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Abstract

Field-Programmable Gate Array (FPGA) technology is rapidly gaining traction

in a wide range of applications. Nonetheless, FPGA debug productivity is a key

challenge. For FPGAs to become mainstream, a debug ecosystem which provides

the ability to rapidly debug and understand designs implemented on FPGAs is

essential. Although simulation is valuable, many of the most elusive and trouble-

some bugs can only be found by running the design on an actual FPGA. However,

debugging at the hardware level is challenging due to limited visibility. To gain

observability, on-chip instrumentation is required.

In this thesis, we propose methods which can be used to support rapid and ef-

ficient implementation of on-chip instruments such as triggers and coverage moni-

toring. We seek techniques that avoid large area overhead, and slow recompilation

of the user circuit between debug iterations.

First, we explore the feasibility of implementation of debug instrumentation

into FPGA circuits by applying incremental compilation techniques to reduce the

time required to insert trigger circuitry. We show that incremental implementation

of triggers is constrained by the mapping of the user circuits.

Second, we propose a rapid triggering solution through the use of a virtual over-

lay fabric and mapping algorithms that enables fast debug iterations. The overlay

is built from leftover resources not used by the user circuit, reducing the area over-

head. At debug time, the overlay fabric can quickly be configured to implement

desired trigger functionalities. Experimental results show that the proposed ap-

proach can speed up debug iteration runtimes by an order of magnitude compared

to circuit recompilation.

Third, to support rapid and efficient implementation of complex triggering ca-
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pabilities, we design and evaluate an overlay fabric and mapping tools specialized

for trigger-type circuits. Experimental evaluation shows that the specialized over-

lay can be reconfigured to implement complex triggering scenarios in less than 40

seconds, enabling rapid FPGA debug.

The final contribution is a scalable coverage instrumentation framework based

on overlays that enables runtime coverage monitoring during post-silicon valida-

tion. Our experiments show that using this framework to gather branch coverage

data is up to 23X faster compared to compile-time instrumentation with a negligi-

ble impact on the user circuit.
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Lay Summary

Field-Programmable Gate Arrays (FPGAs) are programmable integrated circuits

that can be used to prototype complex designs, such as processors, or to acceler-

ate computationally intensive applications such as artificial intelligence algorithms.

When incorrect behaviour is observed, finding the root cause (also known as de-

bugging) is complicated by a lack of observability, due to the limited resources that

can be exploited to observe internal signals. The above challenge is exacerbated

by FPGAs very long compilation time, which is required to map a design onto FP-

GAs. The lengthy compilation time can take several hours and significantly reduce

the productivity of the debug process.

In this thesis, we propose techniques for improving existing debugging tech-

niques to provide observability in order to help designers to identify design errors

and ensure the correct functionality of designs implemented on FPGAs without

requiring long recompilations, accelerating debug process.
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Chapter 1

Introduction

1.1 Motivation

In the nanometer era, producing correctly-working complex Application-Specific

Integrated Circuits (ASICs) designs is becoming more expensive and time-consuming,

primarily due to costly fabrication and the amount of engineering verification re-

quired to avoid unaffordable device re-spins [2]. Traditionally, circuit designers use

software simulators, such as Mentor’s ModelSim [3], to verify and debug hardware

designs before fabrication; this is called pre-silicon debug. Although simulation-

based verification is valuable, it is not enough. Many errors can only be observed

when a design is running on the actual hardware for several reasons: (1) many bugs

only emerge after long runtimes, and simulation is orders of magnitude slower than

real silicon, (2) many “corner case” behaviours (i.e. those that are impractical to de-

scribe with a test-bench) may need real workloads before they can be observed, and

(3) the most difficult bugs are often in the interfaces between a design and neigh-

bouring chips; only by verification and debugging the system in-situ running on
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the actual hardware such bugs can be found. This task is often called post-silicon

verification (also known as post-silicon debug) [34, 48, 103, 104]. Post-silicon

verification involves ensuring the design correctness. If an unexpected behaviour

is observed, it is necessary to identify the root cause and fix design errors.

To avoid costly re-spins, post-silicon validation is often performed by imple-

menting the design using a prototype built from one or more FPGAs. FPGAs

provide the ability to reconfigure the design during validation, allowing for the

evaluation of potential design variants, design updates, or fixing found bugs with-

out the need of a costly re-spin. Increasingly, these FPGA implementations are

being used as an initial version of the product, and only migrated to an ASIC if

volumes warrant. Additionally, running a design at speed on an FPGA prototype

with real-world stimulus allows for far more exhaustive and system-level tests (e.g.

booting an operating system) that are infeasible in simulation.

Recent years have seen tremendous interest in using FPGAs for computation-

ally intensive applications. Hardware acceleration is now entering the mainstream,

as evidenced by Intel’s acquisition of Altera, Amazon’s incorporation of FPGAs

in their EC2 F1 web service, and other efforts to bring FPGA technology into the

cloud [10, 37, 73, 92, 109, 117].

Nonetheless, the widespread use of FPGAs in such services is limited due to

their very long compilation time which can take several hours or even days for a

large and complex design. Traditional hardware designers may be willing to ac-

cept long design and debug cycles, however, application designers using FPGA

technology to accelerate software applications may not. These designers may ex-

pect software-like compile times, and similar support for debug and optimization.

Although there has been much work on developing design compilers to support
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designers that want to accelerate parts of their computation algorithms, design-

ers need an effective mechanism to rapidly debug, optimize, and understand their

designs.

Debugging consumes an increasingly high percentage of an entire project de-

velopment lifecycle and has become a critical bottleneck, motivating the need for

more effective and efficient verification technologies to improve productivity and

decrease development time to meet time-to-market demands [80, 104]. As a re-

sult, both industry and the research community are now moving to considering

entire debug “ecosystems” which provide the ability to rapidly debug and verify

the functionality of designs implemented on FPGAs.

The primary focus of this thesis is on improving existing verification and de-

bugging techniques in order to help designers to identify functional bugs and en-

sure the correct functionality of designs implemented on FPGAs for prototyping

or accelerators used in production systems. Examples of functional bugs may be

incorrect logic specifications in the RTL code, incorrect state transition, or IP mis-

configuration.

1.1.1 FPGA Debug Instrumentation

Once the designer observes unexpected behaviour at the outputs of the system, he

or she needs to start debugging to identify the root cause of the bug and fix design

errors. Unlike manufacturing tests and pre-silicon verification that have benefited

from automated methods and standard coverage metrics, post-silicon debugging

is still designer-dependent and ad-hoc, meaning that designers with deep knowl-

edge of the design are required to find the root cause of unexpected behaviour.

Rather than trying to pin-point the root cause automatically, our approach focuses
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on techniques to provide meaningful signal data behind unexpected behaviour to

the designer, who can then use this information to find the bug and its root cause.

Once the root cause has been identified, steps can be taken in order to fix the bug.

Fundamentally, identifying the root cause of a bug requires investigating and

understanding the design’s behaviour in detail. In simulation, the designer can

observe all signal waveforms over the course of design execution. However, in a

hardware implementation, the designer does not have access to all signal data due

to a limited number of I/O ports. A widely-used approach to gain observability

during debugging is to employ on-chip debug instrumentation. This instrumenta-

tion records the behaviour of a set of selected signals in on-chip memory blocks

(also called trace buffers), coordinated by trigger circuitry that determines when

data should be recorded. After execution, this recorded data is read out, and used

in a custom tool to replay the behaviour, hopefully leading to insights into the op-

eration of the circuit. Due to limited on-chip memory, the recorded data contains

information only for the selected signals during a fraction of the circuit execution.

To gain additional information about the operation of the circuit, the designer may

need to change the selected signals or refine the trigger event to capture a different

slice of circuit execution, which is known as a debug iteration. Depending on the

complexity of the bug or the designer’s expertise, several debug iterations may be

required to find the root cause of unexpected behaviour.

In commercial tools [74, 119, 127] as well as academic work [29, 53, 83], the

instrumentation is added to the user design before compilation. The instrumenta-

tion is then compiled along the user circuit using the FPGA’s general-purpose logic

and routing resources. Once the instrumentation is inserted, if the designer wishes

to modify the instrumentation, another recompilation is necessary. The long com-
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pilation times that are inherent to FPGA devices increase the time to perform a

debug iteration. For very large designs, this can be prohibitive (often called a “go

home event”) which can severely limit debug productivity. Further, recompiling a

design may often lead to slightly different implementation and timing behaviour

which may cause a bug to disappear or change [81, 116]. Although FPGA ven-

dors have made gains at reducing compile time in recent years, compile times are

still long; therefore, a method of enhancing debugging of designs implemented on

FPGAs that does not require frequent recompilations is required.

1.1.2 FPGA Coverage Instrumentation

During verification, it is important to evaluate the quality of test-cases that exer-

cise the design and identify unexplored areas of the design using coverage metrics.

Several standard coverage metrics and methods exist for measuring coverage of

simulation-based verification. For example, code coverage measures what fraction

of the source code (in terms of statement, branch, etc.,) has been executed by the

tests, assertion-based coverage indicates how well a design’s behaviour indicated

by the designer has been tested, and mutation-based coverage measures what frac-

tion of injected bugs are detected during simulation-based verification. Although

these metrics can be easily measured with only little overhead to the simulation,

it is not sufficient to completely guarantee the correct operation of a chip, either

due to extremely long runtimes or its inability to mimic real-world interfaces in a

pre-silicon testbench.

Since running the designs on FPGAs enables the designers to run far more com-

plex and realistic tests compared to simulation, it should be leveraged for coverage

analysis as well. Currently, post-silicon verification methods and tools are not
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structured for coverage analysis and are only used to check functional correctness

of the design. Quantifying the coverage of tests during post-silicon verification is

difficult; this difficulty is rooted in the lack of visibility into the internal operation

of a running chip [104].

On-chip monitors are a straightforward solution for increasing observability

and measuring post-silicon coverage. However, implementing a large number of

monitors (hundreds or even thousands) on-chip along with the user circuit can con-

sume significant area and may make it infeasible to provide a complete coverage

analysis. Although FPGAs enable implementing a limited number of monitors in

multiple debug sessions, changing monitors requires a recompilation, recompiling

can be very slow, often on the order of hours (or longer); this significantly limits

verification productivity. Further, adding these monitors may perturb placement

and routing of the user circuit, possibly changing the behaviour of the design. In

this thesis, we aim to address these limitations.

1.1.3 FPGA Overlay Fabrics

In recent years, the concept of an overlay has emerged as a promising technology

to tackle FPGAs long compilation time, and may become key to ensuring that

FPGA technology is successful as it moves to the mainstream. Overlay fabrics,

also called intermediate fabrics, are virtual configurable architectures implemented

on top of an FPGA. Overlay fabrics provide a trade-off between flexibility and

compile time; by constructing fabrics optimized for specific domains or circuit

types, much of the flexibility can be removed leading to faster compilation times. A

growing amount of research has investigated overlays for specific applications [26,

31, 39, 77, 78, 82, 86, 90, 97]. However, overlays are limited by their area and
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performance overhead that prevented the realistic use of them in practice. The area

and performance overheads are mainly because of FPGA resources used to enable

the programmability of the overlay fabrics, and that overlay fabrics are typically

designed without careful consideration of the underlying FPGA architecture. In

this thesis, we aim to address this limitation and explore overlay architectures for

an in-system debug ecosystem.

1.2 Contributions and Research Overview

1.2.1 Contributions

The main contributions of this thesis are novel techniques that support rapid and

efficient implementation of on-chip analysis instruments (such as trigger circuits

and coverage monitoring circuits) suitable for an in-system debug ecosystem, in a

way that does not require large area overhead, and frequent design recompilations,

enhancing FPGA debug productivity. More specifically, we make the following

contributions:

• Addressing the feasibility and challenges of using incremental compilation

techniques for inserting a trigger circuitry without changing the mapping

(placement and routing) of the user circuit and without performing a full

recompilation between debug iterations.

• A non-intrusive instrumentation framework that exploits virtual overlays to

provide rapid triggering capabilities enabling rapid debug iterations during

FPGA debug.

– An adaptive strategy and CAD techniques to non-intrusively construct
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the virtual overlay fabric on top of the user circuit only using leftover

resources after user circuit compilation while preserving its original

mapping.

– An overlay architecture and CAD techniques suitable for rapid imple-

mentation of arbitrary combinational trigger circuits.

– An overlay architecture and CAD techniques specialized for efficient

implementation of state-based triggering functionalities.

• A scalable and area-efficient coverage instrumentation framework suitable

for FPGA-based validation, which enables runtime implementation of on-

chip coverage monitors.

1.2.2 Research Overview

Chapter 3 explores applying incremental compilation techniques to insert debug

circuitry without performing a full compilation during debugging to enable fast

debug iterations. We used incremental compilation techniques to implement trig-

ger functions on top of an already placed-and-routed circuit without modifying

the underlying circuit using only resources not used by the user circuit; we pre-

serve packing, placement, and routing of the original user circuit when inserting

the debug circuitry; this is important since it ensures that the original user cir-

cuit is compiled as normal and its mapping is fixed and does not change as the

instrumentation is inserted, changed, or removed. This also allows designers to

preserve low-level optimizations and timing closure of the original circuit as well

as avoiding the CAD noise that is inherent to FPGA heuristic CAD algorithms. Our

approach has two phases: pack-place phase and routing phase. In the pack-place
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phase phase, the goal is to distribute the trigger logic to spare logic resources on

the FPGA. In the routing phase, spare routing resources are used to make all the

required connections in the trigger circuitry using incremental routing techniques.

We will show that using incremental compilation techniques for trigger implemen-

tation significantly reduces debug iteration times. However, the ability to insert

trigger circuits in this way depends on (1) the spare logic resources, (2) the spare

routing resources, and (3) the mapping of the user circuit. This directly motivates

exploiting overlays for implementation of trigger circuits. The contribution from

this chapter was published in [42].

Using the techniques from Chapter 3, we found it was often difficult to make

the required connections when implementing trigger circuits. To address this,

Chapter 4 presents an alternative approach. This approach uses a virtual over-

lay architecture that is constructed only once after user circuit compilation but can

be reconfigured multiple times to implement different trigger circuits. Importantly,

this does not require a recompilation of the entire user circuit between debug itera-

tions. In Chapter 4, we present an adaptive strategy to construct the overlay fabric

on top of the user circuit while preserving its original mapping. The overlay archi-

tecture is designed as a 2D torus and is made efficient by carefully matching the

overlay to the underlying FPGA architecture, and adapting the overlay to use only

the resources left unused by the user circuit. In this way, the downside of many

overlay approaches is avoided and the overhead can potentially be reduced to zero.

During debugging, an algorithm is required to rapidly configure the overlay

fabric. Hence, we propose a routing-aware simulated-annealing based placement

algorithm to place a trigger circuitry into the overlay while optimizing for routabil-

ity of the placement solution. This increases the likelihood of a successful trigger
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insertion. Since the overlay is pre-synthesized, the algorithm that maps the trigger

function to the overlay architecture can be fast.

We will show that the overlay architecture provides enough flexibility to im-

plement different combinational triggering scenarios an order of magnitude faster

compared to the traditional flow. Furthermore, it should be noted that any increase

in the circuit critical path delay is temporary; the operating frequency of the cir-

cuit can be set as normal when the debug instrumentation is not required. The

contribution from this chapter was published in [44].

While the overlay architecture and mapping algorithms presented in Chapter 4

provide support for rapid implementation of arbitrary combinational functions, it

does not support more complex triggering capabilities, including sequential (state-

based) trigger functions. Such complex trigger circuits are essential to ensure that

the designer is able to make the best use of the limited trace buffer capacity. Hence,

Chapter 5 presents an overlay architecture that is specialized and optimized to im-

plement state-based trigger functions during debug. The architecture is designed

to be adequately flexible to implement a wide variety of such functions. The ar-

chitecture is also optimized to be area-efficient when implemented on top of a user

circuit. To implement the logic part of trigger circuits, the overlay contains a num-

ber of cells arranged in multiple levels in a triangular reduction-network pattern.

To support sequential part of trigger circuits, the overlay also contains a bank of

flip-flops connected to the overlay cells. This chapter also presents several new

CAD techniques that adapt to the topological characteristics of this specialized

overlay for mapping complex trigger functions onto the overlay. Trigger mapping

is divided into two steps: first, the combinational portion is mapped to the overlay

cells using a gradual and simultaneous placement and routing algorithm to ensure a

10



legal mapping solution. Secondly, the flip-flops in the trigger circuit are placed into

the flip-flop banks of the overlay fabric and connect to the combinational portion

of the circuit.

We will show that our customized overlay fabric can be reconfigured to im-

plement different combinational and sequential triggering scenarios in less than 40

seconds for our benchmark circuits, enabling rapid debug iterations. Furthermore,

we compare our approach to a commercial tool, Intel’s SignalTap II tool [74]. We

find that our approach for trigger insertion during debugging can outperform the

general-purpose incremental compilation feature of the Intel Quartus Prime tool

in terms of runtime and area overhead. The contribution from this chapter was

published in [43] and an extended version was submitted to a journal with minor

revisions.

Chapter 6 describes a scalable and adaptable coverage instrumentation frame-

work for FPGA-based coverage analysis which greatly reduces the area overhead

of on-chip monitors. We made the observation that we can re-purpose existing

FPGA-based on-chip debug cores to facilitate on-chip coverage monitoring. In

this approach, an overlay fabric is implemented on the FPGA along with the user

circuit; this fabric is flexible enough that it can be used to rapidly cycle through

coverage monitor functions through multiple runs without requiring a slow recom-

pile. Importantly, the fabric is added after the user circuit is placed and routed,

using only leftover resources that are not used by the user circuit. The architecture

is adaptable in that it can adjust to the number of logic blocks and routing tracks

not used by the user circuit; if there is ample space available, a large fabric that

supports many monitors in parallel can be used, while if space is tight, a smaller

fabric that implements fewer simultaneous monitors can be used.
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To achieve this, we employ an overlay fabric on top of the user circuit using

FPGA spare resources after user circuit compilation. Because the overlay is opti-

mized for coverage monitoring, the time to compile monitors to the overlay fabric

is fast and the overlay can be reconfigured at runtime to implement monitors in a

time-multiplexed fashion to gather coverage data during the entire design execu-

tion. We will show that using our approach to implement all monitors is up to 23X

faster compared to compile-time instrumentation with a negligible circuit delay

increase. The contribution from this chapter was published in [46].

1.3 Thesis Organization

In Chapter 2, we will discuss existing post-silicon debug techniques in more detail

and provide an overview of how debug instruments are implemented and used in

post-silicon debug for both ASICs and FPGAs. This chapter then reviews the most

common coverage metrics used in simulation-based verification, and reviews prior

work in implementing on-chip monitors for post-silicon validation. This chapter

also reviews FPGA overlays and prior work that described overlay architectures

and tools suitable for specific application domains to address FPGA long compi-

lation times. Chapter 3 explores applying incremental compilation techniques to

insert debug circuitry without performing a full compilation and addresses chal-

lenges of distributing trigger functions over leftover resources without modifying

the mapping of the user circuit. Chapter 4 proposes a non-intrusive instrumenta-

tion framework that enables rapid implementation of trigger circuits through the

use of debug overlays. This chapter then presents an adaptive strategy to map

debug overlays onto underlying FPGA resources. Finally, Chapter 4 presents an

overlay architecture and CAD techniques suitable for implementing arbitrary com-
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binational trigger circuits into the overlay fabric. Chapter 5 presents a customized

overlay architecture and mapping algorithms specialized for implementing state-

based trigger functions.

Chapter 6 proposes a scalable instrumentation framework for implementing

coverage monitoring in a time-multiplexed fashion suitable for FPGA-based cov-

erage analysis. Finally, Chapter 7 summarizes the contributions of this thesis and

provides directions for future work.
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Chapter 2

Background and Related Work

Post-silicon validation can be divided into two important tasks: (1) collecting sig-

nal data to verify design behaviour and find the root cause of observed bugs; (2)

assessing how exhaustively the design has been exercised during validation using

coverage metrics which can provide useful feedback to identify which areas of the

design may be inadequately tested. Performing these tasks during post-silicon val-

idation is complicated by a lack of observability due to the limited number of pins

that can be used to observe design behaviour and collect data.

