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3. MC6802 MICROPROCESSOR 
 

 
MC6802 microprocessor runs in 1MHz clock cycle. It has 64 Kbyte memory address capacity 

using 16-bit addressing path (A0-A15). The 8-bit data path (D0-D7) is bidirectional and has three 

states. It has 72 instructions which are 1, 2 or 3 byte instructions.  

  

MC6802 microprocessor has 3 interrupt inputs. One of them is maskable (IRQ), the other one 

is unmaskable (NMI) and the last one is the reset (RESET). It also has 2 special instructions: SWI 

(software interrupt) and WAI (wait for interrupt). MC6802’s pin numbers and their connections are 

shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 - MC6082 Microprocessor 

 

 
3.1 REGISTERS 
 

MC6802 Microprocessor has three 16-bit registers and three 8-bit registers available for use 

by the programmer (Figure 3.2). 

 

 2 Accumulators (Accumulator A, Accumulator B) 

 Program Counter (PC) 

 Stack Pointer (SP) 

 Index Register (X) 

 Condition Code Register (CCR). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.2 - Registers of the MC6802 Microrprocessor 
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Accumulators: The Microprocessor unit (MPU) contains two 8-bit accumulators (Accumulator A and 

Accumulator B) that are used to hold operands and/or result produced by the arithmetic logic unit 

(ALU). 

 

Program Counter: It is a 2-byte (16-bit) register that points to the current program address. 

 

Stack Pointer: It is a 2-byte register that contains the address of the next available location in an 

external push-down/pop–up stack. The contents of the stack pointer defines the top of the stack in 

RAM. 

 

Index Register: It is a 2-byte register that is used to store data or a 2-byte memory address for indexed 

memory addressing. 

 

Condition Code Register: It shows the conditions occurs as a result of an Arithmetic Logic Unit 

operation (Figure 3.2):  

 

Bit 0: carry from bit 7 of an arithmetic operation (C)  

Bit 1: Overflow flag (V) 

Bit 2: Zero flag (Z) 

Bit 3: Negative flag (N) 

Bit 4: Interrupt Mask (I) 

Bit 5: Half carry from bit 3 of an arithmetic operation (H) 

Bit 6: Unused  

Bit 7: Unused  

 

These bits of the Condition Code Register are used as testable conditions for the conditional 

branch instructions. Bit 4 of the CCR is the interrupt mask bit (I). The unused bits of the Condition 

Code Register (bit 6 and bit 7) are 1. 

 

Figure 3.3 shows the internal connections of the registers and the other units of the MC6802. 

 
Figure 3.3 - Functional block diagram of 6802 MPU 
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3.2 ADDRESSING MODES 
 

 

MC6802 Microprocessor has 7 addressing modes that can be used by the programmer: 

 

1. Accumulator 

2. Immediate 

3. Direct 

4. Extended 

5. Indexed 

6. Implied (Inherent) 

7. Relative 

 

MC6802 instructions may be used with one or more of these addressing modes. The 

instruction set and their addressing modes are given in Appendix A. 

 

 

Accumulator Addressing 
 

In accumulator addressing, either accumulator A or accumulator B is specified. These are 1-

byte instructions. 

 

Ex: ABA adds the contetns of accumulators and stores the result in accumulator A 

 

 

Immediate Addressing 
 

In immediate addressing, operand is located immediately after the opcode in the second byte 

of the instruction in program memory (except LDS and LDX where the operand is in the second and 

third bytes of the instruction). These are 2-byte or 3-byte instructions. 

  

Ex: LDAA #25H loads the number (25)H into accumulator A 

 

 

Direct Addressing 
 

In direct addressing, the address of the operand is contained in the second byte of the 

instruction. Direct addressing allows the user to directly address the lowest 256 bytes of the memory, 

i.e, locations 0 through 255. Enhanced execution times are achieved by storing data in these locations. 

These are 2-byte instructions. 

   

Ex: LDAA  25H loads the contents of the memory address (25)H into accumulator A 

 

 

Extended Addressing 
 

In extended addressing, the address contained in the second byte of the instruction is used as 

the higher eight bits of the address of the operand. The third byte of the instruction is used as the lower 

eight bits of the address for the operand. This is an absolute address in the memory. These are 3-byte 

instructions. 

 

Ex: LDAA 1000H loads the contents of the memory address (1000)H into accumulator A 
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Indexed Addressing 
 

In indexed addressing, the address contained in the second byte of the instruction is added to 

the index register’s lowest eight bits. The carry is then added to the higher order eight bits of the index 

register. This result is then used to address memory. The modified address is held in a temporary 

address register so there is no change to the index register. These are 2-byte instructions. 

 

Ex: LDX #1000H 

LDAA 10H,X 

 

Initially, LDX  #1000H instruction loads 1000H to the index register (X) using immediate addressing. 

Then LDAA 10H,X instruction, using indexed addressing, loads the contents of memory address 

HH X 1010)10(  into accumulator A.  

 

 

Implied (Inherent) Addressing 
 

In the implied addressing mode, the instruction gives the address inherently (i.e, stack pointer, 

index register, etc.). Inherent instructions are used when no operands need to be fetched. These are 1-

byte instructions. 

 

Ex:  INX increases the contents of the Index register by one. The address information is "inherent" 

in the instruction itself.  

 INCA increases the contents of the accumulator A by one. 

 DECB decreases the contents of the accumulator B by one. 

 

 

Relative Addressing 
 

The relative addressing mode is used with most of the branching instructions on the 6802 

microprocessor. The first byte of the instruction is the opcode. The second byte of the instruction is 

called the offset.  The offset is interpreted as a signed 7-bit number. If the MSB (most significant bit) 

of the offset is 0, the number is positive, which indicates a forward branch. If the MSB of the offset is 

1, the number is negative, which indicates a backward branch. This allows the user to address data in a 

range of -126 to +129 bytes of the present instruction. These are 2-byte instructions. 

 

Ex:  PC Hex Label Instruction 

  0009 2004  BRA 0FH 

   

Figure 3.4 shows the address calculation in the execution of the unconditional branch 

instruction (BRA). Program counter (PC) before the operation is 0009H. The opcode of the “branch 

always” instruction (20H) is fetched from location 0009H in program memory with the offset 04H 

(000001002). Then the program counter is incremented to the address of the next instruction (000BH) 

just before the actual operand fetch. The 6802 processor internally adds the offset (04H) to the current 

contents of program counter (000BH). The new address in the program counter after the “branch 

always” operation is 000B+04=000FH (0000 0000 0000 11112). The processor then jumps to this new 

address and fetches an instruction from location 000FH. Note that the offset’s most significant bit 

(MSB) is 0. This indicates a positive offset, which causes a forward branch. 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 - Relative Addressing (branching forward) 
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All branch operations use relative addressing mode. Branches can be forward or backward. 

The program in Figure 3.5 is an example for the use of branch instructions. In the first branch 

instruction (BRA NEXT), the address to be branched is 109H. As relative addressing is used, the offset 

is calculated as 

 

109H  - 105H  = 04H 

 

where 105H is the contents of PC which points to the next instruction. The offset is written in the 

machine code program as the operand of the branch instruction (20 04H). The second branch instruction 

(BRA LAST) is a backward branch. The displacement (offset) is calculated as  

 

105H - 10EH = - 09H  

 

where 10EH is the contents of PC. As the offset is a negative number, its 2's complement (F7H) is used 

as the offset (20 F7H). 

 

Memory 

Address 

Machine Code 

Program 
Assembly Language Program PC after instruction execution 

   ORG 100H  

0100 B6 0110 BEGIN: LDAA 110H 0103 

0103 20 04  BRA NEXT 0109 

0105 B7 0130 LAST: STAA 130H 0108 

0108 3F  SWI  - 

0109 BB 0120 NEXT: ADDA 120H 010C 

010C 20 F7  BRA LAST 0105 
 

Figure 3.5 - A program using branch instruction 
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4. 6802 ASSEMBLY LANGUAGE PROGRAMMING I 
 

 

4.1 Flags 
 

The 6802 MPU uses six condition code bits or flags (Figure 4.1). These flags are grouped into 

an 8-bit register called the Condition Code Register (CCR). The branch instructions test these flags to 

determine whether a branch will be taken or not.  

 

As on the generic, the carry flag (C) is set to 1 whenever a carry (or ‘borrow’) is generated out  

by the most significant bit (MSB) of  the accumulator. A sum larger than the capacity of  the 8-bit 

accumulator sets the C flag to 1. 

 

The overflow flag (V) in the condition code register of the  MPU indicates a 2’s complement 

overflow. When dealing with signed numbers, the MSB (B7) of accumulator(s) is the sign bit. The 

remaining 7 bits are written in 2’s complement form. These 7 bits can hold numbers between decimal 

+127 to –128. This is the range of signed numbers. If the result of an arithmetic operation exceeds this 

range, an overflow occurs and the overflow flag (V) is set to 1.  

 

 

 

 

 

 

 

 

 

 
Figure 4.1 - Condition Code Register 

 

Consider adding the positive numbers 7910 and 6410. Decimal +79 is 01001111 in 2’s 

complement and decimal +64 is 01000000 in 2’s complement. These 2’s complement numbers are 

added in Figure 4.2(a). Due to the carry from  B6 to B7, the sign bit of the result  changes to 1, (which 

indicates a negative number). This is an error. Figure 4.2(b) shows how the overflow flag is set in the 

microprocessor if  two such numbers ( in accumulator A and B) are added. The sum (10001111 in this 

example) is deposited in accumulator A after add operation. The overflow flag (V) is set to 1, 

indicating that the sum is larger than +12710 (sum=7910+6410=14310 ). 

 

 

 

 

 

 

 
Figure 4.2 (a) 

 

 

 

 

 

 

 

 
 

 

Figure 4.2 (b) 

 

Figure 4.2 - Addition of positive numbers using 2’s complement and CCR 

(a) 2's complement addition showing effect on sign bit 

(b) Effect on overflow flag 
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 Consider adding two negative numbers  –7910 and –6410. Decimal –79 is 10110001 in 2’s 

complement and decimal –64 is 11000000 in 2's complement. Since the most significant bits of both 

2’s complement numbers are 1 they represent negative numbers between –1 and –128. These 2’s 

complement numbers are added in Figure 4.3(a). The result is 1 01110001. Although the sign bit must 

be 1 (negative), the addition results with a 0. This is an error because the sum exceeds the limit  –12810. 

 

Addition of the negative numbers –7910 (10110001 in 2’s complement) and –6410 (11000000 

in 2’s complement) using the 6802 MPU is shown in Figure 4.3(b). The 2’s complement numbers are 

held in the accumulators  A and B, and the sum is stored in accumulator A after the add operation. As 

the addition causes an overflow, the overflow flag (V) is set to 1, warning the user that the range of the 

6802 microprocessor register is exceeded. The carry flag (C) is also set to 1, indicating the carry out 

from the B7 position. 
 

 

 

 

 

 

 

 

Figure 4.3 (a) 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3(b) 

 

Figure 4.3 - Addition of negative numbers using 2’s complement and CCR 

(a) 2's complement addition showing the effect on sign bit 

(b) Effect on overflow flag 

 

The zero flag (Z) in the condition code register of the 6802 MPU is set to 1 whenever  the 

accumulator becomes zero as a result of an operation or data transfer. The zero flag resets to 0, 

indicating the accumulator does not contain a zero.  

