
Summary This application note provides design advice for implementing arithmetic logic functions in two
High-Level Design Languages (HDLs), VHDL and Verilog.

Introduction This application note discusses design considerations for HDL coding of simple arithmetic
functions in Virtex™ devices. HDL code examples for implementing adders, subtracters, two's
complementers, comparators and multipliers are provided in the reference design. Because it
is without primitive instantiations, the HDL code is portable across the Virtex device families.

The strong connection between synthesis tools and HDL coding styles is discussed. The HDL
code provided in the reference design files is available by downloading XAPP215.zip or
XAPP215.tar .gz. Three different synthesis tools were used to gauge the effect of the code on
expected results: Synopsys FPGA Express v3.3, Synplicity Synplify 5.2.2a, and Exemplar
Leonardo Spectrum v1999.1i.

The focus on arithmetic functions is due to their common usage in Digital Signal Processing
(DSP) based designs. DSP is increasingly being used in wireless applications and involve a
large number of repetitive arithmetic operations. For the best, high-performance utilization of
the FPGA, the fewest logic cells with a minimum delay must be used by these arithmetic
operations. The Virtex series employs a powerful Configurable Logic Block (CLB) architecture
with the requisite speed, utilization and re-programmability advantages. The Virtex architecture
combined with HDL coding guidelines help to achieve the target performance.

Virtex CLB For the best performance and to evaluate the performance of the synthesis tool, the Virtex
architecture must be understood. An explanation of the Virtex congifurable logic block (CLB) is
appropriate. The basic building block of the Virtex CLB is the logic cell (LC). In Figure 1, the
CLB contains four LCs organized as two slices. Figure 2 shows a more detailed view of a single
slice (i.e. half the CLB).

An LC includes a 4-input function generator, carry logic and a storage element. The function
generator is implemented as a 4-input look-up table (LUT) and can implement ANY 4-input
logic function. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit
or 32 x 1-bit synchronous RAM or 16 x 1-bit dual-port synchronous RAM. A Virtex LUT can
also implement a 16-bit shift register to capture high-speed data or burst-mode data.

The output from the 4-input LUT in each LC drives both the CLB output and the D-input of the
flip-flop. Each additional 2-input dedicated AND gate per LUT implements an efficient 1-bit
multiplier. The Virtex CLB is explained in detail in the Vir tex data sheet .

Application Note: Virtex Series

XAPP215 (v1.0) June 29, 2000

Design Tips for HDL Implementation of
Arithmetic Functions
Author: Steven Elzinga, Jeffrey Lin, and Vinita Singhal

R
XAPP215 (v1.0) June 29, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www .xilinx.com/legal.htm .
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
 ftp://ftp.xilinx.com/pub/applications/xapp215.zip
http://www.xilinx.com/partinfo/ds003.pdf
 ftp://ftp.xilinx.com/pub/applications/xapp215.tar.gz
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Design Tips for HDL Implementation of Arithmetic Functions
R
Figure 1: 2-Slice Virtex CLB

F1

F2

F3

F4

G1

G2

G3

G4

Carry &
Control

Carry &
Control

Carry &
Control

Carry &
Control

LUT

CINCIN

COUT COUT

YQ

XQXQ

YQ

X

XB

Y
YBYB

Y

BX

BY

x215_01_041400

Slice 1 Slice 0

XB

X

LUT

F1

F2

F3

F4

G1

G2

G3

G4

LUT

BX

BY

LUT

D
EC

Q

RC

SP

D
EC

Q

RC

SP

D
EC

Q

RC

SP

D
EC

Q

RC

SP

2 www.xilinx.com XAPP215 (v1.0) June 29, 2000
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
Virtex Carry Logic
The most relevant feature of the CLB is the dedicated carry logic to implement fast, efficient
arithmetic functions. Dedicated carry logic provides fast arithmetic carry capability for high-
speed arithmetic functions. Synthesis tools leveraging this carry logic produce fast and
compact designs. There are two separate carry chains in the Virtex CLB, one per slice. The
height of the carry chains is two bits per CLB. The logic consists of a 2-input MUX (MUXCY)
and an XOR (XORCY) gate. The XOR gate allows a 1-bit full adder to be implemented within
a logic cell (LC). In addition, a dedicated AND gate improves the efficiency of the multiplier
implementation. The dedicated carry path is used to cascade LUT functions for implementing
wide logic functions. This reduces logic delays due to the decreased number of logic levels
even for very high fan-in functions.