This chapter first describes how on-chip debug instrumentation is used to pro-

vide visibility into the design and discusses some of the key challenges of im-

plementing debug instruments during post-silicon debug in Section 2.1. It also

discusses several efforts from academia and industry on enhancing visibility and

efficient implementation of debug instrumentation for ASICs and FPGAs. This

section provides core information for the contributions of Chapters 3, 4, and 5 of

this thesis. Next, Section 2.2 discusses pre-silicon simulation-based coverage met-

rics, and provides a detailed survey of the approaches that use on-chip coverage
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monitors to provide visibility for measuring coverage at post-silicon. The latter

provides information related to the contribution of Chapter 6 of this thesis. Finally,

Section 2.3 describes overlay fabrics for FPGAs and reviews the existing work in

this area as FPGA overlays play an important role in the contributions from this

thesis.

2.1 Post-Silicon Debug Instrumentation

For many types of bugs, such as straightforward functional errors, software simula-

tion is suitable. For other bugs, however, simulation-based verification may be too

slow to expose the bug, especially for large and complex designs that include both

software and hardware components. For many timing and interface errors, it may

be impossible to observe the bug until the design is implemented on a hardware

executing at speed in-situ using realistic test cases, such as booting an operating

system that is too slow to be simulated. For these reasons, many bugs can only be

found by observing the circuit implemented and running in hardware interacting

with other system components. A post-silicon validation process is, therefore, an

essential part of any integrated circuit design flow [34, 48, 103, 104].

This thesis focuses primarily on post-silicon debugging techniques that aim to

ensure design correctness against errors caused by human designers as opposed

to manufacturing defects. Manufacturing test is applied to every single device

to detect fabrication defects (e.g. stuck-at faults). Unlike manufacturing testing,

there are no standard bug models for bug scenarios during post-silicon verification.

Bugs that appear at post-silicon are often corner-case bugs caused by subtle design

errors and accurate modeling of such bugs may be very difficult [34, 55, 104]. Dur-

ing post-silicon verification and debugging, real-world long-running tests (such as
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booting an operating system or application software) are applied to the design run-

ning at-speed and the design behaviour is observed. When incorrect behaviour in a

running chip is observed, it is very difficult for designers to deduce the root cause

of the behaviour due to poor observability into internal data. Two main approaches

exist to enhance on-chip visibility: scan-based instrumentation and trace-based in-

strumentation.

Scan-based instrumentation is a technique used by manufactures to test for

manufacturing defects in ASICs. A scan chain is a technique that involves con-

necting all the flip-flops of a circuit sequentially, providing the ability to observe or

control the stored values. Since these scan chains are fabricated into ASIC designs,

they can be reused for debugging functional errors [54, 122]. However, some FP-

GAs (such as Xilinx Virtex-5) have built in support for scan chains. If there is no

built in support, Wheeler et al. showed that adding them requires on average 84%

additional chip area [123]. One major drawback of scan-based techniques is that it

only provides a single snapshot of the states. Hence, the circuit must be stopped at

the right time to be able to extract values stored in flip-flops. Extracting the data

is slow, and halting the circuit every time the designer wants to observe the stored

values in flip-flops makes real-time observation impossible; the process of viewing

one flip-flop using device readback techniques can take 2-8 seconds [61, 75, 76].

In [128], the author proposed scan-based techniques in which shadow flip-flops or

latches are configured to periodically provide a snapshot of the circuit state dur-

ing system operation without halting the circuit. However, their techniques cannot

avoid the substantial area increase.

The most common technique to provide visibility without interrupting the cir-

cuit execution is trace-based instrumentation. As shown in Figure 2.1, this instru-
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Figure 2.1: On-chip debug instrumentation including trace buffers to capture
data, and a trigger circuitry to control capturing

mentation typically consists of trace buffers, which are on-chip RAM blocks used

to store a history of internal signals (trace signals) for later interrogation. This data

can then be provided to the user using a graphical user interface.

Since on-chip memory is limited, trace buffers can capture a subset of circuit

signals for a limited number of cycles. Since this recorded data is critical in root

cause analysis, it is important to ensure that the collected data is the most relevant

to the unexpected behaviour that has occurred. To ensure that the collected data

is useful, a routing network is typically provided to connect a subset of internal

signals to the trace buffer, and trigger circuitry is included to identify events dur-

ing the circuit execution at which data should be collected and stored in the trace

buffers [29, 53, 74, 83, 85, 101, 119, 127]. This latter flexibility is of particular

importance to the main contributions in this thesis. As shown in Figure 2.1, trigger

circuitry consist of three parts: (1) the trigger function, which determines when
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trace buffers should stop recording, (2) trigger signals, which are signals from the

user circuit and are selected by the designer to construct the trigger condition, (3) a

single trigger output, which is the output of the trigger function, and drives control

logic within the trace buffers. Trigger circuits can be used in several ways. One

option is that trigger circuit could be used to identify the point at which the trace

buffers should start recording data, in which case, after a trigger event occurs, the

trace buffer fills to capacity and then is frozen. Alternatively, the trigger circuit

could be used to identify the point at which recording should stop; in this case,

the memories can be configured as a circular buffer, continuously over-writing the

oldest data until the trigger event occurs, at which point the buffers are frozen. In

either case, after the trigger occurs, the trace buffers maintain a short history of

selected signals which can help the designer uncover the cause of observed bugs.

Trigger circuits can be combinational or sequential. As a specific example, a sim-

ple trigger function might determine when an internal bus carries a specific bit

pattern; a more complex trigger might be a state machine that determines when a

pre-determined packet is received on an input stream.

Trace-based instrumentation is commonly used in ASICs [4, 122]. Since these

on-chip memories have a limited storage capacity, the designer must pre-select a

number of internal signals to be connected to trace-buffers before chip fabrica-

tion. Several methods have been proposed to make a trade-off between the amount

of visibility, the flexibility of changing selected signals after fabrication without

a costly re-spin, and the chip area required to implement the debug instruments.

Mentor Certus [101] provides proprietary observation networks to allow designers

to instrument a large subset of signals during compilation; any subset of these sig-

nals can be selected for debug at runtime [110]. In [110, 111], a programmable
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logic core has been embedded into the design along with an access network to pro-

vide the ability of connecting signals of ASICs designs to the trace buffer pins after

fabrication. The authors in [112] proposed a debug infrastructure to support chips

with multiple clock and voltage islands. In [5], the authors proposed a distributed

reconfigurable infrastructure along with a signal routing network to implement de-

bug structures. In [94, 95], the authors explored other types of trace interconnection

networks and proposed a tree-like routing network to provide more flexibility for

debug.

Data compression techniques have been also used to compress the real-time

debug data to further enhance the storage efficiency of trace buffers [12, 13, 16,

41, 52, 108]. Several trace signal selection and state restoring methods have been

proposed to maximize restoring un-traced signals using traced signals [7, 17, 19,

56, 63, 91, 98].

To further improve observability, several approaches were developed based on

a combination of trace-based debugging and periodic scan chain captures. The idea

is that a set of trace signals are stored in every cycle, whereas a set of scan signals

are dumped across multiple cycles [18, 84]. In [113], the authors used several

smaller scan chains with different dumping periods and proposed signal selection

algorithms to assign the signals to different scan chains in order to maximize the

number of states that can be restored.

2.1.1 FPGA Debug Flow

FPGAs can be configured after fabrication which provides a unique opportunity in

that the instrumentation can be recompiled as the debug instrumentation changes

during the debug process. Figure 2.2 shows a typical FPGA debug flow. In this
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Figure 2.2: Typical FPGA debug flow in which instrumentation is inserted
before compilation

flow, the instrumentation is inserted into the design before compilation. The design

is compiled using standard tools, and runs as normal. As the circuit is running, the

instrumentation records the behaviour of the selected signals in the trace buffer.

After the run is complete, the designer can off-load this information for viewing

and analysis, often using a waveform viewer.

During the hunt for the root cause of a bug, the designer may need to frequently

refine his or her view of how the circuit operates, and may wish to re-run the circuit,

recording a different set of internal signals or using a different trigger function con-

dition so as to record behaviour in a different portion of the execution. This flow

has three major limitations. First, a recompilation of the design is required when-

ever the trigger function or set of traced signals is changed during debug iterations.

Recompiling today’s large and complex designs can be extremely slow (several

hours or even days) which can severely limit debug productivity. Second, recom-

piling can result in a different mapping (placement and routing), which may cause

a bug to temporarily disappear or lead to different unexpected behaviour (“crash-
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ing in a different way”). Third, the tool will treat the instrumentation and user

circuit as equally important and optimize both together. This means, for example,

if the critical path is in the debug instrumentation, the tool will not work as hard

to optimize the timing performance of the user circuit. Moreover, it also means

the debug instrumentation uses those FPGA resources that could be used by user

circuit, rather than using only logic resources that the user circuit does not require.

Xilinx’s Vivado [127] and Intel’s Quartus Prime [74] use general-purpose in-

cremental compilation to avoid full recompilation if the debug core is updated dur-

ing debug iterations. Intel’s SignalTapII [74] requires the designer to compile the

debug core with the design as a separate partition and recompiles this partition

separately if the property of the debug core is updated using general purpose in-

cremental compile. Similarly, Synopsys’s Identify [119] requires recompilation if

reinstrumenting introduces new logic to these debug cores. However, because these

are general-purpose techniques — in that they are designed to accelerate changes

being made to the original circuit (e.g ECO changes), as opposed to simply adding

new read-only instrumentation — these techniques can still be slow, especially if

significant changes to the debug instrumentation are made, and often fall short of

the software-like turnaround times many designers desire. Additionally, the entire

design must be loaded into the memory of the workstation running the CAD tool.

Therefore, incremental compilation techniques specific to debug instrumentation

is required to enhance on-chip debug productivity.

Academic works have considered incremental routing techniques that connect

signals to trace buffers or output pins without a full recompilation. In [58], the au-

thors proposed inserting trace-buffers into a Xilinx FPGA at compile-time. Then,

they applied bitstream modifications to route the trace signals to trace-buffers.
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Hung and Wilton [64, 66] used incremental compile techniques to accelerate trace

insertion and signal visibility. They speculatively inserted the debug instruments

into the unused resources of FPGAs while preserving the original circuit mapping.

They also described a network for rapidly routing trace signals to trace buffers

without a recompilation; they created a virtual overlay network using unused mul-

tiplexers within the routing fabric and a routing algorithm has been used to route

trace signals to the trace buffer. In [68], the same authors described a network flow

based routing algorithm that incrementally connects the maximum number of re-

quested signals to trace-buffers. This was made possible by the unique opportunity

in signal tracing in which all trace buffer inputs are logically equivalent. In [87]

the authors performed a signal parameterization on the user circuit and inserted

multiplexers with parameterized selection bits to guide signals to trace buffers.

However, those techniques do not address the incremental re-implementation of

the trigger circuitry. The necessity to consider both logic and routing makes this a

significantly harder problem.

In [69, 70], the authors used an incremental approach to insert additional logic

(trigger circuitry in [70] and self-monitoring circuitry in [69]) to existing circuitry

by finding a contiguous region of unused logic blocks that fits the entire additional

logic. The difficultly with this approach is that on a highly-utilized FPGA, it may

be difficult to find a region large enough, and with the right shape, to implement the

additional logic. It may be possible to “reserve” space for an additional circuitry

when compiling the existing circuit, but this interferes with the original circuit

mapping or the design may no longer fit into the device. In addition, this would

require knowing the size of the additional logic; if the size of the additional logic

changes, and requires more logic elements, a complete recompile may be neces-
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sary.

In [65], Hung and Wilton focused on the flexible implementation of the inter-

connect between user circuit and trace buffers, and provided a mechanism to imple-

ment only simple trigger circuits by using a portion of trace buffers, where trigger

signals are connected to the address lines and different values on trigger signals

will cause the RAM block to return a stored value. However, this approach only

supports basic bitwise pattern-matching trigger functions. Commercial tools sup-

port state-based triggering. In Synopsys’s Identify [119] and Xilinx’s Vivado [127],

state machines with between 2 and 16 states are possible, while in Intel’s Signal-

TapII [74], state machines with between 2 and 20 states are supported. The range

of number of trigger conditions that can be created is 1 to 16 in Synopsys’s Iden-

tify [119], and 1 to 10 in Intel’s SignalTapII [74]. Xilinx’s Vivado [127] allows

up to three conditional branches in each state. However, these capabilities must be

specified before compilation and adjustments to these properties requires another

recompilation.

HLS Debug

High Level Synthesis (HLS) tools have become available from FPGA vendors such

as Intel [72] and Xilinx [126], as well as open-source academic LegUp project [30]

to allow designers to translate a high level language, such as C/OpenCL, to HDL.

This allows application designers to benefit FPGA technology to accelerate soft-

ware applications without focusing on the hardware implementation details. Sev-

eral research works presented techniques for debugging HLS-generated circuits

and used trace-buffers to record data and later mapped the values back to the orig-

inal source code for circuit execution replay [29, 51, 53, 105, 106].
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In [105, 106], the authors inserted the debug instrumentation at the C level.

In their approach, variables in C code are assigned to new top-level pointers. The

HLS tool then converts these pointers to top-level ports in the generated circuit.

These ports can be connected to the trace-buffers to record signal data. The authors

used the HLS scheduling information to determine the states in which a signal is

computed and record signals only in those states. In [29], instead of instrumenting

the C code, the debug circuitry is added after the RTL is generated by the HLS tool.

In this approach, a database was used to store the information about the original

source code variables to the HLS generated circuit signals. Intel SignalTapII [74]

logic analyzer was used to record a subset of signals into trace buffers. When the

trigger condition fires, the recorded data is related back to the original source code

variables to enable source-level debugging. Instead of using existing embedded

logic analyzers that are built for any RTL hardware designs, Goeders and Wilton

presented a customized instrumentation based on the information provided within

the HLS tool and record data only if the signals are updated [51, 53]. They also

used signal restoration techniques to improve trace-buffer utilization resulting in

improved visibility compared to existing logic analyzers.

These techniques mainly focused on optimizing debug circuitry for recording

longer execution histories to enhance observability. However, the lengthy compi-

lation times of the back-end flow have been ignored. Changing the variables to

be observed requires a full recompilation of the design and debug instrumentation.

To avoid a full recompilation, Bussa et al. used the incremental design flow in

a commercial FPGA CAD tool to re-instrument the design between debug itera-

tions [27]. This leads to a 40% reduction in debug turn-around times compared

to a full recompilation. Recently, Jamal and Wilton used HLS scheduling infor-
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mation to provide highly customized architectural support for selective variable

tracing, selective function tracing, and conditional buffer freeze limited to variable

assignment in order to maximize trace buffer utilization [79]. To enable these capa-

bilities, an architecture with limited ability to program is compiled with the user’s

design at compile time. During the debug, bits internal to the instrumentation can

be changed to enable those capabilities without performing a full recompilation.

However, as discussed in Section 2.1.1 compiling the design with the instrumen-

tation prevents the tool from fully optimizing the user circuit and may change the

critical path of the user’s design. This may change the behaviour of the user’s

circuit.

In above mentioned works, a unique opportunity in instrumenting HLS-generated

circuits is that they are created by the HLS tool and the HLS scheduling informa-

tion within the HLS tool can be used to create and optimize circuit-specific debug

circuitry for efficient use of hardware resources to enhance observability [105]. In

contrast, this opportunity does not exist in optimizing existing debug cores used for

RTL hardware designs which is the focus of this dissertation; the limitation comes

from the fact that these debug cores are designed to support generic RTL circuits

designed by a hardware designer and there is no knowledge of the behaviour of the

circuit.

2.2 Coverage Metrics for Functional Verification

Coverage metrics enable designers to measure the adequacy of the design func-

tional verification effort and to identify which parts of the design have been ade-

quately verified and which parts need more verification. Test coverage has emerged

as an essential metric for evaluating the effectiveness of both conventional simulation-
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based verification and post-silicon validation. Since some of the coverage metrics

used in simulation-based verification can be adopted for post-silicon validation,

some of the common coverage metrics used in simulation-based verification are

discussed in Section 2.2.1. Then, Section 2.2.2 provides a discussion on the prior

works and methods for measuring coverage during post-silicon validation.

2.2.1 Simulation-based Coverage Metrics

There are a variety of coverage metrics to evaluate the effectiveness of tests during

simulation-based verification. We will briefly discuss the prominent ones in this

section.

Code Coverage

Code coverage is the most common coverage metric used in simulation-based ver-

ification and is inspired from software testing. Code coverage quantifies how well

the design HDL code is exercised by the test-cases during simulation. The main

code coverage metrics include statement/line coverage, branch coverage, and tog-

gle coverage. Statement/line coverage reports whether a line of HDL code is exe-

cuted at least once during simulation. Branch coverage reports whether all possible

branches of if–else, case , and ternary operator (?:) statements are executed. Toggle

coverage reports whether a signal has a transition during simulation. These met-

rics can be gathered automatically in simulation and does not require extra effort

by designers.

Assertion Coverage

An assertion is a design property that should not be violated during simulation runs.

An example assertion is ”acknowledge signal ack should become 1, one cycle after
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the request signal req becomes 1”. Assertions perform automatic checks and fire

immediately when an internal error (malfunction) is detected, hence the designer

knows where to start debugging [47]. Assertions are carefully crafted by a designer

with an extensive knowledge of the behaviour of the design. Property Specification

Language (PSL) and System Verilog Assertions (SVA) are the two commonly used

languages for describing assertions [1, 28, 59]. Assertion coverage reports which

assertions were successful and which ones failed in simulation. However, writing

a comprehensive set of assertions that cover all functional aspects of the design be-

haviour imposes a significant challenge and there is no standard way to determine

whether the assertion set is complete.

Mutation Coverage

Mutation-based verification involves injecting artificial bugs (known as mutants)

into the RTL description of the design and checking whether it is caught during

verification [9, 125]. For example, a mutant comprises of modifying operators (e.g

replacement of ”+” with ”-”), or incorrect assignment statements. Mutation cover-

age reports what fraction of the mutants are caught during verification. Mutation

coverage relies on the quality of the mutants and is computationally expensive since

it requires injecting a large number of mutants, and each mutant must be inserted

one at a time.

2.2.2 Post-Silicon Coverage Monitors

As mentioned before, although simulation-based pre-silicon verification is ubiqui-

tous, it is not sufficient to completely guarantee the correct operation of a design,

due to its long run-times, and its reliance on realistic testbenches to stimulate the
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design. This justifies the need for a post-silicon validation process that is an essen-

tial part of any integrated circuit design flow.

Unlike pre-silicon verification and manufacturing tests that benefit from well-

established coverage metrics and automated methods and tool flows, there is no

standard metric and method to quantify the effectiveness of post-silicon validation

tests. Evaluating post-silicon coverage is challenging due to the lack of visibility

into the internal operation of integrated circuits.

Several approaches have been proposed for inserting on-chip coverage moni-

tors and coverage measurement in ASICs. In [15], the authors manually inserted

code coverage monitor flags alongside a multiprocessor SoC design code, and con-

cluded the area overhead of on-chip monitors can be prohibitive, in one block

reaching 22%. In [14], the authors used an emulated version of a design to measure

path coverage of a validation plan for an ASIC. In [49], the authors instrumented a

design in emulation to gather statistics and then used this data to choose a subset of

coverage monitors for implementing on silicon. In [22], the authors instrumented

Intel’s Core 2 processor family for post-silicon coverage monitoring. However,

only minimal coverage information was extracted due to area overhead of on-chip

monitors. In [6], the authors used their emulation platform for the IBM Power7

to run processor-specific coverage monitors, providing an estimate of coverage by

the same test in post-silicon. However, the area overhead of the coverage monitors

was not disclosed.