 

The negative flag (N) in the condition code register of the 6802 MPU indicates a negative 

result. Assume B7 is the sign bit  of the accumulator. If the result of  the last arithmetic, logical or data 

transfer operation is negative, the N flag is set to 1. If the result is positive, the N flag is resets to 0. The 

N flag reflects the MSB of the accumulator. 

 

Ex: The following program adds two 1-byte signed numbers in memory locations (0120)H and 

(0121)H. After the addition, if the overflow flag is set, then 1010 is stored into location (0040)H. 

Otherwise 2010 is stored into the same location. 

 

  ORG  0H 

  LDAA  120H  ; load the first number 

  ADDA  121H  ; add them 

  BVS  OVOCC  ; branch if overflow is set 

  LDAA  #20  ; load (10)10 to accumulator A 

  STAA  40H  ; store it in memory location (0040)H 

  BRA   STOP  ; jump to the end of the program 

OVOCC: LDAA  #10 

  STAA  40H 

STOP:  SWI    ; end program 
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Ex: The following program adds two 1-byte unsigned numbers in memory locations (0120)H and 

(0121)H and stores the result, represented as a 2-byte number, into two consecutive memory locations 

(0122)H and (0123)H. After the addition operation accumulator A is stored at into address (0123)H. If 

there is no carry, 0 is stored into the location (0122)H . Otherwise carry flag is stored into (0122)H 

(using ADC 122H and STAA 122H instructions).  

 

 

 ORG   100H 

 

  LDAA  #0H ; Clear the most significant bit 

 STAA  122H 

  LDAA  120H ; load the first number 

 ADDA  121H ; add them 

  STAA  123H ; store result  

BCS  CROCC ; branch if carry occurs 

LDAA  #0H ; clear the most significant bit 

STAA  122H  

BRA  STOP ; jump to the end of the program 

 

CROCC: LDAA  #0H ; set accumulator to 0  

  ADCA  122H ; save carry bit in accumulator A 

  STAA  122H 

STOP:  SWI   ; end program 

 

 

4.2 Looping 
 

Loops help to repeat a section of a program for a number of times. There are three main types 

of  loops : 

 

1. Repeating a program section indefinitely 

 
 

 

 

Figure 4.1 - Infinite Loop.  Above code outputs a “1” on bit 2 of a data port indefinitely. 
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2. Repeating a program section until some predetermined condition becomes true (Figure 4.2) 

 

 

Figure 4.2 - Conditional loop. The loop is repeated until a “1” appears at input bit 4 of the data port 

 

3. Repeating a program section for a predetermined number of passes. 

 

 

Figure 4.3 - Loop with a loop count.  Above code outputs a “0” on bit 6 of a data port 5000 times 

 

For looping in assembly language programs, branch instructions are needed.  Jump and branch 

instructions of the 6802 microprocessor are shown in Table A.2. These instructions transfer the control 

from one point to another in the program. 
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Ex: In the following program, accumulator A is incremented by 2 during each iteration of the 

loop. Accumulator B is used as a counter and decremented by 1 at each iteration, until it  reduces to 0. 

 

  ORG  100H 

 

  LDAA  #00H  ; load (00)H to accumulator A  

  LDAB  #10H  ; load (10)H to accumulator B  

COMPARISON: BEQ  STOP  ; exit from the loop if accumulator B is 0 

  ADDA  #2H  ; increment accumulator A by 2 

  DECB    ; decrement counter 

  BRA  COMPARISON ; branch to the beginning of the loop 

STOP:  STAA  150H  ; store the number in accumulator A 

  SWI    ; end program 

 

Ex: The index register is often used when the program must deal with data in the form of a table. 

The assembly language program listed in Figure 4.8(a) adds numbers from tables of the augends and 

addends in Figure 4.8(b) and places the sum in the table of sums  to the bottom of this memory map. 

For instance, the program first adds 01H + 02H, placing the sum 03H in the “table of sums”  to the 

memory location 0040H. Then it repeats this process by adding 03H + 04H, placing the sum of 07H in 

the “table of sums”  to the memory location 0041H, etc. The program in Figure 4.6(a) also has a feature 

that supports the termination of the program if the sum of the numbers exceeds FFH (using BCS 

instruction). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.8(a) - Assembly language program           Figure 4.8(b) - Memory map 
 

The first instruction in the program listed in Figure 4.8(a) initializes the index register to 

0020H. LDAA 00H, X instruction loads a number from the table of augends in data memory into 

accumulator A. The first number to be loaded is 01H from the memory location 0020H 

(
HHH 0020000020 ). Note that the instruction in line 2 has a label LOOP and is the target of a 

backward branch from the BNE LOOP operation  towards the bottom of the program. 

 

ADDA 10H,X instruction in line 3 adds the addend in data memory to the augend which is in 

accumulator A. The addend’s memory location  is 0030H (0020H + 10H = 0030H). 

Program memory

Address Contents

(hex) (hex)

0000 Program

Label Mnemonic Operand Comments . .

LDX #0020H ; Initialize index register at 0020H . .

LOOP LDAA 00H,X ; Load augend from first table in 0011

memory ( X + offset of 00H ) into   Data memory
accumulator A 0020 01

ADDA 10H,X ; Add addend from second table 0021 03 Table of 

in memory ( X + offset of 10H ) 0022 05 augends

into accumulator A 0023 FF (data)

BCS STOP If C flag = 1, then branch forward 0024 7F

to STOP ( end program if any sum

is greater than FFH ) 0030 02

STAA 20H,X ; Store accumulator A ( sum ) in 0031 04 Table of

third table in memory ( X + offset 0032 06 addends

20H ) 0033 B (data)

INX ; Increment contents of index reg. 0034 80

CPX #0025 ;Compare index register with 0025H

( subtract 0025H from contents of 0040

index register ) 0041 Table of

BNE LOOP ; If Z flag = 0, then branch back to 0042 sums

symbolic address called LOOP 0043 (data)

STOP SWI ; End program 0044
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The fourth instruction (BCS STOP) checks whether the carry flag is set to 1. If C = 1, this 

indicates that the sum exceeded FFH and the control is transferred to the end of the program. While 

C=0, execution continues from line 5. The STAA 20H,X instruction causes the sum in accumulator A 

to be stored in the "table of sums". In the first pass of the loop, the sum is stored into the memory 

location 0040H  (0020H + 20H = 0040H). 

 

The INX instruction in line 6 increments the contents of the index register. The CPX #0025H 

instruction in line 7 compares the current contents of the index register with 0025H to see whether the 

end of the table of augends is reached or not. The compare instruction is a subtract operation that is 

used to set or reset the Z flag. The BNE LOOP instruction in line 8 checks Z flag. If  Z flag = 0, the 

branch test is true for the BNE instruction and the program branches back to the symbolic address 

LOOP in line 2. When the index register reaches 0025H, the compare operation sets the Z flag to 1, 

branch test of the BNE instruction becomes false, and the program continues with the next instruction 

in sequence. This is SWI instruction, which terminates the run. 
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5. 6802 ASSEMBLY LANGUAGE PROGRAMMING II 
 

 

5.1 Increment and Decrement Instructions 
 

Increment (INC) and decrement (DEC) instructions allow the contents of a register or memory 

location to be increased or decreased by 1 respectively. 

 

 

5.2 Compare Instruction 
 

 Consider the problem of testing the accumulator contents, e.g., whether it contains 37H or not. 

This can be achieved using substraction and BEQ instructions as shown in the following program. 

  

 SUBA  #37H ; Subtracts the value 37H from the AccumulatorA 

 BEQ  PASS ; If the Zero Flag is set, branch to the label “PASS” 

FAIL: LDAB  #01H ; Zero flag is not set so place 001H in AccumulatorB 

 BRA  STOP ; Returns to start 

PASS: LDAB   #FFH ; Zero flag is set so place FFH in Acc B 

STOP: SWI 

 

 Subtracting 37H from the accumulator causes the zero flag to be set if the accumulator 

containes 37H. Accumulator B is loaded with either FFH or 01H, to indicate an accumulator value of 37H 

or non-37H respectively. The difficulty with this technique is that it destroys the contents of the 

accumulator. Since this is a very common problem in assembly language programming, 6802 provides 

compare instructions (CMPA, CMPB, CBA, and CPX) which operate like subtraction but do not 

destroy the register contents.  

 

 Compare instructions subtract the contents of the accumulator or index register from the 

destination and change the condition of flags in CCR according to the result. Contents of the 

accumulator (or index register) and destination are unaffected by the execution of this instruction. 

 

 The above example program can be rewritten using CMPA instruction as follows: 

 

 CMPA  #37H 

 BEQ  PASS 

FAIL: LDAB  #01H 

 BRA  STOP 

PASS: LDAB  #FFH 

STOP: SWI 

 

 The CMPA instruction subtracts the value 37H from the Accumulator but does not place the 

result in the accumulator. It only changes the flags of the CCR. 

 

If the value 37H is equal to the contents of the Accumulator:   Zero Flag = 1  

       Carry Flag = 0 

If the value 37H is greater than the contents of the Accumulator: Zero Flag = 0  

        Carry Flag = 1 

If the value 37H is less than the contents of the Accumulator:  Zero Flag = 0  

   Carry Flag = 0 
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5.3 Logic and bit manipulation Instructions 
 

 

Logical Operators 
 

 Logical instructions (AND, OR, Exclusive OR) can be used to test or change group of bits. 

AND, OR and Exclusive OR are logical operators: 

 

AND   OR   Exclusive OR   

 

0 AND 0 = 0  0 OR 0 = 0  0 XOR 0 = 0    

0 AND 1 = 0  0 OR 1 = 1  0 XOR 1 = 1    

1 AND 0 = 0  1 OR 0 = 1  1 XOR 0 = 1 

1 AND 1 = 1  1 OR 1 = 1  1 XOR 1 = 0 

 

Example: 

  0110 

  0101 

 AND 

  0100 

 

 Notice that any given bit in the result can only be 1 if both of the numbers have a 1 in that 

position. This property can be used to change specific bits in a register or memory location. In the 

following example the contents of a register is 99H. To change the rightmost 4 bits to 0 and keep the 

other bits unchanged, the AND operation with F0H can be used. 

 

 99H =  10011001 

 F0H =  11110000 

    AND 

 10010000 = 90H  

 

The 6802 AND instructions (ANDA, ANDB) can operate upon memory, register or 

immediate data: 

 

ANDA 0FFH  ; ANDs accumulator A with the contents of   

    address location 00FFH    

 ANDA  10H,X  ; ANDs accumulator A with the contents of  

       address location (10H + offset of index register)  

ANDA  #20H  ; ANDs accumulator A with the value 20H 

 

Other logical operations also use the same addressing modes: 

 

ANDA AND with accumulator A 

ANDB AND with accumulator B 

ORAA OR with accumulator B 

ORAB OR with accumulator B 

EORA XOR with accumulator A 

EORB XOR with accumulator B 

 

 

Complement Instruction 
 

COMA, COMB and COM instructions complement the contents of the specified accumulator or a 

memory location. Complement instructions offer indexed and extended addressing modes.  

