics font). Clock and Reset signals are not represented,
but are obviously necessary to command all registers.

16 16-hit registers
REGO
REGI
REG?2
REG3 s1
REGA 16

REG
REG12
REG1R
REG14
REG15

A ¢\ LEL__

reset

dtreg 1%

4

IR[7:4]
clock

16

Decoder
4> 16 16 S2
enable

4

wreg

ms2

L@:mram
IR[11:8]

Figure 12 — Block diagram of the general -purpose register bank.

IR[11:8]

8 CLOCK CYCLES NEEDED TO EXECUTE INSTRUCTIONS

Given the R8 processor datapath organization description presented in the previous Section, it is possible

to summarize the execution time for al instruction in terms of number of clock cycles to execute each instruction.
Thisisshown in Table 1 below.

-12 -

Table 1 — Number of clock cyclestaken to fetch and execute each instruction in the organization of the R8 processor.

INSTRUCTION # OF CLOCK CYCLES INSTRUCTION # OF CLOCK CYCLES
ADD 4 POP 4
SUB 4 PUSH
AND 4 JMPR
OR 4 JMPNR 3/4
XOR 4 JMPZR 3/4
ADDI 4 JMPCR 3/4
SUBI 4 JMPVR 3/4
LDL 4 JMP 4
LDH 4 JMPN 3/4
LD 4 JMPZ 3/4

ST 4 JMPC 3/4
SLO 4 JMPV 3/4
SL1 4 JSRR

SRO 4 JSR

SR1 4 JMPD

NOT 4 JMPND 3/4
NOP 3 JMPZD 3/4
HALT 2+ JMPCD 3/4
LDSP 4 JMPVD 3/4
RTS 4 JSRD 4

9 CONTROL UNIT

In order to execute any of the R8 processor instructions it is necessary to define a finite state machine to
control the execution in the datapath. Figure 13 illustrates such an FSM, where at each clock the next dateisa
function of the preset state and of the instruction stored in register IR. In the same Figure is indicated each of the
registers that are expected to receive new information at each state. Memory accesses are equaly indicated
(through the use of RAMread and RAMwrite commands).

The functions assigned to the 13 states are:

Sfetch: first clock cycle of any instruction, instruction fetch;

Srreg: second clock cycle of any instruction, except HALT, source registers reading and instruction decoding;
Shalt: second clock cycle of instruction HALT, stops fetch—execute cycles and awaits for reset;

Sau: third clock cycle, ALU operation;

Swhbk: fourth clock cycle, store ALU result back in the destination register;

Sld: fourth clock cycle, read data from menory and store it in the destination register;

Sst: fourth clock cycle, write destination register data contents to memory;

Sjmp: fourth clock cycle, changes PC register contents in unconditional or conditional jumps, when flag=1;
Ssbrt: fourth clock cycle, jump to subroutine;

Spush: fourth clock cycle, puts source register contentsin the top of the stack;

Srts: fourth clock cycle, return from subroutine;

Spop: fourth clock cycle, retrieves contentsin the top of the stack to the destination register;

Sldsp: fourth clock cycle, initializes the stack pointer register (top of the stack);

-13-

Res
(All registers are cleared)

Sfetch
wIR

wPC
RAMread

Sreg
WAB

Default condition, that occurs in
unconditional jumps with flag=0 or in
the NOP operation

hal

LAl or LA2 IR=ST jump subroutine IR=PUSH IR=POP IR=LDSP

Sld
WREG
RAMread

Spush
wSP
RAMwrite

9.1

- LAL-typellogic or arithmetic instruction — unary or binary instructions

- LA2-type2logic or arithmetic instruction — instructions with a single source register
- Jump: execution of the 15 jump instructions

- Jump to subroutine: JSR, JSRR, JSRD

- * - writing of the flagsin the Salu state depends on the specific instruction

Figure 13 — Controal finite state machine for the R8 processor.

Instruction decoding / ALU operation definition

The firgt action performed by the R8 Control Unit after instruction fetch is instruction decoding.