Although assertions have been widely used in pre-silicon verification, asser-

tion languages (e.g PSL, SVA) are not necessarily synthesizable to be re-used in

post-silicon verification. Assertion synthesis tools and optimization techniques for

silicon have been developed [23–25, 107]; however, on-chip assertion monitors
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have not been widely used in practice since the silicon area overhead required to

implement hardware assertion monitors limits the number of assertions that can

be inserted on-chip. In [50], the authors proposed a technique (TMAC) that em-

ploys an embedded FPGA (eFPGA) centralized in a SoC design along with a signal

routing network to enable assertion checking for post-silicon bug detection. How-

ever, the routing network area overhead grows with the number of signals to be

monitored for assertion checking. In [120], the authors have shown that the area

associated with adding all discovered assertions to a circuit can easily exceed 20

times that of the area of the circuit itself. Therefore, they proposed a methodology

to rank assertions with the objective of increasing the likelihood of bit-flip detec-

tion and based on user-specific area constrains and only synthesized a subset of

them for on-chip monitoring.

As an alternative to on-chip coverage monitors, in [45, 88] the authors per-

formed trace analysis on signals recorded on trace-buffers to check whether an

assertion failed. They proposed trace signal selection algorithms from an asser-

tion coverage prospective to record those signals that are important for assertion

checking. However, due to the limited capacity of trace-buffers, these methods

can perform assertion checking only for the recorded cycles, instead of complete

design execution.

In the above mentioned works, adding a large number of hardware coverage

monitors to a design consumes a significant amount of chip area and these solu-

tions are limited to a small number of important coverage monitors, and making a

thorough evaluation of coverage infeasible. While ASIC designs require additional

area for inserting debug instruments and coverage monitors, circuits implemented

on FPGAs typically do not use all pre-fabricated logic and routing resources; this
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spare capacity presents an opportunity to be used for debug and coverage analysis.

Less work has been done on exploiting FPGA spare resources for inserting analysis

instruments such as triggers and coverage monitors.

2.3 Overlay Architectures

Overlay fabrics are virtual reconfigurable architectures implemented within the

user logic of an FPGA device. Using overlay fabrics optimized for a specific-

class of circuits, much of the flexibility can be removed through abstraction of the

physical FPGA details leading to faster compilation times and portability. That

is, the designer only needs to map the application onto this pre-synthesized pro-

grammable architecture which is a simpler problem and is orders of magnitude

faster (100x-1000x speedup) than invoking the FPGA vendor CAD tools to map

the application to the fine-grained resources in FPGA. Because overlay fabrics are

virtual, portability is also achieved across any FPGA device that can implement the

overlay architecture. However, overlays are limited by their area and performance

overhead. A growing amount of research has investigated overlays for specific

applications and proposed fine grained and coarse grained overlay architectures.

A fine grained overlay (that is ”FPGA on an FPGA”) is defined as a virtual

FPGA that is implemented by resources within a physical FPGA [26, 62, 86, 97].

In [97], the authors proposed a virtual fine-grained architecture to provide portabil-

ity. However, the proposed virtual FPGA approach results in 100X more hardware

usage compared to implementing the circuit directly onto an FPGA. The area over-

head of fine-grained virtual architecture, ZUMA, was reduced to 40X by using

physical LUTs to implement virtual LUTs and routing multiplexers [26]. In [86],

the authors proposed a fine-grained overlay architecture providing portability for
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custom instruction set extensions of softcore CPUs; the overlay interconnect was

directly mapped to the physical switches resulting 2X-5X area overhead compared

to direct implementation of custom instruction extensions into an FPGA with an

order of magnitude area overhead reduction compared to related approaches.

As the fine-grained overlays are very costly to implement primarily due to their

fine-grained interconnection network, coarse-grained overlays have been proposed

to offer fast compilation, hardware design at a higher level of abstraction, improved

programmability and runtime management. Coarse-grained overlays range from

an embedded processor-style fabric which can be programmed using software [33,

115, 129], to an infrastructure that is specifically optimized for accelerator-type cir-

cuits [57, 77, 78, 93] or collections of small processing units [31, 32]. Nonetheless,

these overlays suffer from a high area overhead compared to a customized FPGA

circuit implementation due to the resources required to provide the programma-

bility of the overlay architecture, particularly the routing network. For example,

in [90, 118], the authors presented coarse-grained virtual FPGA fabrics, which are

array of processing units specialized for computation of common image-processing

kernels. Although this resulted a compilation time speedup of 554x compared to an

FPGA CAD tool, the area overhead of this approach was 2.5X of the area of a cir-

cuit directly implemented on an FPGA, and the virtual interconnect was identified

as the main source of the overhead. In [90], the authors explored the design space

of the virtual interconnect and optimized the virtual interconnect to reduce the area

by approximately 50% at the cost of 16% reduction in routability compared to the

previous work. Additionally, optimizating and reducing the flexibility of the vir-

tual interconnect resulted in 2.4X speed up in compilation time compared to the

previous work. Similarly, in [38], the authors used an overlay fabric specialized
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for control flow of common image-processing kernels. This approach required 17x

more logic elements compared to Verilog implementation of the circuit.

We will show in this thesis that fine-grained debug overlays with reduced flex-

ibility in the routing network can be made efficient by carefully matching the over-

lay to the underlying fabric, and adapting the overlay to use only the resources

left unused by the user circuit. In this way, the area overhead can potentially be

reduced to zero.

2.4 Summary

In this chapter, an overview of the existing post-silicon validation techniques for

ASICs and FPGAs was provided. To counter the limited observability of hardware

and provide support for root-cause analysis, the most common technique is to use

trace-based instrumentation containing trace buffers to record data for analysis. To

make a more efficient use of these limited on-chip memories, trigger circuitry is

used to identify the time at which recording in a trace buffer should start and/or

stop. It was explained that in traditional FPGA debug systems, debug instruments

are inserted into the design before the design is mapped to the FPGA. The set of

signals that are to be recorded and the trigger condition must be determined when

the core is inserted. As the engineer refines his or her view of a suspect bug, he or

she may wish to change the signals being recorded, or the time window in which

data is stored in the trace buffer, meaning the entire design needs to be recompiled,

imposing significant compile time overhead and consequently increasing debug

cost; this chapter also reviewed work related to these limitations.

Most previous debug techniques have focused on increasing visibility into a

circuit by collecting more signal data to help designer to identify the root cause of

32



an unexpected behaviour; there has been very little attention to the efficient inser-

tion of trigger logic in FPGAs. The necessity to consider both logic and routing

makes trigger implementation a significantly harder problem. Hence, this thesis

mainly focuses on methods that provide efficient and rapid triggering capabilities

without modifying the user circuit, eliminating the need of a full recompilation

resulting in rapid debug iterations.

This chapter also reviewed some of the common coverage metrics used in

simulation-based verification. It provided a discussion on the prior works and

methods for collecting coverage data during post-silicon validation. Adding on-

chip coverage monitors imposes significant area overhead. Through the contribu-

tion of this thesis, we demonstrate an efficient, and flexible framework that can

be used to implement on-chip coverage monitors for code coverage measurement

while reducing the area overhead of on-chip coverage monitors during FPGA-

based validation.
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Chapter 3

Incremental Compilation

Techniques for FPGA Debug

As mentioned in Chapter 2, in traditional debug systems, any change in the debug

circuitry requires a full recompilation, imposing significant compile time overhead

and consequently increasing debug cost. This can be addressed using incremental

routing techniques, such as those in [64, 66] to reclaim unused routing resources

to incrementally build trace networks without modifying the user circuit. How-

ever, those techniques do not address the incremental re-implementation of the

trigger circuitry. This chapter explores the feasibility and challenges of applying

incremental-compilation techniques to insert the trigger circuitry without requiring

a full recompilation.

The proposed debug flow is shown in Figure 3.1. If a designer wishes to mod-

ify the trigger circuitry, incremental techniques are used to only insert the trigger

circuitry rather than recompiling an entire design. Besides avoiding the undesir-
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Figure 3.1: Incremental trigger insertion flow.

able compile-time penalty, this technique has the advantage of not modifying the

mapping of the user design during debugging.

In our approach, which we call incremental distributed trigger insertion, we

distribute the logic cells that make up the trigger function across logic elements

in the FPGA fabric that are not used by the user circuit. These logic elements

may not be contiguous. Intuitively, this will allow the trigger logic to take better

advantage of any left-over space after mapping the user circuit, adapting to changes

in the size or make-up of the trigger function. After placing the logic cells in

unused locations, they must be connected to each other and to the user circuit using

incremental routing techniques. The fact that we are not allowing any changes in

the user circuit constrains the routing; using logic elements in parts of the design

in which congestion is high may result in routing failure. Section 3.1 presents

our incremental techniques for inserting the trigger circuitry. Section 3.2 describes

our evaluation methodology and Section 3.3 evaluates our techniques using the

academic tool VPR [96]. Lastly, Section 3.4 will provide a conclusion and closing
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Figure 3.2: Overview of incremental trigger insertion CAD flow.

remarks. Parts of this chapter were published in [42].

3.1 Incremental Distributed Trigger Insertion

Figure 3.2 shows the procedure that we use to implement incremental trigger in-

sertion. In this figure, the left side shows the user design compile flow. First the

user circuit is packed and placed into FPGA fabric and then the circuit is routed.

On the right side of Figure 3.2, our incremental trigger insertion flow is performed.

In this chapter, we assume that the user specifies a trigger function and selects a

subset of signals from all internal signals of the user circuit as inputs of the trigger

function (in our experiments, we vary the size of the trigger function and hence

the number of trigger input signals). We assume that the trigger circuit is parsed
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Figure 3.3: Overview of a Logic Cluster (LC) and Logic Element (LE).

and converted to a technology-mapped netlist using a technology-mapping algo-

rithm such as [102]. The goal of our technique is to distribute the logic cells of the

trigger netlist to spare logic resources on the FPGA fabric (we refer to this step as

the pack-place phase), such that all of the required connections can be made in the

routing phase. The insertion is constrained to not modify the packing, placement,

and routing of the original user circuit – we do not allow the rip-up and re-route of

any user circuit nets. Therefore, it is crucial to consider routability in trigger logic

pack-place phase in order to lead to a successful routing. An overview of the phys-

ical FPGA architecture and the algorithms for pack-place phase and incremental

routing phase are provided below.

3.1.1 Target FPGA Architecture

We assume the following FPGA architecture in this chapter, however, the over-

all technique will apply to any FPGA. We assume an FPGA consisting of a large

number of Logic Clusters (LC). Using the terminology of [20], each LC itself con-

tains N Logic Elements (LE) connected together through a local routing network

as shown in Figure 3.3. Each LE consists of a K-input Look-Up Table (LUT) and

a flip-flop. The number of inputs to each cluster is I. The LC output pins are con-
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nected to global routing wires, and hence, provide connectivity between the LEs’

output and the global interconnect. A family of FPGA architectures can be de-

scribed using these three parameters: N, K, and I. In this chapter, we assume an

FPGA architecture similar to the Intel Stratix IV device described in Section 3.2.

3.1.2 Incremental-Distributed Timing-Aware Trigger Pack-place

In this subsection, we describe how we select which unused LEs in our FPGA

fabric will be used to implement the trigger logic. Our approach is to (1) select a

seed location based on the positions of all the user selected trigger signals that will

be tapped to implement the trigger function and (2) position all trigger logic cells

in unused slots near the seed.

We first describe how we select the seed location. Intuitively, we wish to place

the trigger logic close to the logic elements that drive the trigger signals to mini-

mize the wirelength of the trigger circuits as well as the impact on the user circuit

timing. Conveniently, since the trigger logic is inserted after the original circuit

is mapped and fully routed, both the position and the timing slack of each trigger

input is fully known. Therefore, to find a location for the seed, we find the loca-

tion of the source of each trigger input signal in the user circuit, and then weight

these positions by the signal’s timing criticality (a signal with a higher criticality

has a lower slack, as described in [20]). An example is shown in Figure 3.4; in this

example, Signal2 has a higher criticality than Signal1, meaning the seed location

(x=4, y=2) is closer to the source of Signal2 than to the source of Signal1.

Next, we choose sufficient unused LEs as close to the seed location as possible.

Figure 3.4 shows our approach; after locating the seed point, we pack the remaining

trigger logic in the empty logic elements surrounding this point in a spiral fashion,
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Figure 3.4: Finding spare LCs around the seed.Packer will not consider fully
used logic clusters.

using an algorithm that will be described in the next subsection. The use of this

spiral placement strategy is intended to keep the logic elements implementing the

trigger logic as close together as possible. Although an iterative placement strategy

could be employed, such a strategy would have a longer runtime.

3.1.3 Two-level Congestion Awareness in Trigger Pack-place

As described previously, it is important to consider routability in the pack-place

phase in order to prevent routing failure in routing phase. If the routing resources

around the seed point are heavily used by the user circuit, it may result in fail-

ure in trigger logic routing phase. To address this issue, we added two levels of

congestion awareness to the pack-place phase: LC-level congestion awareness and

LE-level congestion awareness. Algorithm 1 summarizes the two-level congestion

aware pack-place phase.

After finding the seed point as described above, trigger logic packer-placer

finds a LC with unused LEs. Then, the CongestionLevel1 estimates the congestion

of the routing nodes connected to the candidate LC’s output pins. The congestion is
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Algorithm 1: Two-level congestion-aware pack-place algorithm
Input: trigger cells to place /* list of trigger logic cells to be

packed-placed*/
Output: Determine whether trigger logic has been packed-placed into

FPGA
1 /*select a logic cluster as the seed location to start pack-place*/
2 LC = calculate seed point
3 while trigger cells to place is not empty do
4 if CongestionLevel1(LC)<threshold then
5 T = select a trigger logic cell from trigger cells to place
6 unused LE list = unused LEs in LC
7 foreach LE in unused LE list do
8 if LE is not congested then
9 pack T in LE of LC

10 remove T from trigger cells to place
11 if trigger cells to place is empty then
12 return True

13 T = select a trigger logic cell from trigger cells to place

14 LC = go to next logic cluster
15 if LC is empty then
16 return False

determined by counting the number of LC’s routing nodes used by the user circuit.

If this congestion is larger than a predetermined threshold, then this LC is not used

to implement the trigger logic; Figure 3.5 shows an example of where a LC was

not selected to implement trigger logic.

Even if an LC has a congestion value lower than the predetermined threshold,

it is still possible that the individual LEs inside the LC may suffer from high con-

gestion on their outputs; using a highly congested LE can make it impossible to

route its output through the global routing. Therefore, each LE in a selected LC is

checked to see if its output is connected to fully used routing nodes, and if so, this
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Figure 3.5: Skipping a highly congested LC.

LE is not used. Once a non-congested LE has been found inside a non-congested

LC, the packer-placer inserts the trigger logic inside the LE (lines 6-8 in Algo-

rithm 1. The algorithm repeats until sufficient logic elements have been selected to

implement the trigger function.

3.1.4 Incremental Routing

After the logic elements have been selected, they are connected to each other, the

trigger inputs are connected to the appropriate signals in the user circuit, and the

trigger output is connected to on-chip memory blocks. We use the incremental

routing technique described in [66] to implement the required connections. This

technique uses routing tracks and switches that are not used by the user circuit

to implement the required connections. Since routing can only use routing tracks

that have not been used by the user circuit, congested circuits may lead to routing

difficulties. To improve routability, we enhanced the routing algorithm to use un-

used LUTs as route-throughs. During routing, in the forward wavefront expansion

phase, if an unused LUT is encountered, the router is able to expand the search

wavefront through the LUT to its output pin.

Note that it is also necessary to connect the trace signals to the trace buffers as

well; although we do not perform this step in this chapter, techniques such as those
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in [64] can be used.

3.2 Evaluation Methodology

In this chapter, we investigate the feasibility of our approach using open-source

VPR FPGA mapping tool, which is part of the academic Verilog-To-Routing (VTR)

project [96]. Using an open-source tool was necessary because demonstrating our

approach requires low-level resource manipulation to incrementally insert the trig-

ger circuit into the bitstream after the user circuit has been compiled, whereas

commercial tools do not provide this ability as device information is proprietary.

Additionally, using VPR we can investigate the impact that changes in the routing

supply may have on the technique’s overall effectiveness.

3.2.1 CAD Flow

We extended VPR to support incremental-distributed trigger insertion flow as shown

in Figure 3.6. In this figure, the left side shows the user design compile flow. The

design is parsed and converted to a technology-mapped netlist and .blif file is pro-

duced. Logic elements are then packed into clusters, producing a .net file. VPR

then places the LCs onto a minimum size FPGA fabric and then routes the circuit,

producing .place and .route files.

On the right side of Figure 3.6, we show how incremental trigger insertion is

performed on top of a fully place-and-routed user circuit. This new flow, makes no

modification to the initial packing, placement and routing of the user circuit. Sim-

ilar to the original flow, the trigger circuit is parsed and converted to a technology-

mapped netlist. Then, the pack and place phases are performed by timing aware

and congestion aware algorithms presented in Section 3.1. The algorithm from
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Figure 3.6: Incremental trigger insertion CAD flow.

that section was incorporated into T-VPACK. After inserting the trigger logic, any

spare RAM memories are reclaimed as trace buffers.

Finally, the trigger circuitry is routed using the directed search algorithm used

in VPR. We modified the directed search algorithm to ignore adding routing nodes

that are fully occupied by the user circuit to the routing priority-queue; this reduces

the search space during trigger routing. Since the trigger circuit is very small com-

pared to the user design, the compilation time of the trigger circuit is significantly

lower than a full design recompilation.
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Table 3.1: Benchmark Summary.

6-Input I/O Logic Cluster RAM Global Free LCs Free LEs
Circuit LUTs FFs Wmin Used All Used All Used All Signals (%) (%)
bgm 32384 5362 80 289 2400 4111 4200 0 120 23476 2 25
LU8PEEng 22634 6630 92 216 1962 2667 2745 45 80 16643 3 18
LU32PEEng 76211 20898 128 216 3552 9105 9213 150 252 55873 1 17
mcml 101858 53736 86 70 3200 7350 7400 38 208 52226 0 9
mkDelayWorker32B 5590 2491 76 1064 1344 916 1302 41 42 4686 30 47
mkPktMerge 232 36 44 467 832 18 494 15 16 515 96 22
or1200 3054 691 74 779 800 288 475 2 12 2602 39 11
raygentop 2148 1423 60 544 640 277 280 1 9 2126 1 35
stereovision0 11460 13405 52 354 1312 1240 1271 0 30 8358 2 31
stereovision2 29943 18416 92 331 2848 5889 5963 0 154 35386 1 57

3.2.2 Experimental Setup

Using the tool flow described above, we packed, placed, and routed a set of het-

erogeneous benchmark circuits that are supplied with the VTR project onto the

smallest FPGA array that can accommodate the circuit using the default VPR ar-

chitecture based on the Intel Stratix IV characterized by logic cluster size N = 10,

look-up table size K = 6, cluster input and output flexibilities of Fc−in = 0.15 and

Fc−out = 0.10, respectively, channel segment length L = 4, and inputs per cluster

I = 33. For each benchmark, an FPGA size was chosen to be the smallest square

that fit the benchmark circuit.

The benchmark circuits used in this chapter are shown in Table 3.1. In this ta-

ble, Wmin is the minimum channel width for which the circuit (without any debug

instrumentation) can be fully routed; this quantity is often used as a proxy for the

routability of a given architecture using a given CAD tool. The table also shows

the total available resources in the minimum-size FPGA which the circuit fits into

as well as the resources occupied by the user circuit. The number of global signals

(both combinational and sequential) is also listed; these are the signals from which

we choose trigger inputs. The column labeled Free LCs shows the percentage of

the available LCs which are completely empty. When running VPR, we have dis-

abled the default –allow-unrelated-clustering feature; this better mimics packing
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in a commercial tool [67]. For each circuit, unused RAM blocks in the FPGA are

reclaimed as trace buffer memories as in [66]. Circuits mkDelayWorker32B and

mkPktMerge use most of the available memories of the FPGA. For bgm, stereovi-

sion0, and stereovision2, all available RAM blocks are reclaimed as trace buffers

since they are not used by the user circuit. The column labeled Free LEs shows the

percentage of unused LEs inside LCs which have been partially used by the user

circuit.