 

COMA or COMB instruction complements the contents of the specified accumulator. No other status 

bit or register contents are affected. If accumulator B contains 3AH (001110102), after the COMB 

instruction is executed, accumulator B contains C5H (110001012). 
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Complement instruction can also be used to complement the contents of the specified memory location. 

If the contents of the index register are 0100H and contents of the memory location 0113H is 23H 

(001000112), after COM 13H,X instruction is executed, the memory location 0113H contains DCH 

(110111002). 

 

 

The Bit Test Instruction 
 

 The Bit Test instruction (BIT) is similar to the logical Compare. The contents of the 

accumulator or memory location are ANDed with a mask. However, neither the accumulator nor the 

destination is modified by this instruction; only the Flags are affected.  

 

BITA  #07H tests the bits 1,2 and 3 of accumulator A and sets the zero flag if the condition is true 

 

Example: Following program examines the byte at location 120H. If bit 1 of location 120H is set, 55H is 

stored in location 130H, otherwise program terminates. 

 

ORG  100H 

  LDAA  120H ; load byte 

BITA  #01H ; is bit 1 set? 

  BEQ  STOP ; if not set, end program  

  LDAB  #55H ; store 55H in memory location 130H 

  STAB  130H   

STOP:  SWI   ; end program 

 

 

5.4 Arithmetic Operations 
 

 

5.4.1 Addition Instructions  

 

 

Add Accumulators 
 

ABA instruction adds the contents of accumulator B to the contents of accumulator A and 

stores the result in accumulator A. If accumulator A contains B4H and accumulator B contains 2DH, 

after the ABA instruction is executed accumulator A contains E1H. 

 
 

Add Memory to Accumulator 
 

ADDA, ADDB instructions add the contents of a memory location to accumulator A or B 

respectively without considering the carry status. The same memory addressing options as ADC 

instruction are supported. 

   

Ex (8-bit addition): The following program adds the contents of memory locations 0040H and 0041H, 

and place the result in the memory location 0042H. 

 

ORG  0H 

 

LDAA  40H 

ADDA  41H 

STAA  42H 

SWI   ; end program 
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Add Memory, with carry, to Accumulator 
 

ADCA or ADCB instructions add the contents of a memory location to accumulator A or B 

respectively. 4 addressing modes are supported: 

 

1. Immediate 

2. Direct 

3. Extended 

4. Indexed 

 

 

Addition  with carry using Immediate Data 

 

This type of instruction adds the immediate data with the carry bit to accumulator A. If accumulator A 

contains 3AH, the carry bit is 1, after the instruction ADCA   #7CH is executed, the accumulator A 

contains B7H. 

 

 

Addition  with carry using Direct Memory Addressing. 

 

This type of instruction adds the contents of  a specified direct memory address and the carry bit to 

accumulator B. If accumulator B contains 3AH and memory address 1FH contains 7CH and carry bit 

contains 1. After the instruction ADCB   1FH is executed, accumulator B contains B7H. 

 

 

Addition with carry using Extended Addressing  

 

This type of instruction is similar to the addition with carry using direct addressing. Only difference is 

that ADCA   3FF2H instruction  allows extended addressing. 

 

 

Addition with carry using Indexed Addressing  

 

This type of instruction adds the carry bit and the contents of a memory location addressed by the sum 

of index register and the first operand of ADCA instruction to accumulator A. If accumulator A 

contains 3AH, Index register contains 50DH, memory address 523H contains 76H, and the carry bit is 1, 

After the instruction ADCA 16H,X is executed, accumulator A contains B1H. 

 

Ex (16-bit addition): Following program adds 16-bit number in memory locations 0040H and 0041H to 

the 16-bit number in memory locations 0042H and 0043H. The most significant eight bits are in memory 

locations 0040H and 0042H. Then the result  is stored into memory locations 0044H and 0045H, where 

the most significant bits are in 0044H. 

 

ORG  0H 

 

LDAA  41H 

ADDA  43H , add least significant bits 

STAA  45H 

LDAA  40H 

ADCA  42H ; add most significant bits with carry 

STAA  44H 

SWI   ; end program 

 

ADCA 42H adds the contents of accumulator A and the memory location 0042, plus the contents of 

Carry (C) bit. The carry from the addition of the  least significant eight bits is thus included in the 

addition of the most significant eight bits. 
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 5.4.2 Subtraction 

 
 

Subtract Memory from Accumulator 
 

SUBA, SUBB instructions subtract the contents of the selected memory byte from the 

contents of accumulator A or and B respectively. The same addressing modes of  ADC instruction are 

supported. If the memory address 0031H contains A0H and accumulator B contains E3H, after the SUBB  

31H instruction is executed accumulator B contains 43H. 

 

 

5.4.3 Shift Operations 
 

 

Logical Shift Operations 
 

LSRA, LSRB, LSR instructions perform a one-bit logical right shift on accumulator A, B or 

and a specified memory location respectively.  The least significant bit is shifted into the carry bit in 

CCR and 0 is inserted as a most significant bit. If accumulator B contains 7AH (011110102), after 

LSRB instruction is executed, accumulator B contains 3DH (001111012) and the carry status bit is set to 

0. 

 

LSR instruction shifts the contents of the specified memory location towards right 1-bit. 

Indexed and extended addressing modes are available for LSR instruction. If the contents of the 

memory location 04FAH is 0DH (000011012), after LSR  04FAH is executed, the carry bit is 1 and the 

contents of location 04FAH is 06H (000001102). 

 

Ex: Following program separates the contents of memory location 0040H into two 4-bit numbers 

and stores them in memory locations 0041H and 0042H. It places the four consequitive  most significant 

bits of memory location 0040H into the four least significant bit positions of memory location 0041H; 

and the four least significant bit positions of memory location 0040H into the four least significant bit 

positions of memory location 0042H  

 

LDAA  40H  ; load data 

ANDA  #0FH  ; mask off four MSBs 

STAA  42H  ; store at address 0042H 

LDAA  40H  ; reload data 

LSRA    ; shift accumulator to right 4 bits, clearing the most significant bits. 

LSRA    ;  

LSRA    ;  

LSRA    ; 

STAA  41H  ; store at address 0041H 

SWI    ; end program 

 

Arithmetic Shift Operations 
 

ASLA or ASLB instructions perform a one-bit arithmetic left shift on the contents of 

accumulator A or B. If accumulator A contains 7AH (011110102), after ASLA is executed F4H 

(111101002) is stored in accumulator A, carry bit is set to 0, sign bit is set 1 (as the leftmost bit is 1) 

and Zero bit is set to 0. 
 

ASL instruction performs a 1-bit arithmetic left shift on the contents of a memory location. 

The extended and indexed addressing modes are supported. If  the Index register contains 3F3CH, and 

the memory address 3F86H contains CBH, after the  ASL  4AH,X instruction is executed, the memory 

address 3F86H  contains 96H and Carry flag is set to 1. The ASL instruction is often used in 

multiplication routines.  Note that execution of a single ASL instruction results with its operand 

multiplied by a factor of 2. 
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ASR  instruction performs a one-bit arithmetic right shift on the contents of accumulator A or 

B or the contents of  a selected memory byte. ASR is frequently used in division routines. 

 

Rotate Operations 
 

ROLA or ROLB instructions rotate the specified accumulator or a selected memory byte one 

bit towards left through the carry bit. ROLA or ROLB instructions rotate contents of the specified 

accumulator and the carry bit as a block towards left one bit. If accumulator A contains 7AH 

(011110102) and the carry bit is 1, after ROLA instruction is executed, accumulator A contains F5H 

(11110101H) and the carry bit is reset to 0. 

 

ROL instruction rotates the contents of the specified memory location one bit to the left 

through the carry. Indexed and Extended addressing modes can be used with ROL instruction.  

 

Example: If the contents of memory location 1403H is 2EH (001011102) and the Carry bit is 0, after 

ROL 1403H is executed, memory location 1403H contains 5CH (010111002). 

 

RORA, RORB or ROR instructions rotate the specified accumulator or contents of a selected 

memory location and the carry bit as a block one bit towards right. These instructions operate similarly 

with the ROL instruction. 

 

Ex (8-bit binary multiplication): Following program multiplies an 8-bit unsigned number in memory 

location 0041H by another 8-bit unsigned number in the memory location 0040H and places the most 

significant bits of the result in memory location 0042H and eight least significant bits in memory 

location 0043H. 

 

 

Multiplying a number by zero results with zero, multiplying by one results with the number itself. 

Therefore the multiplication can be reduced to the following operation: If the current bit is 1, add the 

multiplicand to the partial product. 

 

  CLRA  ; product MSB = Zero 

  CLRB  ; product LSB = Zero 

  LDX #8 ; load number of bits of the multiplier to index register 

SHIFT:  ASLB  ; shift product left 1 bit 

  ROLA 

  ASL 40H ; shift multiplier left to examine next bit 

  BCC DECR ;  

  ADDB 41H ; add multiplicand to the product if carry is 1 

  ADCA #0 ;  

DECR:  DEX 

  BNE SHIFT ; repeat until index register is 0 

  STAA 42H ; store result 

  STAB 43H 

  SWI  ; end program 

 

The following operations are performed to ensure that everything is lined up correctly every time: 

 

1) Shift multiplier left one bit so that the bit to be examined is placed in the Carry. 

2) Shift product left one bit so that the next addition is lined up correctly. 

 

The complete process for binary multiplication is as follows: 

 

Step 1 - Initialization 

 
The Index register is used as a counter. CLRA and CLRB set the product and carry bit to 0. 

 

Product=0 

Counter=8 
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Step 2 - Shift Product to left so as to line up properly. 

 

The instructions ASLB and ROLA together act as a 16-bit arithmetic left shift of the product in 

accumulators A and B (MSBs in A). 

 

Step 3 - Shift Multiplier to left so the next bit goes to Carry to multiply. 

 

The instruction ASL 40H shifts the contents of memory location 0040H left one bit, placing the most 

significant bit in the Carry and clearing the least significant bit. 

 

Step 4- Add Multiplicand to Product if carry is 1 

 

The instruction ADDB 41H adds the multiplicand to the product. The instruction ADCA #0 adds the 

carry flag from that 8-bit addition to the most significant eight bits of the product (in accumulator A). 

 

 If Carry=1, Product = Product + Multiplicand 

 

Step 5 - Decrement counter and check for zero 

 

 Counter = Counter - 1 

 If Counter 0, go to Step 2 

 

 

If multiplier is 61H and the multiplicand is 6FH, the process works as follows: 

 

Initialisation: 

 

 Product  0000 

 Multiplier 61 

 Multiplicand 6F 

 Counter  08 

 

After first iteration of steps: 

 

 Product  0000 

 Multiplier C2 

 Multiplicand 6F 

 Counter  07 

Carry from Multiplier 0 

 

After second iteration: 

 

 Product  006F 

 Multiplier 84 

 Multiplicand 6F 

 Counter  06 

Carry from Multiplier 1 

 

After third iteration: 

 

 Product  014D 

 Multiplier 08 

 Multiplicand 6F 

 Counter  05 

Carry from Multiplier 1 

 

Goes like this until counter is equal to 0. 
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Ex (8-bit binary division): Following program divides an 8-bit unsigned number in memory location 

0040H by another 8-bit unsigned number in the memory location 0041H and stores the quotient in 

memory location 0042H and the remainder in memory location 0043H. Initially accumulator A is 

cleared and dividend is loaded into accumulator B. During the division, the quotient replaces the 

dividend in accumulator B as the dividend is shifted left to accumulator A. At the end, remainder is 

found in accumulator A and quotient in accumulator B. 

