SPRS038 – JANUARY 1996

- Highest Performance Floating-Point Digital Signal Processor (DSP)
 - 320C40-60:
 33-ns Instruction Cycle Time,
 330 MOPS, 60 MFLOPS,
 30 MIPS, 384M Bytes/s
 - '320C40-50: 40-ns Instruction Cycle Time
 - '320C40-40:
 - 50-ns Instruction Cycle Time
- Six Communications Ports
- Six-Channel Direct Memory Access (DMA) Coprocessor
- Single-Cycle Conversion to and From IEEE-754 Floating-Point Format
- Single Cycle, 1/x, $1/\sqrt{x}$
- Source-Code Compatible With TMS320C3x
- Single-Cycle 40-Bit Floating-Point, 32-Bit Integer Multipliers
- Twelve 40-Bit Registers, Eight Auxiliary Registers, 14 Control Registers, and Two Timers
- IEEE 1149.1[†] (JTAG) Boundary Scan Compatible
- Two Identical External Data and Address Buses Supporting Shared Memory Systems and High Data-Rate, Single-Cycle Transfers:
 - High Port-Data Rate of 120M Bytes/s ('C40-60) (Each Bus)
 - 16G-Byte Continuous Program/Data/Peripheral Address Space
 - Memory-Access Request for Fast, Intelligent Bus Arbitration
 - Separate Address-Bus, Data-Bus, and Control-Enable Pins
 - Four Sets of Memory-Control Signals Support Different Speed Memories in Hardware
- 325-Pin Ceramic Grid Array (GF Suffix)
- Fabricated Using 0.72-µm Enhanced Performance Implanted CMOS (EPIC™) Technology by Texas Instruments (TI™)
- Software-Communication-Port Reset
- NMI With Bus-Grant Feature

325-PIN GF GRID ARRAY PACKAGE (BOTTOM VIEW)[‡]

[‡] See Pin Assignments table and Pin Functions table for location and description of all pins.

- Separate Internal Program, Data, and DMA Coprocessor Buses for Support of Massive Concurrent Input/Output (I/O) of Program and Data Throughput, Maximizing Sustained Central Processing Unit (CPU) Performance
- On-Chip Program Cache and Dual-Access/Single-Cycle RAM for Increased Memory-Access Performance
 - 512-Byte Instruction Cache
 - 8K Bytes of Single-Cycle Dual-Access Program or Data RAM
 - ROM-Based Boot Loader Supports Program Bootup Using 8-, 16-, or 32-Bit Memories or One of the Communication Ports
- IDLE2 Clock-Stop Power-Down Mode
- 5-V Operation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†] IEEE Standard 1149.1–1990 Standard Test-Access Port and Boundary-Scan Architecture EPIC and TI are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

SPRS038 – JANUARY 1996

block diagram

SPRS038 - JANUARY 1996

block diagram (continued)

SPRS038 – JANUARY 1996

functions

This section lists signal descriptions for the '320C40 device. The '320C40 pin functions table lists each signal, number of pins, operating mode(s) (that is, input, output, or high-impedance state as indicated by I, O, or Z, respectively), and function. The signals are grouped according to function.

Pin Functions

NAME	NO. OF PINS	TYPE [†]	DESCRIPTION				
GLOBAL-BUS EXTERNAL INTERFACE (80 PINS)							
D31-D0	32	I/O/Z	32-bit data port of the global-bus external interface				
DE	1	I	Data-bus-enable signal for the global-bus external interface				
A30-A0	31	O/Z	31-bit address port of the global-bus external interface				
AE	1	I	Address-bus-enable signal for the global-bus external interface				
STAT3-STAT0	4	0	Status signals for the global-bus external interface				
LOCK	1	0	Lock signal for the global-bus external interface				
STRB0 [‡]	1	O/Z	Access strobe 0 for the global-bus external interface				
R/W0 [‡]	1	O/Z	Read/write signal for STRB0 accesses				
PAGE0 [‡]	1	O/Z	Page signal for STRB0 accesses				
RDY0 [‡]	1	I	Ready signal for STRB0 accesses				
CE0 [‡]	1	I	Control enable for the STRB0, PAGE0, and R/W0 signals				
STRB1 [‡]	1	O/Z	Access strobe 1 for the global-bus external interface				
R/W1‡	1	O/Z	Read/write signal for STRB1 accesses				
PAGE1 [‡]	1	O/Z	Page signal for STRB1 accesses				
RDY1 [‡]	1	I	Ready signal for STRB1 accesses				
CE1 [‡]	1	I	Control enable for the STRB1, PAGE1, and R/W1 signals				
			LOCAL-BUS EXTERNAL INTERFACE (80 PINS)				
LD31-LD0	32	I/O/Z	32-bit data port of the local-bus external interface				
LDE	1	I	Data-bus-enable signal for the local-bus external interface				
LA30-LA0	31	O/Z	31-bit address port of the local-bus external interface				
LAE	1	-	Address-bus-enable signal for the local-bus external interface				
LSTAT3-LSTAT0	4	0	Status signals for the local-bus external interface				
LLOCK	1	0	Lock signal for the local-bus external interface				
LSTRB0 [‡]	1	O/Z	Access strobe 0 for the local-bus external interface				
LR/W0	1	O/Z	Read/write signal for LSTRB0 accesses				
LPAGE0	1	O/Z	Page signal for LSTRB0 accesses				
LRDY0	1	I	Ready signal for LSTRB0 accesses				
LCE0	1	I	Control enable for the $\overline{\text{LSTRB0}}$, LPAGE0, and LR/ $\overline{\text{W0}}$ signals				
LSTRB1 [‡]	1	O/Z	Access strobe 1 for the local-bus external interface				
LR/W1	1	O/Z	Read/write signal for LSTRB1 accesses				
LPAGE1	1	O/Z	Page signal for LSTRB1 accesses				
LRDY1	1	I	Ready signal for LSTRB1 accesses				
LCE1	1	I	Control enable for the LSTRB1, LPAGE1, and LR/W1 signals				

† I = input, O = output, Z = high impedance

[‡] Signal's effective address range is defined by the local/global STRB ACTIVE bits.

SPRS038 – JANUARY 1996

Pin Functions (Continued)									
NAME	NO. OF PINS	TYPE [†]	DESCRIPTION						
	COMMUNICATION PORT 0 INTERFACE (12 PINS)								
C0D7-C0D0	8	I/O	Communication port 0 data bus						
CREQ0	1	I/O	Communication port 0 token-request signal						
CACK0	1	I/O	Communication port 0 token-request-acknowledge signal						
CSTRB0	1	I/O	Communication port 0 data-strobe signal						
CRDY0	1	I/O	Communication port 0 data-ready signal						
			COMMUNICATION PORT 1 INTERFACE (12 PINS)						
C1D7-C1D0	8	I/O	Communication port 1 data bus						
CREQ1	1	I/O	Communication port 1 token-request signal						
CACK1	1	I/O	Communication port 1 token-request-acknowledge signal						
CSTRB1	1	I/O	Communication port 1 data-strobe signal						
CRDY1	1	I/O	Communication port 1 data-ready signal						
			COMMUNICATION PORT 2 INTERFACE (12 PINS)						
C2D7-C2D0	8	I/O	Communication port 2 data bus						
CREQ2	1	I/O	Communication port 2 token-request signal						
CACK2	1	I/O	Communication port 2 token-request-acknowledge signal						
CSTRB2	1	I/O	Communication port 2 data-strobe signal						
CRDY2	1	I/O	Communication port 2 data-ready signal						
			COMMUNICATION PORT 3 INTERFACE (12 PINS)						
C3D7-C3D0	8	I/O	Communication port 3 data bus						
CREQ3	1	I/O	Communication port 3 token-request signal						
CACK3	1	I/O	Communication port 3 token-request-acknowledge signal						
CSTRB3	1	I/O	Communication port 3 data-strobe signal						
CRDY3	1	I/O	Communication port 3 data-ready signal						
			COMMUNICATION PORT 4 INTERFACE (12 PINS)						
C4D7-C4D0	8	I/O	Communication port 4 data bus						
CREQ4	1	I/O	Communication port 4 token-request signal						
CACK4	1	I/O	Communication port 4 token-request-acknowledge signal						
CSTRB4	1	I/O	Communication port 4 data-strobe signal						
CRDY4	1	I/O	Communication port 4 data-ready signal						
			COMMUNICATION PORT 5 INTERFACE (12 PINS)						
C5D7-C5D0	8	I/O	Communication port 5 data bus						
CREQ5	1	I/O	Communication port 5 token-request signal						
CACK5	1	I/O	Communication port 5 token-request-acknowledge signal						
CSTRB5	1	I/O	Communication port 5 data-strobe signal						
CRDY5	1	I/O	Communication port 5 data-ready signal						