In the results presented in the next section, we assume a trigger function that

is a bitwise AND of between 32 to 1024 trigger signals. The trigger inputs are

randomly selected from the circuit’s global signals; we use multiple runs for each

test and choose a different set of trigger signals for each run. As described in

Figure 3.6, the trigger circuit is converted to a technology-mapped netlist.

3.3 Evaluation

3.3.1 Trigger Insertion

To investigate the effect of a relatively congested routing scenario on trigger inser-

tion, we assumed a channel width of Wmin + 20%. In this case, we were able to

successfully insert all 32 to 1024 input trigger functions for all benchmarks listed

in Table 3.1, with some exceptions. Inserting a trigger function with more than 256

inputs was not successful due to routing congestion for mkPktMerge and raygentop

because these benchmarks are too small to support such large triggering functions.

For example, mkPktMerge has only 515 global signals, and inserting a trigger func-

tion with size of 256 inputs requires adding 335 nets (which is more than 50% of

signals in the entire design) that imposed a very high routing congestion that could

45



not be resolved during incremental routing phase. Inserting a trigger function with

size of 1024 failed for or1200 due to the same reason (up to 512 was success-

ful). Inserting the 1024-input trigger for stereovision0 and stereovision2 also failed

because of high congestion during the incremental routing phase.

To determine how our technique works in situations with less routing conges-

tion, we repeated the experiments with the channel width set to Wmin + 30%. By

increasing the channel with to Wmin + 30%, we are able to successfully insert all

trigger functions, with the exception of inserting trigger functions with 512, and

1024 inputs for mkPktMerge and raygentop, respectively. As discussed before, this

is because these circuit were too small and inserting such a large trigger circuits

resulted in very high routing congestion that could not be resolved during incre-

mental routing phase.

As described in Section 3.1.3 we predetermined a threshold value for evaluat-

ing the congestion of each LC. We experimentally found that a congestion thresh-

old of 60% for trigger functions with size 32 to 512 was enough to successfully

insert the trigger function. For a trigger function with size 1024, we assumed a

congestion threshold of 50% in the pack-place phase.

3.3.2 Effect on Flow Runtime

Figure 3.7 shows the total execution time (in seconds) and the breakdown for Pack-

place phase v.s. Routing phase for benchmarks assuming a trigger with 256 inputs.

We choose 256 inputs since it was the largest trigger size that was successfully

inserted for all benchmark for Wmin + 20%. In Figure 3.8, we show how the trig-

ger insertion runtime using our incremental approach is reduced compared to the

traditional flow where a recompilation is required to implement the trigger circuit.
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Figure 3.7: Trigger insertion runtime breakdown.
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Figure 3.8: Incremental trigger insertion runtime saving in comparison to cir-
cuit recompilation.

As shown, on average, incremental-distributed trigger insertion is 80X faster than

a full recompilation. This is mainly due to avoiding re-executing computationally

expensive parts of the mapping flow for the user circuit.
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Table 3.2: Effect of Trigger Insertion on Circuit Critical Path Delay (ns).

Trigger Circuit Size
Circuit Original Delay 32 64 128 256 512 1024
bgm 19.71 23.33 23.84 23.68 24.13 24.65 26.03
LU8PEEng 89.63 89.57 91.32 94.55 96.35 97.09 97.28
LU32PEEng 91.93 92.05 92.58 92.96 93.53 93.61 97.55
mcml 66.58 66.58 66.58 70.12 70.6 72.26 72.46
mkDW 6.46 7.83 8.4 8.8 9.36 9.83 10.3
mkPktMerge 4.93 4.98 5.35 5.82 5.76 6.32 -
or1200 11.6 13.27 14.4 14.6 15.15 15.9 16.8
raygentop 4.22 5.38 6.42 6.76 7.32 8.07 -
stereovision0 3.47 5.52 5.8 6.77 6.9 7.81 8.78
stereovision2 11.93 15.81 16.66 16.62 17.37 17.7 18.4

3.3.3 Effect on Circuit Delay

The critical path delay of a circuit increases if the delay of any routes in trigger cir-

cuitry (including the routes between logic elements of trigger function, the routes

form trigger signals to the trigger logic clusters, the routes from trigger output to all

the trace buffers) is greater than the original circuit critical path delay. Therefore,

circuits with a longer critical path delay are less sensitive to the trigger insertion

since it is less likely that the inserted routes due to trigger circuitry become longer

than the circuit critical path.

Table 3.2 presents the critical path delay of each benchmark circuit before and

after inserting different size trigger circuits. As shown in Table 3.2, circuits with

a short critical path delay, such as or1200, mkDelayWorker32B, raygentop, and

mkPktMerge, experience higher increase in delay after inserting the trigger func-

tion. On the other hand, LU8PEEng, LU32PEEng, and mcml are less sensitive to

the trigger insertion due to a longer critical path delay. Investigating the critical

path delay of bgm, stereovision0, and stereovision2, we found that the critical path
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of these circuits becomes longer mainly because all available memory blocks in

the FPGA array are reclaimed as trace buffers. Hence, the single trigger output

connects to all these memories across the chip creating a longer critical path.

3.4 Summary

This chapter explored the feasibility of using incremental compilation techniques

for inserting debug logic, in a way that does not require a full design compila-

tion. We distribute the logic cells that make up the trigger function across logic

elements that are not used by the user circuit. After placing trigger logic in unused

locations, they are connected to each other and to the user circuit using incremen-

tal routing techniques. From the study described in this chapter, we can conclude

that incremental compilation techniques can be used to accelerate debug iterations.

However, the success of our incremental-distributed approach in inserting trigger

circuits over spare resources of a fully placed-and-routed design such that its map-

ping is completely preserved depends on routing congestion in the user circuit. To

improve our techniques in using incremental compilation techniques for rapid trig-

gering, the contributions in Chapter 4 are concerned with increasing the likelihood

of a successful trigger implementation.
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Chapter 4

Rapid Triggering Framework

using FPGA Overlays

Chapter 3 explored using incremental compilation techniques for trigger imple-

mentation using spare resources after user circuit compilation. The main limitation

of this approach was that it was often difficult to make the required connections

when inserting trigger logic into a circuit because of the routing congestion in the

user circuit.

In this chapter, we aim to increase the likelihood of making successful trigger

implementation by improving the routability of trigger insertion by introducing

a new instrumentation framework. To achieve this, a virtual overlay architecture

is compiled to an FPGA only once after user circuit compilation, and then rapidly

configured to implement instrumentation at debug time as shown in Figure 4.1. Al-

though overlays can be notoriously inefficient, we will show that ours can be made

efficient by carefully matching the overlay to the underlying fabric, and adapting
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Figure 4.1: Overview of using a virtual overlay for FPGA debug.

the overlay to use only the resources left unused by the user circuit. In this way,

the overhead can potentially be reduced to zero.

This chapter is organized as follows. Section 4.1 describes our new FPGA

debug flow. Section 4.2 describes the architecture of our overlay. Section 4.3

presents a non-intrusive and adaptable approach for building the overlay architec-

ture by reclaiming spare resources on FPGAs while preserving the underlying user

circuit implementation. Section 4.4 presents CAD techniques to rapidly config-

ure the overlay architecture, implementing the trigger circuitry. Section 4.5 details

the experimental methodology and steps that were performed to evaluate our over-

lay architecture and CAD techniques. Section 4.6 presents the results from these

experiments in terms of flexibility, runtime, and area overhead. This chapter is

summarized in Section 4.7. Parts of this chapter were published in [44].

4.1 Debug Overlay Flow

Figure 4.2 shows our debug framework flow. There are two major phases: (1)

compile-time; (2) debug-time.
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Figure 4.2: Proposed debug flow using an overlay for FPGA debug: compile
time and debug time phases.

Compile time. First the user circuit is fully compiled onto FPGA fabric without

any debug instrumentation. Then, the user circuit is frozen, and the overlay fabric

is incrementally constructed, only once, using only those resources (logic blocks,

memories, and routing tracks) that are not used by the user circuit. Because of this

separation, we ensure that the user circuit characteristics are not affected by the in-

strumentation. This also allows us to adaptively size the amount of instrumentation

(and hence its flexibility) depending on how much of the FPGA is unused by the

user circuit.

Debug time. During each debug iteration in which a new trigger function is re-

quired, the function implemented in the overlay fabric is encoded in a set of FPGA

configuration bits; these bits can be updated possibly using partial reconfiguration.

A mapping algorithm is required to map the debug circuitry to this set of configu-

ration bits; importantly, this algorithm is much faster than a full recompilation of

the user circuit and instrumentation. This improves debug productivity, both by

reducing the debug turn-around time, and also by ensuring that the user circuit is

fixed and does not change as the instrumentation is changed. Since the overlay
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architecture has a pre-synthesized routing network, the trigger mapping algorithm

can be optimized to find a routable solution at debug time, whereas in the incre-

mental approach presented in Chapter 3 there was not such an overlay to guide the

routing.

4.2 Proposed Overlay Architecture

In this section, we describe our overlay architecture that is optimized to implement

small logic functions that we expect to be commonly used as trigger functions. The

architecture is designed to be flexible enough to implement a wide variety of such

functions, area-efficient, and adaptable enough to be implemented on top of a user

circuit.

The architecture consists of a square grid of cells. Each cell contains between

four and no logic elements (LEs) connected using a fully-connected crossbar net-

work inside of the cell. Each LE consists of a lookup table (LUT) and a flip-flop.

Each look-up table has ko inputs. Although other options for implementing overlay

cells are possible [36, 121], building an overlay around LUTs has a number of ad-

vantages. First, a look-up table is universal and can implement any logic function

of its inputs, simplifying the interconnect between the cells. Second, we can lever-

age a large body of lookup-table technology mapping work [35, 102]. Third, as

we will show in Section 5.1.2, this strategy allows for an efficient mapping of the

overlay to the underlying FPGA. We define no = N where N is the size of each logic

cluster in the target FPGA architecture (in our experiments, we assume N = 10).

Hence, cells in the same overlay fabric may be of different sizes between 4 and

N; as will be described in the next section, this provides a mechanism to adapt the

overlay to the availability of empty LEs in the underlying user circuit implemen-
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Figure 4.3: Simplified overlay architecture.

tation. For the same reason, we define ko = K where K is lookup-table size in the

target FPGA architecture, in our experiments, we assume K = 6.

As shown in Figure 4.3, cells are connected using a 2D torus. Each cell has

twelve input pins and four output pins that send and receive signals to and from

neighbouring cells. Each output signal is connected to three sinks: one primary

sink and two secondary sinks. The primary sink connects the output pin to the one

of the cell’s direct neighbour (e.g. to the north side). The primary sink for each of

the four outputs connects to a different nearest neighbour (since this is a torus, each

cell has four nearest neighbours). Although the primary sinks would be sufficient

to provide complete connectivity between all cells in the overlay, additional routing

flexibility is provided by the two secondary sinks. The first secondary sink of each

output connects to a different nearest neighbour than the primary sink (e.g. the

east side). The second secondary sink connects to a cell that is 1-hop away (not

a nearest neighbour cell). This pattern is shown in Figure 4.3. We experimented
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with higher and lower fanout counts for each output signal, however, we found

this strategy gave a good balance between flexibility of the routing network and

the routing congestion when implementing the routing network on the underlying

FPGA.

As described above, some cells will contain more than four logic elements.

Those logic elements do not drive any other cell; instead, they only drive other

logic elements within the same cell through the local feedback crossbar.

4.3 Overlay Implementation Strategy

In this section, we describe our CAD techniques for mapping the overlay archi-

tecture on top of the user circuit without modifying the packing, placement, and

routing of the underlying user circuit – we do not allow the rip-up and re-route of

any user circuit nets, nor any relocation of any user circuit blocks.

Rather than describing the overlay fabric in a hardware description language

(HDL) and compiling it using the normal FPGA CAD tools, we instead perform a

direct mapping of the overlay primitives to the underlying FPGA primitives. For

example, the overlay fabric consists of a number of look-up tables; we directly map

each of these look-up tables to a look-up table in the underlying FPGA. Similarly,

each routing path in the fabric is mapped to a specific routing path in the underlying

FPGA. This leads to a much more efficient overlay implementation than compiling

a HDL version using normal CAD tools. Furthermore, this technique avoids a

downside of many overlay approaches: the high area overhead of implementing an

“FPGA on an FPGA” is avoided. However, implementing such an overlay needs to

employ custom incremental compilation tools. Details of the algorithm for overlay

implementation are provided below.
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1: procedure OverlayPlacementAndRouting(FPGA Resources)
2: N = SelectLCsWithSpareLEs(FPGAResources)
3: nxn = CreateLargest2DTorus(N)
4: InititalPlacement(nxn)
5: OverlayPlacement = SA-Placer()
6: FirstLevelRouting=PathFinder()
7: OverlayRouting=PathFinder(FirstLevelRouting)

Figure 4.4: Overlay placement and routing pseudocode.

4.3.1 Algorithm to map Overlay on top of User Circuit

Selecting exactly which look-up tables and routing resources in the underlying

FPGA are used to implement the overlay fabric is a CAD problem; our algorithm

to perform this is adaptive and best-effort in that (a) the number of cells in the

overlay depends on the number of unused logic resources, (b) each cell in the

overlay is sized according to the number of logic elements (LEs) unused within

each logic cluster (LC), and (c) if certain connections in the overlay are difficult or

impossible to implement, they are removed from the overlay and not implemented.

Figure 4.4 shows the pseudocode for our mapping algorithm; details are provided

below.

Selection

Given the mapping of the user circuit, the algorithm first identifies all logic clusters

inside the FPGA which contain at least four unused logic elements (unused by the

user circuit) as well as at least 12 unused input pins. This is due to the fact that

each cell in the 2D Torus has four output pins that send and receive signals to and

from neighbouring cells. These logic clusters represent potential sites in which

the overlay can be implemented. We define the size of each site as the number of
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empty logic elements in the corresponding cluster (this will be between four and

the total number of logic elements in the cluster). We then prune out those sites in

which the output pins are connected to routing tracks that have already been used

by the user circuit.

We then choose some subset of these sites and create the largest possible over-

lay fabric out of the selected sites (in the experiments in this chapter, we first select

all potential sites to maximize the size of the implemented overlay fabric, and later

show the impact of relaxing this number somewhat). This overlay consists of a

grid of cells; each cell corresponds to one site. The size of the site determines the

size of the corresponding cell (recall from the previous section that the number of

logic elements in each cell varies across the overlay). The result is a logical grid

describing the overlay.

Placement

Since, at this stage, there is a one-to-one mapping between sites with sufficient

space and cells in the overlay, we could simply map each cell to one site. However,

it is likely that the available locations unused by the user circuit do not lie in a

grid-like pattern; to adapt to the underlying pattern of available cells, we perform

a simulated annealing placement algorithm to position the cells in the overlay onto

available sites in the fabric. The cost function used by the annealer is the total

wirelength of the overlay wires which is estimated by the bounding box heuristic.

We only consider swaps which result in legal placements; a cell that consists of b

logic elements can only be moved to a site that contains at least b empty LEs. This

ensures that the final placement result is legal.
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Creating Overlay Routing Network

After overlay placement, we attempt to create all connections between the cells.

We employ the routability-driven PathFinder [100] algorithm to iteratively resolve

routing congestion. Since we are restricted to using routing resources left unused

by the user circuit, it may not be possible to find a legal routing solution in which

all overlay wires are implemented. This is not a problem; in this case, we construct

a fabric with “missing” connections. The mapping of the trigger function to the

overlay fabric can attempt to construct a mapping that does not use any of the

missing connections. This best-effort approach for mapping allows us to implement

larger overlay fabrics than would otherwise be possible, since 100% routing is not

required. To implement this best-effort routing, we perform a legalization heuristic

after Pathfinder has completed (i.e. after 15 routing iterations). This heuristic

iteratively discards illegal connections (from the overlay) that are overusing the

largest number of routing resources until a legal routing solution is achieved. In

this way, our approach can be used for user circuits that already stress the FPGA

routing.

To minimize the impact of removing connections from the overlay routing net-

work, we prioritize the connections in the overlay routing network, and route the

network in two steps. We first use Pathfinder to route the primary sinks of each

connection (primary sinks are defined in the previous section). We then use the

same algorithm to route the secondary sinks of each connection. This approach

ensures that the primary sink connections have higher priority for using routing

resources than the secondary connections.
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4.4 CAD for Trigger Mapping

At debug time, the overlay architecture can be configured to implement the desired

trigger circuitry. This section describes the algorithm that maps the trigger circuitry

to the overlay architecture.

The CAD tasks that must be performed to map a trigger circuit to the overlay

are the same as in the traditional FPGA mapping flow: packing, placement, and

routing [20]. However, as described in Section 4.3, the overlay architecture has

limited flexibility in the routing network. Placement without considering the rout-

ing network can result in an un-routable solution. Therefore, it is important that

the placement algorithm is routing-aware to make the placement solution more

suitable for the given routing architecture.

4.4.1 Routing-aware Placement Heuristic

We choose simulated annealing to perform the placement of the trigger onto the

overlay, due to its success in the FPGA placement field [20, 21, 40, 99] as well

as its ability to target irregular architectures. The cooling schedule of the routing-

aware placer is an adaptation of VPlace [99]. Initially, each logic element of the

trigger netlist (i.e. LUT) is assigned to a random unoccupied logic element inside

the overlay. Our algorithm is LE-based, in that individual LEs are swapped (as op-

posed to cluster-based placement solutions as in [20]). This allows LEs to migrate

between clusters, providing better routability in the final solutions. Although this

is more computationally-intensive, the trigger circuits being placed are relatively

small (typically hundreds of logic elements).

The cost function used in the placement algorithm is the product of two terms:

the routing hops cost and the net routing cost. Each will be described below.
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Figure 4.5: Simple trigger netlist.

Routing Hops Cost

Cells that are not neighbouring can be connected by routing through one or more

intermediate cells, and configuring these intermediate cells as pass-through buffers.

A placement solution that requires fewer routing hops is more likely to be routable

than one that requires more routing hops since it requires fewer overall wires. To

estimate the Routing Hops Cost, we use the bounding box size of a net, and sum

this over all nets.

Net Routing Cost

Figure 4.6 shows how a simple trigger netlist of Figure 4.5 can be mapped to over-

lay cells. LE1 and LE2 are placed in the same cell, sharing an input pin as well as

connecting to LE4 directly. Placing LE3 in the same overlay cell as LE1 and LE2

will result in routing failure; in case (1) the output pin of the LE of the overlay cell

is only connected to the local routing crossbar and can not be connected to LE4. In

case (2), although the output pin of the LE of the overlay cell can indirectly reach

LE4 using one routing-hop through C3, all input pins of C1 are occupied by LE1,

and LE2, resulting in an unavailable input pin for LE3. Placing LE3 in C4, can
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Figure 4.6: The trigger netlist of Figure 4.5 mapped to logic elements of over-
lay cells.
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indirectly connect to LE4, resulting a routable trigger mapping.

The net routing cost guides the annealer to a routable solution. The routing

cost of each net described by Equation 4.1.

NetRoutabilityCost = α×NumIndirectSinks+

β ×NumBlockedOPINs+

β ×NumUnavailableIPINs (4.1)

The overall routability cost is the sum of this quantity over all nets.

Indirect sinks are slightly penalized to encourage LEs to move to the same

cluster or neighbouring clusters to make use of the intra-cluster connections or

pre-routed connections of the overlay, respectively. Blocked output pins are heavily

penalized since they will result in an immediate routing failure. Unavailable input

pins are heavily penalized for the same reason. This term also encourages LEs that

have common input signals to move to the same cluster to make better use of the

input pins of each cluster. We have experimentally found that setting α to 5 and β

to 20 gives good results.