   

  LDX #8  ; load number of bits of the divisor into index register 

CLRA   

LDAB 40H  ; load dividend to accumulator B 

DIVIDE: ASLB   ; shift left dividend-quotient. 

  ROLA 

  CMPA 41H  ; compare accumulator A and divisor 

  BCS CHKCNT ; branch if accumulator A is smaller than divisor 

  SUBA 41H  ; subtract divisor from accumulator A 

  INCB   ; increment quotient 

CHKCNT: DEX   ; decrement counter 

  BNE DIVIDE 

  STAB 42H  ; store quotient 

  STAA 43H  ; store remainder 

  SWI   ; end program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - Flowchart of division program 
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6. 6802 ASSEMBLY LANGUAGE PROGRAMMING III 
 
 

6.1 STACK OPERATIONS 
 

A “stack” is simply an area of memory where a list of data items is stored consecutively. It 

consists of any number of locations in RAM memory. The restriction in the list of the elements is that, 

the elements can be added or removed at one end of the list only. This end is usually called “top of 

stack” and the structure is sometimes referred to as a “push-down” stack. This type of storage 

mechanism is Last-In-First-Out “LIFO”; the last data item placed on the stack, is the first one removed 

when retrival begins. 

 

PUSH operation places a new item on the stack. 

PULL operation removes the top item from the stack. 

 

 MC6802 microprocessor allows a porion of memory to be used as a stack. The 

microprocessing unit has a 16-bit stack pointer (Figure 6.1). When a byte of information is stored in the 

stack, it is stored at the address which is contained in the stack pointer. The stack pointer is 

decremented (by one) immediately following the storage of each byte of information in the stack. 

Conversely, the stack pointer is incremented (by one) immediately before retrieving each byte of 

information from the stack, and the byte is then obtained from the address contained in the stack 

pointer. The programmer must ensure that the stack pointer is initialized to the required address 

before the first execution of an instruction which manipulates the stack. Stack pointer can be 

initialized to use any portion of read-write memory, usually to the highest address of RAM 

(Figure 6.2). 

 

 

 

 

 

Figure 6.1 - Stack Pointer 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  - Memory usage 
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Stack operations are used: 

 

- while executing subroutines 

- while handling interrupts 

- while doing arithmetic operations 

 

 

6.1.1 PUSH Operation 

 
 PSH instruction is used for storing a single byte of data in the stack. This instruction addresses 

either accumulator A or accumulator B (PSHA and PSHB respectively). The contents of the specified 

accumulator are stored in the stack. The address contained in the stack pointer is decremented. If 

accumulator A contains 3AH and the stack pointer contains 1FFFH. After the instruction PSHA is 

executed 3AH is stored into the location 1FFFH and the stack pointer is altered to 1FFEH, the PC is 

0011H  (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3 - Push (PSHA) instruction 

 

6.1.2 PULL Operation 
 

 PUL instruction retrives data from the stack. This instruction addresses either accumulator A 

or accumulator B (PULA and PULB respectively). The address contained in the stack pointer is 

incremented. A single byte of data is then obtained from the stack and is loaded into the specified 

accumulator. If the stack pointer contains 1FFEH and location 1FFFH contains CEH. After the 

instruction PULB is executed, accumulator B contains CEH and the stack pointer contains 1FFFH  

(Figure 6.4). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before Push Operation  After  Push Operation

A 3A A 3A

SP 1F FF SP 1F FE

PC 00 10 PC 00 11

       Memory        Memory

PC 0010        PSHA 0010        PSHA

0011 PC 0011

.. … .. …

Stack        Memory Stack        Memory

1FFD 1FFD

1FFE SP 1FFE

SP 1FFF 1FFF          3A

 

Before Pull Operation  After  Pull Operation

B B CE

SP 1F FE SP 1F FF

PC 00 10 PC 00 11

       Memory        Memory

PC 0010        PULB 0010        PULB

0011 PC 0011

.. … .. …

Stack        Memory Stack        Memory

1FFD 1FFD

SP 1FFE 1FFE

1FFF          CE SP 1FFF          CE  

Figure 6.4 – Pull (PULB) instruction 
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6.1.3 Other Stack Operations 
 

 The address stored in the stack pointer is affected by the execution of the instructions PSH, 

PUL, SWI, WAI, RTI, BSR, JSR, and RTS, and also by the servicing of a non-maskable interrupt or an 

interrupt request from a peripheral device.  

 

 The address in the stack pointer may also be changed without storing or retrieving information 

in the stack. This is carried out by the following instructions: 

 

 DES decrement stack pointer 

 INS increment stack pointer 

 LDS load the stack pointer 

TXS transfer index register to stack pointer 

 

The contents of the stack pointer is also involved in the execution of the following instructions: 

 

STS store the stack pointer 

TSX transfer stack pointer to index register 

 

 

 STS instruction stores the contents of the stack pointer into two contiguous memory locations. 

This instruction offers direct, indexed and extended addressing modes. The STS instruction stores the 

high byte of the stack pointer into the specified memory address and the low byte into the memory 

address immediately following it. In figure 6.5, the contents of the stack pointer is 1FFFH and the 

memory address to store the stack pointer is given as 0080H in the STS #80H instruction. After STS 

instruction is executed, memory location 0080H contains the high byte of stack pointer (1FH) and 

memory location 0081H contains the low byte of stack pointer (FFH). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6.5 - Store Stack Pointer (STS) instruction 

Before STS Operation  After  STS Operation

SP 1F FF SP 1F FF

PC 00 10 PC 00 12

       Memory        Memory

PC 0010        STS # 0010        STS #

0011          80H 0011          80H

.. … PC 0012 …

0080 0080          1F

0081 0081          FF  
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 TSX instruction moves the contents of the stack pointer plus one to the index register so that 

the index register points directly to the bottom of the stack. In  Figure 6.6, SP is 1FFEH. After the 

execution of TSX instruction, index register contains 1FFFH. The MC6802 employs a decrement after 

write, increment before read stack implementation scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6 - TSX Instruction 

 

 TXS instruction moves the contents of the index register minus 1 to the stack pointer. In  

Figure 6.7, contents of the index register is 1FFFH. After TXS is executed, stack pointer contains 

1FFEH.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 - Move From Index Register to Stack Pointer (TXS) instruction 

 

 

Example: In the following program, the contents of the accumulators are stored in the stack 

before branching to a routine and at the end of routine, the original values of the accumulator are 

restored from the stack. 

 

  ORG 100H 

 

  LDAA #03H 

  LDAB #04H 

  LDS #1FFFH 

 

PSHA 

  PSHB 

  BRA LDRT 

Before TSX Operation After TSX Operation

X X 1F FF

SP 1F FE SP 1F FE

PC 00 10 PC 00 11

    Data Memory     Data Memory

 Program Memory  Program Memory

PC 0010             TSX 0010             TSX

0011 PC 0011

 
               Figure 19 – Move From Stack Pointer to Index Register (TSX) 

instruction 

Before TXS Operation After TXS Operation

X 1F FF X 1F FF

SP SP 1F FE

PC 00 10 PC 00 11

    Data Memory     Data Memory

 Program Memory  Program Memory

PC 0010             TXS 0010            TXS

0011 PC 0011
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CONT:  PULA 

  PULB 

  ABA 

  STAA 61H 

  SWI 

 

LDRT:  LDAA #01H 

  LDAB #02H 

  ABA 

  STAA 60H 

  BRA CONT 

 

At the beginning of the program accumulator A and B is loaded with 03H and 04H and stack 

pointer is initialized to point the end of memory (1FFFH). Then, before branching to the routine LDRT  

these numbers are stored in the stack using PSH instructions. In LDRT routine, 01H and 02H are added 

using ABA instruction and (03H) is stored in memory location 0060H and CONT is branched. Then the 

original values of the accumulators are loaded from the stack using PUL instructions, and the result 

(07H) is stored in 0061H and the program ends with the execution of SWI instruction. 
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6.2 SUBROUTINES 
 

In a given program it is often necessary to perform a particular task a number of times on the 

same or on different data values (such as subroutines to obtain time delay, subroutine to sort a list of 

values, etc.) including the block of instructions to perform the task at every place where it is needed in 

the program causes a waste of memory. Instead, it is better to place only one copy of this block of 

machine instructions in the main memory as a subroutine, and in the program branch to the beginning 

of the subroutine whenever required. 

 

In figure 6.8, the execution of a jump to subroutine instruction (JSR) and return from 

subroutine instruction (RTS) are given. After JSR 0100H instruction is executed, PC is set to the 

defined address and execution continues with the ABA instruction. The program returns from this 

subroutine after the RTS instruction is executed. Program counter (PC) is set to 0023H and the program 

execution continues with ANDA #7FH instruction.  

 
Figure 6.8 - A subroutine execution process 

 

6.2.1 Jump to a subroutine 
 

JSR instruction uses extended and indexed addressing modes. After JSR instruction is executed, 

program counter is decremented by 3 (if extended addressing is used) or 2 (if indexed addressing is 

used), and then is pushed onto the stack. The stack pointer is adjusted to point to the next empty 

location in the stack. The specified memory address is then loaded into the program counter and 

execution continues with the first instruction in the subroutine. 

 

 

Using Extended Addressing 

 

Execution of JSR instruction with extended addressing mode is shown in Figure 6.9. After  

JSR  0100H instruction is executed, address of the next instruction (AND #7FH instruction) is 

stored on top of the stack, and SP is decremented by 2. Address of the first instruction in the subroutine 

(0100H) is stored into the program counter, and the program continues from this point. ABA instruction 

is the next instruction to be executed. 

Memory
PC 0020 JSR

0021 01

0022 00H

0023 ANDA #

7FH

… …

…. ….