As an implementation suggestion, it is possible to create in the package of the R8 processor definitions an
enumerated type containing al possible instruction mnemonics. Originaly the R8 processor contains 40
instructions. However, it is possible to group some of these, e.g. the jump instructions, which may be grouped
in three distinct classes: relative jumps (Rjump), absolute jumps (jump) and displacement jumps (Djump).
I nstruction mnemonic count can then be reduced to 28 instruction classes.

type instruction is
(add, sub, and_i, or_i, xor_i, addi, subi, Idl, | dh, ld, st, slO, sll1, sr0, srl,
not i, nop, halt, Ildsp, rts, pop, push, Runp, junp, Dunp, jsrr, jsr, jsrd);

Instruction decoding. It is possible to observe the effect of the above instruction mnemonic grouping as 5
relative jumps are now referred by a single mnemonics “Rjump”, 5 absolute jumps become "jump" and the 5
jumps with short displacement become "Djump". This smplification tends to reduce the HDL code size to be
written.

i <= add when ir(15 downto 12)=0 el se
sub when ir(15 downto 12)=1 else
srl when ir (15 downto 12)=11 and ir(3 downto 0)=3 else
Rurrp when ir(15 downto 12)=12 and (ir(3 downto 0)=0 or
(ir(3 downto 0)=1 and fn="1") or (ir(3 downto 0)=2 and fz="1") or
(ir(3 dowmnto 0)=3 and fc="1") or (ir(3 downto 0)=4 and fv="1")) el se

-14 -
jsr when ir (15 downto 12)=12 and ir(3 downto 0)=11 el se
jsrd when ir(15 downto 12)=15

uins.ula <=1i; --- *rxxxxxxxxxx AU operation
Type 1 logic and arithmetic ingtruction decoding:

inst_ lal <= '1' when i=add or i=sub or i=and_i or i=or_i or i=xor_i or i=not_i or i=sl0 or
i=sr0 or i=sll or i=srl else

o
Type 2 logic and arithmetic instruction decoding (Rt in the right size of micro instructions expressions):
inst_la2 <= '1" when i=addi or i=subi or i=ldl or i=ldh else
o

9.2 Multiplexers control

The multiplexers control signals (totalizing 7 signals) depend on the FSM present state and or in the current instruction code.
It isrecommended to locate the multiplexers and their control in

Figure 11. The control signads are preceded below by the "uins." suffix that designates the
microinstruction that passes from the control unit to the datapath.

1. PC datainput origin control (depends on the FSM state):

uins.npc <= "10" when EA=Sfetch el se -- in the fetch increnments PC
"00" when EA=Srts else -- when returning from subroutine fetch new PC
-- value in nenory
"01"; -- by default load PC with ALU out put

2. SPdatainput origin control (depends on the current instruction only):

uins.msp <= '1' when i=jsrr or i=jsr or i=jsrd or i=push else -- post-decrenent
Lo

3. Memory addressing origin control (depends on the FSM dtate):

uins. mad <= "10" when EA=Spush or EA=Ssbrt else -- in junp to subroutine, SP addresses
-- nenory
"01" when EA=Sfetch el se -- in the fetch, PC addresses nenory
"00"; -- by default: used in LD/ ST

4. Register bank write data origin control (depends on the current instruction only):

uins.nreg <= '1'" when i=ld or |=pop else '0"; -- wite in register bank el ement the contents
-- coning from nenory

5. Choice of the second source operand address for register bank (depends on the instruction and on the FSM
state). The second source operand address (source?) receives the address of the destination register when
executing type 3 logic or arithmetic instructions or a memory write.

uins.ms2 <= '1'" when inst_la2="1" or i=push or EA=Sst else '0
6. ALU operands origin (depends only upon the instruction code):

--first ALU operand isthe IR during a type 2 logic or arithmetic instruction or jump/jsr with short displacement
uins.ma <= '1" when inst_la2="1" or i=junpD or i=jsrd else '0

- second nul tipl exer

uins.nmb <= "01" when i=rts or i=pop el se -- to increnent the SP register
"10" when i=junpR or i=junp or i=junpD or i=jsrr or i=jsr or i=jsrd else
"“00"

In short, three main parts compose the control unit:
1) Instruction decoding.
2) Multiplexers control generation.

3) Control finite state machine, to generate control signals for register load enabling, reading from and writing to
memory.

-15-

10 EXAMPLE SIMULATION OF AN INSTRUCTION SEQUENCE EXECUTION

The smulation of Figure 14 illustrates the execution of the 6 instructions in the program code bel ow:

end instruction

0128 7190

0129 8101; R1< 0190 (400 in decimal)
012A 73AA

012B 83BB; R3< BBAA

012C AD01; records the contents of register 14inthe address contained in register 1 (190H or 400)
012D 9F10; readsthe contents of the address contained in register 1, storing thisin register 15

A C:Amoras s\ HDL_DESIGRSY procesradmees_F WA simril anf ©

Fle Edi Sesch Wewe [msgn Gimdslion Wewsiom Tooks Heb . #
Panne .a&a.m.mn.m.m.mn.mn.m.m.mn.m.sm.mn.mn. :m:ﬂb};]uﬂ_.m:;ﬁﬂ.:m 1 CARA0 A0 o KD Ei|nE
=T
- I i rerunri i e rygrirt e
wth | {eHchKamg Yode Yart Yol g o Yar Yook g Y]
E oo] b HTES]
N HEIN | N
% o anens | Y % Y8 [H O IN__ymo [Yos_yim |
e _xx:ﬂﬁ(.'::;{:q?;'ﬁ .':;,‘:;:EZ%R
(TR e T N) VAN o SR
ew LT SO SN\
3 = gl bW 3¢ N\
= =] @ﬂ @) E \
U 2| g
o egld) LY
T o egld]
+H W Edﬁ_]
+s.rpgs|
H ool
F o el
B g1 fE|
L DL LDH LDL | LkDH ST LD et
ey

Reads 01FF from address 400 and stores it inﬁ

Figure14 — A simulation of 6 instructions of the R8 pr ocessor.