We employ an additional optimization during the swap evaluation; if the swap

will move an LE to a location that its output pin can not connect to the overlay

routing network, which results in a blocked output pin, we alleviate unroutability

by relocating the LE to another unoccupied location inside the same cluster. In this

way, the output is connected to the overlay routing network resolving the blocked

output pin issue. Consequently the swap still has a chance to be accepted toward

an optimized implementation (case (1) and (2) in Figure 4.6).
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4.4.2 Routing Augmentation

During routing, most connections are between neighbouring cells, and routing is

trivial. For nets between non-neighbouring cells, we use a routing algorithm based

on the routability-driven PathFinder [100] algorithm. The goal of this algorithm

is to minimize the number of routing hops of each net, thereby maximizing the

routability of the circuit.

4.4.3 Merging user Circuit with Trigger Circuit

The final step is to connect trigger signals in the user circuit to the inputs of the

trigger circuitry and connect the output of the trigger circuitry to unused RAM

blocks reclaimed as trace buffers. As described in Section 3.1.4, we use an in-

cremental routing algorithm using unused LUTs as route-throughs to implement

the required connections. Since these RAM blocks could be physically located in

different sites across the chip, connecting the output of trigger circuitry to all of

these RAM blocks can introduce a new long critical path. To minimize the effect

of inserting trigger circuits on circuit critical path delay, the output of the trigger

circuit is pipelined.

4.5 Methodology

In this chapter, we evaluate our techniques using VPR, which is part of the open-

source academic Verilog-To-Routing project [96]. Using an open-source tool was

necessary because demonstrating our approach requires low-level resource manip-

ulation (e.g. to incrementally insert the overlay fabric into the bitstream after the

user circuit has been compiled using left-over resources), whereas commercial

tools do not provide this ability as device information is proprietary. Moreover,
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Table 4.1: FPGA Architecture Used Based on Intel Stratix IV.

FPGA Architecture Parameter Meaning Value

N Logic cluster size 10
K Inputs per look-up table (fracturable) 6
I Inputs per cluster 33
L Channel segment length 4

Fc−in Cluster input flexibility 0.15
Fc−out Cluster output flexibility 0.10

we have chosen to demonstrate our techniques on VPR, so that we can investigate

the impact that changes in the channel width and spare logic resources may have

on our techniques.

Using VPR 6.0, we packed, placed, and routed a set of heterogeneous bench-

mark circuits onto an architecture based on Intel Stratix IV characterized in Ta-

ble 4.1.

For each benchmark, an FPGA size was chosen to be the smallest square that

fit the benchmark circuit. We use options to group only related logic elements into

a cluster, and perform the placement and routing on the smallest FPGA array that

can fit the benchmark circuit. Only related logic elements are packed into a cluster,

mirroring behaviour of industrial tools [67].

Information about each circuit and the results of this mapping are shown in

Table 4.2, including the number of LUTs and flip-flops of each circuit, the num-

ber of logic clusters and memory resources in the smallest FPGA array that fits

each benchmark, and the resources occupied by the user circuit. Circuit mkDelay-

Worker32B uses most of the available memories of the FPGA. Other benchmarks

use most of the available logic clusters of FPGA. The ability to construct an over-

lay depends heavily on the available resources after the user circuit is mapped onto
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Table 4.2: Benchmark Summary.

6-Input FPGA Logic Cluster RAM Free(%)
Circuit LUTs FFs Size Wmin Used All Used All LCs LEs

bgm 32384 5362 75x75 80 4111 4200 0 120 2 25
LU8PE 22634 6630 61x61 92 2667 2745 45 80 3 18
LU32PE 76211 20898 111x111 128 9105 9213 150 252 1 17
LU64PE 147556 39552 153x153 156 17591 17595 293 475 0 17
mcml 101858 53736 100x100 86 7350 7400 38 208 0 9
mkDW 5590 2491 42x42 76 916 1302 41 42 30 47
stereo2 29943 18416 89x89 92 5889 5963 0 154 1 57

FPGA. The column labeled Free LCs shows the percentage of the logic clusters

which are left completely unused by the user circuit. The column labeled Free LEs

shows the percentage of the unused logic elements inside logic clusters which are

partially used by the user circuit.

For each circuit, unused RAM blocks in the FPGA are reclaimed as trace buffer

memories. For bgm and stereovision2, all available memory blocks are reclaimed

as trace buffers.

4.6 Experimental Results

4.6.1 Establishing the Overlay Architecture

First, we evaluate our algorithm for creating the overlay architecture. The ability

to construct an overlay depends heavily on (a) the size of the overlay that is being

created (as a fraction of the available resources after the user circuit is mapped)

and (b) the availability of routing tracks to implement connections and avoid con-

gestion. In this section, we vary both to understand both the limits of the technique

and the influence these two factors have on the ability to create an overlay.

Figure 4.7 shows the compile time required to map (placement, primary and
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Figure 4.7: Compile-time: VPR runtime for establishing a maximally-sized
overlay architecture as a function of channel width. Note that the y-axis
uses a log scale

secondary sinks routing) a maximally-sized overlay architecture (Overlaymax) into

FPGA spare resources for each benchmark circuit (note that the vertical axis uses

a logarithmic scale). Results are shown for four values of the channel width: W =

1.2Wmin,1.3Wmin, and 1.4Wmin, where Wmin is the minimum channel width required

to route each user circuit. Intuitively, the ratio W/Wmin is a measure of the amount

of routing slack available in the architecture. An architecture with W/Wmin = 1.2

is one where there is very little slack, while an architecture with W/Wmin = 1.4

has significant routing slack. Academic architecture studies tend to use a value of

W/Wmin of approximately 1.3 to reflect realistic routing demand as in [8, 96].

Figure 4.7 also shows the time to compile the original user circuit for compar-

ison. The graph shows that increasing the channel width results in a substantial

decrease in the overlay compile time due to decreased routing congestion. The

overlay compile time overhead is less than 10% of the user circuit compile time for
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Figure 4.8: Compile-time: VPR runtime for establishing overlay architecture
as a function of overlay size for 1.2Wmin

small benchmarks such as mkDelayWorker32B. However, the compile time of map-

ping the overlay architecture is close to the circuit compile time for large bench-

marks at a channel width of 1.2Wmin. This is because these large benchmarks

highly utilize LCs of FPGA resulting in routing congestion around LCs selected as

overlay cells.

Figure 4.8 shows the same thing, but as a function of the overlay size, with

W fixed at 1.2Wmin. Overlay28X28 means an overlay fabric containing 784 over-

lay cells. Since the Overlaymax of mcml and LU8PEEng has only 729 and 529

cells, respectively, it is not possible to create an overlay fabric with 784 cells

(Overlay28X28) for these benchmarks. As the results show, smaller overlays com-

pile significantly faster, both because there are fewer cells to place and route, and

also because the congestion is reduced. Although small overlays may be more

common in practice (for small trigger circuits), the results show that our technique

can map even very large fabrics, including those that fill the entire unused portion
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of the FPGA.

Figure 4.9 summarizes the compile time (the vertical axis is a linear scale)

assuming a maximally-sized overlay (Overlaymax) on an architecture with a chan-

nel width of 1.3Wmin. On average the additional overhead of our overlay is 22%

increase in circuit compile time; this reaches 59% for LU8PEEng. Although the

designer must wait for place-and-route to implement the overlay architecture, the

compilation time is only needed once to build the overlay and is amortized by the

runtime savings made over multiple debug turns with the same circuit.

One of the unique aspects of the algorithm from Section 4.3 is that it is adap-

tive; that is, if congestion prevents some nets from being routed, they will be left

out of the overlay, creating a slightly less flexible structure. To understand the

extent to which nets are being dropped, Table 4.3 shows the average number of

input pins per overlay cell that were successfully routed as a function of W and

the overlay size for each benchmark circuit. Ideally, this number would be twelve
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Table 4.3: Average Number of Input Pins per Overlay Cell.

Overlaymax 1.2Wmin
Circuit 1.2Wmin 1.3Wmin 1.4Wmin Overlay28X28 Overlay20X20 Overlay16X16

bgm 10.9 12 12 12 12 12
LU8PE 6.8 11.8 12 - 12 12
LU32PE 12 12 12 12 12 12
LU64PE 11.9 12 12 12 12 12
mcml 10.4 11.5 12 - 11.5 12
mkDW 12 12 12 12 12 12
stereo2 11.5 11.9 12 12 12 12

(four primary sinks and eight secondary sinks as in Section 4.2). As the results

show, for most cases, the overlay is completely routed (the number of input pins

is 12), however, for small values of W or very large overlay sizes, this number is

smaller for some circuits. Note that Overlaymax of mcml and LU8PEEng has less

than 784 cells, Overlay28X28. The average number of input pins per overlay cell

for LU8PEEng is significantly lower than other benchmarks at channel width of

1.2Wmin; however, the number approaches 12 as the overlay size decreases, since

a smaller overlay means there are more tracks available for routing, hence less

congestion. For mcml, the number of input pins does not reach 12, even for an

overlay size consisting of 400 overlay cells (Overlay20X20); this is because even for

the smaller fabric, there is still significant routing congestion at channel width of

1.2W .

4.6.2 Trigger Mapping

In this subsection, we evaluate our algorithm for mapping a trigger circuit to the

overlay architecture. In these experiments, we use a maximally-sized architecture

on an FPGA with W = 1.3Wmin. From the previous section, it is clear that for some
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Figure 4.10: Debug-time: trigger mapping runtime assuming Overlaymax for
different size comparators.

of the benchmark circuits, this configuration leads to fewer than twelve inputs per

cell (on average), however, the algorithm discussed in Section 4.4 constructs a

mapping solution that does not use these missing connections. We use an n-bit

comparator comparing two sets of signals or one set of signals and a constant as

well as an n-bit range comparator as our trigger circuit; such a trigger circuit might

be used when a user wishes to stop/start recording data when the value of an n-bit

bus is equal to another n-bit bus or a user defined constant, where n is 16, 32, 64,

128, 256. The trigger signals are randomly selected from the registered signals of

the benchmark circuit (as in [70]); we use multiple runs for each trigger circuit

and choose a different set of trigger signals for each run, averaging the results over

multiple runs.

Figure 4.10 shows the runtime of our trigger mapping algorithm (this includes

connecting the trigger logic to the trace buffers and user circuit). As the results

show, for all benchmarks except for mkDelayWorker32B, inserting a new trigger
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Figure 4.11: Average trigger mapping runtime as a function of overlay size.

circuitry is an order of magnitude faster than a recompilation. Benchmark mkDe-

layWorker32B has mapping times similar to the compile time of the original user

circuit for large triggers (256-bit comparator), primarily because this benchmark is

relatively small, and the original compile time is short.

Figure 4.11 shows the average runtime of our trigger mapping algorithm as a

function of overlay size. As the results show, it is faster to map a trigger circuitry

into a smaller overlay.

Table 4.4 shows the critical path delay of each circuit before and after insert-

ing different size comparators into the design for different overlay sizes. As the

table shows, inserting a large trigger circuit can introduce a new long critical path

to the circuits with a short critical path. For example, the critical path delay of

mkDelayWorker32B which is only 6.5ns increases by 2.13ns when inserting a 256-

bit comparator. In the worst case, the delay of stereovision2 increases by 6.13ns.

However, it should be noted that this increase in the circuit critical path delay is

temporary during debugging; the operating frequency of the circuit can be set as
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Table 4.4: Effect of Trigger Insertion on Critical Path Delay (ns).

Overlay
Size

Overlaymax Overlay28X28 Overlay20X20 Overlay16X16

Circuit Original 16 to 128 256 128 256 128 256 128 256
bgm 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
LU8PE 89.6 89.6 89.6 - - 89.6 89.6 89.6 89.6
LU32PE 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9
LU64PE 89.2 89.2 89.2 89.2 89.2 89.2 89.2 89.2 89.2
mcml 66.5 66.5 66.5 - - 66.5 66.5 66.5 66.5
mkDW 6.46 6.46 8.5 6.46 8.5 6.46 8.5 6.46 7.1
stereo2 11.9 11.9 18.0 11.9 12.7 11.9 12.4 11.9 13.1

normal when the debug instrumentation is not required.

4.6.3 Comparison to Incremental Triggering without using Overlays

In Chapter 3, an incremental routing technique (without an overlay to guide the

routing) was used to route the required nets of the trigger netlist. That work was un-

able to route several benchmarks due to congestion during the incremental routing

phase. In contrast, using the approach presented in this chapter, the pre-synthesized

overlay fabric enables us to use a simulated-annealing based placement algorithm

in order to increase the chance of finding a routable placement solution without

requiring a long runtime.

Using overlay for trigger insertion, we were able to successfully insert the same

trigger circuitry (i.e. bitwise AND) from Chapter 3 for stereovision0 and stereovi-

sion2 assuming a channel width 1.2Wmin. For circuit mkPktMerge, we created an

Overlay21X21 and were able to successfully insert a trigger function with 256, and

512 inputs, again assuming a channel width of 1.2Wmin. It should be noted that

this benchmark has only 515 signals, while the trigger circuitry with 512 inputs

has 655 nets; this shows the flexibility of the overlay architecture. The overlay size
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of raygentop (Overlay10X10), and or1200 (Overlay14X14) is too small to support a

trigger circuitry with more than 512 and 1024 inputs, respectively. Another dif-

ference between this work and the previous work is that the entire circuit needs to

be loaded into the memory of a CAD tool to construct an incremental placement

and routing solution for the trigger circuitry at debug time; while in this work, the

overlay architecture is only required to map a desired trigger circuitry at debug

time.

4.7 Summary

This chapter demonstrated a non-intrusive framework based on overlays that can be

used for instrumentation without requiring circuit recompilation during FPGA de-

bug. At compile time, the overlay architecture is incrementally established on top

of the user circuit using leftover resources after circuit compilation. This mapping

is done using a best-effort adaptive CAD technique that preserves the underlying

circuit mapping. At debug time, the desired trigger circuitry can be rapidly mapped

to the overlay architecture. This is done using a routing-aware placement algorithm

to increase the routability of the placement solution.

The key novelties of this work are in: (1) a non-intrusive triggering frame-

work that separates the user circuit from the debug instrumentation eliminating the

need for recompilation during debug iterations, (2) an adaptive, and flexible over-

lay architecture that provides enough flexibility for arbitrary combinational trigger

circuits, (3) efficient methodology for overlay construction using incremental CAD

algorithms that exploit the spare logic and routing resources unused by the user cir-

cuit resulting in zero area overhead, and (4) CAD algorithms to rapidly reconfigure

the overlay for a new trigger circuitry at debug iterations.
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We have shown that the overlay architecture provides enough flexibility to im-

plement combinational triggering scenarios an order of magnitude faster than a full

recompilation accelerating debug productivity. Our experiments have shown that

our triggering framework has a negligible impact on the critical path delay.

To extend our solution of non-intrusive instrumentation framework used for

rapid implementation of combinational trigger circuits, the contributions in Chap-

ter 5 are concerned with addressing the more challenging problem of implementing

sequential (state-based) trigger circuits.
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Chapter 5

Customized FPGA Overlay and

Mapping Tools for Rapid

Triggering Capabilities

Chapter 4 detailed our non-intrusive instrumentation framework for rapid trigger

insertion during debugging. As part of our framework, we introduced an over-

lay architecture (a 2D torus) and mapping tool (simulated-annealing based place-

ment algorithm) suitable for implementation of combinational functions; we did

not consider implementing state-based trigger circuits. Yet, supporting such com-

plex trigger circuits are essential to ensure that the collected data is useful for the

designer. An example of a sequential trigger might be a state machine that de-

termines nth occurrence of a bus value. Hence, in this chapter we introduce a

specialized overlay architecture and tailored mapping algorithms that provide the

ability of efficient implementation of complex trigger circuits, suitable for an in-
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system debug ecosystem. Section 5.1 describes our optimized overlay architecture

and the method by which the overlay architecture is implemented. Since we are

limited to only resources not used by the user circuit, it is necessary to make a

reasonable trade-off between area and flexibility. To achieve this, we customize

the overlay architecture to provide adequate flexibility for implementing complex

trigger circuits, including arbitrary combinational and state-based trigger circuits.

Section 5.2 describes our specialized algorithms that take advantage of the char-

acteristics of the customized overlay architecture to rapidly map trigger circuits.

Section 5.3 details the experimental methodology that was used to evaluate our

techniques. Following this, in Section 5.4, we discuss results from these experi-

ments and compare our technique to Intel’s SignalTap II tool in terms of runtime,

area overhead, and circuit delay. Finally Section 5.5 summarizes this chapter. An

early version of this contribution was published in [43], and an extended version

was submitted to ACM Transactions on Design Automation of Electronic Systems

(TODAES) with minor revisions.

5.1 Overlay Architecture

In this section, we describe a parameterized overlay architecture family that is op-

timized to implement combinational and sequential trigger functions. We first de-

scribe a logical view of the architecture, and then show how it is implemented on

an FPGA in an efficient manner.

5.1.1 Parameterized Overlay Architecture Family

Our overlay is specialized to implement trigger circuits. To implement the logic

part of the trigger circuit, our overlay contains a number of cells, each contain-
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(a) The overall structure of the multi-level overlay architecture.

(b) Overlay Cell (OC) details

(c) Overlay flip-flop details

Figure 5.1: (a) An overview of the parameterized overlay architecture that is
comprised of cells connected via primary (shown in black) and auxiliary
(shown in red) connections, and a set of flip-flops connected to cells in
level lo− 1 (b) Overlay cell design with ko-input LUTs, local routing,
and outputs to other cells. (c) Overlay flip-flop design with a flip-flop,
local routing, and fanout to other cells.

ing no look-up tables (LUTs). Each look-up table has ko inputs. As discussed in

Chapter 4, building an overlay around LUTs allows for an efficient mapping of the

overlay to the underlying FPGA.

Figure 5.1a shows an overview of the overlay architecture that is comprised of
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cells and flip-flops. Within an Overlay Cell (OC), no look-up tables are arranged as

shown in Figure 5.1b. As will be discussed below, four of the LUTs are designated

as auxiliary LUTs, and the remaining no−4 are designated as primary LUTs. Each

LUT drives one output of the cell. The inputs to each LUT are connected to Io

inputs and the no feedback paths through a fully-connected crossbar. As we will

show below, our interconnect pattern limits Io to be 2no− 6 (this is less than is

common for standard FPGA architectures, but we will show it is sufficient for the

triggers we implement).

As shown in Figure 5.1a, cells are connected in a triangular reduction-network

pattern, motivated by work in [71, 89, 124]. The use of the triangular pattern was

motivated by work in [71] in which the authors profiled a large number of circuits

with this property, measuring their ’shape’, and properties such as average fanin,

fanout, and convergence. In that paper, the authors concluded that such circuits

often have triangular shapes, which motivated our architecture. In Figure 5.1a, the

levels are labeled 0..lo− 1 starting from the output; level i contains 2i cells. The

overlay has a single output from level 0 which is used to control the trace buffers.

To support sequential triggers, the overlay also contains a bank of m flip-flops

shown at the top of Figure 5.1a.

The interconnect between cells is also shown in Figure 5.1a. We distinguish

between two categories of interconnects: Each cell output is labeled as primary or

auxiliary. There are no− 4 primary outputs; all but one are connected to a cell in

the previous level. The other primary output is connected to a neighbouring cell

in the same level. Two of the four auxiliary outputs are connected to cells in the

next level; the other two are connected to neighbouring cells in the same level.

Non-neighbouring cells are connected by making a series of route through, i.e. by
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Table 5.1: Architectural Parameters Describing Logical Overlay.

Overlay Architecture Parameter Meaning
no Look-up tables per cell
ko Inputs per look-up table
lo Number of levels of cells
m Number of flip-flops
fo Flip-Flop feedback fanout

passing through intermediate cells using unused inputs, outputs, and LUTs as route

through.