0100 ABA

RTS SUBROUTINE 
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Figure 6.9 - Jump to subroutine (JSR) instruction, using extended addressing 

 

 

Using Indexed Addressing 

 

Execution of JSR instruction with indexed addressing mode is shown in Figure 6.10. After  

JSR  30H,X  instruction is executed, address of the next instruction (0019H) is stored on top of the 

stack and SP is decremented by 2. Jump address is calculated as the value of the index register plus the 

address part of the instruction (1100H + 30H = 1130H) and it is stored in PC. The program continues 

with the ABA instruction in the subroutine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.10 - Jump to subroutine (JSR) instruction, using indexed addressing 

 

 

Before JSR Operation After JSR Operation

SP 1F FF SP 1F FD

PC 00 17 PC 01 00

Program Memory Program Memory

PC 0017            JSR 0017            JSR

0018 01 0018 01

0019 00 0019 00

001A          AND # 001A          AND #

001B            7FH 001B            7FH

.. … .. …

.. … .. …

0100            ABA PC 0100            ABA

0101            RTS 0101            RTS

Stack Stack

1FFD SP 1FFD

1FFE 1FFE 00

SP 1FFF 1FFF 1A  

Before JSR Operation After JSR Operation

X 11 00 X 11 00

SP 1F FF SP 1F FD

PC 00 17 PC 11 30

Program Memory Program Memory

PC 0017            JSR 0017            JSR

0018           30H,X 0018           30H,X

0019          AND # 0019          AND #

001A            7FH 001A            7FH

.. … .. …

.. … .. …

1130            ABA PC 1130            ABA

1131            RTS 1131            RTS

Stack Stack

1FFD SP 1FFD

1FFE 1FFE 00

SP 1FFF 1FFF 19  
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6.2.2 Return from a subroutine 
 

RTS instruction moves the contents of the top two stack bytes (which is the address of the 

next instruction after JSR) to program counter. These two bytes provide the address of the next 

instruction to be executed. Previous program counter contents are lost. RTS instruction also increments 

the stack pointer by 2 (Fig 6.11). Every subroutine must contain at least one Return instruction; which 

is the last instruction to be executed in the subroutine.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 - Return from subroutine (RTS) instruction 

 

Example: 

 

 Determine the lengths of two strings of ASCII characters. Starting addresses of  the strings are 

43H and 63H. End of a string is marked by a carriage return character (0DH). Write a subroutine which 

calculates the length of a string (excluding carriage return character) and places it in accumulator B. 

Also write a calling program which calls this subroutine to calculate the lenghts of two strings and 

stores the results (in accumulator B) in memory addresses 42H and 62H. 

 

Calling Program: 

 

  ORG  0H 

  LDS  #500H  ; Start stack at location 500H 

 LDX  #43H  ; Get starting address of the first string 

  JSR  STLEN  ; Determine string length 

 STAB  42H  ; Store string length 

  LDX  #63H  ; Get starting address of second string 

JSR  STLEN  ; Determine string length 

STAB  62H  ; Store string length 

  SWI 

Subroutine: 

 

  ORG  100H 

STLEN:  CLRB    ; String length = 0 

  LDAA  #0DH  ; Get ‘CR’ for comparison 

CHKCR: CMPA  X  ; Is character ‘CR’? 

  BEQ  DONE  ; Yes, end of string 

  INCB    ; No, add 1 to string length 

  INCX 

  BRA  CHKCR 

DONE:  RTS 

Before RTS Operation After RTS Operation

SP 1F FD SP 1F FF

PC 01 01 PC 00 1A

Program Memory Program Memory

0017            JSR 0017            JSR

0018 01 0018 01

0019 00 0019 00

001A          AND # PC 001A          AND #

001B            7FH 001B            7FH

.. … .. …

.. … .. …

0100            ABA 0100            ABA

PC 0101            RTS 0101            RTS

Stack Stack

SP 1FFD 1FFD

1FFE 00 1FFE

1FFF 1A SP 1FFF  
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The calling program initializes the stack pointer to 500H and then performs the following steps for each 

string: 

  

1. places the starting address of the string in the Index register 

2. calls the subroutine 

3. stores the result in accumulator B to memory.  

 

The stack pointer must be initialized to an appropriate area in memory (in this example 500H) so that 

the stack does not use the addresses in the program area. 

 

The subroutine determines the length of a string of ASCII characters and places the length in 

accumulator B. Starting address of the string is a parameter to the subroutine. It is placed in the index 

register before the subroutine is jumped. The result is returned in accumulator B.  

 

If the first string is only a carriage return character and index register (X) contains 0043H, after the first 

call of the subroutine, contents of the registers and memory are as follows: 

 

 

 

 

 

 

 

 
Figure 6.12 - Memory allocated for the first string 

 

If the second string is ‘RATHER’ and index register contains 0063H, after the second call of the 

subroutine, contents of the registers and memory are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.13 - Memory allocated for the second string 

 

  

Memory

        B 00 0042 00

X 00 43 0043 0D

 

Memory

        B 06 0062 06

X 00 63 0063 52

0064 41

0065 54

0066 48

0067 45

0068 52

0069 0D
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5.2.3 Subroutine Nesting 
 

A subroutine may jump to another subroutine as shown in Figure 6.14. This situation can be 

extended to the case where the second subroutine jumps to a third subroutine and so on. This is called 

subroutine nesting, and can be carried out to any depth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.14 - Subroutine nesting 

 

Example : The following program uses subroutine nesting to write the number FFH into a 

memory block. Starting address of the memory block is 00H and the end of the block is determined by 

the number in accumulator B. Subroutine FILL, in a loop, stores 00H to the memory location pointed by 

the index register (X) and calls subroutine DECR to decrement accumulator B.  

 

ORG  100H 

LDS  #1FFFH  ; initialize stating address of stack area 

LDX  #00H  ; initialize index register  

LDAA  #0FFH  ; keep FFH in accumulator A 

LDAB  #25H  ; length of the memory block is 25H 

JSR  FILL  ; start filling   

SWI     

 

ORG  500H  ;  

FILL:  STAA  0H,X  ; store FFH in the memory address pointed by X 

  INX    ; increment X to point to the next location 

  JSR  DECR  ; jump to DECR subroutine 

  CMPB  #0H  ; Is the end of  memory block reached?  

  BNE  FILL  ; No, continue with the filling procedure 

  RTS    ; Yes, end of subroutine 

   

ORG  1000FH  ;  

DECR:  DECB    ; decrement accumulator B 

  RTS    ; return to FILL subroutine 
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5.3 MACROS 
 

 In source programs, particular sequences of instructions may occur many times. Programmer 

can avoid repeatedly writing out the same instruction sequence by using a macro. 

 

 Macros allow the programmer to assign a name to an instruction sequence. This macro name 

is then used in the source program in the place of the related instruction sequence. Before assembling 

macroprocessor replaces the macro name with the appropriate sequence of instructions. 

 

 Macros are not the same as subroutines. A subroutine occurs in a program, and program 

execution branches to the subroutine. A macro is expanded to an actual instruction sequence each time 

the macro occurs; thus a macro does not cause any branching. Figure 6.15 shows the source program 

with macro calls and the object program after the macro expansion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 - A macro call example 

 

5.3.1 Macros in Cross-32 Cross Assembler 

 

MACRO and ENDM directives define the sequence of instructions in the source file as macro. Format 

of a macro definition is as follows: 

 

Label: MACRO exp(1), exp(2), … exp (n)  ; comment 

   

line 1 

  line 2 

 . 

 . 

 ENDM 

 

 



 32 

 Upon encountering a MACRO directive, Cross-32 stores the source code between the 

MACRO directive and the next ENDM directive, assigning the label on the MACRO line to it. 

Although the code within the macro definition is checked for syntax errors, the resulting machine code 

is not written to either the list or hexadecimal files. When the macro's label is found as a macro call 

later in the assembly source code, the entire MACRO is expanded at this location. Any expressions 

appearing after the macro definition are replaced by those appearing after the macro call in the 

expanded code. These are character by character replacements, so ensure that the expressions in the 

macro definition are truly unique. The number of expressions in the macro definition must be equal 

to the number of expressions in the macro call. Nested macros are not permitted. 

 

Ex: Following program is an example for macro definitions and macro calls. 

 

  CPU  "6801.TBL" 

 HOF  "MOT8" 

 

ADDITION: MACRO Z,Y ; macro definition steps 

 LDAA  #Z ;  

  ADDA  #Y ;  

  ENDM   ; macro ends 

   

 ORG  0H ; begin program 

  

 ADDITION 10H,20 ; macro Call 

  STAA  1000H ; store result in memory location (1000)H 

  ADDITION 12H,15 ; macro Call 

  STAA  1001H ; store result in memory location (1001)H 

  SWI   ; End Program 

  END   ; 

 

Examine the list file of the program to see that the Macro calls are replaced by the Macro 

definition.  
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IF, ELSE, and ENDI - Conditional Assembly 

 
Cross-32 supports conditionaly assembly using the IF, ELSE and ENDI directives. This 

feature is usually used to re-configure a single assembly language program for different hardware 

environments. 

 

Conditional assembly has the following syntax: 

 

IF expression ; comment 

 line 1 

 line 2 

 . 

 . 

 line n 

ELSE   ; comment 

 line 1 

 line 2 

 . 

 . 

 line n 

ENDI   ; comment 

 

Upon encountering an IF statement Cross-32 evaluates the single expression following it. All 

labels used in this expression must be defined previous to the IF. If the expression evaluates to zero, the 

statements between the IF and either an ELSE or an ENDI are not assembled. If the expression results 

in a non-zero value, the statements between the IF and either an ELSE or an ENDI are assembled.  

ELSE is an optional directive, allowing only one of the two sections of the source file within the IF 

block to be assembled. All conditional blocks must have an IF directive and an ENDI directive, the 

ELSE directive being optional. If blocks may be nested 16 deep before a fatal error occurs. 

 

An example of conditionally assembly follows, where a microprocessor type is selected.  

 

CPU "6801.TBL" 

HOF "MOT8" 

OPTION: EQU 1 

 

IF OPTION=1   ; If 6800 selected 

BRAVAR: EQU 100H   ;  

  ENDI 

IF OPTION=2   ; If 6802 selected 

BRAVAR: EQU 110H   ;  

  ENDI 

 

  ORG  70H 

  BRA BRAVAR 

CONT:  STAA 85H 

  SWI 

 

ORG 100H 

  LDAA #02H 

  BRA CONT 

  ORG 110H 

  LDAA #03H 

  BRA CONT 

END 

 

 In this example Option 1 is selected so BRAVAR variable is set to 100H. Accumulator A is 

loaded with 02H and then this value is stored in memory location 85H. If Option 2 is selected then 

BRAVAR variable is set to 110H which means that accumulator A is to be loaded with 03H and this 

value is going to be stored in memory location 85H.  
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7. MICROPROCESSOR INPUT/OUPUT TECHNIQUES 
 

 

7.1 MONITOR SUBROUTINES 
 

The DT6802 Microprocessor Training Kit Monitor Program has subroutines dealing with the 

keypad and the seven segment display. These subroutines accept an input from the keypad, and convert 

the output data into a suitable format that can be displayed on the seven segment display. DT6802 

Monitor subroutines and their starting addresses are shown in Table 7.1. 

 

 

 

 

 

 

 

 

 

 
 

Table 7.1 - Monitor Subroutines for I/O 

 

Label  : CLEARD 

Memory Address : DFA0H 

Function  : Clears the contents of the seven segment displays. 

Input Parameter : None 

Output Parameter : None 

Example  : JSR  0DFA0H ; clears 7-segment display 

 

 

Label  : PATCON 

Memory Address : 0DFA3H 

Function : Converts the output into a binary number which can be displayed on the seven 

segment display. This subroutine sets the bits, which light the segments of the seven-

segment display to 1. 

Input Parameter : The data to be displayed must be loaded into accumulator A 

Output Parameter : The converted binary number is in accumulator A 

Example  : LDAA  #0H 

  JSR  0DFA3H 

 

In this example, accumulator A is loaded with “0” and then the program jumps to the subroutine at 

addressed 0DFA3H. After the subroutine is executed, accumulator A contains 03FH which is the code 

to light the segments of the display for displaying character “0”.  