Figure 2: Block Diagram of a Single-Slice Virtex CLB

BY

F5IN

SR
CLK

CE

BX

YB

Y

YQ

XB

X

XQ

G4
G3
G2
G1

F4
F3
F2
F1

CIN

0

1

1

0

F5 F5

x215_02_041400

COUT

CY

D
EC

Q

D
EC

Q

F6

CK WSO

WSH

WE

A4

BY DG

BX DI

I3
I2
I1

I0

DI

O

WE

LUT

MUXCY

XORCY

I3
I2
I1
I0

O

DIWE

LUT

INIT

INIT

REV

REV
XAPP215 (v1.0) June 29, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
Design
Considerations
for HDL Coding

When designing with HDL it is important to consider coding style and synthesis. By using
synthesis vendor recommended coding style, the designer can control the synthesis results.
This section discusses the optimum implementation for coding the arithmetic functions of a full-
featured arithmetic module. The following VHDL code is for a synchronous, resetable, setable,
loadable, clock-enabled, adder/subtractor arithmetic module.

if clk'event and clk = '1' then
-- if the reset is asserted, set the counter value to zeros
if reset = '1' then

sum <= (others => '0');
-- if the set is asserted, set the counter value to ones
elsif set = '1' then

sum <= (others => '1');
-- if the load signal is asserted, load what is on the load input
elsif load = '1' then

sum <= load_value;
-- finally, if the adder/subtractor is enabled, do the operation,
-- which is dependant on the subtract input signal.
elsif enable = '1' then

if subtract = '1' then
sum <= ('0'&a) - ('0'&b);

else
sum <= ('0'&a) + ('0'&b);

end if;
end if;

end if;

In the Virtex architecture, if either a set or reset signal is used, the prior circuit is implemented
at 2-bits per slice (half a CLB). In Table 1 and Figure 4, a creative use of the LOAD signal forces
a "0" on the carry chain allowing the carry-out "COUT" signal to remain unaffected during a load
operation. The carry out of the 2-bit adder/subtractor is computed with no additional logic
overhead. A "0" on the input of the XOR gate in the carry-chain logic loads the desired value
into the registers. The SUBTRACT and LOAD signals and related logic are absorbed into the 4-
input LUT without additional logic overhead. Since in the Virtex architecture each LUT has a
dedicated register, registering arithmetic operations yield synchronous pipelined designs at no
extra register cost. A synchronous, resetable (or setable), loadable, clock-enabled,
adder/subtractor compact design is implemented in one logic level. This translates into higher-
performance since fewer logic levels allows designs to run at higher clock frequencies.

Figure 3: Carry Logic Diagram

XORCY

0 1

Function�
Generator

COUT

CIN

MUXCY

x215_03_042000
4 www.xilinx.com XAPP215 (v1.0) June 29, 2000
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
Use of Set and Reset

Typically, designs use either a set or a reset for initializing registers which are easily absorbed
into the dedicated set/reset pin on the flip-flops in the CLB. An application that uses both set
and reset could yield a larger circuit, depending upon the number of inputs each bit slice
requires to produce an output. When set and reset (synchronous) are both specified, the
set/reset logic is synthesized to use the LUT logic feeding the data input of the flip-flop. This
leaves two inputs for the logic function feeding the data. If the logic function already has three
or more input signals, it will be implemented in two LUTs thus increasing the number of logic
levels by one.

Signed and Unsigned Values

Any arithmetic function created can take signed and/or unsigned numbers as operands. When
dealing with unsigned numbers, both Verilog and VHDL handle them with equal ease. The two
languages differ in signed arithmetic support.

In the case of synthesizable Verilog, every number is treated as an unsigned value. All inferred
arithmetic functions will be created for unsigned values and operate correctly without any
special number handling. Signed numbers are handled differently. In Verilog, only values of

Table 1:

LOAD SUBTRACT Function

0 0 Q <= D

0 1 Q <= −D

1 0 Q <= Q + D

1 1 Q <= Q − D

Figure 4: Loadable Arithmetic Function

INIT = 8778 COUT

MUXCY

x215_05_053000

D1
Q1

Q1

INIT = 8778

D0
Q0

Q0

SUBTRACT

LOAD

XAPP215 (v1.0) June 29, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
type "integer" or "real" can be processed as negative numbers. Both signed and unsigned
types are at least 32-bits wide.