 $\dagger I = input, O = output, Z = high impedance$

SPRS038 – JANUARY 1996

Pin Functions (Continued)

NAME	NO. OF PINS	TYPE [†]	DESCRIPTION					
INTERRUPTS, I/O FLAGS, RESET, TIMER (12 PINS)								
IIOF3-IIOF0	4	I/O	Interrupt and I/O flags					
NMI	1	I	Nonmaskable interrupt. NMI is sensitive to a low-going edge.					
IACK	1	0	Interrupt acknowledge					
RESET	1	I	Reset signal					
RESETLOC1- RESETLOC0	2	I	Reset-vector location pins					
ROMEN	1	I	On-chip ROM enable (0 = disable, 1 = enable)					
TCLK0	1	I/O	Timer 0 pin					
TCLK1	1	I/O	Timer 1 pin					
			CLOCK (4 PINS)					
X1	1	0	Crystal pin					
X2/CLKIN	1	I	Crystal/oscillator pin					
H1	1	0	H1 clock					
Н3	1	0	H3 clock					
			POWER (70 PINS)					
CVSS	15	I	Ground pins					
DVSS	15	I	Ground pins					
IV _{SS}	6	I	Ground pins					
DVDD	13	I	5-V _{DC} supply pins					
GADV _{DD}	3	I	5-V _{DC} supply pins					
GDDV _{DD}	3	I	5-V _{DC} supply pins					
LADV _{DD}	3	I	5-V _{DC} supply pins					
LDDV _{DD}	3	I	5-V _{DC} supply pins					
SUBS	1	I	Substrate pin (tie to ground)					
VDDL	4	I	5-V _{DC} supply pins					
V _{SSL}	4	I	Ground pins					
			EMULATION (7 PINS)					
ТСК	1	I	IEEE 1149.1 test port clock					
TDO	1	O/Z	IEEE 1149.1 test port data out					
TDI	1	I	IEEE 1149.1 test port data in					
TMS	1	I	IEEE 1149.1 test port mode select					
TRST	1	I	IEEE 1149.1 test port reset					
EMU0	1	I/O	Emulation pin 0					
EMU1	1	I/O	Emulation pin 1					

 $\dagger I = input, O = output, Z = high impedance$

SPRS038 – JANUARY 1996

							U		
PI	N				N		N		N
	NO.	NAME	NO.		NO.		NO.		NO.
A0	D32	COD6	AN7	C5D4	AM30		E35	D31	F32
A1	B32	COD7	AK8	C5D5	AP32	CVSS	AR25	DE	AA31
A2	D30	C1D0	AL7	C5D6	AM32	CVSS	AE1	DVDD	AR11
A3	C29	C1D1	AP8	C5D7	AL31	CVSS	AR13	DVDD	AR29
A4	B30	C1D2	AM8	CACK0	AN11	CVSS	A19	DVDD	A13
A5	F28	C1D3	AK12	CACK1	AN13	CVSS	R35	DVDD	A7
A6	F24	C1D4	AK10	CACK2	AM14	CVSS	AL1	DVDD	A17
A7	E29	C1D5	AN9	CACK3	AM16	D0	U33	DVDD	L35
A8	C27	C1D6	AL9	CACK4	AK32	D1	V32	DVDD	AR23
A9	D28	C1D7	AP10	CACK5	AJ31	D2	T34	DVDD	A29
A10	B28	C2D0	AM18	CE0	AA33	D3	U31	DVDD	L1
A11	F26	C2D1	AN19	CE1	V34	D4	R33	DV _{DD}	AC1
A12	C25	C2D2	AL19	CRDY0	AP12	D5	P34	DVDD	AR17
A13	E27	C2D3	AP20	CRDY1	AP14	D6	T32	DVDD	A23
A14	B26	C2D4	AM20	CRDY2	AL15	D7	N33	DVDD	AJ1
A15	D26	C2D5	AN21	CRDY3	AL17	D8	R31	DVSS	AJ35
A16	C23	C2D6	AL21	CRDY4	AH30	D9	M34	DVSS	A21
A17	B24	C2D7	AP22	CRDY5	AH32	D10	P32	DVSS	A25
A18	E25	C3D0	AM22	CREQ0	AM10	D11	L33	DVSS	G35
A19	C21	C3D1	AN23	CREQ1	AM12	D12	N31	DVSS	A11
A20	D24	C3D2	AL23	CREQ2	AN15	D13	K34	DVSS	AG1
A21	B22	C3D3	AP24	CREQ3	AN17	D14	M32	DVSS	AM2
A22	E23	C3D4	AM24	CREQ4	AN33	D15	J33	DVSS	R1
A23	C19	C3D5	AN25	CREQ5	AL33	D16	L31	DVSS	AR21
A24	D22	C3D6	AL25	CSTRB0	AL11	D17	M30	DVSS	AR15
A25	B20	C3D7	AP26	CSTRB1	AL13	D18	K32	DVSS	A15
A26	E21	C4D0	AN27	CSTRB2	AP16	D19	H34	DVSS	AR27
A27	B18	C4D1	AM26	CSTRB3	AP18	D20	J31	DVSS	G1
A28	C17	C4D2	AK24	CSTRB4	AM34	D21	G33	DVSS	N35
A29	D20	C4D3	AL27	CSTRB5	AK34	D22	K30	DVSS	AR9
A30	B16	C4D4	AP28	CVSS	AR19	D23	F34	EMU0	AA35
AE	AG31	C4D5	AK26	CVSS	AR7	D24	H32	EMU1	AD34
C0D0	AP4	C4D6	AN29	CVSS	N1	D25	E33	GADVDD	B2
C0D1	AL5	C4D7	AM28	CVSS	AL35	D26	D34	GADVnn	AR1
C0D2	AN5	C5D0	AL29	CVSS	A27	D27	G31	GADVnn	U35
C0D3	AM4	C5D1	AP30	CVSS	A9	D28	C33	GDDVnn	V2
C0D4	AP6	C5D2	AK28	CVSS	E1	D29	H30	GDDV	A35
C0D5	AM6	C5D3	AN31	CVSS	J35	D30	E31	GDDVDD	A1

GF Package Pin Assignments — Alphabetical Listing

SPRS038 - JANUARY 1996

GF Package Pin Assignments — Alphabetical Listing (Continued)

