Organização e Arquitetura de Processadores

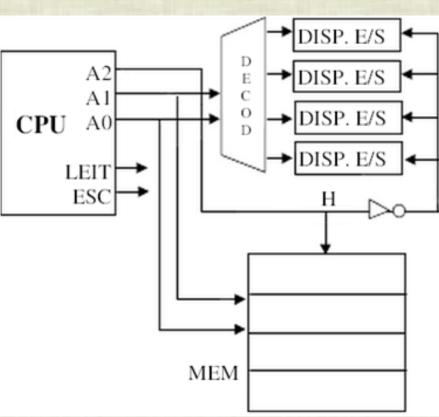
Mapeamento de Comunicação em Sistemas Digitais

Capítulo 3.7 do Tanenbaum & Austin

Última alteração: 19/11/2021

Prof. Ney Laert Vilar Calazans

Baseado em notas de aulas originais do Prof. Dr. César Marcon

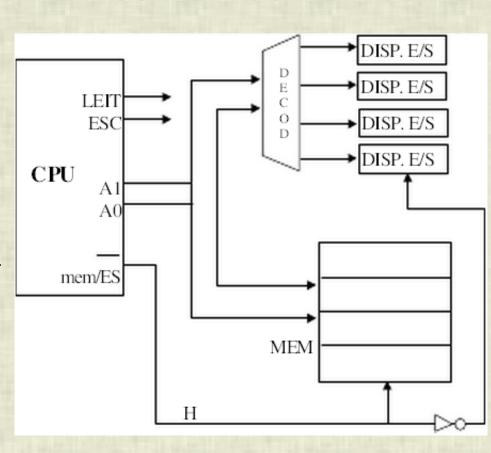

Introdução

- Tarefas localizadas em diferentes dispositivos necessitam se comunicar. Que mecanismos se pode adotar para transferir dados?
- Uma solução

 compartilhar uma área de dados comum, com políticas adequadas para acessá-la
 - Mapeamento em Memória
- Outra solução → acessar diretamente uma porta do dispositivo, tendo um protocolo/mecanismo de comunicação de baixo nível que permita identificar o endereço dos dados
 - Mapeamento em Portas
- Definição de Porta -> dispositivo para
 - Receber bytes de periféricos externos [ou dispositivos ou processadores ou controladores] para serem lidos mais tarde, usando instruções executadas no processador
 - Enviar dados (bytes tipicamente) para um periférico externo ou dispositivo ou processador ou controlador, usando instruções executadas no processador

Mapeamento em Memória

- Espaço de endereçamento único para memória e periféricos
 - Destina-se um subconjunto de endereços a periféricos
- Operações sobre a memória podem resultar em
 - Operações de entrada/saída
 - Operações com o processador
 - Programação do periférico



Mapeamento em Portas

- Espaços de endereçamento exclusivos e dedicados
- Memória e dispositivos → espaços de endereçamento distintos
- Entrada e saída acessadas por instruções específicas (IN, OUT)

Exemplo:

- Processador x86 Intel (instruções de E/S
 - IN AL, porta
 - OUT porta, AL
 - 64Kb para portas E/S de 8 bits, 32 Kb para portas de 16 bits
 - Para acesso a memória → instrução MOV
- Diversos DSPs
 - Acesso a portas com pino especial habilitado gera endereço inicial
 - Demais acessos a porta têm endereço autoincrementado pelo DSP

Exemplos de Programação

- Exemplo de programação (dois métodos)
 - Supor endereços dos registradores do controlador de impressão sejam
 - 02F8H (caractere)
 - 02F9H (estado)
 - Dois bits de estado
 - AL = 1 indica impressora ocupada
 - AL = 0 indica impressora livre
 - Como seria um trecho do programa x86 para imprimir o caractere 'A'

E/S mapeada em memória le_status:

mov AL, 02F9H or AL, 00 jnz le_status mov AL, 'A' mov 02F8H, AL

E/S mapeada em portas

le_status:

in AL, 02F9H or AL, 00 jnz le_status mov AL, 'A' out 02F8H, AL

Exercícios

- 1. Descreva diferenças entre entrada/saída (E/S) mapeada em memória e entrada e saída mapeada em portas
- 2. Idealize um hardware (e talvez software) mínimo necessário para fazer uma comunicação entre três dispositivos. Considere tanto o mapeamento em memória, quanto o mapeamento em portas