 

 

Label  : DISPAT 

Memory Address : 0DFA6H 

Function  : Selects a seven segment display for displaying a character 

Input Parameter : The  converted  data  must  be in accumulator A, and code of  the selected 7-

segment display must be in accumulator B. 

Output Parameter : None 

Example  : LDAA  #0H 

  JSR  0DFA0H 

  LDAB  #01H 

    JSR  0DFA6H 

 

In this example, character 0 is displayed on the first seven segment display. Note that before jumping to 

DISPAT subroutine, the data must have been converted using PATCON subroutine and the code of the 

selected seven segment display must exist in accumulator B. Codes for selecting the seven segment 

displays are given in Table 7.2 . 

Memory

Address

Monitor

Subroutine

DFA0H CLEARD

DFA3H PATCON

DFA6H DISPAT

DFA9H RKEYC
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Seven segment display Code 
1 01H 

2 02H 

3 04H 

4 08H 

5 10H 

6 20H 

7 40H 

8 80H 

 
Table 7.2 - Codes for the seven segment displays 

 

 

Label  : RKEYC 

Memory Address : 0DFA9H 

Function : Waits for an input from the keypad. When a key is pressed, the predetermined value 

of  this key is loaded to accumulator A. 

Input Parameter : None 

Output Parameter : Value of the key pressed is in accumulator A 

Example  : JSR  0DFA9H 

    ANDA  #3FH 

  

When a key is pressed, its predetermined value is loaded to accumulator A (Table 7.3). Then 

accumulator A is ANDed with 3FH. The keys and their predetermined values are given in Table 7.3. 

 

Key Predetermined value Key Predetermined value 
0 00H A 0AH 

1 01H B 0BH 

2 02H C 0CH 

3 03H D 0DH 

4 04H E 0EH 

5 05H F 0FH 

6 06H  10H 

7 07H  11H 

8 08H  12H 

9 09H  13H 

 

Table 7.3 - Predetermined values of keypad keys 
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7.2 Basic Input/Output 
  

Figure 7.1 shows the MPU bus and control structure where processor’s inputs and outputs in 

four functional categories; data, adress, control and supervisory. MC6802 Microporcessor has an 8-bit 

bidirectional bus to faciliate data flow throught the system(Data bus). Address Bus does not only 

specify memory addresses, but also it is a tool to specify I/O devices. By means of its connections to 

Data Bus, Control Bus, and selected address lines, the I/O interface is allocated as an area of memory. 

User may converse with I/O using any of the memory interface reference instructions, selecting the 

desired peripheral with memory address. Control Bus is provided for the memory and interface devices. 

It consists of a heterogenous mix of signals to regulate system operation. MPU supervisory, is used for 

timing and control of the MC6802 itself. Three signals are shared with the control bus and affect the 

memory and I/O device as well. 

 

 
Figure 7.1 - MC6802 Bus and Control Signals 

 

 Every peripheral device is assigned a block of memory addresses (These blocks do not 

intersect). During instruction decoding, the address decoding circuit of the microprocessor enables only 

one peripheral device and other devices are set to high impedance mode.  

 

 Inputs of the address decoding circuit are connected to the address bus and necessary control 

outputs (such as R\W, E, … ) and outputs of this circuit are connected to chip select lines (CS) of each 

peripheral device. 74ALS27 (NOR Gate) and 74LS30 (NAND Gate) in Figure 7.2 are used for address 

decoding circuit (chip select). 74LS125 (Tri-state buffer) and toggle switches are used for input. 

 

Figure 7.2 – Input to a microprocesor unit 
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 In Figure 7.2 CS  output is reset to Logic “0” only when: 

 

A15=A13=A12=A10=A8=R\W=E= Logic “1”    and    A14=A11=A9= Logic “0”  

 

where A is the address line, R\W is the Read\Write output , E is the Enable output. 

 

That is: 

 

 

 

 

 

 

 

 

When the address output of the microprocessor is between B500H and B5FFH, and R/W is  

“Read”, and E is 1, 74LS125 tri-state buffer (whose state diagram and truth table is shown in Figure 

7.3) is enabled, which means that the inputs from the toggle switches are read and the data is sent to 

MPU using data lines. Otherwise the buffer is in high impedance mode. 

 

 

 

Figure 7.3 - Tri-state buffer and its state diagram 

 

Example: The following program applies an input to the microprocessor unit: 

   

ORG  100H 

  LDAB  B500  ; read toggle switches  

  ANDB  #0FH ; mask four MSBs 

  STAB  0100H ; write data read from toggle switches into address 0100H 

  SWI 

 

Example: The following program clears the display then starts an infinite loop which reads the status 

of the toggle switches and displays the result on the seven segment display. 

   

 JSR  0DFA0H ; CLEARD 

RETOG: LDAA  B500H  ; read toggle switches 

  ANDA  #0FH  ; mask four MSBs  

  JSR  0DFA3H ; PATCON 

LDAB  #01H  ; select seven segment display 

 JSR  0DFA6H ; DISPAT 

  BRA  RETOG  ; infinite loop 

  

 JSR  0DFA0H instruction clears the display. Then, program reads the input from toggle 

switches (when B500H  is given as input to the address decoding circuit), and jumps to the subroutine at 

address 0DFA3H (PATCON). This subroutine, converts a data into a code which can be displayed on  

the seven segment display. Then the program jumps to the subroutine at address 0DFA6H (DISPAT), 

which displays the converted data on the seven segment display. This process is repeated in an infinite 

loop. In this loop when the condition of the toggle switches changes, the data displayed on the seven 

segment display also changes. 

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

1 0 1 1 0 1 0 1 X X X X X X X X

           B 5             X             X
 

CS

CS Q

D Q 1 High
z(impedance)0 D

           Tri-state
buffer

        Truth Table
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7.3 MC6820 PIA (Peripheral Interface Adapter) 
 

The MC6820 Peripheral Interface Adapter (PIA), in Figure 7.4, provides a flexible method of 

connecting byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the 

MPU to handle a wide variety of equipment types with minimum additional logic and simple 

programming. 

 

 
Figure 7.4 - MPU/PIA Interface 

 

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional 

data lines, D0 through D7. The direction of data flow is controlled by the MPU via the Read/Write 

input to the PIA. 

 

The “MPU side” of the PIA also includes three chip select lines, CS0, CS1, 2CS , for selecting 

a particular PIA. Two register select inputs, RS0 and RS1, are used in conjuction with a control bit (b2) 

within the PIA for selecting specific registers in the PIA. Figure 7.6 shows the PIA control register 

format. The MPU can read or write into the PIA’s internal registers by addressing PIA via the System 

Address Bus using these five input lines and the R/W signal. From the MPU’s point of view, each PIA 

is simply four memory locations that are treated in the same manner as any other read/write memory. 

Table 7.5 shows the memory addresses that can be accessed by the MPU and the corresponding PIA 

registers. 

 

 

Address PIA Register 
E000H Output and data direction register (Port A) 

E001H Control register (Port A) 

E002H Output and data direction register (Port B) 

E003H Control register (Port B) 

 
Table 7.5 - PIA Register Addresses 

 

The MPU also provides a timing signal to the PIA via the Enable input. The Enable (E) pulse 

is used to condition the PIA’s internal interrupt control circuitry and for the timing of peripheral control 

signals. 

 

The “Peripheral side” of the PIA includes two 8-bit bi-directional data buses (PA0 - PA7 and 

PB0 - PB7) and four interrupt/control lines (CA1, CA2, CB1, CB2) (Figure 7.5). All of the lines on the 

“Peripheral Side” of the PIA are compatible with standard TTL Logic. In addition, all lines serving as 

outputs on the “B” side of each PIA (PB0-PB7, CB1, CB2) will supply up to one miliamp of drive 

current at 1.5 volts, therefore resulting in a more suitable part to use with current requesting peripherals 

(such as leds etc.) 
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Figure 7.5 - PIA Registers 

 

Internal Organization 

 

Internally, the PIA is divided into symmetrical independent register configurations. Each half 

has three main features: an Output Register, a Control Register, and a Data Direction Register (Figure 

7.5). These registers are addressed by MPU as  memory locations from which data can be either read or 

written. The Output and Data Direction Registers on each side represents a single memory location to 

the MPU. The selection between them is internal to the PIA and determined by a bit in their Control 

Register (it is common convention that bit 2 of a data structure implies the third bit from the least 

significant). 

  

Data Direction Registers (DDR) are used to establish each individual peripheral bus line as 

either an input or an output. This is accomplished by having the MPU write “ones” or “zeros” into the 

eight bit positions of the DDR. Zeros or ones cause the corresponding peripheral data lines to function 

as inputs or outputs, respectively. 

 

Output Registers, when addressed, store the data present on the MPU Data Bus during  MPU 

write operation. This data will immediately appear on those peripheral lines that have been 

programmed as outputs. During an MPU Read operation, the data present on peripheral lines, 

programmed as inputs, is transferred directly to the system Data Bus.  

 

Two Control Registers, allow the MPU to establish and control the operating modes of the 

PIA. It is by means of these four lines that control information is passed back and forth between the 

MPU and peripheral devices. 

 

Data Direction Register access is used in conjunction with the register select lines to select 

between internal registers. For a given register select combination, the status bit b2 of the Data 

Direction Register determines whether the Data Direction Register (if b2=0) or the Output Register (if 

b2=1) is addressed by the MPU. 
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Figure 7.6 - PIA Control Register Format 
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  The PIA (6821) has got three chip select inputs (CS0, CS1, 2CS ), and two register select 

inputs (RS0 and RS1) (Figure 7.7). CS0 and CS1 are high active, 2CS  is low active. CS0 and CS1 is 

connected to the Vcc (+5V). So these two inputs are always in high active position. 2CS  input is 

connected to the Y0 ouput of 74LS138 83  decoder. In the  address decoding circuit, when memory 

block between E000 and E3FF is decoded, the output Y0 is logic(0). When microprocessor addresses a 

memory location in this range, PIA is selected via 2CS . The microprocessor’s A0 and A1 address 

lines are connected to PIA’s RS0 and RS1 (register select) inputs and they select one of the PIA 

registers in Table 7.5 depending on the value of 2CS , RS0, RS1, then the data in D7-D0 (from the 

MPU) is transferred to PIA registers PB7-PB0 (or PIA7-PIA0), ot the data in PIA registers is 

transferred through D7-D0 to the MPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.7 – 6821 PIA’s hardware diagram 

 

 

The PIA’s registers are reset when the RESET input of PIA is activated (logic ‘0’). This is 

usually used when initializing the system. Therefore this input is connected to the microprocessor’s 

RESET line. 

 

PIA’s WR /  input determines the data transfer direction, so it is connected to the 

microprocessor WR /  line. PIA’s E signal synchronises the data transfer between PIA and 

microprocessor, so it is connected to microprocessor E clock line. D0-D7 data inputs are connected to 

the microprocessor data lines for data transfer. PIA’s Port A (PA0-PA7) can be programmed as output 

or input. Similarly PIA’s Port B (PB0-PB7) can be programmed as output or input. 
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Example:  In PIA configuration, Control Register is addressed by a unique memory location 

E001 for port A and E003 for port B. But Data Direction Register (DDR) and Output Register are 

addressed by the same memory location that is E000 for port A and E002 for port B. Therefore it is 

necessary to choose whether DDR or Output Register is used by means of b2 of appropriate control 

register. DDR selection can be achieved by clearing b2 of E000 for port A and E002 for port B. 