PIN		l Pi	N	PIN		PI	PIN		
NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.		
H1	AC3	LA25	R5	LD26	B4	STAT0	AD32		
H3	AC5	LA26	T2	LD27	F8	STAT1	AE33		
IACK	W3	LA27	U3	LD28	D6	STAT2	AF34		
IIOF0	AN3	LA28	T4	LD29	C3	STAT3	AE31		
IIOF1	AL3	LA29	V4	LD30	E5	STRB0	AD30		
IIOF2	AH6	LA30	U5	LD31	F6	STRB1	AC33		
IIOF3	AK2	LADV _{DD}	B34	LDDV _{DD}	AR35	SUBS	C31		
IV _{SS}	AR5	LADV _{DD}	AB2	LDDV _{DD}	AP2	тск	Y34		
IVSS	AR31	LADV _{DD}	AP34	LDDV _{DD}	U1	TCLK0	AE3		
IVSS	AG35	LAE	AB4	LDE	AD4	TCLK1	AD2		
IV _{SS}	A31	LCE0	AG5	LLOCK	AA5	TDO	AB34		
IV _{SS}	J1	LCE1	AF2	LOCK	W33	TDI	AC35		
IV _{SS}	A5	LD0	E19	LPAGE0	AH2	TMS	W35		
LA0	D2	LD1	C15	LPAGE1	AG3	TRST	AE35		
LA1	D4	LD2	D18	LRDY0	AF6	VDDL	AN1		
LA2	E3	LD3	B14	LRDY1	AE5	VDDL	AN35		
LA3	F4	LD4	E17	LR/W0	AH4	V _{DDL}	C35		
LA4	H6	LD5	D16	LR/W1	AF4	V _{DDL}	C1		
LA5	F2	LD6	C13	LSTAT0	AA3	VSSL	A3		
LA6	G5	LD7	E15	LSTAT1	Y4	V _{SSL}	AR3		
LA7	G3	LD8	B12	LSTAT2	Y2	V _{SSL}	AR33		
LA8	H4	LD9	D14	LSTAT3	W5	V _{SSL}	A33		
LA9	H2	LD10	C11	LSTRB0	AJ3	X1	W1		
LA10	K6	LD11	E13	LSTRB1	AD6	X2/CLKIN	AA1		
LA11	M6	LD12	B10	NMI	AJ5				
LA12	J5	LD13	D12	PAGE0	AG33				
LA13	J3	LD14	C9	PAGE1	AB32				
LA14	K4	LD15	E11	RDY0	Y32				
LA15	K2	LD16	F12	RDY1	W31				
LA16	L3	LD17	D10	RESETLOC0	AF30				
LA17	L5	LD18	B8	RESETLOC1	AH34				
LA18	M2	LD19	E9	RESET	AJ33				
LA19	M4	LD20	C7	ROMEN	AK4				
LA20	N3	LD21	F10	R/W0	AF32	l			
LA21	N5	LD22	B6	R/W1	AC31	l			
LA22	P2	LD23	D8						
LA23	P4	LD24	C5						
LA24	R3	LD25	E7						

SPRS038 – JANUARY 1996

PIN			PIN	l F		PIN		
NO	NAME	NO	NAME	NO .	NAME	NO	NAME	
A1	GDDV	AD30	STRB0	AK24	C4D2	AM30	C5D4	
A3	Vssi	AD32	STAT0	AK26	C4D5	AM32	C5D6	
A5	IVee	AD34	EMU1	AK28	C5D2	AM34	CSTRB4	
A7	 DV	AE1	CVee	AK32	CACK4	AN1	Vool	
A9	CVss	AE3	TCLK0	AK34	CSTRB5	AN3	IIOF0	
A11	DVss	AE5	LRDY1	AL1	CVss	AN5	C0D2	
A13	 DV	AE31	STAT3	AL3	IIOF1	AN7	C0D6	
A15	DVss	AE33	STAT1	AL5	C0D1	AN9	C1D5	
A17	<u>מט</u> חחDV	AE35	TRST	AL7	C1D0	AN11	CACK0	
A19	CVSS	AF2	LCE1	AL9	C1D6	AN13	CACK1	
A21	DVss	AF4	LR/W1	AL11	CSTRB0	AN15	CREQ2	
A23		AF6	LRDY0	AL13	CSTRB1	AN17	CREQ3	
A25	DVss	AF30	RESETLOC0	AL15	CRDY2	AN19	C2D1	
A27	CVSS	AF32	R/W0	AL17	CRDY3	AN21	C2D5	
A29		AF34	STAT2	AL19	C2D2	AN23	C3D1	
A31	IVSS	AG1	DVss	AL21	C2D6	AN25	C3D5	
A33	Vssi	AG3	LPAGE1	AL23	C3D2	AN27	C4D0	
A35	GDDVDD	AG5	LCE0	AL25	C3D6	AN29	C4D6	
AA1	X2/CLKIN	AG31	AE	AL27	C4D3	AN31	C5D3	
AA3	LSTAT0	AG33	PAGE0	AL29	C5D0	AN33	CREQ4	
AA5	LLOCK	AG35	IVSS	AL31	C5D7	AN35	VDDL	
AA31	DE	AH2	LPAGE0	AL33	CREQ5	AP2	LDDV _{DD}	
AA33	CE0	AH4	LR/W0	AL35	CVSS	AP4	C0D0	
AA35	EMU0	AH6	IIOF2	AM2	DVSS	AP6	C0D4	
AB2	LADV _{DD}	AH30	CRDY4	AM4	C0D3	AP8	C1D1	
AB4	LAE	AH32	CRDY5	AM6	C0D5	AP10	C1D7	
AB32	PAGE1	AH34	RESETLOC1	AM8	C1D2	AP12	CRDY0	
AB34	TDO	AJ1	DVDD	AM10	CREQ0	AP14	CRDY1	
AC1	DVDD	AJ3	LSTRB0	AM12	CREQ1	AP16	CSTRB2	
AC3	H1	AJ5	NMI	AM14	CACK2	AP18	CSTRB3	
AC5	H3	AJ31	CACK5	AM16	CACK3	AP20	C2D3	
AC31	R/W1	AJ33	RESET	AM18	C2D0	AP22	C2D7	
AC33	STRB1	AJ35	DVSS	AM20	C2D4	AP24	C3D3	
AC35	TDI	AK2	IIOF3	AM22	C3D0	AP26	C3D7	
AD2	TCLK1	AK4	ROMEN	AM24	C3D4	AP28	C4D4	
AD4	LDE	AK8	C0D7	AM26	C4D1	AP30	C5D1	
AD6	LSTRB1	AK10	C1D4	AM28	C4D7	AP32	C5D5	
		AK12	C1D3			AP34	LADVDD	

GF Package Pin Assignments — Numerical Listing

SPRS038 – JANUARY 1996

GF Package Pin Assignments — Numerical Listing (Continued)

PIN		F	PIN	F	PIN	F	PIN		PIN
NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME
AR1	GADV _{DD}	C1	VDDL	E1	CVSS	H2	LA9	P2	LA22
AR3	VSSL	C3	LD29	E3	LA2	H4	LA8	P4	LA23
AR5	IV _{SS}	C5	LD24	E5	LD30	H6	LA4	P32	D10
AR7	CVSS	C7	LD20	E7	LD25	H30	D29	P34	D5
AR9	DVSS	C9	LD14	E9	LD19	H32	D24	R1	DVSS
AR11	DVDD	C11	LD10	E11	LD15	H34	D19	R3	LA24
AR13	CVSS	C13	LD6	E13	LD11	J1	IVSS	R5	LA25
AR15	DVSS	C15	LD1	E15	LD7	J3	LA13	R31	D8
AR17	DVDD	C17	A28	E17	LD4	J5	LA12	R33	D4
AR19	CVSS	C19	A23	E19	LD0	J31	D20	R35	CVSS
AR21	DVSS	C21	A19	E21	A26	J33	D15	T2	LA26
AR23	DVDD	C23	A16	E23	A22	J35	CVSS	T4	LA28
AR25	CVSS	C25	A12	E25	A18	K2	LA15	T32	D6
AR27	DVSS	C27	A8	E27	A13	K4	LA14	T34	D2
AR29	DVDD	C29	A3	E29	A7	K6	LA10	U1	LDDV _{DD}
AR31	IVSS	C31	SUBS	E31	D30	K30	D22	U3	LA27
AR33	VSSL	C33	D28	E33	D25	K32	D18	U5	LA30
AR35	LDDV _{DD}	C35	V _{DDL}	E35	CVSS	K34	D13	U31	D3
B2	GADV _{DD}	D2	LA0	F2	LA5	L1	DVDD	U33	D0
B4	LD26	D4	LA1	F4	LA3	L3	LA16	U35	GADV _{DD}
B6	LD22	D6	LD28	F6	LD31	L5	LA17	V2	GDDV _{DD}
B8	LD18	D8	LD23	F8	LD27	L31	D16	V4	LA29
B10	LD12	D10	LD17	F10	LD21	L33	D11	V32	D1
B12	LD8	D12	LD13	F12	LD16	L35	DVDD	V34	CE1
B14	LD3	D14	LD9	F24	A6	M2	LA18	W1	X1
B16	A30	D16	LD5	F26	A11	M4	LA19	W3	IACK
B18	A27	D18	LD2	F28	A5	M6	LA11	W5	LSTAT3
B20	A25	D20	A29	F32	D31	M30	D17	W31	RDY1
B22	A21	D22	A24	F34	D23	M32	D14	W33	LOCK
B24	A17	D24	A20	G1	DVSS	M34	D9	W35	TMS
B26	A14	D26	A15	G3	LA7	N1	CV _{SS}	Y2	LSTAT2
B28	A10	D28	A9	G5	LA6	N3	LA20	Y4	LSTAT1
B30	A4	D30	A2	G31	D27	N5	LA21	Y32	RDY0
B32	A1	D32	A0	G33	D21	N31	D12	Y34	TCK
B34	LADVDD	D34	D26	G35	DVSS	N33	D7		
						N35	DVSS		