The cells in level lo− 1 are connected to the m flip-flops. Each overlay flip-

flop is accompanied by a multiplexer as shown in Figure 5.1c. Each input to the

multiplexer is driven by one of the auxiliary outputs of a cell in level lo−1. Since

there are 2lo−1 cells in level lo− 1 and m flip-flops, each flip-flop multiplexer has

2lo−1

m inputs. The output of each flip-flop drives one of the 2no−10 primary inputs

to a cell in level lo− 1. Rather than connect each flip-flop output to each of the

2lo−1 cells, we have found that we can obtain sufficient flexibility by connecting

each flip-flop output to a smaller number of cells which we denote fo. In our

experiments in Section 5.4, fo = 32. Table 5.1 presents a summary of architectural

parameters describing overlay fabric. A family of overlay fabrics can be described

using these parameters.

The inputs to the overlay fabric are the trigger signals from the user circuit. As

described in Section 5.2.4, any of the primary inputs to each cell can be used as an

input pin of the overlay fabric.
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5.1.2 Overlay Construction

The overlay architecture is constructed on a per-circuit basis. The overlay fabric

is added to the user circuit at compile time, using only those logic and routing

resource that were not used by the user circuit. Rather than compiling an RTL

description of the overlay fabric using normal CAD tools, we map the overlay di-

rectly to the underlying FPGA primitives (e.g. LUTs, and routing segments). This

leads to a far more efficient overlay implementation. In this chapter, we assume

an FPGA architecture similar to Intel Stratix IV device described in Section 5.3.

We modified the overlay mapping approach described in Section 4.3 to implement

our multi-level overlay architecture into FPGA available resources. Our algorithm

consists of cell selection, overlay placement, and best-effort routing. An overview

of the algorithm is provided below.

Selection and Adaptive Allocation. Given the mapping of the user circuit, the

algorithm first collects all logic clusters (LCs) inside the FPGA which (1) contain

at least no logic elements (LEs) unused by the user circuit, and (2) have at least

2no−6 unused inputs. Each such LC has sufficient unused resources to implement

a single cell of the combinational part of the overlay architecture. We also collect

LCs which contain (1) at least one unused LE, and (2) at least 2lo−1

m unused inputs;

each such LC can be used to implement one of the flip-flops in the overlay fabric.

Based on the number of LCs selected, we then choose the number of levels of

the overlay, lo. In this way, the size of the overlay adapts to the size of the user

circuit; if a circuit uses most of the available FPGA, few such LCs will be found,

and the overlay will be small, limiting the complexity of trigger functions that can

be supported. If there are many unused resources, lc will be large, leading to an
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overlay that can implement more complex trigger functionality.

Overlay Placement. We then construct a logical view of the overlay architec-

ture, and assign potential sites on the FPGA for each overlay cell. We employ the

simulated annealing based placement algorithm presented in Chapter 4 to position

the cells in these sites.

Overlay Routing. After overlay placement, we attempt to create all connec-

tions between the cells. We use the best-effort routing heuristic presented in Chap-

ter 4. This heuristic iteratively discards illegal connections (beginning with auxil-

iary connections) until a legal routing solution is achieved. This approach ensures

that the primary connections have higher priority for using routing resources than

the auxiliary connections. In this way, our approach can be used for user circuits

that already stress the FPGA routing.

5.2 CAD Algorithm for Overlay Personalization

At debug time, a mapping algorithm is required to implement a trigger netlist onto

the overlay fabric. At this stage, there are three challenges: (1) the mapping al-

gorithm should be fast to provide rapid debug iterations; (2) the pre-synthesized

overlay has limited flexibility compared to a standard FPGA due to its limited rout-

ing topology and missing connections as described in Section 5.1.2. If we perform

placement and routing as separate phases, a poor placement can easily lead to an

un-routable solution, and (3) the overlay architecture is highly constrained since it

is customized for trigger-type circuits.

Our overall trigger mapping flow is presented in Figure 5.2. It has two major

phases: Pre-processing and Placement/Routing. In this section, we describe the

details of each phase; for clarity, we first describe the mapping algorithm for com-
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Figure 5.2: Overlay reconfiguration flow that takes a graph representation of
a trigger netlist and outputs a placed and routed netlist onto the overlay
fabric.

binational triggers and then generalize the algorithm for sequential trigger circuits.

5.2.1 Trigger Circuit Modeling

We make the same assumptions as in Chapter 4 that the trigger circuit has been

previously mapped to lookup tables and flip-flops using a technology-mapping al-

gorithm such as [102]. A trigger circuit netlist can be represented as a directed

graph G(V, E), where each node in V represents either a LUT or a flip-flop. Each

edge in E is a connection between LUTs and/or flip-flops in the trigger circuit;

we refer to these nets as trigger nets. Each trigger net has one source node, but

may have multiple sink nodes. The graph may have multiple input edges, each

representing an input signal to the trigger circuit, and has a single output edge,

representing the trigger output.

5.2.2 Mapping Combinational Triggers

Our overall mapping flow is shown in Figure 5.2. In this section, we describe this

flow assuming the trigger circuit is combinational; in Section 5.2.3 we generalize

this for a sequential trigger circuit.

82



(a) A multi-sink net before fanout bounding.

(b) Two-sink nets after fanout bounding.

Figure 5.3: Fanout bounding takes a multi-sink trigger net (a) and decom-
poses it to multiple two-sink nets (b).

Pre-processing

Pre-processing modifies G to suit the overlay architecture by taking the following

steps:

1. Fanout bounding. Since each output pin of each overlay cell is only con-

nected to one cell, we bound the fanout of the trigger nets to be as small

as possible to better match these single output connections of the overlay.

Hence, this step decomposes any multi-sink nets into multiple two-sink nets.

This is performed by replacing a multi-sink net with a binary tree with the

source node as the root, the sink nodes as the leaves, and replicator LUTs as

intermediate nodes as illustrated in Figure 5.3. Clearly, the result is a func-

tionally equivalent circuit. Fanout bounding techniques such as [60, 114]

can be used to minimize the number of intermediate nodes and depth; we do

not consider this optimization in this chapter.

2. Level Order. In this step, a Level-Order Traversal algorithm is used to tra-

verse the trigger netlist graph. The output is a list of LUTs sorted based on
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Figure 5.4: A simple single-sink combinational trigger netlist.

level-order.

Placement and Routing

Placement and routing finds a mapping of each LUT in the trigger circuit (which

we refer to as a trigger LUT to a LUT in the overlay fabric (which we refer to as

a LUT slot). We process the graph in Level Order, meaning each trigger LUT is

placed after its sink LUTs to ensure there is a connection between the source and

the sink LUTs. In this section, we first describe the mapping algorithm assuming

the trigger circuit contains only single-sink nets, using the example in Figure 5.4.

We then generalize the algorithm for circuits which contain at least one net with

two sinks. Due to the pre-processing step in Section 5.2.2 , we are assured that no

net has more than two sinks.

Mapping trigger LUTs using overlay primary resources. Figure 5.5 illustrates

the details of the connections between overlay cells described in Section 5.1.1. As-

sociated with each output pin for each cell is a 4-input LUT driving the output pin;

as described in Section 5.1, these LUTs are categorized as primary and auxiliary
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Figure 5.5: Detailed view of connections between overlay cells assuming no

= 8, ko = 4 and lo = 3. Each cell (except OC1) has ten input pins. Seven
(I1-I7) are driven by primary (shown in black) output pins. Three (I8-
I10) are driven by auxiliary (shown in red) output pins. Each output pin
is driven by a 4-input LUTs. LUTs and routing resources inside each
cell are not shown for simplicity.

LUTs. Each primary 4-input LUT can be used to implement a 4-input function or

it can be used as a route-through to pass signal to neighbouring cells. Auxiliary

LUTs are only used as route-through.

The algorithm starts by assigning the first element in the Level Order list to the

LUT-slot that drives the output pin of the overlay fabric. In our example, LUT1 in

Figure 5.4 is assigned to LUT-slot inside OC1 that drives O1 in Figure 5.5. Once

LUT1 is placed into OC1, the overlay output pin is assigned to LUT1’s output net,

and the primary input pins of the overlay cell are assigned to the input signals of

LUT1. Since the primary inputs of OC1 are driven by two cells (i.e. OC2 and OC3),

input pins are distributed between OC2 and OC3 evenly. Hence, n1 is assigned to

I1, and n2 to I4.
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The rest of the trigger LUTs in the Level Order list are considered sequentially;

each trigger LUT is mapped to a LUT-slot using Algorithm 2. Note that since we

are assuming only single-sink nets in our example, the trigger LUT has only one

predecessor. This algorithm is given the input pin of the trigger LUT’s predecessor;

because the trigger LUTs are processed in level order, we are assured the predeces-

sor has already been assigned a LUT-slot. The algorithm determines the LUT-slot

that drives this input pin and determines whether this candidate LUT-slot is a legal

location for the trigger LUT being placed (lines 3-8 in Algorithm 2). In our ex-

ample, when placing LUT2, the LUT-slot that drives O1 of OC2 is considered as a

candidate LUT-slot since n1 was assigned to I1 of OC1.

To determine whether a candidate LUT-slot is a legal location, the Validate

routine checks for two conditions: (1) the overlay cell that contains the candidate

output pin must have enough unassigned input pins to accommodate the input sig-

nals of the trigger LUT, and (2) the overlay cell has at least as many unassigned

input pins as its unassigned output pins. This latter condition is to ensure that the

cell can later be used as a route-through cell; as we will discuss, this is crucial to

prevent blocked routing situations when placing future trigger LUTs. If the valida-

tion passes, the algorithm returns the specific LUT-slot and a path from the output

pin of this LUT-slot to the assigned input pin of the predecessor (lines 8-13 in Al-

gorithm 2). In our example, cell OC2 is free and the validation step passes; the

algorithm places LUT2 onto the LUT-slot that drives output pin O1 inside OC2.

As before, primary inputs pins are distributed among the driving cells evenly; in

our example, the input pins are distributed among OC3, OC4, and OC5. Therefore,

a valid input assignment is n3 to I1, n4 to I2, n5 to I3 and n6 to I5.

If the validation for a candidate LUT-slot fails, the algorithm considers LUT-
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Algorithm 2: Mapping a trigger LUT onto a LUT-slot inside overlay cells

Input: overlay /* Overlay Fabric */
trigger LUT /* To be mapped trigger LUT */
assigned input pin o f predecessor1 /* Input pin that was

assigned to trigger LUT’s first predecessor */
assigned input pin o f predecessor2 /* Input pin that was

assigned to trigger LUT’s second predecessor */
Output: f ound LUT slot

routing path1 /* Routing path from found LUT slot to
assigned input pin of predecessor1 */

routing path2 /* Routing path from found LUT slot to
assigned input pin of predecessor2 */

1 /* a set that keeps the candidate LUT-slots in the current level */
2 current level candidate LUT slots← /0
3 driver LUT slot =

GetDriverLUT (overlay,assigned input pin o f predecessor1)
4 current level candidate LUT slots.insert(driver LUT slot)
5 while (current level candidate LUT slots 6= /0) do
6 next level candidate LUT slots← /0
7 foreach (LUT slot ∈ current level candidate LUT slots) do
8 if Validate(overlay, trigger LUT,LUT slot) == true then
9 f ound LUT slot = LUT slot

10 LUT slot out put pin = GetOut putPin(overlay,LUT slot)
11 routing path1 =

GetPath(LUT slot out put pin,assigned input pin o f predecessor1)
12 if assigned input pin o f predecessor2 == /0 then
13 return f ound LUT slot, routing path1

14 routing path2 =
SignalRoute(overlay,LUT slot out put pin,assigned input pin o f predecessor2)

15 if routing path2 6= /0 then
16 return f ound LUT slot, routing path1, routing path2

17 /* use the LUT-slot as a route-through to find other candidates */
18 foreach ( f ree primary input pin ∈ cell containing LUT slot) do
19 driver LUT slot = GetDriverLUT (overlay, f ree input pin)
20 next level candidate LUT slots.insert(driver LUT )

21 current level candidate LUT slots = next level candidate LUT slots

22 return /0 /* return empty indicating that no LUT-slot was found */
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Algorithm 3: SignalRoute
Input: overlay /* Overlay Fabric */

source out put pin /* Source output pin */
sink input pin /* Sink input pin */

Output: routing path /* Routing path from source to sink */

1 /* a set that keeps the candidate output pins in the current level */
2 current level out put pins← /0
3 /* returns the output pin that drives sink input pin */
4 driver pin = GetDriverPin(overlay,sink input pin)
5 current level out put pins.insert(driver pin)
6 while (current level out put pins 6= /0) do
7 next level out put pins← /0
8 foreach (out put pin ∈ current level out put pins) do
9 if source out put pin == out put pin then

10 routing path = GetPath(source out put pin,sink input pin)
11 return routing path

12 /* go to the neighbours*/
13 foreach ( f ree input pin ∈ the cell containing out put pin) do
14 driver pin = GetDriverPin(overlay, f ree input pin)
15 next level out put pins.insert(driver pin)

16 current level out put pins = next level out put pins

17 return /0 /* return empty indicating that no path exists */

slots in cells that fan-in to the cell containing the candidate LUT-slot. The can-

didate LUT-slot is then used as a route-through (lines 18-20 in Algorithm 2). As

mentioned earlier, condition (2) of the validation ensures the algorithm is able to

use the candidate LUT-slot in this way. The algorithm performs a validation for

each new candidate LUT-slot until a legal location is found. If the algorithm can-

not find a legal location (i.e. the algorithm reaches the last level), the mapping fails

(line 22 in Algorithm 2).

Mapping two-sink trigger nets. We do not have to deal with trigger nets with

more than two sinks because of the fanout bounding performed in pre-processing
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phase as described in Section 5.2.2. For trigger circuits that contain at least one

net with two sinks, additional processing is required. When placing a trigger LUT

with two sinks, both sink LUTs have already been placed due to the fact that trigger

LUTs are placed in a level order. For such a trigger LUT, we first find a candidate

LUT-slot based on its first sink using primary resources as explained above. We

then determine whether there is a path between the trigger LUT and its second

sink (line 14 of Algorithm 2). To determine whether there is such path, we use

Algorithm 3 which is based on a breadth-first search. Both Primary and Auxiliary

resources are used to enhance the routing flexibility when finding such a path. If a

path is found (Lines 15-16 in Algorithm 2), the candidate LUT-slot is accepted, and

the path is returned to the calling routine so that it can map the routing resources

that mark up the path as used. If there is no path between the candidate LUT-slot

and the second sink, the candidate LUT-slot is rejected and Algorithm 2 considers

other LUT-slots as described earlier.

5.2.3 Mapping Sequential Triggers

In this section, we describe how sequential trigger circuits are mapped.

Pre-processing

For a sequential circuit, the pre-processing phase is modified in three ways:

1. Fanout Bounding. As described in Section 5.2.2, fanout bounding on G is

performed by replacing each multi-sink net with a k-way tree. As in Sec-

tion 5.2.2, for each combinational node, we use k = 2. For each sequential

node (a flip-flop), we use k = fo. Recall from Section 5.1.1 that fo was de-

fined as the fanout of each overlay flip-flop. This ensures that the solution

89



(a) Original sequential trigger. (b) Transformed sequential trigger.

Figure 5.6: Transformation takes a sequential trigger (a) and restructures it to
sequential trigger (b) where trigger netlist can be cut into two partitions:
combinational and sequential.

matches the topological constraints of overlay flip-flops.

2. Transformation. As shown in Figure 5.2, if G is sequential, a transformation

is performed to restructure a sequential trigger state machine. As shown in

Figure 5.6, the state machine is restructured so that the trigger output logic is

fed directly from the state logic. This allows us to separate the combinational

and sequential parts of the trigger to better match the overlay architecture.

Although this transformation means that trigger output is produced one cy-

cle earlier. This can be tolerated by pipelining the connection between the

trigger overlay and the trace buffer, as we described in Section 5.2.4.

3. Level Order. The Level Order algorithm performs a level-order traversal of

the combinational part of G.
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Algorithm 4: Mapping a trigger flip-flop onto a flipflop-slot inside over-
lay fabric

Input: overlay /* Overlay Fabric */
all assigned input pins o f sinks /* Set of input pins that were

assigned to trigger flip-flop’s sinks */
out put pin o f driver /* Output pin that was assigned to trigger

flip-flop’s driver LUT */
Output:

f ound f lip f lop slot /*Flipflop slot of the overlay that trigger
flip-flop can be assigned to it */

all routing paths /* Routing paths between the found flipflop slot
and the combinational part */

1 /* set of unassigned flip-flop slots inside overlay fabric */
2 unassigned f lip f lop slots = GetFlipFlops(overlay)
3 foreach (candidate f lip f lop slot ∈ unassigned f lip f lop slots) do
4 f lip f lop slot out put pin =

GetOut putPin(overlay,candidate f lip f lop slot)
5 all routing paths← /0
6 success = true
7 foreach (assigned input pin ∈all assigned input pins of sinks) do
8 routing path =

SignalRoute(overlay, f lip f lop slot out put pin,assigned input pin)
9 if routing path == /0 then

10 success = f alse
11 break

12 all routing path.insert(routing path)

13 if success == true then
14 f lip f lop slot input pins =

GetInputPins(overlay,candidate f lip f lop slot)
15 foreach ( f lip f lop slot input pin ∈flipflop slot input pins) do
16 routing path =

SignalRoute(overlay,output pin of driver, f lip f lop slot input pin)
17 if routing path 6= /0 then
18 all routing paths.insert(routing path)
19 return f ound f lip f lop slot, all routing path

20 return /0 /* return empty indicating that no flipflop-slot was found */
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Placement and Routing

Placement and routing of a sequential trigger circuit is performed in two steps.

First, the combinational portion is mapped as in Section 5.2.2. Then, the flip-flops

in the trigger circuit (which we refer to as trigger flip-flops) are placed into the over-

lay and connect to the combinational portion of the circuit. Each trigger flip-flop is

considered sequentially, and mapped to a flip-flop in the overlay fabric (which we

refer to as a flip-flop slot) using Algorithm 4. This algorithm considers candidate

slots sequentially (line 3 of Algorithm 4). Each candidate slot is validated using

two invocations of breadth-first routing in Algorithm 3. The first invocation deter-

mines whether it is possible to find a path between the flip-flop slot output and each

sink LUT (lines 7-12 in Algorithm 4). Since the output pin of each overlay flip-flop

is connected to fo input pins of cells in level lo− 1 as described in Section 5.1.1,

finding a path from a sink LUT to any of those cells is sufficient. The second in-

vocation of the breadth-first routing algorithm determines whether it is possible to

find a path between the output pin of the driving LUT and the input pins of the

candidate overlay flip-flop slot (lines 15-19 in Algorithm 4). Since the inputs of

each overlay flip-flop are driven by a fraction of cells in level lo−1, finding a path

to any of those cells is sufficient. If both invocations are successful, the candidate

is selected; if not, another candidate flip-flop slot is considered (the algorithm re-

iterates from line 3 in Algorithm 4). If no legal flip-flop slot is found, the algorithm

fails.

5.2.4 Connecting Trigger Circuit to the User Circuit

After mapping the trigger logic to the overlay fabric, we connect the trigger inputs

from the user circuit to the trigger logic. Rather than having dedicated trigger fabric
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input pins, every connection between cells in the overlay fabric can be replaced

with a connection to the user circuit. For example, in Figure 5.5, if pin I2 of OC2

is mapped to a trigger input signal, the connection between OC4 and pin I2 of

OC2 can be replaced by a connection between the user circuit and pin I2 of OC2.

This re-route can be done using an incremental routing algorithm which reroutes

specific signals using free resources while leaving the rest of the design unchanged.

The last step to enable triggering is to connect the single trigger output to all

trace buffers across the chip, which can introduce a long critical path. Hence, we

assume the trigger output is registered to minimize impact on the user circuit’s

critical-path delay.

5.3 Experimental Methodology

In Section 5.4, we experimentally map synthetic trigger circuits to an overlay ar-

chitecture, implemented on top of a set of user circuits. In this section, we describe

how we obtain and map the user circuits, the overlay architecture assumptions, and

the synthetic trigger circuits.

5.3.1 Underlying User Circuits

We evaluate our techniques using VPR, which is part of the academic Verilog-To-

Routing project [96]. An open-source tool such as VPR provides us to demonstrat-

ing our approach since it requires low-level resource manipulation, whereas device

information is proprietary in commercial tools.