-16 -

11 EXAMPLE PROGRAM TO TEST ALL INSTRUCTIONS

The object code below corresponds to an example text file that is read by the VHDL simulation test bench
during ssimulation of the R8 processor. It is associated with the corresponding assembler code in the comments
part (after the “;” symbol). The file contains n lines, each with 9 characters in the “xxxx yyyy” format, where
XXXX is a 16-bit address (4 hexadecimal digits) and yyyy is a 16-bit instruction (4 hexadecimal digits). This text
file is loaded in memory by the test bench during reset activation, typically at the start of the processor simulation.

0000 7108 ;

0001 8110 ; LOAD R1, #1008

0002 7234

0003 8212 ; LOAD R2, #1234

0004 73DC ;

0005 83FE ; LOAD R3, #FEDC

0006 0412 ;osum result in R4: 223C

0007 1512 ; subtrai: result in R5: FDD4

0008 2612 ;and: result in R6: 1000

0009 3712 ;oor: result in R7: 123C

000A 4812 ;o Xor: result in R8: 023C

000B 5101 ; immediate sumO0l1 to RL - 1009

000C 510F ; immediate sumOF to Rl - 1018

000D 51FF ; imediate sumFF to Rl - 1117 (1130ns)

000E 6201 ; immediate subtract 01 fromR2 - 1233

000F 6204 ; imediate subtract 04 fromR2 - 122F

0010 62FF . imediate subtract FF fromR2 - 1130

0011 7DFF

0012 8DO1 ; LOAD RD, #01FF

0013 BOD7 ; load the stack pointer with the contents of register 14 (511 in decinal) (1610ns)

0014 7100

0015 8101 ; Rl < 0100
— 0016 COlB<_; *rxkkkkEF* jyunp to subroutine pointed by RL (address 0100) *********

0017 BOO5 ; nop

0018 70FF

0019 80FF ;. RO <- FFFF | sets the negative flag

001A 50FF ; RO <- RO + FF /| sets the overflow flag

001B 4000 ; RO <- RO xor RO/ seta the zero flag

001C 7730 ;

001D 8700 ;. R7 <- 0030

001E CO77 ; junps to the address pointed by R7 (30H) if zero flag set

0030 7710:|

0031 8700

0032 CO70:| ; inconditional relative junp to address 33H+10H=43H

0043 D050 junmp to address 44H+50H=94H

0094 BOOG:I . oxxkkkkkkkkx HALT HALT ¥ occurs at 4800Nns simulation time *** %% xxxx k%% % x %
—» 0100 B10A ; SUBROUTI NE THAT TESTS PUSHI NG AND POPPI NG REG STERS TQ FROM t he STACK

0101 B20A

0102 B30A

0103 B40A | push registers 1 to 4

0104 7109

0105 8100

0106 CO1A ; when here, call another subroutine using PGrelative addressing node (110H 107H=09H)

0107 B409 <4

0108 B309

0109 B209

010A B109 ; retrieve registers 1 to 4 fromthe stack

010B BO08 ™ [; ****** g *xdswxdkkaddahinxs (4000ns sinulation tine)

0110 4111 ; SUBROUTI NE THAT enpl oys xor instruction to clear registers 1 to 4 - 2490ns

0111 4222

0112 4333

0113 4444 ; simulation time: 2730ns

0114 FO13 ; subrotine PC-relative, junp over 13 words, going to address 0128
[0115 80081 ’ * Kk k ok kK I’tS khkhkkhkkhkkhkhkkkkhkkkkkkk

0128 7190 ; SUBROUTI NE THAT TESTS LOAD AND STORE | NSTRUCTI ONS

0129 8101 ;rl <- 0190 (400 in decinal)

012A 73AA

012B 83BB ; R3 <- BBAA

012C ADO1 ; stores the contents of register 14 at the addresss contained in register 1 (190H or 400)

012D 9F10 ; reads contents of address contained in register 1, storing it in register 15 (3250ns)