Verilog

All exceptions in Verilog for variable sized signed numbers must be handled by the designer.
Verilog does not automatically handle signed numbers. Despite the fact that placing a negative
sign ("−") in front of a variable automatically makes it a two's complement of the original
number, these negative numbers will not be processed correctly by inferred operations. For
example, if the following is used to infer a magnitude comparator:

c = (a < b) : 1'b1 ? 1'b0;

"a" and "b" are to be treated as signed numbers, the output, "c", will be incorrect.

The designer must manually handle the exceptions of dealing with signed numbers in verilog,
since there is no generic way to create minimum sized circuits. Also, special methods of
handling one type of function, may not work equally well for a different function.

Example: Signed Numbers
// This example is of a signed magnitude comparator
module mag_comp_sign (a, b, a_gtet_b);
input [7:0]a;
input [7:0]b;
output a_gtet_b;
reg a_gtet_b;
// make an intermediate variable used to do a subtraction
wire [8:0]intermediate;
assign intermediate = a - b;
always @(a or b or intermediate)
begin

// if the subtraction is zero they are equal and we can assert
// the greater than equal to signal.
if(intermediate == 9'd0)

a_gtet_b = 1'b1;
// if the subtraction is not zero, we must find out which number is larger
else

begin
if(a[7] == 1'b1) // check the msb of 'A' to see if it is negative

begin
if(b [7]== 1'b0) // if B is positive, B is larger

a_gtet_b = 1'b0;
else

begin
// if the sum of the number is negative, B is larger
// if the sum is positive, A is larger
// determine sign by checking sign bit, the MSB
if(intermediate [8] == 1'b1)

a_gtet_b = 1'b0;
else

a_gtet_b = 1'b1;
end

end
else // since the msb is not a '1', A is positive

begin
if(b [7] == 1'b1) // if B is negative, A is larger

a_gtet_b = 1'b1;
else

begin
// if the sum is negative, B is larger, else A is larger
if (intermediate [8] == 1'b1)

a_gtet_b = 1'b0;
else
6 www.xilinx.com XAPP215 (v1.0) June 29, 2000
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
a_gtet_b = 1'b1;
end

end
end

end

endmodule

Because of the nested structure of this example, the circuit produced is not optimal. Optimal
circuitry may be created with more task specific coding, however this task specific coding may
not work with other function types. This example simply illustrates that when the data types in
the design are not integers or real types, the designer should treat any signed numbers as
signed numbers. No assumptions can be made about the ability of the inferred logic to work
with signed numbers.

VHDL

For VHDL, arithmetic operations with unsigned and signed values are inferred by including the
appropriate arithmetic libraries. When designing with signed numbers, the VHDL libraries will
create circuits which will handle two's complement numbers.

When dealing with unsigned values, include the following libraries:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

When dealing with signed values, include the following:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

The IEEE.std_logic_1164.all simply allows for the usage of IEEE definitions such as std_logic
signals and std_logic_vector busses. The IEEE.std_logic_arith.all allows the synthesis tools to
infer arithmetic functions from operators. The IEEE.std_logic_signed and
IEEE.std_logic_unsigned libraries instruct the synthesis tools to create circuits to handle
signed or unsigned numbers, respectively. When using VHDL, a line change to have inferred
functions for either signed or unsigned values. To ensure that signed circuits are created, the
operands to a operator should be declared as a "signed" value.

VHDL Example: Signed Numbers
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

entity magcomp is

port (
a: in signed (7 downto 0);
b: in signed (7 downto 0);
a_gtet_b: out std_logic;

);
end magcomp;

architecture magcomp_arch of magcomp is

begin
a_gtet_b <= '1' when a >= b else '0';

end magcomp_arch;
XAPP215 (v1.0) June 29, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
In this example, the inputs, a and b are defined as "signed" values. The comparator created
does a proper comparison for "−1" and "1". If a mixture of both signed and unsigned functions
are created, both the IEEE.std_logic_signed and IEEE.std_logic_unsigned libraries should be
included. Each signal in the design is declared as a "signed" value or "unsigned" value.