Using VPR, we packed, placed, and routed a set of benchmark circuits onto

the smallest FPGA array that can fit the circuit using an architecture based on In-

tel Stratix IV, characterized by logic cluster size N = 10, look-up table size K = 6,
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Table 5.2: Benchmark Summary.

6-Input FPGA Logic Cluster RAM Free (%)
Circuit LUTs FFs Size Wmin Used All Used All LCs LEs
bgm 32384 5362 75x75 80 4111 4200 0 120 2 25
LU8PE 22634 6630 61x61 92 2667 2745 45 80 3 18
LU32PE 76211 20898 111x111 128 9105 9213 150 252 1 17
LU64PE 147556 39552 153x153 156 17591 17595 293 475 0 17
mcml 101858 53736 100x100 86 7350 7400 38 208 0 9
mkDW 5590 2491 42x42 76 916 1302 41 42 30 47
stereo2 29943 18416 89x89 92 5889 5963 0 154 1 57

Table 5.3: Values of the Overlay Architectural Parameters, Used for the Ex-
periments.

Overlay Architecture Parameter Value
no 8
ko 4
lo 8
m 8
fo 32

cluster input and output flexibilities of Fc−in = 0.15 and Fc−out = 0.10, respectively,

channel segment length L = 4, and inputs per cluster I = 33. Table 5.2 summarizes

the benchmark circuits, resources available in the smallest FPGA array, and re-

sources occupied by the circuit. Wmin presents the minimum number of routing

tracks required to route each circuit on the minimum-sized FPGA array. We in-

flate this value by 30% since this is thought to best reflect the situation in a real

FPGA [8, 96]. We make the same assumptions as in Chapters 3 and 4 that any

unused RAM block in the FPGA can be reclaimed as a trace buffer. Furthermore,

only related logic elements are packed into a cluster to better reflect industrial

tools [67]. The column labelled Free shows the percentage of free LCs and LEs

after user circuit compilation.
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5.3.2 Overlay Architecture Assumptions

Table 5.3 presents the parameters that describes the overlay architecture and their

values. Importantly, no is less than N in the target FPGA and ko is less than K in

the target FPGA; this ensures that partially filled logic clusters in the FPGA can

be used to implement overlay cells. We assume that the number of overlay cell

levels lo = 8, which is sufficient to implement many of the type of trigger circuits

we describe later in this section.

5.3.3 Synthetic Trigger Circuit Assumptions

In order to adequately evaluate our technique on a wide range of trigger circuits,

we generate 1940 synthetic triggers, as described below. We consider three cate-

gories of trigger circuits: combinational triggers, state-based triggers, and complex

triggers.

Combinational Triggers. We consider three types of combinational trigger cir-

cuits. First, we consider trigger circuits which consist of a single n-bit comparator

comparing two sets of n-bit signals in the user circuit. We vary n from 16 to 256

(in powers of two), and for each value of n, we generate 100 circuits with different

sets of input signals. Second, we consider trigger circuits that compare an n-bit

signal to a constant; again, we vary n from 16 to 256, and for each value of n, we

generate 100 circuits with different values of the constant and different input sig-

nals. Finally, we consider circuits containing a range comparator to determine if an

n-bit signal in the user circuit is within a given range. As before, we vary n from

16 to 256, and for each value of n, we generate 100 circuits with different ranges

and different signals in the user circuit. All together, this represents 1500 synthetic

combinational circuits.
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State-based Triggers. We created a program which generates synthetic state

machines according to two parameters: the number of states and the maximum

number of transitions from each state. Using this program, we generated synthetic

state machines by sweeping the number of states through {8,16} and the maximum

number of transitions from each state through {2,3,4,5,6}. For each combination,

we generated 20 state machines, giving a total of 200 state machines.

Complex Sequential Triggers. Finally, we consider trigger circuits which con-

tain a counter, providing the ability to trigger after a specified number of occur-

rences or absences of a specified condition. We created a program which generates

a synthetic trigger circuit that compares n-bit quantities in the user circuit with a

constant, and contains an m-bit counter, along with circuitry to assert the output

signal when the count reaches a specified value (up to 2m−1). Using this program,

we generated synthetic triggers by sweeping n from 16 to 128 (in powers of two)

and m in the range {4,5,6}. For each combination, we generated 20 triggers, giving

a total of 240 complex sequential triggers.

5.4 Experimental Results

5.4.1 Overlay Implementation Runtime

Table 5.4 presents the compile time overhead required to place and route the over-

lay fabric (characterized in Table 5.3) on top of each benchmark circuit. Adding

our proposed overlay to each benchmark circuit adds less than 2.5% to the circuit

compile time. This low overhead is due to two main reasons: (1) instead of creat-

ing the largest possible overlay out of unused logic resources, we assumed that the

number of overlay cell levels lo = 8; this results in fast placement. (2) the simple
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Table 5.4: Overlay Compile-Time Overhead.

Circuit
Uninstrumented Circuit

Compile-time
(s)

Overlay
Compile-time

(s)
bgm 2989 21
LU8PEEng 2071 48
LU32PEEng 8773 54
LU64PEng 35615 18
mcml 13074 19
mkDW 756 14
stereo2 3574 28
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Figure 5.7: Debug-time: combinational trigger mapping runtime.

interconnect topology of our overlay architecture results in fast routing. The over-

lay compile time is a one-time overhead since the overlay is created only once after

the user circuit and is used multiple times during debug iterations with the same

circuit.

5.4.2 Trigger Mapping Runtime

Figure 5.7 shows the runtime of our trigger mapping algorithm for combinational

triggers (including connecting the trigger signals to the fabric). The vertical axis
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Figure 5.8: Debug-time: state-based trigger mapping runtime.

represents the mapping time, averaged for all trigger circuits with the given com-

parator size. The mapping was successful for all 1500 combinational triggers. As

shown in Figure 5.7, the mapping time for each trigger circuit was less than 40

seconds. This runtime includes both the time to map the trigger functionality to

the fabric, as well as the time to connect the trigger signals in the user circuit to the

fabric. In all cases, time to connect the trigger signals to the fabric was dominant

and the mapping runtime increases as the size of comparators increases.
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Figure 5.9: Debug-time: mapping runtime of complex sequential trigger cir-
cuits with 128-bit comparator.

Figure 5.8a shows the runtime of our trigger mapping algorithm when mapping

state-based trigger circuits with 8 states as a function of the maximum number of

transitions per state. The runtime depended heavily on the underlying user circuit.

Circuits such as stereovision2 had more routing congestion around memory blocks,

meaning the runtime to find a legal path between the trigger output and all available

memory blocks is larger.

For each of our circuits, the average compile time was less than 14 seconds.

Figure 5.8b shows the same results for state machines with 16 states. In this case,

not all mappings were successful. For the case with a maximum of 6 transitions per

state, we found that 16 of the 20 trigger circuits could be mapped to the fabric. Of

those that were successful, each trigger could be mapped in less than 16 seconds.

Figure 5.9 shows the runtime of our trigger mapping algorithm for mapping

complex trigger circuits with 128-bit comparators as a function of counter size.

We were able to map all the trigger circuits; on average, the runtime for the largest

circuit was less than 18 seconds. As mentioned before, the runtime to connect the
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Table 5.5: Effect of Trigger Insertion on Circuit Critical Path Delay (ns).

Circuit

Critical Path Delay (ns)

Original
16 States 128-bit Comparator

Max Transitions
per State

Counter Size

2 3 4 5 6 4 5 6
bgm 19.72 19.72 20.7 20.09 21.35 21.3 19.72 19.72 19.72
LU8PE 89.64 89.64 89.64 89.64 89.64 89.64 89.64 89.64 89.64
LU32PE 91.93 91.93 91.93 91.93 91.93 91.93 91.93 91.93 91.93
LU64PE 89.23 89.23 89.23 89.23 89.23 89.23 89.23 89.23 89.23
mcml 66.59 66.59 66.59 66.59 66.59 66.59 66.59 66.59 66.59
mkDW 6.47 10.86 11.19 10.98 11.45 12.19 8.83 8.76 10.11
stereo2 11.93 12.2 12.59 12.76 12.9 13.52 11.93 11.93 11.97

trigger signals to the fabric was dominant and increasing the counter size has little

effect on the runtime.

As the results show, implementing a new trigger circuitry using our techniques

is significantly faster than performing a lengthy circuit recompilation at each debug

iteration.

5.4.3 Circuit Critical Path Delay

Using our techniques for trigger insertion, the critical path delay of all bench-

marks remained the same except bgm, mkDelayWorker32B, and stereovision2. Ta-

ble 5.5 shows the critical path delay of the circuits before (column labeled Unin-

strumented) and after inserting different trigger circuits averaged over all the trig-

ger circuits. The critical path delay increases no more than an additional 1.6ns

for bgm, 5ns for mkDelayWorker32B, and 1.6ns for stereovision2; in all cases, the

worst case is when inserting trigger circuits with 16 states and a maximum of 6

transitions per state. The increase in delay in these circuits is because these circuits
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have a shorter critical path than the other circuits; circuits with a short critical path

are more sensitive to trigger insertion as a large trigger circuit can introduce a new

long critical path to the circuit. However, this delay increase is temporary dur-

ing debugging and the circuit can operate at its normal frequency when the debug

instrumentation is not required.

Comparison with Circuit Recompilation. As shown in Table 5.5, our tech-

niques had no impact on the critical path delay of the benchmark circuits in our

experiments, except for bgm, mkDelayWorker32B, and stereovision2, which are

circuits with short critical path. We also evaluate the critical path delay of these

affected benchmarks when the trigger circuit is compiled with the user circuit in

order to compare with our techniques when trigger circuits with 16 states and a

maximum of 6 transitions per state are inserted (worst case). Our experimental

results show that after compiling the user circuit with these trigger circuits, the

critical path delay increases to 19.84ns, 6.53ns, and 12.25ns for bgm, mkDelay-

Worker32B, and stereovision2, respectively. As expected, recompiling the user

circuit with the trigger circuit has less effect on the circuit delay compared to our

incremental techniques using an overlay. However, using our techniques enable the

designers to rapidly implement the desirable trigger functions without requiring a

recompilation.

5.4.4 Comparison with Intel Quartus Prime

In this section, we compare our techniques with incremental compilation feature of

Intel Quartus Prime, which can be used to modify the reconfiguration of SignalTap

II Logic Analyzer.

Incremental compilation is enabled by setting the user circuit partition to post-
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Figure 5.10: An example of a state-based trigger to detect when the pattern
0110101 has been received on a signal in consecutive cycles.

Table 5.6: Comparison between This work and Quartus Prime on Intel Stratix
IV (EP4SGX180) Architecture for mcml.

mcml This Work Quartus Prime
Circuit full compilation (s) 13074 2880
Circuit Fmax (MHz) 15.01 28.82
Runtime at each debug iteration (s) 3 460

fit; the tool will attempt to preserve the placement and routing of the user circuit.

To compare our techniques to Intel’s approach, we created a benchmark state-

based trigger with a single user circuit input and a single trigger output; the circuit

asserts its trigger output when the pattern 0110101 has been received on the input

in consecutive cycles. A state diagram showing this behaviour is in Figure 5.10.

To instrument the circuit, we employ SignalTap II. We selected one registered

signal at random from the circuit output as the trigger input.

The degree to which the trigger circuit can be changed without recompiling

the design is limited in SignalTap II. Changing the number of states, trigger input

signals, or transition conditions in the trigger circuit would require a recompilation

of the trigger circuit (using Intel Quartus Prime’s incremental compilation flow,

the recompilation can be limited to the trigger circuit). The tool provides an option

that allows the target state of each transition to be changed without recompiling

the design, however, this flexibility comes at a cost in terms of resource usage
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depending on the size of the trigger circuit. In our example, the trigger circuit

requires 461 LEs when this option was disabled. Enabling this option increases the

resource usage to 721 LEs, an increase of 56%.

Table 5.6 shows the full compilation time and maximum operating frequency

(Fmax) for a large, 100,000 LUT, benchmark circuit mcml without any instrumen-

tation, when targeting a Stratix IV architecture in version 15.1 of Quartus Prime

and an architecture similar to Stratix IV using our flow.

To understand the impact of making a trigger circuit change on the runtime

required to perform a debug iteration, we modified our example trigger to detect

a different pattern, 0111101. Table 5.6 shows the runtime to recompile the trigger

circuit using our techniques and Quartus Prime.

Unsurprisingly, the academic CAD tool takes significantly longer time to com-

pile the uninstrumented circuit. However, the runtime required to perform a debug

iteration is two orders of magnitude faster using the trigger insertion flow presented

in this chapter. This is due to the ability to rapidly map the trigger circuit onto the

overlay fabric rather than performing a recompilation.

5.5 Summary

This chapter presented a multi-level overlay architecture and new CAD techniques

that are specialized for for small combinational and sequential circuits with a single

output; such circuits are typical of common trigger functions. Such specialization

provides enough flexibility to enable complex triggering capabilities suitable for

debugging. We have shown that the overlay fabric can be reconfigured to map

various combinational and sequential triggering scenarios in less than 40 seconds,

enabling rapid debug iterations. Our experiments have shown that our customized
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overlay architecture and trigger mapping algorithms have only a small impact on

the critical path delay.
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Chapter 6

Post-Silicon Coverage using

Overlays

As discussed in Chapter 2, coverage estimation during post-silicon is a challeng-

ing task and there is no standardized coverage metric and methodology for cov-

erage analysis. The key challenge is the poor observability into the behaviour of

a running chip. Although this visibility problem can be addressed by designing

circuit-specific monitors and implementing them on-chip along with the user cir-

cuit, this can introduce significant area overhead. On the other hand, implementing

a small subset of important coverage monitors negatively impacts a complete cov-

erage analysis.

In this chapter, we make the observation that we can re-purpose existing FPGA-

based on-chip debug cores from earlier in this thesis to facilitate on-chip cover-

age monitoring. More specifically, we show that the instrumentation frameworks

presented in Chapter 4 and Chapter 5, which were designed to implement trigger
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circuits, can be used to support the time-multiplexed implementation of coverage

monitors. Instead of employing this infrastructure – a virtual overlay fabric that

can be rapidly reconfigured (without compilation) during the verification process

– to record a limited window of trace data, we instead use this overlay to measure

coverage over the entire circuit execution. Since this overlay is implemented using

spare FPGA resources, the area overhead of instrumentation is essentially zero and

its performance overhead is negligible.

In this chapter, we describe our proposed instrumentation framework to effi-

ciently implement on-chip coverage monitors in Section 6.1. In Section 6.2.1 we

will revisit the overlay architecture presented in Chapter 5, and show how it can

be modified to provide enough flexibility for implementing coverage monitoring

circuits. Section6.3 describes coverage monitor circuits that are mapped to this

overlay fabric to gather branch coverage data. Section 6.4 describes our mapping

algorithm to rapidly map these branch coverage monitors to a set of configuration

bits. Section 6.5 details the experimental methodology and steps that were per-

formed to evaluate our techniques. In Section 6.6, we evaluate our techniques in

terms of area overhead, overlay flexibility, and runtime. Finally in Section 6.7 we

present our conclusions. A condensed version of this work was published in [46].

6.1 Framework

Figure 6.1 illustrates our overall framework. First the user circuit is compiled onto

the FPGA as normal, without any coverage monitor instrumentation. Then, the user

circuit is frozen, and instrumentation is added to the circuit using only resources

(logic blocks, memories, and routing tracks) that are not used by the user circuit,

without disturbing the packing, placement, and routing of the user circuit.
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Figure 6.1: Overview of our framework.

Rather than instrumenting the user circuit with fixed coverage monitors, our

instrumentation consists of a flexible overlay fabric that is flexible enough so that

it can be configured, at runtime, to implement one or more coverage monitor func-

tions. The flexibility of the overlay to implement coverage monitor functions

comes from a set of configuration bits. Since the overlay is specialized for cov-

erage monitor circuits, the overlay can be configured by setting a small number of

configuration bits. Importantly, mapping the coverage monitor functions to this set

of configuration bits is much faster than a full recompilation of the user circuit with

coverage monitors.

After the user circuit has been mapped to the FPGA, and the overlay fabric

mapped to the available resources, testing of the circuit proceeds. Before running

the circuit under all test cases, coverage monitor functions applicable to this user

circuit are identified, and a subset of the set of these coverage monitor functions

are mapped to the overlay, as described above. The design is then run and the

monitor circuits capture coverage data. The coverage data is stored in on-chip
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memory while the design is running at-speed under all test cases. After the design

execution, this overlay fabric is then reconfigured to implement another subset of

coverage monitors and the design is re-executed under all test cases and the cov-

erage data is stored in on-chip memory. This process is repeated and the overlay

fabric is frequently reconfigured until all coverage monitors are implemented and

all coverage data is gathered. At the end, the coverage information can be extracted

from the instrumentation (using device read-back techniques) for off-line coverage

analysis and an overall coverage measurement. Importantly, overlay reconfigura-

tion and coverage instrumentation does not change the user circuit characteristics

during the validation process since the overlay is separated from the user circuit.

The size of the overlay fabric can be adjusted based on the proportion of the

FPGA that is unused by the user circuit; if the user circuit uses most of the FPGA,

the overlay fabric will be small, and can only implement a small number of cover-

age monitor functions at at time, while if there are many unused FPGA resources

after mapping the user circuit, a larger fabric, capable of implementing many si-

multaneous monitor functions can be implemented.

6.2 Coverage Overlay Architecture

The design of a suitable overlay fabric is critical for our method. The overlay must

be flexible enough to implement a variety of coverage monitor functions, with

as little overhead as possible. A key observation in this work is that the overlay

needed to gather coverage information is very similar to that previously proposed

to enhance visibility during post-silicon debug. This section presents the overlay

architecture optimized to implement coverage monitor circuits. This section shows

how the debug-oriented overlay presented in Chapter 5 can be enhanced to better
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implement coverage monitor functions.

6.2.1 Overlay Architecture

Figure 6.2 illustrates our overlay architecture. As shown, the overlay is comprised

of a number of cells connected in a triangular reduction-network pattern. Levels are

labeled 0..lo−1; level i contains 2i cells similar to the debug overlay architecture

presented in Chapter 5 (Figure 5.1a). To better implement coverage monitor func-

tions, we revise this debug overlay fabric; instead of including a bank of flip-flops

separated from overlay cells, we enhance the overlay cell design where each over-

lay cell consists of logic elements (LEs). The design of an overlay cell is shown

in Figure 6.2b. Each overlay cell contains eight LEs. Each LE contains a 4-input

LUT and a flip-flop. The LEs within a cell are connected using a fully-connected

crossbar network. Each overlay cell has ten input and eight output pins (except the

cell in level 0). The interconnect between cells is also shown in figure 6.2a. The

trigger output is used to control trace buffers. As described in Chapter 6, we dis-

tinguish between two categories of interconnects: (1) primary connections that are

used to flow signal in forward direction, (2) auxiliary connections that are added to

enable each overlay cell to flow data in backward direction for supporting flip-flop

feedbacks of coverage monitor circuits as will be described in Section 6.4.

Overlay cells are designed to be similar to FPGA logic clusters for efficient

overlay compilation. We used the same incremental approach used in Chapter 5

(Section 5.1.2) to incrementally compile this overlay architecture onto FPGA spare

logic clusters and routing tracks after user circuit compilation while preserving the

mapping of the underlying user circuit.
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(a) The overall structure of the coverage overlay architecture.

(b) Overlay Cell (OC) details

Figure 6.2: (a) Coverage overlay architecture that is comprised of cells con-
nected via primary (shown in black) and auxiliary (shown in red) con-
nections, inputs to the overlay are control signals from the user circuit
and its output controls trace buffers. (b) Overlay cell design with Logic
Elements (LE), local routing, and outputs to other cells, each LE con-
tains a 4-input LUT and a flip-flop.
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Figure 6.3: Branch coverage instrumentation that is mapped onto the overlay
fabric.