012E B230

012F B220

0130 B221

0131 B221 ; tests sl0 and sl1 instructions - R2 after this nust contain BAA3

0132 B422

0133 B442

0134 B443

0135 B443 ; tests sr0 and srl instructions - R4 after this nmust contain CBAA - sinulation time: 4000ns

0136 B104 . not - Rl after this nust contain FFFF

0137 B008 — ; KEKKKK PH g KKKKKAKK K KKK KKK KK

-17 -

It is recommended that R8 users write assembly code programs for their application, generating
automatically the object code using the assembler/ssimulator combination. The assembler/simulation tool, as well
as some more detailed documentation on how to use it is available together with the processor specification and
implementation files. Figure 15 shows the Graphicad User Interface (GUI) main window of the R8
assembler/simulator. To the left of the Figure appears the Memory Table, containing in each line one assembly
instruction, the memory address chosen by the assembler where to locate this instruction and the associated object
code actually store at this position. In the center of the Figure is located the Symbol Table for the source code
program. For each label appearing in the program, regardless if this refers to data or program information, the
associated memory address and the value of the label are associated in this table. To the right of Figure 15 are
located the Register Table, which displays the contents of each general purpose register (from RO to R15), and of
each of the main control registers, IR, PC and SP. In the lower part of the window are located the control buttons
Sep, Run, Pause, Sop and Reset, as well as the simulation speed control buttons Sow, Normal and Fast. The
values of the qualifiers are displayed in the rightmost inferior part of the window, using check boxes, where a
checked box is associated with avalue 1 for the corresponding flag.

& R& Simulator [E:\Work R11 soft ¥1.8%Exemplos’R8BUBBLE.sym] = i I:Il_zj
File Help
Memary Symbaols Registers

Instruction |Address| Code | Symbol |Addre...| Yalue | RO R8
LOL R1,TAMY 0000 [TAFF |- TANY1 0020 |0OFF |=]
LOH R1,TAMY1 o001 (8100 | v 0800 [ooDD | R1 RO
SUBIR1#01H 000z (6101 INICIO 0000 |
LOL R5#01H 0003|7501 LOOP 000& | i R2 R10
LOH R5#00H 0004 (8500 LOOPINTERMO|000F | m
ADD R1,R1,R0 0005|0110 VOLTATROCA 0015 | R3 | oooo | R
JMPZD #FIMBUBELE 0006 |E415 FIMLOOPINT... [0019 |
LDL RZ#V1 oo7 7200 FIMBUBBLE [001C | Rt e
LDH R2#v1 ooos (8208 TROCA 001D
LDL R3#v1 0oDg 7300 e i
LOH R3#v1 000A 3308 o o
ADDI R3#01H 000B 5301 _
LOL R4, TAMY1 000C |74FF _ R7 | 0000 | R15
LOH R4, TAMY1 000D (3400
SUB R4,R4,R5 DODE 1445 _
ADD R4,R4 R0 00OF |0440 _ IR 0000 [RRC
JMPZD #FIMLOOFINT.. (0010 |[E408
LD R10,R2,R0 0011 |9A20 =k
LDR11,R3IR0 0012 (9830 | _ .

| @ breakpoint | Q, line Q, line Flags
STEP RUN - STOP RESET
Speed: 1 Slow ® Mormal i) Fast

Figure 15 - R8 Assembler/Simulator Graphic User Interface.

The assembly tool accepts as input a text file written in the R8 assembly language. Given a file named
<file>.asm, three outpuit files are generated after processing by the assembler tool:

<file>.hex — Thisis an Intel hex format file, a text file representing the object code and the application
data contents in a hexadecimal format useful for downloading program and data to one of the prototyping
boards for which R8 is available as an embedded processor;

<file>.sym — Thisis abinary file used by the smulator;

<file>.txt — This is a file containing the object code and the application data contents in a ssimple text
format, adequate for use as input to a test bench running within a VHDL simulator (we have aready used
Aldec Active-HDL and Mentor Modelsm simulators). Thisformat is illustrated above in Section 11.

The R8 assembler is mostly invisible to the user, since it is automaticaly called by the smulator interface
when afile with .asm extension is read from disk. The above mentioned 3 output files are generated at the time of

- 18-

loading the assembler file. If errors are found during the assembler execution phase, these are saved on a message
log file. The simulator reads this file after the assembler execution, so that the errors can be presented to the user.
In this last case, smulation is obvioudy not allowed to proceed, since an object file cannot be correctly generated.

12 REFERENCES

[1] N.L.V. Cdazans, and F. G. Moraes. “Integrating the Teaching of Computer Organization and Architecture
with Digital Hardware Design Early in Undergraduate Courses.” |EEE Transactions on Education, vol. 44,
no. 2, pp 109-119. May 2001.