VHDL Example: Signed and Unsigned Numbers
library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
use IEEE.std_logic_unsigned.all;

entity magcomp is

port (
a: in signed (7 downto 0);
b: in signed (7 downto 0);
a2: in unsigned (7 downto 0);
b2: in unsigned (7 downto 0);
a_gtet_b: out std_logic;
a_gtet_b2: out std_logic

);
end magcomp;

architecture magcomp_arch of magcomp is

begin

a_gtet_b <= '1' when a >= b else '0';
a_gtet_b2 <= '1' when a2 >= b2 else '0';

 end magcomp_arch;

Carry-in

Implementation of the carry-in bit for addition is simpler than a "borrow" for a subtract operation.
The HDL coding is shown in the following example.

Example:

VHDL: sum <= (a + b) + c_in;

Verilog: sum = (a + b) + c_in;

In both cases the carry-in (c_in) is only one-bit wide. Most synthesis tools correctly infer the
adder and use the carry logic hardware for the carry-in bit. Using parentheses to separate the
adder and the carry-in generates clearer code for the desired results.

Overflows and Carry-Outs

Overflows in addition operations must be handled by design. Typically, synthesis tools will not
automatically infer circuitry to handle overflows irrespective of the HDL used.

If the result of an accumulator or counter overflows, causing the value to "roll-over" from all "1"s
to all "0"s, the design must detect overflow, handle it by designing the overflow logic, and
provide for the overflow bit in the HDL code. Overflow detection is also necessary when using
signed numbers. Using two's complement numbers, the maximum negative value will always
be one more than the maximum positive value. As an example, for an 8-bit signed number, the
smallest negative number is −128, and the largest positive number is 127. When calculating the
complement −128 the answer (+128) will overflow and the 8-bit result will be zero since the
signed representation of +128 takes up 9 bits not 8 bits.
8 www.xilinx.com XAPP215 (v1.0) June 29, 2000
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
To design for overflow, extend the function to handle one more bit than is necessary. The
following examples use 8-bit signed numbers, sign extended as 9-bit signed numbers, so the
9-bit result covers all possibilities.

Example:

VHDL: sum <= (a(7)&a) + (b(7)&b); -- sum is a 9-bit value

Verilog: sum = {a[7],a} + {b[7],b); // sum is a 9-bit value

The sign extension copies the MSB of the input numbers and places it in front to create a
number which has the same value, but more bits.

A carry-out of a function is accessed in the same manner. Extend the inputs and use the MSB
of the function output (in the above example, "sum") as the carry out.

Mismatched Sized Inputs

Sign extension for processing different bit-wide operands may be handled automatically by
some synthesis tools. Since synthesis tool results vary, Xilinx recommends designing and
explicitly coding the sign extension. Much like the case of the overflow, sign extension is carried
out by concatenation of the appropriate number of most significant bits (MSBs). For unsigned
numbers, an appropriate number of zeroes should be concatenated. For signed numbers, the
concatenation should be the MSB of the number, which in turn is the sign bit.

Variable Description:

sum - a 9-bit variable to hold the result of the operation. It is 9 bits to ensure that overflow
conditions can be detected.

a - a 6-bit input operand

b - an 8-bit input operand

Example: Unsigned Numbers

For unsigned numbers, the extension should be zeros. This is also called zero-extended.

VHDL concatenation: sum <= ("000"&a) + ('0'&b);

Verilog concatenation: sum = {3'b000,a} + {1'b0,b);

Example: Signed Numbers

For signed numbers, the extension is the value of the sign bit minus the MSB. This is called
sign-extension.

VHDL: sum <= (a(7)&a(7)&a(7)&a) + (b(7)&b);

Verilog: sum = {a[7],a[7],a[7],a} + {b[7],b);

Other
Considerations

To achieve the highest levels of utilization and performance, carefully consider the architecture
of the actual, targeted Virtex device. The number of rows and columns of CLBs in the target
device will affect the partitioning of the size of the implemented arithmetic operation. The
number of I/O pins on the target device and other available device resources must also be
considered.

The Virtex series has dedicated arithmetic hardware (called carry-logic) designed to speed the
propagation of critical signals such as carry outs. This dedicated hardware physically runs
vertically on the device cascading from one slice to the slice directly above it. The carry-logic
hardware terminates at the top of a column. For maximum performance, the carry-logic chain
should not extend past the top slice. This will constrain the maximum bit-width or size of the
arithmetic function to the number of Virtex device rows.