SPRS038 - JANUARY 1996

memory map

Figure 1 shows the memory map for the '320C40. Refer to the *TMS320C4x User's Guide* (literature number SPRU063B) for a detailed description of this memory mapping.

Figure 1. Memory Map for '320C40

SPRS038 – JANUARY 1996

description

The '320C40 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in $0.72 \mu m$, double-level metal CMOS technology. The '320C40 is a part of the fourth generation of DSPs from Texas Instruments and is designed primarily for parallel processing.

operation

The '320C40 has six on-chip communication ports for processor-to-processor communication with no external hardware and simple communication software. This allows connectivity to other 'C4x processors with no external-glue logic. The communication ports remove input/output bottlenecks, and the independent smart DMA coprocessor is able to handle the CPU input/output burden.

central processing unit

The '320C40 CPU is configured for high-speed internal parallelism for the highest sustained performance. The key features of the CPU are:

- Eight operations/cycle:
 - 40/32-bit floating-point/integer multiply
 - 40/32-bit floating-point/integer ALU operation
 - Two data accesses
 - Two address register updates
- IEEE floating-point conversion
- Divide and square-root support
- 'C3x assembly language compatibility
- Byte and halfword accessibility

DMA coprocessor

The DMA coprocessor allows concurrent I/O and CPU processing for the highest sustained CPU performance. The key features of the DMA processor are:

- Link pointers allow DMA channels to auto-initialize without CPU intervention.
- Parallel CPU operation and DMA transfers
- Six DMA channels support memory-to-memory data transfers.
- Split-mode operation doubles the available DMA channel to 12 when data transfers to and from a communication port are required.

communication ports

The '320C40 is the first DSP with on-chip communication ports for processor-to-processor communication with no external hardware and simple communication software. The features of the communication ports are:

- Direct interprocessor communication and processor I/O
- Six communication ports for direct interprocessor communication and processor I/O
- 20M-bytes/s bidirectional interface on each communication port for high-speed multiprocessor interface
- Separate input and output 8-word-deep FIFO buffers for processor-to-processor communication and I/O
- Automatic arbitration and handshaking for direct processor-to-processor connection

communication-port software reset ('C40 silicon revision \geq 5.0)

The input and output FIFO levels for a communication port can be flushed by writing at least two back-to-back values to its communication-port-software reset address as specified in Table 1. This feature is not present in 'C40 silicon revision <5.0. This software reset flushes any word or byte already present in the FIFOs but it does not affect the status of the communication-port pins. Figure 2 shows an example of communication-port-software reset.

COMMUNICATION PORT	SOFTWARE RESET ADDRESS
0	0x0100043
1	0x0100053
2	0x0100063
3	0x0100073
4	0x0100083
5	0x0100093

Table 1. Communication-Port Software-Reset Address

```
; _____;
; RESET1:Flush's FIFO data for communication port 1;
; -----;
RESET1 push AR0 ; Save registers
     push R0
                    ;
     push RC
                   ;
     ldhi 010h,AR0 ; Set AR0 to base address of COM 1
     or
         050h,AR0
                   ;
flush: rpts 1
                    ; Flush FIFO data with back-to-back write
     sti
         R0,*+AR0(3) ;
     rpts 10
                   ; Wait
     nop
     ldi
          *+AR0(0),R0 ; Check for new data from other port
          01FE0h,R0 ;
     and
     bnz
          flush
                   ;
     pop
          RC
                    ; Restore registers
          R0
     pop
                    ;
     pop
          AR0
                   ;
                    ; Return
     rets
```


SPRS038 - JANUARY 1996

$\overline{\text{NMI}}$ with bus-grant feature ('C40 silicon revision \ge 5.0)

The '320C40 devices have a software-configurable feature which allows forcing the internal-peripheral bus to ready when the $\overline{\text{NMI}}$ signal is asserted. This feature is not present in 'C40 silicon revision < 5.0. The $\overline{\text{NMI}}$ bus-grant feature is enabled when bits 19–18 of the status register (ST) are set to 10b. When enabled, a peripheral bus-grant signal is generated on the falling edge of $\overline{\text{NMI}}$. When $\overline{\text{NMI}}$ is asserted and this feature is not enabled, the CPU stalls on access to the peripheral bus if it is not ready. A stall condition occurs when writing to a full FIFO or reading an empty FIFO. This feature is useful in correcting communication-port errors when used in conjunction with the communication-port software-reset feature.

IDLE2 clock-stop power-down mode ('C40 silicon revision \geq 5.0)

The '320C40 has a clock-stop mode or power-down mode (IDLE2) to achieve extremely low-power consumption. When an IDLE2 instruction is executed, the clocks are halted with H1 being held high. To exit IDLE2, assert one of the IIOF3–IIOF0 pins configured as an external interrupt instead of a general-purpose I/O. A macro showing how to generate the IDLE2 opcode is given in Figure 3. During this power-down mode:

- No instructions are executed.
- The CPU, peripherals, and internal memory retain their previous state.
- The external-bus outputs are idle. The address lines remain in their previous state, the data lines are in the high-impedance state, and the output-control signals are inactive.

```
; ------;
; IDLE2: Macro to generate idle2 opcode ;
; ------;
IDLE2 .macro
.word 06000001h
.endm
```

Figure 3. Example of Software Subroutine Using IDLE2

IDLE2 is exited when one of the five external interrupts ($\overline{\text{NMI}}$ and $\overline{\text{IIOF3}}$ – $\overline{\text{IIOF0}}$) is asserted low for at least four input clocks (two H1 cycles). The clocks then start after a delay of two input clocks (one H1 cycle). The clocks can start in the opposite phase; that is, H1 can be high when H3 was high before the clocks were stopped. However, the H1 and H3 clocks remain 180° out of phase with each other.

During IDLE2 operation, an external interrupt can be recognized and serviced by the CPU if it is enabled before entering IDLE2 and asserted for at least two H1 cycles. For the processor to recognize only one interrupt, the interrupt pin must be configured for edge-trigger mode or asserted less than three cycles in level-trigger mode. Any external interrupt pin can wake up the device from IDLE2, but for the CPU to recognize that interrupt, it must also be enabled. If an interrupt is recognized and executed by the CPU, the instruction following the IDLE2 instruction is not executed until after execution of a return opcode.

When the device is in emulation mode, the CPU executes an IDLE2 instruction as if it were an IDLE instruction. The clocks continue to run for correct operation of the emulator.

development tools

The 'C40 is supported by a host of parallel-processing development tools for developing and simulating code easily and for debugging parallel-processing systems. The code generation tools include:

- An ANSI C compiler optimized with a runtime support library that supports use of communication ports and DMA.
- Third party support for C, C++ and Ada compilers
- Several operating systems available for parallel-processing support, as well as DMA and communication port drivers
- An assembler and linker with support for mapping program and data to parallel processors

The simulation tools include:

- Parallel DSP system-level simulation with LAI hardware verification (HV) model and full function (FF) model.
- TI software simulator with high-level language debugger interface for simulating a single processor.