 

In the following program, PIA’s Port A pins are programmed as input and PIA’s Port B pins 

are programmed as output.    

 

CLR   E001H  ; DDR is selected for port A 

CLR  E003H  ; DDR is selected for port B 

CLR  E000H  ; All of the port A pins are programmed as input 

LDAA  #FFH    ;  

STAA  E002H  ; All of the port B pins are programmed as output 

LDAA  #04H    ;  

STAA  E001H  ; Output register is selected for port A 

STAA  E003H  ; Output register is selected for port B 

LDAA  E000H  ; Data is read from Port A and written into accumulator A. 

STAA  E002H  ; Data in accumulator A is stored in pins of port B. 
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8. TIME DELAYS 
 

While handling input/output in a microprocessor system, one important problem is the generation of 

time intervals with specific lenghts. Such intervals are necessary to debounce mechanical switches, to 

refresh displays, and to provide timing for devices that transfer data regularly. 

 

Timing intervals can be produced in several ways: 

 

1) By hardware with one-shots or monostable multivibrations. These devices produce a single 

pulse of fixed duration in response to a pulse input. 

 

2) By a combination of hardware and software with a flexible programmable timer. Motorola 

MC6840 can provide timing intervals of various lengths with a variety of starting and ending 

conditions. 

 

3) By software with delay routines. These routines use the processor as a counter. This is 

possible since the processor has a stable clock reference. 

 

The software method is inexpensive but may overburden the processor. The programmable timers are 

relatively expensive, but are easy to interface and may be able to handle many complex timing tasks. 

 

 

8.1 Software generated time delays 
 

A simple delay routine works as follows: 

 

Step 1) Load a register with a specified value. 

Step 2) Decrement the register. 

Step 3) Repeat Step 2 until it is equal to zero,  

 

This routine does nothing except consuming time. The amount of time consumed depends on the 

execution time of the instructions used. Maximum delay time is limited by the size of the register. 

 

Ex 1: Following program code uses a single 8-bit register to produce delay. 

 

TLOOP:  LDAA  #0AH   2 clock cycles 

DELAY: DECA     2 clock cycles 

  BNE  DELAY   4 clock cycles 

  RTS 

 

 Delay time is calculated using the time (in clock cycles) consumed by the execution of each 

instruction. In this example LDAA instruction is executed once, and DELAY loop is repeated 10 times 

(as the number in accumulator A is 0AH).  

 

The delay (NC) generated by the above code in number of cycles is: 

NC = 2 + (2 + 4)*10 = 62 clock cycles 

 

If  processor clock is 1MHz then the period TC  = 1 s  

Therefore the delay time of  the above program is: 

Delay Time = NC * TC = 62 s = 0,062msec. 

 

Accumulator A  is an 8-bit register. Maximum number that can be stored in this register is 

FFH. Therefore the maximum delay can be obtained if 00H is stored in accumulator A initially. Note 

that DELAY loop begins with a DECA instruction and if accumulator A initially contains FFH  the loop 

is repeated FEH times, until accumulator A becomes 00H. However storing 00H to accumulator A 

initially, causes the loop to be repeated FFH times, and the maximum delay is calculated as: 

 

[2 + 6*2
8
] s =1538 s  = 1,538 msec. = 0,01538 seconds. 
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Ex 2: To obtain longer delays with 8-bit registers, two 8-bit registers can be used. 

 

TLOOP:  LDAB  #xH    2 clock cycles 

DELAY2: LDAA  #yH    2 clock cycles 

DELAY1: DECA      2 clock cycles 

  BNE  DELAY1   4 clock cycles 

  DECB      2 clock cycles 

  BNE  DELAY2   4 clock cycles 

  RTS 

 

In this example two 8-bit registers (accumulators A and B) are used. LDAB instruction loads 

value xH to accumulator B and is executed once. Therefore, DELAY2 loop is repeated xH times. At 

each repetition of DELAY2 loop, value yH is loaded to accumulator A, which causes DELAY1 loop to 

be repeated xH*yH . Total number of cycles is: 

 

NC = 2 + ( 2 + ( 2 + 4)*yH + 2 + 4) * xH cycles (Note: while calculating NC, convert the xH and yH into 

decimal numbers) 

 

Accumulators A and B are 8-bit registers. Maximum number that can be stored in each 

register is FFH. As the delay loops begin with a DEC instruction, maximum delay time is obtained if 

both accumulators contain 00H initially. 

 

NC = 2 + ( 2 + ( 2 + 4)*2
8
 + 2 + 4) * 2

8
 cycles, and  

maximum delay time = 395266 s  0,4 second. 

 

Ex 3: Following code uses Index Register (16-bit register) to produce delay. 

 

TLOOP:  LDX  # xH    3 clock cycles 

DELAY: DEX     4 clock cycles 

  BNE  DELAY   4 clock cycles 

  RTS 

 

 LDX instruction is executed once. Then, DELAY loop is repeated xH times (as the number 

loaded in index register is xH).   

 

NC = 3 + (4 + 4)*xH (Note: while calculating NC, xH must be converted into decimal) 

Maximum delay time(when X=0000H) = 3 + 8*2
16

 = 524291 s 0,52 seconds. 

 

Ex 4: To obtain 1 ms delay using index register 

 

1000
1

1

s

ms

T

DelayTime
N

C

C
 clock cycles are required 

 

For the loop in Ex. 3 

 

NC = 3 + 8*x = 1000 

 

Then, 

 

10124
8

31000
x  =  (007C)H  

 

Therefore initially 7CH must be loaded to index register (LDX   #007CH) 
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 9. MC6802 Interrupts 
 

 In a typical application, peripheral devices may be continuously generating asynchronous 

signals (interrupts) that must be acted on by the MPU. The interrupts may be either requests for service 

or acknowledgements of services performed earlier by the MPU. The MC6802 MPU provides several 

methods for automatically responding to such interrupts in an orderly manner. 

 

 During the execution of the program when an interrupt occurs; the status of MPU is stored 

(i.e. accumulators, program counter, index register, and CCR) is stored in the memory addressed by the 

Stack Pointer (Figures 9.1, 9.2). Then program counter is loaded with the starting address of the related 

Interrupt Service Routine (ISR). After the execution of the ISR, the RTI instruction causes the contents 

of the Program Counter to be restored from the stack, and program execution continues with the next 

instruction. 

 
Figure 9.1 - Basic flow diagram of  an interrupt service  

 

In the control of interrupts, three general problems must be considered: 

 

1. It is the characteristic of most applications that interrupts must be handled without 

permanently disrupting the task in process when the interrupt occurs. The MC6802 handles 

this by saving the results of its current activity so that processing can be resumed after the 

interrupt has been serviced. 

 

2. There must be a method of handling multiple interrupts since several peripherals may be 

requesting service simultaneously. 

 

3. If some signals are more important to system operation or if certain peripherals require faster 

servicing than others, there must be a method of prioritizing the interrupts. 

 
The status of the microprocessing unit is stored in the stack  during the following operations (Figure 9.2): 

 

 in response to an external condition indicated by a negative edge on the “Non-maskable Interrupt” 

control input signal to the MPU. 

 

 during the execution of a machine code corresponding to either of the source language instruction 

SWI or WAI. 

 

 during servicing of an interrupt from a peripheral device, in response to a negative edge on the 

“Interrupt request” control input signal to the MPU. 

 

 

 

 

 

 

 

 

…..

Program I.S.R.

Flow …

Interrupt Request …

SAVE RTI

LOAD

Interrupt Service 

Routine  (ISR) 
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When an interrupt occurs; 

 

a) memory address of the next instruction to be executed is stored in the stack 

b) contents of the other registers are stored in the stack 

 

 

9.1 Interrupt Pointers 
 

The MPU has three hardware interrupt inputs,  Reset 
1

)(RES , Non-Maskable Interrupt )(NMI , 

and Interrupt Request )(IRQ . An interrupt sequence can be initiated by applying a suitable control 

signal to any of these three inputs or by using the software SWI instruction. The resulting sequence is 

different for each case. 

 

A block of memory, called interrupt vector is reserved for pointers to the interrupt service 

rotines which are to be executed in the event of a reset (or power down), a non-maskable interrupt 

signalled by a “low state” of the “Non-maskable Interrupt” control input, a software interrupt, or a 

response to an interrupt signal from a peripheral device. Figure 9.3 shows the memory addresses 

reserved as the interrupt vector and the associated interrupt types. 

 

 

 

Interrupt Type Addresses Used 

Reset ( RESET ) FFFE,FFFF 

Non-Maskable Interrupt ( NMI ) FFFC,FFFD 

Software Interrupt Instruction (SWI) FFFA,FFFB 

Interrupt Request ( IRQ ) FFF8,FFF9 

 
 

Figure 9.3 - Interrupt Vector, Permanent Memory Assignments 

 

 

 

 

Before Interrupt Sequence After Interrupt Sequence

Memory Memory

SP 1FF8

1FFF9 CC

1FFFA ACCB

1FFB ACCA

1FFC IXH

1FFD IXL

1FFE PCH

SP 1FFF 1FFF PCL

CC : Condition Codes PCH : Prog. Counter High

IXH : Index Register, High Bytes PCL  : Prog. Counter Low

IXL : Index Register , Low Bytes SP : Stack Pointer  

  Fig 9.2 – Saving the Status of the Microprocessor in the Stack 
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9.2 Interrupt Request )(IRQ  

 

Inputs to IRQ  are normally generated in PIAs and ACIAs but may also come from other user-

defined hardware. In either case, various interrupts may be wired-ORed and applied to the MPU’s IRQ  

input. This input is level sensitive, a logic zero causes the MPU to initiate the interrupt sequence
2
. A 

flow chart of the IRQ  sequence is given in Figure 9.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.4 - Hardware Interrupt Request Sequence 

 

After finishing its current instruction and testing the Interrupt Mask in the CCR, the MPU 

stores the contents of its programmable registers in the memory locations specified by the Stack 

Pointer. This stacking process takes seven memory cycles; two for each of the Index register and 

Program Counter, and one each for accumulator A, accumulator B, and the CCR. The Stack Pointer is 

decremented seven locations and is pointing to the next empty memory location. 

 

The MPU’s next step of setting Interrupt Mask to logic one allows the system interrupt control 

program to determine the order in which multiple interrupts will be handled. If it is desirable to 

recognize another interrupt (of higher priority, for example) before service of the first is complete, the 

Interrupt Mask can be cleared by a CLI instruction at the beginning of the current service routine. If 

each interrupt is to be completely serviced before another is recognized, the CLI instruction is omitted 

and a Return from Interrupt instruction, RTI, placed at the end of the service routine restores the 

Interrupt Mask status from the stack, thus enabling recognition of subsequent interrupts. 

 

Note that if the former method is selected, the original interrupt service will still eventually be 

completed. This is due to the fact that the later interrupt also causes the current status to be put on the 

stack for later completion. This process is general and means that interrupts can be “nested” to any 

depth required by the system limited only by memory size. The status of the interrupted routines is 

returned in a LIFO basis. 