For example, an XCV50 device has 16 rows and 24 columns, i.e. 16 slices per column. The
largest carry-logic chain is 16 slices long. Translating this to the input bit size depends on the
arithmetic operation. For example a 2-input unsigned adder will require one Virtex slice for
XAPP215 (v1.0) June 29, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
processing two bits from each of the two inputs. The XCV50 with 16 slices per column can
implement a fast and efficient 32-bit unsigned adder in a column. Consult the Virtex series data
sheet for sizing of other Virtex devices.

Role of
Synthesis in
HDL Designs

Although specific coding styles yield the expected implementation, there is still some
dependency on the synthesis technology. This section reports on some synthesis results
obtained for commonly used arithmetic operations, using three major synthesis tools.

Adders and Subtractors
This section examines the add/subtract arithmetic operation in the context of a Virtex CLB. In a
binary addition operation, the partial sum is realized by using an XOR gate. Since a 4-input
Look-Up Table (LUT) in the Virtex CLB can implement any 4-input operation, each LUT can
implement the partial sum of two 2-bit wide operands. The dedicated carry chain logic
implements the carry. A subtract operation is similar to the adder implementation, with the
second operand being represented as a 2's complement. Again, since the LUT implements any
4-input function, complementing the second operand is absorbed into the LUT and the carry
logic calculates the "borrow". When synthesized correctly, an addition or subtraction operation
performed on two 8-bit operands takes four slices (two CLBs). Table 2 shows that all three
synthesis tools used four slices and inferred the carry logic.

Example:

Verilog: SUM = {1’b0, A} − {1’b0, B};

VHDL: SUM ⇐ (’0’ & A) − (’0’ & B);

where SUM is 9 bits and A and B are 8 bits.

Since the addition of two 8-bit operands generates a 9-bit full SUM, the two operands A and B
need to be declared as 9-bit wide (set most significant bit = 0) so that SUM ⇐ A + B has the
same bit width on both sides of the equation. In both instances, the carry out of the MSB will be
used as the ninth bit of SUM.

Comparators
Comparators test the equality of two input arguments. The output for a comparator is asserted
only if the two input numbers are exactly equal. The Verilog and VHDL code for a comparator
is available at:
ftp://ftp.xilinx.com/pub/apps/xapp215.zip.

The logic is synthesized by operator inference, "= =" for verilog and "=" for VHDL.

Magnitude Comparators
Magnitude comparators compare the actual values of two arguments; A and B. The output is
asserted if A is greater than or equal to B. To implement a magnitude comparator in schematic
format, a subtract is performed with the final carry (borrow) output indicating a Logic "1" for
A ≥ B is true and Logic "0" indicating if the condition is false. In the Verilog and VHDL examples
in the reference design file, all three synthesis tools produced the most efficient logic using
operator inference on the "≥" operator. For the signed implementation, the VHDL signals are
defined as "signed" signals rather than the "std_logic". Include the following use statement in
the VHDL code "use IEEE.std_logic_unsigned.all;"
10 www.xilinx.com XAPP215 (v1.0) June 29, 2000
1-800-255-7778

ftp://ftp.xilinx.com/pub/apps/xapp215.zip
http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
Two's Complement
The calculation of two's complement of a binary argument (n-bit vector) is used extensively in
digital signal processing for signed arithmetic signals and is the most interesting in the context
of HDL synthesis and logic inference. For an n-bit vector, the two's complement is obtained by
subtraction of the n-bit vector from an n-bit vector of all zeroes (00… n times) and adding "1".
The most efficient implementation for an 8-bit vector is expected to use 8 LUTs (4 slices) with
carry-in set to "1". Only one synthesis tool produced the optimum implementation as shown in
Table 2.

Multipliers Implemented in Virtex Devices
The multiplication of two (unsigned) binary multiplicands is essentially a series of shift and add
operations. Figure 5 illustrates how an N x 2 Full Multiplier is implemented using the same logic
resources as a simple adder. The key to implementing multipliers efficiently in a Virtex device is
leveraging the extra AND gate (next to each LUT) and the carry-chain logic.

While an HDL based design flow is portable across device families, Xilinx offers device specific
cores and reference designs for applications requiring high density and fast performance. An
M x N pipelined multiplier reference design for Virtex devices is found at
www.xilinx.com/ipcenter/cores_virtex.htm.