The hardware development and verification tools include:

- Parallel processor in-circuit emulator and high-level language debugger: XDS510.
- Parallel processor development system (PPDS) with four '320C40s, local and global memory, and communication port connections.

silicon revision identification

SPRS038 – JANUARY 1996

absolute maximum ratings over specified temperature range (unless otherwise noted)[†]

Supply voltage range, V _{DD} (see Note 1)	-0.3 V to 7 V
Voltage range on any pin ⁻	-0.3 V to 7 V
Output voltage range	-0.3 V to 7 V
Operating case temperature range, T _C	. 0°C to 85°C
Storage temperature range, T _{stg} –	$55^\circ C$ to $150^\circ C$

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to V_{SS}.

recommended operating conditions (see Note 2)

			MIN	TYP‡	MAX	UNIT	
V _{DD}	Supply voltages (DDV _{DD} , etc.)		4.75	5	5.25	V	
		X2/CLKIN	2.6 V _{DD} +		V _{DD} + 0.3§	V	
VIH	High-level liput voltage	All other pins	2		V _{DD} + 0.3§	v	
VIL	Low-level input voltage		– 0.3§		0.8	V	
IOH	High-level output current				- 300	μA	
IOL	Low-level output current				2	mA	
ТС	Operating case temperature				85	°C	

[‡] All typical values are at V_{DD} = 5 V, T_A (ambient air temperature)= 25°C.

§ This parameter is characterized but not tested.

NOTE 2: All input and output voltage levels are TTL compatible, except for CLKIN. CLKIN can be driven by CMOS clock.

electrical characteristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	ΤΥΡ [¶]	MAX	UNIT
VOH	High-level output voltage	V _{DD} = MIN, I _{OH} = MAX		2.4	3		V
VOL	Low-level output voltage	$V_{DD} = MIN, \qquad I_{OL} = MAX$			0.3	0.6	V
ΙZ	Three-state current	V _{DD} = MAX		-20		20	μA
IIC	Input current, X2/CLKIN only	$V_{I} = V_{SS}$ to V_{DD}				30	μA
Ι _Ρ	Input current	Inputs with internal pullups (See Note 3)				20	μA
Ц	Input current	$V_{I} = V_{SS}$ to V_{DD}		-10		10	μA
lcc	Supply current	$T_A = 25^{\circ}C$, $V_{DD} = MAX$, $f_X = MAX$	'320C40-40 '320C40-50		350	850	mA
		(See Note 4) '320C40-60				950	
CI	Input capacitance					15#	pF
CO	Output capacitance					15#	pF

¶ All typical values are at V_{DD} = 5 V, T_A (ambient air temperature) = 25°C.

[#] This parameter is specified by design but not tested.

NOTES: 3. Pins with internal pullup devices: TDI, TCK, TMS. Pin with internal pulldown device: TRST.

4. f_X is the input clock frequency. The maximum value (max) for the '320C40-40, '320C40-50, and '320C40-60 is 40, 50 and 60 MHz, respectively.

SPRS038 - JANUARY 1996

Figure 4. Test Load Circuit

signal transition levels

TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V. Output transition times are specified as follows.

For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be no longer high is 2 V and the level at which the output is said to be low is 1 V. For a low-to-high transition, the level at which the output is said to be no longer low is 1 V and the level at which the output is said to be high is 2 V. See Figure 5.

Figure 5. TTL-Level Outputs

Transition times for TTL-compatible inputs are specified as follows. For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is 2 V and the level at which the input is said to be low is 0.8 V. For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is 0.8 V and the level at which the input is said to be high is 2 V. See Figure 6.

SPRS038 - JANUARY 1996

PARAMETER MEASUREMENT INFORMATION

timing parameter symbology

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. In order to shorten the symbols, pin names that have both global and local applications are generally represented with (L) immediately preceding the basic signal name (for example, (L)RDYx represents both the global term RDYx and local term LRDYx). Other pin names and related terminology have been abbreviated as follows, unless otherwise noted:

А	(L)A30-(L)A0 or (L)Ax	IACK	IACK
AE	(L)AE	IF	IIOF(3-0) or IIOFx
ASYNCH	Asynchronous reset signals in the high-impedance state	liof	IIOF(3-0) or IIOFx
BYTE	Byte transfer	LOCK	(L)LOCK
CA	CACK(0-5) or CACKx	Р	^t c(H)
CD	C(0-5)D7-C(0-5)D0 or CxDx	PAGE	(L)PAGE0 and (L)PAGE1 or (L)PAGEx
CE	$\overline{(L)CE0}$, $\overline{(L)CE1}$, or $\overline{(L)CEx}$	RDY	$\overline{(L)RDY0}$, $\overline{(L)RDY1}$, or $\overline{(L)RDYx}$
CI	CLKIN	RESET	RESET
COMM	Asynchronous reset signals	RW	(L)R/ \overline{W} 0, (L)R/ \overline{W} 1, or (L)R/ \overline{W} x
CONTROL	Control signals	S	(L)STRB0, (L)STRB1 or (L)STRBx
CRQ	$\overline{CREQ(0-5)}$ or \overline{CREQx}	ST	(L)STAT3-(L)STAT0 or (L)STATx
CRDY	CRDY(0-5) or CRDYx	тск	ТСК
CS	CSTRB(0-5) or CSTRBx	TCLK	TCLK0, TCLK1, or TCLKx
D	(L)D31–(L)D0 or (L)Dx	TDO	TDO
DE	(L)DE	TMS	TMS/TDI
Н	H1, H3	WORD	32-bit word transfer

SPRS038 - JANUARY 1996

			TMS320	C40-40	TMS320	C40-50	TMS320	C40-60	
NO.			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	^t f(CI)	Fall time, CLKIN		5†		5†		5†	ns
2	^t w(CIL)	Pulse duration, CLKIN low, $t_{C(CI)} = MIN$	8		7		5		ns
3	^t w(CIH)	Pulse duration, CLKIN high, $t_{c(CI)} = MIN$	8		7		5		ns
4	^t r(CI)	Rise time, CLKIN		5†		5†		5†	ns
5	^t c(CI)	Cycle time, CLKIN	25	242.5	20	242.5	16.67	242.5	ns
6	^t f(H)	Fall time, H1 and H3		3		3		3	ns
7	^t w(HL)	Pulse duration, H1 and H3 low	t _{c(CI)} -6	t _{c(CI)} +6	t _{c(CI)} -6	t _{c(CI)} +6	t _{c(CI)} -6	t _{c(CI)} +6	ns
8	^t w(HH)	Pulse duration, H1 and H3 high	t _{c(CI)} -6	t _{c(CI)} +6	t _{c(CI)} -6	t _{c(CI)} +6	t _{c(CI)} -6	t _{c(CI)} +6	ns
9	^t r(H)	Rise time, H1 and H3		4		4		4	ns
9.1	^t d(HL-HH)	Delay time from H1 low to H3 high or from H3 low to H1 high	-1	4	-1	4	-1	4	ns
10	^t c(H)	Cycle time, H1 and H3	50	485	40	485	33.3	485	ns

timing for X2/CLKIN, H1, H3 (see Figure 7 and Figure 8)

[†]This value is specified by design but not tested.