6.3 Branch Coverage Instrumentation

Key to the flow described in Section 6.1 is the ability to map coverage monitor

functions onto the pre-synthesized overlay fabric. In this work, we consider branch

coverage, where instruments are attached to the control signals generated as part

of if–else-if–else, case, and ternary operator (?:) statements.

Coverage Monitor Circuitry: Figure 6.3 shows our coverage instrumenta-

tion. Control signals extracted from the user circuit are first captured into a flip-

flop, implemented inside the trigger overlay, in order to limit the effect of this

instrumentation on the timing performance of the circuit. The output of this initial

flip-flop is then fed into a second flip-flop that captures the value of the control

signal in the previous clock cycle. The upper OR gate causes this second flip-flop

to latch when a high value is encountered, and to remain at that value, while the

lower AND gate (with inverted input) detects the cycle at which a rising transition

occurred. Once this transition is detected, it passes through a reduction OR gate

(and another pipelining flip-flop) that causes the trace-buffer to write the state of
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all coverage monitors upon any rising transition. Since each coverage monitor can

only transition once, the size requirements of this trace buffer scale linearly with

the number of monitors. Due to the nature of FPGA technology, all flip-flops can

be initialized with a value of ‘0’.

Control Signal Visibility: The ability to attach coverage instrumentation onto

if/case control signals is dependent on whether this exact signal exists; due to syn-

thesis optimizations, signals that exist in the original HDL may not be present in

the uninstrumented result. Attaching monitors to such signals will cause a differ-

ent optimization trajectory, and it would be expected that doing so would incur an

area or delay overhead. This is an issue that exists regardless of whether cover-

age instruments are inserted at compile-time, as with the baseline case, or whether

they are time-multiplexed at runtime as we propose. The overhead for the runtime

case, however, is compounded by the necessity to preserve all control signals to al-

low coverage monitors to be attached at runtime, whereas in the compile-time case

only those control signals attached to pre-selected monitors would be affected. We

quantify this effect in our experiments; however, for future work we believe this

overhead can be mitigated by employing spare FPGA logic to also ‘reconstruct’

the value of optimized signals.

6.4 Coverage to Overlay Mapping

During validation, a mapping algorithm is required to map coverage monitor func-

tions onto the pre-synthesized overlay fabric. We use the simultaneous placement-

and-routing algorithm 2 presented in Chapter 5 to find a mapping of LUTs of

coverage monitor functions to a LUT-slot inside the overlay cells. For mapping

sequential part of coverage monitor functions, we revised this algorithm to also
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place each flip-flop of the coverage monitors onto a flip-flop slot in an overlay cell.

Both forward and backward connections in the overlay routing network are used to

enhance the routing flexibility when connecting flip-flop feedback paths.

6.5 Methodology

In order to evaluate our approach, we implemented our techniques using the FPGA

CAD tool VPR, which is part of the open-source academic Verilog-To-Routing

(VTR) project [96]. As discussed in Chapter 3, using an open-source tool was

necessary because implementing our approach requires low-level resource manip-

ulation, whereas device information is proprietary in commercial tools.

Similar to our methodology in Chapter 3, we used circuits that are supplied

with the VTR project as underlying user circuits. Using VPR, we packed, placed,

and routed each circuit onto the smallest FPGA array that can accommodate the

circuit using the default VPR architecture based on the Intel Stratix IV. As is com-

monplace in FPGA research, we first map benchmark circuits to the minimum sized

FPGA that it fits onto, and using the minimum number of routing tracks. We then

inflate this minimum value by 30% to reflect realistic routing demand. For each

circuit, unused RAM blocks in the FPGA are reclaimed for recording coverage in-

formation. In these experiments, we constructed an overlay fabric with the number

of overlay cell levels lo = 8 using incremental techniques presented in Chapter 4.

6.6 Experimental Results

In this section, we evaluate our runtime instrumentation techniques for inserting

on-chip monitors for branch coverage at runtime in terms of (1) runtime and (2) the

impact on circuit critical path delay versus compile-time instrumentation in which
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Table 6.1: Benchmark circuits, total number of branch control signals, maxi-
mum number of on-chip monitors that fit on FPGA device at each instru-
mentation iteration, number of total instrumentation iterations for branch
coverage analysis.

Benchmark
# of

Control
Signals

Compile-time Instr. Run-time Instr.
# of

monitors
per iteration

# of iterations
# of

monitors
per iteration

# of iterations

LU8PEEng 2335 291 9 60 39
LU32PEEng 7639 238 33 60 128
mcml 1213 303 5 60 21
or1200 647 647 1 60 11
stereovision2 211 105 3 60 4

a number of pre-selected monitors are inserted into the design before compilation.

Additionally, we evaluate the area overhead of preserving all control signals re-

quired for runtime instrumentation as was discussed in Section 6.3.

Coverage Instrumentation: Table 6.1 presents the total number of branch

control signals for each benchmark circuit. The compile-time column in the table

presents the maximum number of on-chip coverage monitors that fit into the FPGA

array that accommodates the circuit. As expected, it was not possible to insert all

the monitors at once (except for or1200) as they did not fit into the device. Hence,

it requires multiple compilation iterations to instrument the design for coverage

analysis. The number of recompilation iterations is also presented in Table 6.1 for

each benchmark.

For our runtime instrumentation approach, we are able to map a subset of 60

monitors (attached to 60 control signals) onto the overlay fabric. Selecting sub-

sets of monitors to map to the overlay, we group monitors related to if/else or case

statements into subsets comprising of 60 monitors. For each benchmark, we map

114



0

5

10

15

20

25

LU
8PEEng

LU
32PEEng

m
cm

l

or1200

stereo2

S
p

e
e

d
u

p
 (

X
)

Figure 6.4: Speedup of runtime branch coverage instrumentation in compari-
son to compile-time instrumentation over multiple instrumentation iter-
ations.

each subset onto the overlay and average the mapping runtime over all subsets. For

our benchmarks, the time to map a subset of 60 monitors to the overlay fabric is

less than 10 seconds on average. Even thought our approach requires more iter-

ations to implement all monitors to gather all branch coverage data, it only takes

10 seconds to reconfigure the overlay to map a new subset of monitors. In con-

trast, the compile-time approach suffers a full recompile time of the user circuit

with the instruments at each iteration. Figure 6.4 shows the total speedup of our

techniques (this includes the circuit compilation time, overlay construction time,

and multiple iterations of overlay reconfiguration time) when compared with the

compile-time instrumentation which includes multiple iterations of full recompi-

lation. As the results show, large circuits, and in particular, circuits with many

branch control signals, significantly benefit from our runtime instrumentation. For

instance, our approach provides the speedup of 23X for LU32PEEng benchmark

that has a large number (thousands) of control signals. This speedup is achieved by
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Table 6.2: Circuit critical path delay (ns) of uninstrumented circuit, instru-
mented circuit at compile-time and runtime instrumentation.

Benchmark Uninstrumented Compile-time Instr. Runtime Instr.
LU8PEEng 89.6 90 90

LU32PEEng 91.9 90.2 91.9
mcml 66.6 63.5 67.31

or1200 11.6 11.6 11.87
stereovision2 11.9 11.8 12

eliminating a need for recompilation at each instrumentation iteration. For small

circuits with a relatively small number of control signals, the benefit of our ap-

proach is smaller. For or1200 benchmark, although it was possible to insert all

monitors into the FPGA at compile time, as expected, this lead to a more complex

and difficult mapping problem for the FPGA CAD tools which increases compila-

tion time compared to our approach where the instrumentation is separated from

the user circuit.

Table 6.2 presents the critical path delay of the user circuit without any in-

strumentation, after compile-time instrumentation and using our approach. For

compile-time instrumentation, the critical path delay of the benchmark circuits

changes as the instrumented circuit is recompiled from scratch. For some bench-

marks, the critical path delay slightly decreases which can attributed to the algo-

rithmic noise of CAD algorithms. Using our approach for runtime instrumentation,

we had no impact or little impact on the circuit critical path delay; the critical path

delay increases no worse than an additional 2.3% for or1200. As explained earlier,

this delay increase is partly due to preserving all branch control signals. Addition-

ally, small circuits with short critical path (such as or1200 and stereovision2) are

more sensitive as our instrumentation can introduce a new long critical path to the
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Figure 6.5: Impact of preserving all control signals on area in comparison to
the uninstrumented circuit where these signals can be optimized away
if possible.

circuit.

Impact of Control Signal Visibility on Area: Figure 6.5 shows the area over-

head of preserving all branch control signals in comparison to the same circuit

where the synthesis tool is free to optimize these signals. As discussed in Sec-

tion 6.3, this area increase (average 6.4%) is the price we have to pay to enable

runtime instrumentation.

6.7 Summary

This chapter demonstrates an instrumentation framework that enables on-chip cov-

erage observability in a way that does not require large area overhead of monitors

during FPGA-based validation. To achieve this, we utilize existing FPGA debug

cores and techniques presented in Chapter 6 that employ an overlay fabric for de-

bug instrumentation in order to implement monitors and gather branch coverage

data. Because the overlay is customized for coverage monitoring, the time to com-
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pile monitors to the overlay fabric is fast and the overlay can be reconfigured at

runtime to implement monitors in a time-multiplexed fashion to gather coverage

data when the design is running at speed under all test cases. Since the overlay

is separated form the user circuit, the user circuit characteristics remain the same

during post-silicon validation process.

The key novelties of this work are in: (1) a scalable and area-efficient coverage

instrumentation framework that enables coverage monitoring at post-silicon, (2)

specialized overlay architecture and mapping tools supporting runtime implemen-

tation of monitors, (3) branch coverage instrumentation to enable runtime evalua-

tion of branch coverage during post-silicon validation.

The significance of this work is that it enables designers to gather coverage data

with low overhead during FPGA-based validation while the circuit is operating

many orders of magnitude faster under more realistic test cases than simulation.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The past several decades have seen tremendous growth in the capacity and capabil-

ity of FPGAs. FPGA platforms are commonly used for fast prototyping to evaluate

and validate the functionality of complex designs. Debugging a design while it

is running at execution speed on a real hardware enables the designers to verify

the design functionality in system-level with long real-world stimulus and higher

functional coverage compared to software simulators.

However, post-silicon debug and verification is challenging due to the poor

visibility into the design behaviour. As described in Chapter 2, observability can

be added by including commercial or academic trace-based instrumentation. This

instrumentation often records the runtime behaviour of selected signals in the chip,

allowing it to be played back later using debug tools. Most of these debug flows,

however, require the design to be recompiled every time the instrumentation is

changed. For very large designs, this can be prohibitive which can severely limit
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debug productivity.

Moreover, as discussed in Chapter 2, coverage analysis during post-silicon val-

idation is very difficult task due to lack of observability. On-chip circuit-specific

coverage monitors have not been widely used in practice since implementing a

large number of coverage monitors imposes a high area overhead and is not afford-

able in silicon. Hence, in this thesis, we have proposed area-efficient methods for

instrumentation of FPGA designs for debug and coverage monitoring in a way that

does not require frequent recompilation during FPGA debug and verification pro-

cess. The rest of this chapter is as follows. Section 7.2 provides a summary of the

contribution of this thesis and Section 7.3 discusses their limitations and possible

research directions based on the findings from this thesis.

7.2 Summary of Contributions

In Chapter 3, we used incremental compilation techniques to insert the trigger cir-

cuitry into a design without requiring a full recompilation; trigger logic elements

are distributed throughout the unused logic resources after user circuit compilation

and spare routing resources are used to make the required connections between

these logic elements and to the user circuit using incremental routing techniques.

Our results show that it is feasible to distribute trigger logic over spare logic re-

sources after user circuit compilation. However, making connections between these

distributed trigger logics depends on the routing congestion in the user circuit.

In Chapter 4, we enhanced the ability of rapid trigger implementation by in-

troducing an instrumentation framework through the use of overlay architectures,

which are compiled once, and configurable between debug iterations. We then pre-

sented an overlay architecture based on a 2D torus that provides adequate flexibility
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for implementing combinational trigger circuits.

We then present non-intrusive, adaptive, and best-effort CAD techniques for

mapping the overlay architecture on top of the user circuit. Our approach is area-

efficient because we only use those resources left unused by the user circuit and

hence the area overhead is potentially zero. The construction algorithm includes

three major parts: (1) overlay cell selection, in which partially used or empty logic

clusters are selected as the overlay cells to create a logical overlay fabric; (2) adap-

tive overlay placement, in which an adaptive simulated annealing based placement

algorithm is used to place the logical overlay into those FPGA resource left unused

by the user circuit while minimizing the total wire length; and (3) best-effort over-

lay routing in which the routability-driven PathFinder algorithm is used to itera-

tively resolve routing congestion. If congestion cannot be resolved, illegal connec-

tions that are overusing routing resources are iteratively removed from the overlay

until congestion is resolved and a legal routing solution is achieved.

At debug time, a routing-aware simulated-annealing based placement algo-

rithm was proposed to place a trigger circuitry onto the overlay; swaps that could

result in routing failure were heavily penalized to enhance the routability of the

placement solution.

Our experiments have shown that for the benchmarks that were investigated,

we were able to build overlay architectures with different sizes depending on the

available spare resources while increasing the circuit compile time by an average

of 22% assuming a maximally-sized overlay fabric. However, this compile time is

only required once to build the overlay architecture. During debugging, this overlay

fabric can be reconfigure multiple times to implement different trigger circuits. Our

experiments have shown that the overlay architecture provides enough flexibility
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to implement different combinational trigger circuits at least an order of magnitude

faster than a full recompilation, enabling rapid debug iterations.

In Chapter 5, we extend our instrumentation framework in Chapter 4 by in-

troducing a new overlay architecture and mapping tools optimized for implement-

ing sequential (state-based) trigger circuits. We proposed a parameterized overlay

architecture family that is specialized to implement sequential trigger functions.

To implement the logic part of the trigger circuit, the overlay contains a number

of cells connected in a triangular reduction-network pattern. To support sequen-

tial triggers, the overlay also contains a bank of flip-flops. We then modified the

overlay construction strategy presented in Chapter 4 to construct this multi-level

overlay fabric on top of user circuit. The overlay fabric increases compile time no

more than 2.5% for the benchmark circuits that were investigated. As mentioned

before, the overlay compile time is a one-time overhead.

Also in Chapter 5, we developed a trigger mapping flow to implement trigger

circuits onto the overlay fabric between debug iterations. To take advantage of the

specialized overlay architecture, we developed a mapping flow to perform a grad-

ual and simultaneous placement and routing to ensure a legal mapping solution,

which includes two major phases: (1) Pre-processing, in which the trigger circuit

graph is modified to suit the optimized overlay architecture; (2) Placement/Rout-

ing, in which the logic elements of the trigger circuit are placed and routed onto the

overlay cells. We first described a mapping algorithm for combinational triggers

and then generalized the algorithm for sequential trigger circuits. Our experiments

have shown that the overlay fabric can be rapidly reconfigured to implement differ-

ent trigger circuits. For our benchmarks, we were able to reconfigure the overlay

fabric in less than 40 seconds to implement different combinational and sequential
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triggering scenarios. This results suggest that our triggering framework is a viable

approach for enabling rapid triggering capabilities during FPGA debug.

In Chapter 6, we utilized trace-based debug infrastructure to provide visibil-

ity for coverage evaluation during post-silicon verification; instead of using trace

buffers to record trace data for a limited number of clock cycles, we used trace

buffers to record coverage data during the entire design execution.

In this chapter, we first proposed a framework for implementing on-chip cov-

erage monitors with low area overhead and in a way that does not require recom-

pilation of the user circuit. Our proposed solution is through the use of an overlay

architecture which is compiled once, and is configurable at runtime to implement

coverage monitors in a time-multiplexed fashion to gather coverage data. We re-

visited the multi-level overlay architecture and mapping algorithms presented in

Chapter 5, and made them suitable to support the time-multiplexed integration of

coverage monitors.

We evaluated our techniques for runtime implementation of on-chip branch

coverage monitors versus compile-time instrumentation, where the design is in-

strumented with a fixed number of coverage monitors before compilation. Our

experiments have shown that using our approach to gather branch coverage data

is up to 23X faster compared to compile-time instrumentation. To allow runtime

branch coverage monitoring, all control signals for if/case in the original HDL were

preserved that resulted in an area overhead of 6.4% on average compared to unin-

strumented design where these signals are optimized if possible. The significance

of this contribution is that it enables designers to find functional coverage during

FPGA-based validation with a low area overhead and without performing lengthy

recompilations.
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7.3 Limitations and Future Research Directions

This section discusses limitations of this work and outlines a number of possible

extensions which can be explored in future work.

Using our techniques for incremental instrumentation may increase the delay

of the instrumented design. This may limit the use of our techniques in debug

and verification of applications that require strict timing constraints. One example

would be video encoding/decoding engine in media streaming applications, where

frames are expected to be processed in a certain frame rate. To minimized the effect

of instrumentation on circuit timing, future work can apply pipelining techniques

to the overlay connections in order to reduce the effect of debug or coverage in-

struments on circuit performance. One challenge would be to map the trigger or

coverage monitor circuits to this pipelined overlay without changing the function-

ality. Typically, the drawback of doing this is an increase in signal latency as the

signal will require more clock cycles to reach its destination, resulting in a delay to

stop/start capturing data. However, this will not be an overhead as stopping/starting

recording data a few cycles after an interesting event is tolerable.

In Chapter 6, in order to enable runtime branch coverage monitoring, we iden-

tified branch control signals from the original HDL and prevented the synthesis

tool from optimizing these signals, so that these signals exist for runtime coverage

monitoring at post-silicon. This preservation prevented the synthesis tool to fully

optimize the design. This could result in an area or delay overhead in the user

design. One possible solution to avoid these overheads is to reclaim FPGA spare

logic resources to duplicate logics required to reconstruct optimized signals using

incremental techniques. This way, the tool is free to fully optimize the user circuit.
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Another possible direction is to use our instrumentation framework for imple-

menting compression schemes. To make the most efficient use of trace buffers, it is

often useful to compress data before it is stored. In general, trace data is extremely

compressible. This compression may be general purpose as described in [11] or op-

timized for a specific application as in [52]. A general purpose compression engine

may be too large to implement in an overlay, however, simple application-specific

compression schemes may be very suitable.

In this thesis we assumed the user circuit is not implemented on an overlay

(but rather compiled to the native FPGA resources). As discussed in Chapter 2,

several researchers have described how overlays can accelerate the design and com-

pile time of FPGA designs in recent years. If the user circuit is implemented on

an overlay, another interesting architectural possibility exists: co-optimizing the

overlay architecture for both the user circuit and the debug instrumentation. This

would eliminate the need for a separate debug overlay and would provide the abil-

ity to rapidly change the allocation of space between the user circuit and the debug

instrumentation. Implementing such an overlay also needs to employ custom com-

pilation tools. Therefore, an interesting direction of research could be to find a way

to create a single overlay architecture that works efficiently for the user circuit and

implements desirable instruments for post-silicon debug.

We showed that our techniques perform better in terms of overlay construction

time and routability when less circuit routing congestion exists. [67] showed that

commercial tools do not necessarily pack and place as densely as VPR as long as

the design fits onto the device in order to provide better circuit routability. Con-

sequently, we expect that our techniques to be more effective in commercial tools

than in VPR. Additionally, in this thesis debug instrumentation is limited to us-
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ing only the resources that were not used by the user circuit. Although this has

some advantages such as allowing designers to debug the instrumented design that

is close to the uninstrumented circuit, and preserving low-level optimizations, we

would like to investigate the effect of relaxing this limitation in future. For exam-

ple, it may be beneficial to enable the tool to pre-reserve some logic blocks and

routing wires specifically for constructing the overlay on top of a less compact

packed and placed design.

Finally, in this thesis we used overlays to implement triggering circuitry that

is used to monitor for a specific event to control recording data. Alternatively,

instead of simply controlling when to record data, it may also be interesting to

explore the possibility of using virtual debug overlays to also change signal values

in the circuit, that can be used to implement bug fixes or evaluate error resilience

(e.g bug injection) during post-silicon debug.
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