Figure 5: N x 2 Full Multiplier Implementation

XORCY

Function�
Generator COUT

CIN

CIN

MUXCY

x215_04_062000

A0

A2

A3

A1

"0"

"0"

+

+

+

+

+

P0

B0B1

P2

P1

P3

P4

P5

Am

Am+1
Bn

Bn+1

Basic Adder structure �
with dedicated fast carry.

Dedicated Multiplier �
MULT_AND Gate
XAPP215 (v1.0) June 29, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
Conclusion HDL coding style can greatly affect the way arithmetic logic is synthesized. Dealing with signed
and unsigned numbers and operands with different bits are important considerations when
coding arithmetic operations. The Virtex architecture is very efficient for implementing
arithmetic operations using features of the CLB such as the carry logic and the dedicated AND
gate. In DSP applications, fast and efficient implementation of elementary arithmetic function
blocks becomes especially important. A good example is the Multiply and Accumulate (MAC)
operation used repeatedly, in very large numbers, in DSP building blocks.

In addition to coding style, the role of the synthesis tool in leveraging the features of the Virtex
architecture is significant. Synthesis tools are observed to infer fast and dense logic for the
most part by operator inference. Designers using an HDL flow need to be aware of the
capabilities of their synthesis tool and the target device architecture.

Table 2: Summary of Synthesis Results

Arithmetic Function

FPGA Express
Slices

(1 slice = 2 LUTs)

Synplify
Slices

(1 slice = 2 LUTs)

Leonardo Spectrum
Slices

(1 slice = 2 LUTs)
Comments on

Synthesis Results

8-bit Add/Subtract 8 LUTs/ 4 slices 8 LUTs/ 4 slices 8 LUTs/ 4 slices Synthesized design
inferred carry logic.
Optimum design
obtained. Good logic
packing is indicated
by LUT to Slice ratio.

8-bit Comparator 5 LUTs/ 4 Slices
No Carry Chain

4 LUTs/ 2 Slices
with Carry Chain

4 LUTs/ 2 Slices
with Carry Chain

Synplify and
Leonardo utilized the
carry chain logic. The
carry out of the final
stage is a success
equality signal. FPGA
Express implements
the logic in LUTs.

8-bit Unsigned Magnitude
Comparator

8 LUTs/ 4 slices 8 LUTs/ 4 slices 8 LUTs/ 4 slices Optimum results.
Slice to LUT ratio
shows good packing.

Two’s
Complement

A = "0...0" −
bit-vectorA + 1

9 LUTs/ 5 slices
No Carry Chain

8 LUTs/ 12 slices
with Carry Chain

8 LUTs/4 slices
with Carry Chain

Leonardo spectrum
yields the most
efficient
implementation.

A = "1...1"
XOR bit-

vectorA + 1

8 LUTs/ 4 slices
Optimal

Implementation

8 LUTs/ 12 slices
with Carry Chain.

Inefficient
Logic Packing

8 LUTs/11 slices
with Carry Chain

FPGA Express yields
the best
implementation.

N x M
Multiplier

N = 8 bit,
M = 2 bit

9 LUTS/ 5 Slices 9 LUTS/ 5 Slices 9 LUTS/ 5 Slices Optimum results,
carry logic used in all
three cases.
12 www.xilinx.com XAPP215 (v1.0) June 29, 2000
1-800-255-7778

http://www.xilinx.com

Design Tips for HDL Implementation of Arithmetic Functions
R
Revision
History

The following table shows the revision history for this document.

Date Version Revision

6/29/00 1.0 Initial Xilinx release.
XAPP215 (v1.0) June 29, 2000 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Virtex CLB
	Virtex Carry Logic

	Design Considerations for HDL Coding
	Use of Set and Reset
	Signed and Unsigned Values
	Verilog
	Example: Signed Numbers
	VHDL
	VHDL Example: Signed Numbers
	VHDL Example: Signed and Unsigned Numbers
	Carry-in
	Example:
	Overflows and Carry-Outs
	Example:
	Mismatched Sized Inputs
	Example: Unsigned Numbers
	Example: Signed Numbers

	Other Considerations
	Role of Synthesis in HDL Designs
	Adders and Subtractors
	Example:

	Comparators
	Magnitude Comparators
	Two's Complement
	Multipliers Implemented in Virtex Devices

	Conclusion
	Revision History