Figure 7. X2/CLKIN Timing

Figure 8. H1 and H3 Timings

SPRS038 – JANUARY 1996

memory-read-cycle and memory-write-cycle timing [(L)STRBx = 0] (see Note 5, Figure 9 and Figure 10)

			TMS3200	C40-40	TMS3200	C40-50	TMS3200	C40-60	LINUT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	^t d(H1L-SL)	Delay time, H1 low to (L)STRBx low	0†	9	0†	9	0†	8	ns
2	^t d(H1L-SH)	Delay time, H1 low to (L)STRBx high	0†	9	0†	9	0†	8	ns
3	^t d(H1H-RWL)	Delay time, H1 high to (L)R/ $\overline{W}x$ low	0†	9	0†	9	0†	8	ns
4	^t d(H1L-A)	Delay time, H1 low to (L)Ax valid	0†	9	0†	9	0†	8	ns
5	^t su(D-H1L)R	Setup time, (L)Dx valid before H1 low (read)	15		10		9		ns
6	^t h(H1L-D)R	Hold time, (L)Dx after H1 low (read)	0		0		0		ns
7	^t su(RDY-H1L)	Setup time, $(\overline{L})RDYx$ valid before H1 low	25‡		20‡		18†		ns
8	^t h(H1L-RDY)	Hold time, $(\overline{L})RDYx$ after H1 low	0		0		0		ns
8.1	^t d(H1L-ST)	Delay time, H1 low to (L)STAT3-(L)STAT0 valid		9		8		8	ns
9	^t d(H1H-RWH)W	Delay time, H1 high to (L)R/ $\overline{W}x$ high (write)	0†	9	0†	9	0†	8	ns
10	^t v(H1L-D)W	Valid time, (L)Dx after H1 low (write)		16		16		13	ns
11	^t h(H1H-D)W	Hold time, (L)Dx after H1 high (write)	0		0		0		ns
12	^t d(H1H-A)	Delay time, H1 high to address valid on back- to-back write cycles		13		9		8	ns

[†] This value is specified by design but not tested.

[‡] If this setup time is not met, the read/write operation is not assured.

NOTE 5: For consecutive reads, (L)R/Wx stays high and (L)STRBx stays low.

SPRS038 – JANUARY 1996

Figure 9. Memory-Read-Cycle Timing $[(\overline{L})STRBx = 0]$

SPRS038 – JANUARY 1996

SPRS038 - JANUARY 1996

$\overline{(L)DE}$ -, $\overline{(L)AE}$ -, and $\overline{(L)CEx}$ -enable timing (see Figure 11)

NO.			TMS320 TMS320	C40-40 C40-50	TMS3200	C40-60	UNIT
			MIN	MAX	MIN	MAX	
1	^t d(DEH-DZ)	Delay time, $\overline{(L)DE}$ high to (L)D0–(L)D31 in the high-impedance state	0†	15‡	0†	15‡	ns
2	^t d(DEL-DV)	Delay time, (L)DE low to (L)D0-(L)D31 valid	0†	21	0†	16	ns
3	^t d(AEH-AZ)	Delay time, $\overline{(L)AE}$ high to (L)A0–(L)A30 in the high-impedance state	0†	15‡	0†	15‡	ns
4	^t d(AEL-AV)	Delay time, (L)AE low to (L)A0-(L)A30 valid	0†	18	0†	16	ns
5	^t d(CEH-RWZ)	Delay time, $\overline{(L)CEx}$ high to $(L)R/\overline{W}0$, $(L)R/\overline{W}1$ in the high-impedance state	0†	15‡	0†	15‡	ns
6	^t d(CEL-RWV)	Delay time, $\overline{(L)CEx}$ low to $(L)R/\overline{W0}$, $(L)R/\overline{W1}$ valid	0†	21	0†	16	ns
7	^t d(CEH-SZ)	Delay time, (L)CEx high to (L)STRB0, (L)STRB1 in the high-impedance state	0†	15‡	0†	15‡	ns
8	^t d(CEL-SV)	Delay time, (L)CEx low to (L)STRB0, (L)STRB1 valid	0†	21	0†	16	ns
9	td(CEH-PAGEZ)	Delay time, (L)CEx high to (L)PAGE0, (L)PAGE1 in the high-impedance state	0†	15‡	0†	15‡	ns
10	td(CEL-PAGEV)	Delay time, (L)CEx low to (L)PAGE0, (L)PAGE1 valid	0†	21	0†	16	ns

[†] This value is specified by design but not tested.
[‡] This value is characterized but not tested.

Figure 11. $\overline{(L)DE}$ -, $\overline{(L)AE}$ -, and $\overline{(L)CEx}$ -Enable Timings

SPRS038 – JANUARY 1996

timing for $(\overline{L})LOCK$ when executing LDFI or LDII (see Figure 12)

				TMS320	C40-40	TMS3200	C40-50	TMS320	C40-60	
NO.				MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	^t d(H1L-LOCKL)	Delay time, H1 lov	to (L)LOCK low		11		8		8	ns
		НЗ			LDFI or Externa	LDII I Access	<u> </u>			
		H1			_/	\frown	\searrow			
		(L)STRBx								
		(L)R/₩x								
		(L)Ax			\times					
		(L)Dx			angle					
		(L)RDYx		/	/					
		(L)LOCK								

Figure 12. Timing for (L)LOCK When Executing LDFI or LDII

SPRS038 – JANUARY 1996

		c i igu						
NO		TMS3200	C40-40	TMS3200	C40-50	TMS3200	C40-60	
NO.		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	td(H1L-LOCKH) Delay time, H1 low to (L)LOCK high		11		8		8	ns

timing for (L)LOCK when executing STFI or STII (see Figure 13)

Figure 13. Timing for (L)LOCK When Executing STFI or STII

SPRS038 – JANUARY 1996

timing for $\overline{(L)LOCK}$ when executing SIGI (see Figure 14)

		TMS320	C40-40	TMS320	C40-50	TMS320	C40-60	
NO.		MIN	MAX	MIN	MAX	MIN	MAX	
1	td(H1L-LOCKL) Delay time, H1 low to (L)LOCK low		11		8		8	ns
2	td(H1L-LOCKH) Delay time, H1 low to (L)LOCK high		11		8		8	
	НЗ			-	\square			-
			2					
		/*	-					
	(L)R/Wx					_		
	(L)Ax							
	(L)Dx	\rightarrow						
	(L)RDYx							
			Execu	ting SIG	21			
				ung old				

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443

SPRS038 - JANUARY 1996

timing for (L)PAGE0, (L)PAGE1 during memory access to a different page (see Figure 15)

NO.	o.		TMS320 TMS320	C40-40 C40-50	TMS3200	UNIT	
			MIN	MAX	MIN	MAX	
1	^t d(H1L-PAGEH)	Delay time, H1 low to (L)PAGEx high for access to different page	0	9	0	8	ns
2	^t d(H1L-PAGEL)	Delay time, H1 low to (L)PAGEx low for access to different page	0	9	0	8	ns

Figure 15. (L)PAGE0, (L)PAGE1 Timing Cycle, Memory Access to a Different Page

SPRS038 – JANUARY 1996

		TMS3200	40-40	TMS320	C40-50	TMS320	C40-60	
NO.		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	t _v (H1L-IIOF) H1 low to IIOFx valid		16		14		14	ns
	H3		ead	E	Execute		~	_
	н			\				_
FLAG	ex (IIF Register)						1 or 0 I── 1	-
	IIOFx Pins							_

timing for the IIOFx when configured as an output (see Figure 16)

SPRS038 – JANUARY 1996

timing of IIOFx changing from output to input mode (see Figure 17)

NO.	D.		TMS320C40-40 TMS320C40-50		TMS3200	UNIT	
			MIN	MAX	MIN	MAX	
1	^t h(H1L-IIOF)	Hold time, IIOFx after H1 low		14†		14†	ns
2	^t su(IIOF-H1L)	Setup time, IIOFx before H1 low	11		11		ns
3	^t h(H1L-IIOF)	Hold time, IIOFx after H1 low	0		0		ns

[†]This value is specified by design but not tested.