 

After setting the Interrupt Mask, the MPU next obtains the address of the first interrupt service 

routine instruction from memory locations permanently assigned to the IRQ  interrupt input. This is 

accomplished by loading the Program Counter’s high and low bytes from memory locations responding 

to addresses, FFF8 and FFF9, respectively. The MPU then fetches the first instruction from the location 

now designated by the Program Counter. 

 

IRQ
2

 is a maskable input . If the Interrupt Mask Bit within the MPU is set, low levels on the  IRQ  line will 

not be recognized; the MPU will continue current program execution until the mask bit is cleared by 

encountering the Clear Interrupt (CLI) instruction in the control program, or an RTI is encountered. 
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This technique of indirect addressing (also called vectoring) is also used by other interrupt 

sequences. The “vectors” are placed in the memory locations corresponding to addresses FFF8 through 

FFFF during program development (Figure 9.3). 

 

 

9.3 Non-Maskable Interrupt )(NMI  

 

The Non-Maskable Interrupt )(NMI  must be recognized by the MPU as soon as the NMI  

line goes to logic zero. This interrupt is often used as a power-failure sensor or to provide interrupt 

service to a “hot” peripheral that must be allowed to interrupt.  

 

Except for the fact that it cannot be masked, the NMI  interrupt sequence is similar to IRQ   

(Figure 9.5). After completing its current instruction, the MPU stacks its registers, sets the Interrupt 

mask and fetches the starting address of the NMI  interrupt service routine by vectoring to FFFC and 

FFFD. The MPU then starts execution of the Non-Maskable Interrupt Program, which begins with the 

instruction which is now addressed by the program counter. 

 
Figure 9.5 - Non-Maskable Interrupt Sequence 

 

 

9.4 Reset )(RES  

 

The Reset interrupt sequence differs from NMI  and IRQ  in two respect. When RES  is low, 

the MPU places FFFE (the high order byte of the RES  vector location) on the Address Bus in 

preparation for executing the RES  interrupt sequence. It is normally used following power on to reach 

an initializing program that sets up system starting conditions such as initial value of the Program 

Counter, Stack Pointer, PIA Modes, etc. It is also available as a restart method in the event of system 

lockup or runaway. Because of its use for starting the MPU from a power down state, the )(RES  

sequence is initiated by a positive going edge. Also, since it is normally used only in a start-up mode, 

there is no reason to store the MPU contents on the stack. After setting the Interrupt mask, the MPU 

loads the Program Counter from the memory locations responding to FFFE and FFFF and then 

proceeds with the initialization program (Figure 9.6). 
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Figure 9.6 - Reset Interrupt Sequence 

 

 

9.5 Software Interrupt )(SWI  

 

The MPU also has a program initiated interrupt mode. Execution of the software interrupt 

)(SWI instruction by the MPU initiates the sequence (Figure 9.7). The sequence is similar to the 

hardware interrupts except that it is initiated by “software” and the vector is obtained from memory 

locations responding to FFFA and FFFB. 

 
Figure 8.7 -  Software Interrupt Sequence 

 

The Software Interrupt is useful for inserting break-points in the program as an aid in 

debugging and troubleshooting. In effect, the SWI stops the process in place and puts the MPU register 

contents into memory where they can be examined or displayed. 

 

During execution of the SWI instruction, the status of the MPU is stored in the stack, the value 

stored for the PC is the address of the SWI instruction plus one. After the status has been stored in, the 

interrupt mask bit “I” is set (I=1). The MPU will not respond to an interrupt request from a peripheral 

device while the interrupt mask is set. The program counter is then loaded with the address stored in 

software interrupt pointer, at location FFFA and FFFB. The MPU then proceeds with execution of a 

SWI program, which begins with the instruction pointed by the program counter. The MPU will remain 

insensitive to an interrupt request from any peripheral device until the interrupt mask bit has been reset 

by execution of the programmed instruction. 
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9.6 Wait Instruction (WAI) 
 

During the execution of the WAI instruction, the status of the MPU is stored in the stack. The 

value stored for the PC is the address of the WAI instruction plus one. Execution of the WAI 

instruction does not change the interrupt mask bit. 

 

If the interrupt mask bit is set (I=1), the MPU cannot respond to an interrupt request from any 

peripheral device. Execution will stop after saving the status of the MPU. In this case execution could 

be resumed only by a non-maskable interrupt or a reset interrupt. If the interrupt mask bit is in the reset 

state (I=0), the MPU will service any interrupt request which may be present.  

 

9.7 Return from Interrupt (RTI) 
 

 This is a 1-byte machine instruction. Execution of this instruction consists of the restoration of 

the MPU to a state pulled from the stack. After the execution of the RTI instruction, seven bytes of 

information are pulled from the stack and stored in respective registers of the MPU. The address stored 

in the stack pointer is incremented before each byte of information is pulled from the stack. 

 

9.8 Interrupt Prioritizing  
 

If there is only one peripheral capable of requesting service, the source of the interrupt is 

known and the control program can immediately begin the service routine. More often, several devices 

are allowed to originate interrupt request and the first task of the interrupt routine is to identify the 

source of the interrupt. 

 

There is also the possibility that several peripherals are simultaneously requesting service. In 

this case, the control program must also decide which interrupt to service first. The )(IRQ  interrupt 

service routine in particular may be complex since most of the I/O interrupts are wire-ORed on this 

line. 

 

The most common method of handling the multiple and/or simultaneous )(IRQ  interrupts is 

to begin the service routine by “polling” the peripheral’s signals coming in through a PIA or an ACIA. 

The polling procedure is very simple. In addition to causing )(IRQ  to go low, the interrupting signal 

also sets a flag bit in the PIA’s or ACIA’s internal registers. Since these registers represent memory 

locations to the MPU, the polling consists of nothing more than stepping through the locations and 

testing the flag bits. 

 

Establishing the priority of simultaneous interrupts can be handled in either of two ways. The 

simplest is to establish priority by the order in which the PIAs and ACIAs are polled. That is, the first 

I/O flag encountered gets the service, so higher priority devices are polled first. The second method 

first finds all the interrupt flags and then uses a special program to select the one of having the highest 

priority. This method permits a more sophisticated approach in that the priority can be modified by the 

control program. 

 

Software techniques can, in theory, handle any number of devices to any sophistication level 

of prioritizing. In practice, if there are many sources of interrupt requests, the time required to find the 

appropriate interrupt can exceed the time available to do so. In this situation, external prioritizing 

hardware can be used to speed up the operation. 
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Example: Write a program which fills the seven segment displays with the number FH. The program 

repeats itself when  is entered. The program finishes when  is entered. When an interrupt request 

occurs, the program proceeds as follows: 

If  the interrupt request is IRQ interrupt, fill the displays with the number AH.  

If  the interrupt request is SWI interrupt, fill the displays with the number BH.  

If  the interrupt request is NMI interrupt, fill the displays with the number CH.  

If  the interrupt request is RESET interrupt, fill the displays with the number EH. 

 

  ORG  100H 
 

LDS  #1FFFH  ; initialize the stack pointer  

  CLC    ; clear carry 

LDAA  #01H  ; load the first seven-segment display code 

  STAA  600H  ; store the code in memory location 600H 

  LDX  #200H  ; Initialise IRQ interrupt 

  STX  FFF8H  ; service routine address 

  LDX  #300H  ; Initialise SWI interrupt 

  STX  FFFAH  ; service routine address 

  LDX  #400H  ; Initialise NMI interrupt 

  STX  FFFCH  ; service routine address 

  LDX  #500H  ; Initialise RESET interrupt 

  STX  FFFEH  ; service routine address 

  CLI 

DISP:  LDX  600H  ; load the seven-segment display code  

  LDAA  #FH  ; load number to fill the display in accumulator A 

  JSR  0DFA3H ; PATCON 

  LDAB  0,X  ; select seven-segment display 

  JSR  0DFA6H ; DISPAT 

  CMPB  #80H  ; are all 7 segment displays FH? 

BEQ  REPLAY ; YES, jump to decision 

ASL  600H  ; Arithmetic shift left contents of the 600H  

 BRA  DISP  ; Loop instruction 

 

STOP:  SWI 

 

REPLAY: LDAA  #01H  ; load the first seven-segment display code 

  STAA  600H  ; store the code in memory location 600H 

KLOOP: JSR  0DFA9H ; RKEYC 

  ANDA  #3FH   

  CMPA  #13H  ; is it ? 

  JSR  0DFA0H ; CLEARD 

  BEQ  DISP  ; YES, replay routine 

  CMPA  #11H  ; NO, is it  ? 

  BEQ  STOP  ; YES, finish program 

  BRA  KLOOP  ; None of them, replay KLOOP loop 

 

  ORG  200H  ; Interrupt Service Routine for IRQ 
   

JSR  0DFA0H ; CLEARD 

  CLC    ; Clear carry 

LDAA  #01H    

  STAA  600H   

DISP1:  LDX  #600H    

  LDAA  #AH  ; displays AH  

  JSR  0DFA3H  

  LDAB  0,X 

  JSR  0DFA6H 

  JSR  DELAY 

CMPB  #80H 

BEQ  FINISH1 
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ASL  600H 

BRA  DISP1 

 

FINISH1: RTI 

 

ORG  300H  ; Interrupt Service Routine for SWI 
 

  JSR  0DFA0H ; CLEARD 

  CLC    ; Clear carry 

 LDAA  #01H 

  STAA  600H 

DISP2:  LDX  #600H 

  LDAA  #BH 

  JSR  0DFA3H 

  LDAB  0,X 

  JSR  0DFA6H 

  JSR  DELAY 

CMPB  #80H 

BEQ  FINISH2 

ASL  600H 

BRA  DISP2 

FINISH2: RTI 

 

ORG  400H  ; Interrupt Service Routine for NMI 
 

  JSR  0DFA0H ; CLEARD 

  CLC    ; Clear carry 

  LDAA  #01H 

  STAA  600H 

DISP3:  LDX  #600H 

  LDAA  #CH 

  JSR  0DFA3H 

  LDAB  0,X 

  JSR  0DFA6H 

  JSR  DELAY 

CMPB  #80H 

BEQ  FINISH3 

ASL  600H 

BRA  DISP3 

FINISH:  RTI 

 

  ORG  500H  ; Interrupt Service Routine for RESET 
 

  JSR  0DFA0H ; CLEARD 

  CLC    ; Clear carry 

  LDAA  #01H 

  STAA  600H 

DISP4:  LDX  #600H 

  LDAA  #EH 

  JSR  0DFA3H 

  LDAB  0,X 

  JSR  0DFA6H 

  JSR  DELAY 

CMPB  #80H 

BEQ  FINISH4 

ASL  600H 

BRA  DISP4 

FINISH4: RTI 

 

  ORG  700H  ; Delay Service Subroutine 
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DELAY: STX  1000H   

  PSHB 

 LDX  #0FFFH 

KDELAY: LDAB  #02H 

KDELAY1: DECB 

  BNE  KDELAY1 

  DEX 

  BNE  KDELAY 

  PULB 

  LDX  1000H 

RTS 