Figure 17. Change of IIOFx From Output to Input Mode

SPRS038 - JANUARY 1996

timing of IIOFx changing from input to output mode (see Figure 18)

				TMS320C40-40		TMS320C40-50		TMS320C40-60	
NO.			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	^t d(H1L-IFIO)	Delay time, H1 low to IIOFx switching from input to output		16		14		14	ns
		Execution of							

Figure 18. Change of IIOFx From Input to Output Mode

RESET timing (see Figure 19)

			TMS320)C40-40	TMS320)C40-50	TMS320)C40-60	LINUT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	^t su(RESET-C1L)	Setup time for RESET before CLKIN low	11	^t c(CI) [†]	11	^t c(CI) [†]	11	^t c(CI) [†]	ns
2.1	^t d(CIH-H1H)	Delay time, CLKIN high to H1 high	3	10	2	10	2	10	ns
2.2	^t d(CIH-H1L)	Delay time, CLKIN high to H1 low	3	10	2	10	2	10	ns
3	^t su(RESETH-H1L)	Setup time for RESET high before H1 low and after ten H1 clock cycles	13		13		13		ns
4.1	^t d(CIH-H3L)	Delay time, CLKIN high to H3 low	3	10	2	10	2	10	ns
4.2	^t d(CIH-H3H)	Delay time, CLKIN high to H3 high	3	10	2	10	2	10	ns
5	^t d(H1H-DZ)	Delay time, H1 high to (L)Dx in the high-impedance state		13‡		13‡		13‡	ns
6	^t d(H3H-AZ)	Delay time, H3 high to (L)Ax in the high-impedance state		9‡		9‡		9‡	ns
7	^t d(H3H-CONTROLH)	Delay time, H3 high to control signals high [low for (L)PAGE]		9‡		9‡		9‡	ns
8	^t d(H1H-IACKH)	Delay time, H1 high to IACK high		9‡		9‡		9‡	ns
9	^t d(RESETL-ASYNCH)	Delay time, RESET low to asynchronous reset signals in the high-impedance state		21‡		21‡		21‡	ns
10	^t d(RESETH-COMMH)	Delay time, RESET high to asynchronous reset signals high		15‡		15‡		15‡	ns

 $t_{c(CI)}$, the CLKIN period as shown in Figure 7 This value is characterized but not tested.

- NOTES: A. Asynchronous reset signals that go to a high logic level after RESET returns to a high state include CREQy, CACKx, CSTRBx, and CRDYy (where x = 0, 1 or 2 and y = 3, 4 or 5).
 - B. RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence shown occurs; otherwise, an additional delay of one clock cycle can occur.
 - C. For Figure 19 only, (L)Dx includes D31-D0, LD31-LD0, and CxD7-CxD0, (L)Ax includes LA(30-0) and A(30-0).
 - D. Control signals LSTRB0, LSTRB1, STRB0, STRB1, (L)STAT3-(L)STAT0, (L)LOCK, (L)R/W0, and (L)R/W1 go high while (L)PAGE0 and (L)PAGE1 go low.
 - E. Asynchronous reset signals that go into the high-impedance state after RESET goes low include TCLK0, TCLK1, IIOF3–IIOF0, and the communication-port control signals CREQx, CACKy, CSTRBy, and CRDYx (where x = 0, 1 or 2, and y = 3, 4 or 5). At reset, ports 0, 1, and 2 become outputs, while ports 3, 4, and 5 become inputs.

Figure 19. RESET Timing

SPRS038 – JANUARY 1996

ADVANCE INFORMATION

POST OFFICE

BOX 1443 • HOUSTON, TEXAS

77251-1443

TEXAS INSTRUMENTS

SPRS038 – JANUARY 1996

timing for \overline{IIOFx} interrupt response [P = $t_{c(H)}$] (see Notes 6, 7 and Figure 20)

NO.	10.		TMS320C40-40 TMS320C40-50			TMS	UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX	
1	^t su(IIOF-H1L)	Setup time, IIOFx before H1 low	11†			11†			ns
2	^t w(INT)	Pulse duration, to assure one interrupt is seen (see Note 8)	Р	1.5P	< 2P‡	Р	1.5P	< 2P‡	ns

[†] If this timing is not met, the interrupt is recognized in the next cycle.

[‡] This value applies only to level-triggered interrupts and is specified by design but not tested.

- NOTES: 6. IIOFx is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence shown occurs; otherwise, an additional delay of one clock cycle can occur.
 - 7. Edge-triggered interrupts require a setup of time (1) and a minimum duration of P. No maximum duration limit exists.

8. Level-triggered interrupts require interrupt-pulse duration of at least 1P wide (P = one H1 period) to assure it will be seen. It must be less than 2P wide to assure it will be responded to only once. Recommended pulse duration is 1.5P.

NOTE A: The 'C40 can accept an interrupt from the same source every two H1 clock cycles.

Figure 20. IIOFx Interrupt-Response Timing $[P = t_{c(H)}]$

SPRS038 - JANUARY 1996

timing for IACK (see Note 9 and Figure 21)

NO.	10.		TMS320C40-40 TMS320C40-50		TMS320C40-60		UNIT
			MIN	MAX	MIN	MAX	
1	^t d(H1L-IACKL)	Delay time, H1 low to IACK low		9		7	ns
2	^t d(H1L - IACKH)	Delay time, H1 low to $\overline{\text{IACK}}$ high during first cycle of IACK instruction data read		9		7	ns

NOTE 9: The IACK output is active for the entire duration of the bus cycle and is, therefore, extended if the bus cycle utilizes wait states.

Figure 21. IACK Timing

SPRS038 – JANUARY 1996

communication-port word-transfer-cycle timing[†] [P = $t_{c(H)}$] (see Note 10 and Figure 22)

NO.).		TMS320C40-40 TMS320C40-50 [†]		TMS320	UNIT	
			MIN	MAX	MIN	MAX	
1	^t c(WORD) ^{‡§}	Cycle time, word transfer (4 bytes = 1 word)	1.5P+7	2.5P+170	1.5P+7	2.5P+170	ns
2	^t d(CRDYL-CSL)W [‡]	Delay time, CRDYx low to CSTRBx low between back-to-back write cycles	1.5P+7	2.5P + 28	1.5P+7	2.5P+28	ns

[†] For these timing values, it is assumed that the receiving 'C4x is ready to receive data. Line propagation delay is not considered. [‡] This value is characterized but not tested.

 $t_{c(WORD)}$ max = 2.5P + 28 ns + the maximum summed values of $4 \times t_{d(CSL-CRDYL)R}$, $3 \times t_{d(CRDYL-CSH)}$, $3 \times t_{d(CSH-CRDYH)R}$, and $3 \times t_{d(CRDYH-CSL)W}$ as seen in Figure 23. This timing assumes two 'C4xs are connected.

NOTE 10: These timings apply only to two communicating 'C4xs. When a non-'C4x device communicates with a 'C40, timings can be longer. No restriction exists in this case on how slow the transfer could be except when using early silicon (C40 PG 1.x or 2.x). Refer to the CSTRB width restriction in Section 8.9.1 of the TMS320C4x User's Guide (literature number SPRU063B).

= When signal is an input (clear = when signal is an output).

¶ Begins byte 0 of the next word.

NOTE A: For correct operation during token exchange, the two communicating 'C4xs must have CLKIN frequencies within a factor of 2 of each other (in other words, at most, one of the 'C4xs can be twice as fast as the other).

Figure 22. Communication-Port Word-Transfer-Cycle Timing [P = t_{c(H)}]

SPRS038 – JANUARY 1996

communication-port byte-cycle timing (write and read) (see Note 11 and Figure 23)

NO.			TMS320C40-40 TMS320C40-50		TMS320C40-60		UNIT	
			MIN	MAX	MIN	MAX		
1	t _{su} (CD-CSL)W	Setup time, CxDx valid before CSTRBx low (write)	2		2		ns	
2	td(CRDYL-CSH)W	Delay time, CRDYx low to CSTRBx high (write)	0†	12	0†	12	ns	
3	^t h(CRDYL-CD)W	Hold time, CxDx after CRDYx low (write)	2		2		ns	
4	^t d(CRDYH-CSL)W	Delay time, CRDYx high to CSTRBx low for subsequent bytes (write)	0†	12	0†	12	ns	
5	^t c(BYTE) [‡]	Cycle time, byte transfer		44§		44§	ns	
6	^t d(CSL-CRDYL)R	Delay time, CSTRBx low to CRDYx low (read)	0†	10	0†	10	ns	
7	^t su(CSH-CD)R	Setup time, CxDx valid after CSTRBx high (read)	0		0		ns	
8	th(CRDYL-CD)R	Hold time, CxDx valid after CRDYx low (read)	2		2		ns	
9	td(CSH-CRDYH)R	Delay time, CSTRBx high to CRDYx high (read)	0†	10	0†	10	ns	

[†] This value is specified by design but not tested.

[‡] t_{c(BYTE)} max = summed maximum values of t_{d(CRDY-CSH)}, t_{d(CSL-CRDYL)R}, t_{d(CSH-CRDYH)R}, and t_{d(CRDYH-CSL)W}. This assumes two 'C4xs are connected.

§ This value is characterized but not tested.

NOTE 11: Communication port timing does not include line length delay.

(b) READ TIMING

= When signal is an input (clear = when signal is an output).

SPRS038 – JANUARY 1996

timing for communication-token transfer sequence, input to an output port [P = $t_{\rm C(H)}$] (see Figure 24)[†]

NO.			TMS320C40-40 TMS320C40-50		TMS320C40-40 TMS320C40-50 TMS320C40-60			C40-60	UNIT
			MIN	MAX	MIN	MAX			
1‡	^t d(CAL-CS)T	Delay time, CACKx low to CSTRBx change from input to a high-level output	0.5P+6	1.5P+22	0.5P+ 6	1.5P+22	ns		
2‡	^t d(CAL-CRQH)T	Delay time, CACKx low to start of CREQx going high for token request acknowledge	P+5	2P + 22	P+5	2P+22	ns		
3	^t d(CRQH-CRQ)T	Delay time, start of CREQx going high to CREQx change from output to an input	0.5P – 5	0.5P+13	0.5P – 5	0.5P+13	ns		
4	^t d(CRQH-CA)T	Delay time, start of CREQx going high to CACKx change from an input to an output level high	0.5P – 5	0.5P+13	0.5P – 5	0.5P+13	ns		
4.1	^t d(CRQH-CD)T	Delay time, start of CREQx going high to CxDx change from inputs driven to outputs driven	0.5P – 5	0.5P+13	0.5P – 5	0.5P+13	ns		
4.2	^t d(CRQH-CRDY)T	Delay time, start of CREQx going high to CRDYx change from an output to an input	0.5P – 5	0.5P+13	0.5P – 5	0.5P+13	ns		
5	^t d(CRQH-CSL)T	Delay time, start of CREQx going high to CSTRBx low for start of word transfer out	1.5P – 8	1.5P+9	1.5P – 8	1.5P+9	ns		
6‡	^t d(CRDYL-CSL)T	Delay time, CRDYx low at end of word input to CSTRBx low for word output	3.5P+12	5.5P+48	3.5P+12	5.5P+48	ns		

[†] These values are characterized but not tested.

[‡] These timing parameters result from synchronizer delays.

SPRS038 - JANUARY 1996

timing for communication-token transfer sequence, input to an output port $[P = t_{c(H)}]$ (continued)

= When signal is an input (clear = when signal is an output).

NOTE A: Before the token exchange, CREQx and CRDYx are output signals asserted by the TMS320C4x that is receiving data. CACKx, CSTRBx, and CxD7-CxD0 are input signals asserted by the device sending data to the 'C4x; these are asynchronous with respect to the H1 clock of the receiving '320C4x. After token exchange, CACKx, CSTRBx, and CxD7-CxD0 become output signals, and CREQx and CRDYx become inputs.

Figure 24. Communication-Token Transfer Sequence, Input to an Output Port [P = $t_{c(H)}$]

SPRS038 – JANUARY 1996

timing for communication-token transfer sequence, output to an input port [P = $t_{\rm c(H)}$] (see Figure 25)[†]

NO.			TMS320C40-40 TMS320C40-50		TMS320C40-40 TMS320C40-50 TMS320C40-60			UNIT
			MIN	MAX	MIN	MAX		
1‡	^t d(CRQL-CAL)T	Delay time, CREQx low to start of CACKx going low for token-request-acknowledge	P+5	2P+22	P+5	2P+22	ns	
2‡	^t d(CRDYL-CAL)T	Delay time, CRDYx low at end of word transfer out to start of CACKx going low	P+6	2P+27	P+6	2P+27	ns	
3	^t d(CAL-CD)I	Delay time, start of CACKx going low to CxDx change from outputs to inputs	0.5P-8	0.5P+8	0.5P-8	0.5P+8	ns	
4	^t d(CAL-CRDY)T	Delay time, start of CACKx going low to CRDYx change from an input to output, high level	0.5P-8	0.5P+8	0.5P-8	0.5P+8	ns	
5	^t d(CRQH-CRQ)T	Delay time, CREQx high to CREQx change from an input to output, high level	4	22	4	22	ns	
6	^t d(CRQH-CA)T	Delay time, CREQx high to CACKx change from output to an input	4	22	4	22	ns	
7	^t d(CRQH-CS)T	Delay time, CREQx high to CSTRBx change from output to an input	4	22	4	22	ns	
8‡	^t d(CRQH-CRQL)T	Delay time, CREQx high to CREQx low for the next token request	P-4	2P+8	P-4	2P+8	ns	

[†] These values are characterized but not tested.

[‡] These timing parameters result from synchronizer delays.

SPRS038 - JANUARY 1996

timing for communication-token transfer sequence, input to an output port $[P = t_{c(H)}]$ (continued)

NOTE A: Before the token exchange, CACKx, CSTRBx, and CxD7–CxD0 are asserted by the 'C4x sending data. CREQx and CRDYx are input signals asserted by the 'C4x receiving data and are asynchronous with respect to the H1 clock of the sending 'C4x. After token exchange, CREQx and CRDYx become outputs, and CSTRBx, CACKx, and CxDx become inputs.

Figure 25. Communication-Token Transfer Sequence, Output to an Input Port [P = $t_{c(H)}$]

SPRS038 – JANUARY 1996

timer pin timing (see Note 12 and Figure 26)

NO.			TMS320C40-40 TMS320C40-50		TMS320C40-60		UNIT
		MIN	MAX	MIN	MAX		
1	t _{su(TCLK-H1L)} Setup time, TCLKx before H1 low	10		10		ns	
2	th(H1L-TCLK) Hold time, TCLKx after H1 low	0		0		ns	
3	td(H1H-TCLK) Delay time, TCLKx valid after H1 high		13		13	ns	

NOTE 12: Period and polarity of valid logic level are specified by contents of internal control registers.

Figure 26. Timer Pin Timing Cycle

timing for IEEE-1149.1 test access port (see Figure 27)

NO.		TMS320C40-40 TMS320C40-50		TMS320C40-60		UNIT
		MIN	MAX	MIN	MAX	
1	t _{su(TMS-TCKH)} Setup time, TMS/TDI to TCK high	10		10		ns
2	th(TCKH-TMS) Hold time, TMS/TDI from TCK high	5		5		ns
3	t _{d(TCKL-TDOV)} Delay time, TCK low to TDO valid	0	15	0	12	ns

Figure 27. IEEE-1149.1 Test Access Port Timings

SPRS038 - JANUARY 1996

MECHANICAL DATA

GF (S-CPGA-P325)

CERAMIC PIN GRID ARRAY PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice.

Thermal Resistance Characteristics						
Parameter °C/W Air Flow						
R⊖JC	1.521	N/A				
R⊖ _{JA}	9.937	0				
R⊖ja	8.881	200				
R⊖ _{JA}	6.387	400				
R⊖ _{JA}	5.829	600				
R⊖ _{JA}	5.056	800				
RΘ _{JA}	4.963	1000				

[†]LFPM = Linear Feet per Minute

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated