0.200" 8-Character 5 x 7 Dot Matrix X-Y Stackable Alphanumeric Programmable Display ${ }^{\text {TM }}$

FEATURES

- Eight 0.2" Dot Matrix Characters in a Ceramic Package
- True Hermetic Glass Flat Seal for all Colors
- Internal ROM with 128 ASCII Characters
- Internal RAM for up to 16 User Definable Characters
- Programmable Control Word Allows User to Select from 8 Brightness Levels, Display Blink, Character Flash, Self Test, or Clear Functions
- Internal or External Clock Capability
- 8 Bit Bidirectional Data Bus Allows for Read/Write Capability
- Contains all Display Drive and Multiplexing Circuitry
- Reset Pin for Display Initialization, Multiple Display Blinking and Flashing Synchronization
- TTL Compatible
- Operating Temperature Range: -55° to $+100^{\circ} \mathrm{C}$ Storage Temperature: -65° to $+125^{\circ} \mathrm{C}$
- Categorized for Luminous Intensity and Color
- X-Y Stackable

DESCRIPTION

The IPD2131 (yellow), IPD2132 (High Efficiency Red) and IPD2133 (High Efficiency Green) are eight-digit high reliability 5×7 dot matrix Programmable Displays that are aimed at satisfying the most demanding display requirements. They are designed for use in extremely harsh environments where only the most reliable parts are acceptable. The devices are constructed in ceramic packages with eight 0.2 inch high 5×7 dot matrix digits. The devices incorporate the latest in CMOS technology which is the heart of the device intelligence. The CMOS IC is controlled by a user supplied eight-bit data word on a bidirectional BUS. The ASCII data and attribute data are word driven. This approach allows the displays to interface using similar techniques as a microprocessor peripheral.
Applications include: control panels, night viewing applications, cockpit monitors, portable and vehicle technology as well as industrial controllers.

ESD Warning: Standard precautions for CMOS handling should be observed.

Maximum Ratings ($T_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
DC Supply Voltage, V_{CC} to GND
(max. voltage with no LEDs on)-0.3 to +7.0 VDC
Input Voltage Levels, All Inputs -0.3 to ($V_{C C}+0.3$) V
Operating Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Relative Humidity (non-condensing) 85%
Operating Voltage, V_{CC} to GND
(Max. voltage with 20 dots/digits on). \qquad 5.5 V

Maximum Solder Temperature
(0.063 " below Seating Plane, $\mathrm{t}<5.0 \mathrm{sec}$.) \qquad
ESD Protection at $1.5 \mathrm{k} \Omega, 100 \mathrm{pF} \mathrm{V}_{\mathrm{Z}}=4.0 \mathrm{kV}$ (each pin)
Figure 1. Enlarged Character Font

Switching Specifications
(over operating temperature range and $V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V)

Symbol	Description	Min.	Units
T_{acc}	Display Access Time—Write	210	ns
T_{acc}	Display Access Time—Read	230	ns
T_{acs}	Address Setup Time to $\overline{\mathrm{CE}}$	10	ns
T_{Ce}	Chip Enable Active Time-Write	140	ns
T_{ce}	Chip Enable Active Time—Read	160	ns
T_{ach}	Address Hold Time to $\overline{\mathrm{CE}}$	20	ns
T_{Cer}	Chip Enable Recovery Time	60	ns
T_{ces}	Chip Enable Active Prior to Rising Edge-Write	140	ns
T_{ces}	Chip Enable Active Prior to Rising Edge—Read	160	ns
T_{ceh}	Chip Enable Hold to Rising Edge of Read/Write Signal	0	ns
T_{W}	Write Active Time	100	ns
T_{Wd}	Data Valid Prior to Rising Edge of Write Signal	50	ns
T_{dh}	Data Write Time	20	ns
T_{r}	Chip Enable Active Prior to Valid Data	160	ns
T_{rd}	Read Active Prior to Valid Data	95	ns
T_{df}	Read Data Float Delay	10	ns
T_{rc}	Reset Active Time	300	ns

Oscillator, Refresh, Flash and Self Test Characteristics

Parameters	Min.	Typ.	Max.	Units	Conditions
Clock I/O Frequency	28	57.34	81.14	kHz	$V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
External Clock Frequency	25	-	640	kHz	$V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
FM, Digit Multiplex Frequency	125	256	362.5	Hz	$V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
Blinking Rate	0.98	2.0	2.83	Hz	-
Clock I/O Bus Loading	-	-	2.40	pF	-
Clock Out Rise Time	-	-	500	nsec	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, V_{\mathrm{OH}}=2.4 \mathrm{~V}$
Clock Out Fall Time	-	-	500	nsec	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, V_{\mathrm{OH}}=0.4 \mathrm{~V}$

Figure 2. Write Cycle Timing Diagram

Input pulse levels -0.6 V to 2.4 V

Figure 3. Read Cycle Timing Diagram

Figure 4. Maximum Power Dissipation vs. Ambient Temperature Derating Based on $T_{J} \max =125^{\circ} \mathrm{C}$

Optical Characteristics at $25^{\circ} \mathrm{C}\left(V_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ at full brightness)

Yellow IPD2131

Description	Symbol	Min.	Typ.	Units
Luminous Intensity	I_{V}	125	205	$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	$\lambda_{\text {peak }}$	-	583	nm
Dominant Wavelength	$\lambda_{\text {dom }}$	-	585	nm

High Efficiency Red IPD2132

Description	Symbol	Min.	Typ.	Units
Luminous Intensity	I_{V}	125	350	$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	$\lambda_{\text {peak }}$	-	635	nm
Dominant Wavelength	$\lambda_{\text {dom }}$	-	626	nm

High Efficiency Green IPD2133

Description	Symbol	Min.	Typ.	Units
Luminous Intensity	I_{V}	150	500	$\mu \mathrm{~cd} / \mathrm{dot}$
Peak Wavelength	$\lambda_{\text {peak }}$	-	568	nm
Dominant Wavelength	$\lambda_{\text {dom }}$	-	574	nm

Electrical Characteristics at $25^{\circ} \mathrm{C}$

Parameters	Limits				Conditions
	Min.	Typ.	Max.	Units	
$V_{\text {CC }}$	4.5	5.0	5.5	V	-
$I_{\text {CC }}$ Blank	-	0.5	1.0	mA	$V_{\mathrm{CC}}=5.0 \mathrm{~V}, V_{\mathrm{IN}}=5.0 \mathrm{~V}$
$I_{\text {CC }} 12$ dots/digit on ${ }^{(1)(2)}$	-	200	255	mA	$V_{\mathrm{CC}}=5.0 \mathrm{~V}, ~ " \mathrm{~V}$ " in all 8 digits
$I_{\text {CC }} 20$ dots/digit on ${ }^{(1)(2)}$	-	300	370	mA	$V_{\text {CC }}=5.0 \mathrm{~V}$, "\#" in all 8 digits
$I_{\text {ILP }}$ (with pull-up) Input Leakage	-1.0	-11	-18	$\mu \mathrm{A}$	$V_{\mathrm{CC}}=5.0 \mathrm{~V}, V_{\mathrm{N}}=0 \mathrm{~V} \text { to } V_{\mathrm{CC}}$ ($\overline{\mathrm{WR}}, \overline{\mathrm{CE}}, \overline{\mathrm{FL}}, \overline{\mathrm{RST}}, \overline{\mathrm{RD}}, \overline{\mathrm{CLKSEL}})$
I_{IL} (no pull-up) Input Leakage	-1.0	-	+1.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V}, V_{\mathrm{IN}}=0-5.0 \mathrm{~V} \\ & \text { (CLK, A0-A4, D0-D7) } \end{aligned}$
V_{IH} Input Voltage High	2.0	-	$\begin{aligned} & V_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
V_{IL} Input Voltage Low	$\begin{gathered} \text { GND } \\ -0.3 \end{gathered}$	-	0.8	V	$V_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V
$V_{\text {OL }}$ (D0-D7), Output Voltage Low	-	-	0.4	V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, I_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$V_{\text {OL }}(\mathrm{CLK})$, Output Voltage Low	-	-	0.4	V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, I_{\mathrm{OL}}=40 \mu \mathrm{~A}$
V_{OH} Output Voltage High	2.4	-	-	V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, I_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
$\theta_{\text {Jc }}$ Thermal Resistance, Junction to Case	-	15	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-

Notes:

${ }^{1)} I_{C C}$ is an average value.
${ }^{2)} I_{\mathrm{CC}}$ is measured with the display at full brightness. Peak $I_{\mathrm{CC}}={ }^{28} / 15 I_{\mathrm{CC}}$ average (\#displayed).

Recommended Operating Conditions ($T_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V_{CC}	4.5	5.5	V
Input Voltage Low	V_{IL}	-	0.8	V
Input Voltage High	V_{IH}	2.0	-	V
Output Voltage Low	V_{OL}	-	0.4	V
Output Voltage High	V_{OH}	2.4	-	V

Pin Description

Pin No.	Function	Description	Explanation
1	CLS	Clock Select	Selects an internal or external clock source. CLS=1 the internal clock selected (master clock), $\mathrm{CLS}=0$ then external clock selected (slave operation).
2	CLK	Clock I/O	Inputs or outputs the clock as determined by the CLS pin.
3	$\overline{\mathrm{WR}}$	Write	Writes data into the display when $\overline{\mathrm{WR}}=0$ and $\overline{\mathrm{CE}}=0$.
4	$\overline{\mathrm{CE}}$	Chip Enable	Enables the read/write access when low.
5	$\overline{\mathrm{RST}}$	Reset	Initializes the display; clears the Character RAM (20 Hex), Flash RAM (00 Hex), Control Word (00 Hex) and resets the internal counters. UDC Address Register and UDC RAM are unaffected.
6	$\overline{\mathrm{RD}}$	Read	Outputs data from the display when $\overline{\mathrm{RD}}=0$ and $\overline{\mathrm{CE}}=0$.
7	No Pin	-	-
8			
9			
10			
11	D0	Data Bus	8 bit bidirectional data bus. Character RAM and Control Word uses D7-D0, UDC Address Register uses D3-D0, UDC RAM uses D4-D0, and Flash RAM uses D0.
12	D1		
13	D2		
14	D3		
15	NC	-	-
16	$V_{\text {CC }}$	-	Positive power supply.
17	GND	Supply	Analog ground for the LED drivers.
18	GND	Logic	Digital ground for the logic circuitry.
19	D4	Data Bus	8 bit bidirectional data bus. Character RAM and Control Word uses D7-D0, UDC Address Register uses D3-D0, UDC RAM uses D4-D0, and Flash RAM uses D0.
20	D5		
21	D6		
22	D7		
23	No Pin	-	-
24			
25			
26			
27	$\overline{\mathrm{FL}}$	Flash	Accesses the Flash RAM. Address inputs, A2-A0, select the digit address while data bit D 0 sets $(\mathrm{D} 0=1)$ or resets $(\mathrm{D} 0=0)$ the Flash bit. A 4 and A 3 are ignored.
28	A0	Address Inputs	A4 and A3 select a section of the display's memory. A2-A0 select specific locations in the different sections. If $\overline{F L}$ is low the Flash RAM is accessed regardless of the status of A4 and A3.
29	A1		
30	A2		
31	A3		
32	A4		

Figure 5. Character Set

Notes:

1. Upon power up, the device will initialize in a random state.
2. X=don't care.

Figure 6. Cascading Diagram

Cascading Displays

The display's oscillator is designed to drive up to 16 other display's with input loading of 15 pF each.

The following are the general requirements for cascading 16 displays together:

- Determine the correct address for each display.
- Use $\overline{\mathrm{CE}}$ from an address decoder to select the correct display.
- Select one of the Displays to provide the Clock for the other displays. Connect $\overline{\text { CLKSEL }}$ to $V_{\text {CC }}$ for this display.
- Tie CLKSEL to ground on other displays.
- Use $\overline{\mathrm{RST}}$ to synchronize the blinking between the displays.

Figure 7. Block Diagram

Functional Description

The display's user interface is organized into five memory areas. They are accessed using the Flash Input, $\overline{F L}$, and address lines, A3 and A4. All the listed RAMs and Registers may be read or written through the data bus. See Table 1. Each input pin is described in Pin Definitions.

Five Basic Memory Areas

Character RAM	Stores either ASCII (Katakana) character data or an UDC RAM address
Flash RAM	1×8 RAM which stores Flash data
User-Defined Character RAM (UDC RAM)	Stores dot pattern for custom characters
User-Defined Address Register (UDC Address Register)	Provides address to UDC RAM when user is writing or reading custom character
Control Word Register	Enables adjustment of display brightness, flash individual charac- ters, blink, self test or clearing the display

$\overline{\text { RST }}$ can be used to initialize display operation upon power up or during normal operation. When activated, $\overline{\text { RST will clear the }}$ Flash RAM and Control Word Register (00 H) and reset the internal counter. All eight display memory locations will be set to 20 H to show blanks in all digits.
FL pin enables access to the Flash RAM. The Flash RAM will set ($D 0=1$) or reset ($D 0=0$) flashing of the character addressed by A0-A2.
The 1×8 bit Control Word Register is loaded with attribute data if $A 3=0$.

The Control Word Logic decodes attribute data for proper implementation.

Character ROM is designed for 128 ASCII characters. The ROM is Mask Programmable for custom fonts.

The Clock Source could either be the internal oscillator ($\overline{\mathrm{CLKSEL}}=1$) of the device or an external clock ($\overline{\mathrm{CLKSEL}}=0$) could be an input from another IPD213X display for synchronizing blinking for multiple displays.
The Display Multiplexer controls the Row Drivers so no additional logic is required for a display system.

The Display has eight digits. Each digit has 35 LEDs.

Table 1. Memory Selection

$\overline{\text { FL }}$	A4	A3	Section of Memory	A2-A0	Data Bits Used
0	X	X	Flash RAM	Character Address	D0
1	0	0	UDC Address Register	Don't Care	D3-D0
1	0	1	UDC RAM	Row Address	D4-D0
1	1	1	Character RAM	Character Address	D7-D0
1	1	0	Control Word Register	Don't Care	D7-D0

Theory of Operation

The IPD213X Display is designed to work with all major microprocessors. Data entry is via an eight bit parallel bus. Three bits of address route the data to the proper digit location in the RAM. Standard control signals like $\overline{W R}$ and $\overline{\mathrm{CE}}$ allow the data to be written into the display.
D0-D7 data bits are used for both Character RAM and control word data input. A3 acts as the mode selector.
If $A 3=1$, character RAM is selected. Then input data bit $D 7$ will determine whether input data bits D0-D6 is ASCII coded data (D7=0) or UDC data (D7=1). See section on UDC Address Register and RAM.
For normal operation $\overline{F L}$ pin should be held high. When $\overline{F L}$ is held low, Flash RAM is accessed to set character blinking.
The seven bit ASCII code is decoded by the Character ROM to generate Column data. Twenty columns worth of data is sent out each display cycle, and it takes fourteen display cycles to write into eight digits.
The rows are multiplexed in two sets of seven rows each. The internal timing and control logic synchronizes the turning on of rows and presentation of column data to assure proper display operation.

Power Up Sequence

Upon power up the display will come on at random. Thus the display should be reset on power-up. Reset will clear the Flash RAM, Control Word Register and reset the internal counter. All the digits will show blanks and display brightness level will be 100%.
The display must not be accessed until three clock pulses (110 μ seconds minimum using the internal clock) after the rising edge of the reset line.

Microprocessor Interface

The interface to a microprocessor is through the 8-bit data bus (D0-D7), the 4-bit address bus (A0-A3) and control lines $\overline{\mathrm{FL}}, \overline{\mathrm{CE}}$ and $\overline{\mathrm{WR}}$.
To write data (ASCII/Control Word) into the display $\overline{\mathrm{CE}}$ should be held low, address and data signals stable and $\overline{W R}$ should be brought low. The data is written on the low to high transition of $\overline{W R}$.
The Control Word is decoded by the Control Word Decode Logic. Each code has a different function. The code for display brightness changes the duty cycle for the column drivers. The peak LED current stays the same but the average LED current diminishes depending on the intensity level.
The character Flash Enable causes 2.0 Hz coming out of the counter to be ANDED with the column drive signal to make the column driver cycle at 2.0 Hz . Thus the character flashes at 2.0 Hz .

The display Blink works the same way as the Flash Enable but causes all twenty column drivers to cycle at 2.0 Hz thereby making all eight digits blink at 2.0 Hz .
The Self Test function of the IC consists of two internal routines which exercise major portions of the IC and illuminates all the LEDs.
Clear bit clears the character RAM and writes a blank into the display memory. It however does not clear the control word.
ASCII Data or Control Word Data can be written into the display at this point. For multiple display operation, CLK I/O must be properly selected. CLK I/O will output the internal clock if $\overline{\text { CLKSEL }}=1$, or will allow input from an external clock if $\overline{C L K S E L}=0$.

Character RAM

The Character RAM is selected when $\overline{\mathrm{FL}}, \mathrm{A} 4$ and A 3 are set to $1,1,1$ during a read or write cycle. The Character RAM is a 8 by 8 bit RAM with each of the eight locations corresponding to a digit on the display. Digit 0 is on the left side of the display and digit 7 is on the right side of the display. Address lines, A2-A0 select the digit address with A2 being the most significant bit and AO being the least significant bit. The two types of data stored in the Character RAM are the ASCII coded data and the UDC Address Data. The type of data stored in the Character RAM is determined by data bit, D7. If D7 is low, then ASCII coded data is stored in data bits D6-D0. If D7 is high, then UDC Address Data is stored in data bit D3-D0.

The ASCII coded data is a 7 bit code used to select one of 128 ASCII characters permanently stored in the ASCII ROM.
The UDC Address data is a 4 bit code used to select one of the UDC characters in the UDC RAM. There are up to 16 characters available. See Figure 8.

UDC Address Register and UDC RAM

The UDC Address Register and UDC RAM allows the user to generate and store up to 16 custom characters. Each custom character is defined in 5×7 dot matrix pattern. It takes 8 write cycles to define a custom character, one cycle to load the UDC Address Register and 7 cycles to define the character. The contents of the UDC Address Register will store the 4 bit address for one of the 16 UDC RAM locations. The UDC RAM is used to store the custom character.

UDC Address Register

The UDC Address Register is selected by setting $\overline{F L}=1, A 4=0$, $A 3=0$. It is a 4 bit register and uses data bits, D3-D0 to store the 4 bit address code (D7-D4 are ignored). The address code selects one of 16 UDC RAM locations for custom character generation.

UDC RAM

The UDC RAM is selected by setting $\overline{\mathrm{FL}}=1, A 4=0, A 3=1$. The RAM is comprised of a 7×5 bit RAM. As shown in Figure 10, address lines, A2-A0 select one of the 7 rows of the custom character. Data bits, D4-D0 determine the 5 bits of column data in each row. Each data bit corresponds to a LED. If the data bit is high, then the LED is on. If the data bit is low, the LED is off. To create a character, each of the 7 rows of column data need to be defined. See Figures 9 and 10 for logic.

Flash RAM

The Flash RAM allows the display to flash one or more of the characters being displayed. The Flash Ram is accessed by setting FL low. A4 and A3 are ignored. The Flash RAM is a 8×1 bit RAM with each bit corresponding to a digit address. Digit 0 is on the left side of the display and digit 7 is on the right side of the display. Address lines, A2-A0 select the digit address with A2 being the most significant digit and A0 being the least significant digit. Data bit, D0, sets and resets the flash bit for each digit. When DO is high, the flash bit is set; and when D0 is low, it is reset. See Figure 11.

Figure 8. Character RAM Access Logic

$\overline{\mathrm{RST}}$	$\overline{\text { CE }}$	$\overline{\text { WR }}$	$\overline{\mathrm{RD}}$	FL	A4	A3	A2 A1 A0	D7	D6 D5 D4 D3 D2 D1 D0
1	0	0	1	1	1	1	Character Address for Digits 0-7	0	7 bit ASCII code for a Write Cycle
1	0	1	0	1	1	1	Character Address for Digits 0-7	0	7 bit ASCII code read during a Read Cycle
1	0	0	1	1	0	0	Character Address for Digits 0-7	1	D3-D0=UDC address for a Write Cycle
1	0	1	0	1	0	0	Character Address for Digits 0-7	1	D3-D0=UDC address for Read Data

Figure 9. UDC Address Register and UDC Character RAM

$\overline{\text { RST }}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R D}}$	$\overline{\text { FL }}$	A4	A3	A2 A1 A0	D7 D6 D5 D4 D3 D2 D1 D0	
1	0	0	1	1	0	0	Not used for UDC Address Register	D3-D0=UDC RAM Address Code for Write Cycle	UDC
1	0	1	0	1	0	0	Not used for UDC Address Register	D3-D0=UDC RAM Address Code for Read Cycle	Address Register
1	0	0	1	1	0	1	A2-A0=Character Row Address	D4-D0=Character Column Data for Write Cycle	UDC
1	0	1	0	1	0	1	A2-A0=Character Row Address	D4-D0=Character Column Data read during a Read Cycle	RAM

Control Word

The Control Word is used to set up the attributes required by the user. It is addressed by setting $\overline{\mathrm{FL}}=1, \mathrm{~A} 4=1, \mathrm{~A} 3=0$. The Control Word is an 8 bit register and is accessed using data bits, D7-D0. See Figures 12 and 13 for the logic and attributed control. The Control Word has 5 functions. They are brightness control, flashing character enable, blinking character enable, self test, and clear (Flash and Character RAMS only).

Brightness Control

Control Word bits, D2-D0, control the brightness of the display with a binary code of 000 being 100\% brightness and 111 being display blank. See Figure 13 for brightness level versus binary code. The average $I_{\text {CC }}$ can be calculated by multiplying the 100% brightness level $I_{C C}$ value by the display's brightness level. For example, a display set to 80% brightness with a 100% average $I_{\text {CC }}$ value of 200 mA will have an average $I_{\text {CC }}$ value of $200 \mathrm{~mA} \times 80 \%=160 \mathrm{~mA}$.

Figure 10. UDC Character Map

Row Data		A0	Row \#	Column Data				
				C1	C2	C3	C4	C5
A2	A1			D4	D3	D2	D1	D0
0	0	0	1	5×7 Dot Matrix Pattern				
0	0	1	2					
0	1	0	3					
0	1	1	4					
1	0	0	5					
1	0	1	6					
1	1	0	7					

Flash Function

Control Word bit, D3, enables or disables the Flash Function. When D3 is 1, the Flash Function is enabled and any digit with its corresponding bit set in the Flash RAM will flash at approximately 2.0 hertz. When using an external clock, the flash rate can be determined by dividing the clock rate by 28,672 . When D3 is 0 , the Flash Function is disabled and the contents of the Flash RAM is ignored. For synchronized flashing on multiple displays, see the Reset Section.

Blink Function

Control Word bit, D4, enables or disables the Blink Function. When D4 is 1 , the Blink Function is enabled and all characters on the display will blink at approximately 2.0 hertz. The Blink Function will override the Flash Function if both functions are enabled. When D4 is 0 , the Blink Function is disabled. When using an external clock, the blink rate can be determined by dividing the clock rate by 28,672 . For synchronized blinking on multiple displays, see the Reset Section.

Self Test

Control Word bits, D6 and D5, are used for the Self Test Function. When D6 is 1 , the Self Test is initiated. Results of the Self Test are stored in bit D5. Control Word bit, D5, is a read only bit. When D5 is 1, Self Test has passed. When D5 is 0, Self Test failed is indicated. The Self Test function of the IC consists of two internal routines which exercise major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a check sum on the out-put. If the check sum is correct, D5 is set to a 1 (Pass).

Figure 11. Flash RAM Access Logic

| $\overline{\mathbf{R S T}}$ | $\overline{\mathbf{C E}}$ | $\overline{\mathbf{W R}}$ | $\overline{\mathbf{R D}}$ | $\overline{\text { FL }}$ | $\mathbf{A 4}$ | $\mathbf{A 3}$ | $\mathbf{A 2}$ A1 A0 | D7 D6 D5 D4 D3 D2 D1 D0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 0 | X | X | Flash RAM Address for Digits 0-7 | D0=Flash Data, 0=Flash Off and 1=Flash On
 (Write Cycle) |
| 1 | 0 | 1 | 0 | 0 | X | X | Flash RAM Address for Digits 0-7 | D0=Flash Data, 0=Flash Off and 1=Flash On
 (Read Cycle) |

Figure 12. Control Word Access Logic

$\overline{\mathbf{R S T}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R D}}$	$\overline{\text { FL }}$	$\mathbf{A 4}$	$\mathbf{A 3}$	$\mathbf{A 2} \mathbf{A 1} \mathbf{A 0}$	$\mathbf{D 7}$ D6 D5 D4 D3 D2 D1 D0
1	0	0	1	1	1	0	Not used for Control Word	Control Word data for a Write Cycle, see Figure 13
1	0	1	0	1	1	0	Not used for Control Word	Control Word data for a Read during a Read Cycle

The second routine provides a visual test of the LEDs. This is accomplished by writing checkered and inversed checkered patterns to the display. Each pattern is displayed for approximately 2.0 seconds. During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock time by 262,144 (typical time ≈ 4.6 sec.). At the end of the self test, the Character RAM is loaded with blanks; the Control Word Register is set to zeroes except D5; the Flash RAM is cleared and the UDC Address Register is set to all 1.0s.

Clear Function (see Figures 13 and 14)

Control Word bit, D7 clears the character RAM to 20 hex and the flash RAM to all zeroes. The RAMs are cleared within three clock cycles ($110 \mu \mathrm{~s}$ minimum, using the internal clock) when D7 is set to 1 . During the clear time the display must not be accessed. When the clear function is finished, bit 7 of the Control Word RAM will be reset to a "0".

Reset Function

The display should be reset on power up of the display ($\overline{\mathrm{RST}}=\mathrm{LOW}$). When the display is reset, the Character RAM, Flash RAM, and Control Word Register are cleared.
The display's internal counters are reset. Reset cycle takes three clock cycles (110μ seconds minimum using the internal clock). The display must not be accessed during this time.
To synchronize the flashing and blinking of multiple displays, it is necessary for the display to use a common clock source and reset all the displays at the same time to start the internal counters at the same place.
While $\overline{\mathrm{RST}}$ is low, the display must not be accessed by $\overline{\mathrm{RD}}$ nor $\overline{W R}$.

Figure 13. Control Word Data Definition

Figure 14. Clear Function

$\overline{\mathbf{C E}}$	$\overline{\text { WR }}$	$\overline{\text { FL }}$	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	1	0	X	X	X	0	X	Clear disabled 0						
0	1	0	X	X	X	1	X	Clear user RAM, flash RAM and display							

X=don't care

Figure 15. Display Cycle Using Built-in ROM Example
Display message "Showtime." Digit 0 is leftmost—closest to pin 1.
Logic levels: $0=$ Low, $1=$ High, $\mathrm{X}=$ Don't care.

$\overline{\text { RST }}$	$\overline{\text { CE }}$	$\overline{\mathrm{WR}}$	$\overline{\mathbf{R D}}$	FL	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	Operation	Display
0	X	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X	Reset. No Read/Write Within 3 Clock Cycles	All Blank
1	0	0	1	1	1	0	X	X	X	0	0	X	0	0	0	1	1	53\% Brightness Selected	All Blank
1	0	0	1	1	1	1	0	0	0	0	1	0	1	0	0	1	1	Write "S" to Digit 0	S
1	0	0	1	1	1	1	0	0	1	0	1	0	0	1	0	0	0	Write "H" to Digit 1	SH
1	0	0	1	1	1	1	0	1	0	0	1	0	0	1	1	1	1	Write "O" to Digit 2	SHO
1	0	0	1	1	1	1	0	1	1	0	1	0	1	0	1	1	1	Write "W" to Digit 3	SHOW
1	0	0	1	1	1	1	1	0	0	0	1	0	1	0	1	0	0	Write " T " to Digit 4	SHOWT
1	0	0	1	1	1	1	1	0	1	0	1	0	0	1	0	0	1	Write "I" to Digit 5	SHOWTI
1	0	0	1	1	1	1	1	1	0	0	1	0	0	1	1	0	1	Write "M" to Digit 6	SHOWTIM
1	0	0	1	1	1	1	1	1	1	0	1	0	0	0	1	0	1	Write "E" to Digit 7	SHOWTIME

Figure 16. Displaying User Defined Character Example
Load character " A " into UDC-5 and then display it in digit 2.
Logic levels: $0=$ Low, $1=$ High, $X=$ Don't care

$\overline{\text { RST }}$	$\overline{\mathbf{C E}}$	$\overline{\text { WR }}$	$\overline{\mathrm{RD}}$	FL	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	Operation	Display
0	X	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X	Reset. No Read/Write Within 3 Clock Cycles	All Blank
1	0	0	1	1	0	0	X	X	X	X	X	X	X	0	1	0	1	Select UDC-5	All Blank
1	0	0	1	1	0	1	0	0	0	X	X	X	0	1	1	1	0	Write into Row 1 of UDC-5	All Blank
1	0	0	1	1	0	1	0	0	1	X	X	X	1	0	0	0	1	Write into Row 2 of UDC-5	All Blank
1	0	0	1	1	0	1	0	1	0	X	X	X	1	0	0	0	1	Write into Row 3 of UDC-5	All Blank
1	0	0	1	1	0	1	0	1	1	x	x	x	1	1	1	1	1	Write into Row 4 of UDC-5	All Blank
1	0	0	1	1	0	1	1	0	0	X	X	X	1	0	0	0	1	Write into Row 5 of UDC-5	All Blank
1	0	0	1	1	0	1	1	0	1	X	X	X	1	0	0	0	1	Write into Row 6 of UDC-5	All Blank
1	0	0	1	1	0	1	1	1	0	X	X	X	1	0	0	0	1	Write into Row 7 of UDC-5	All Blank
1	0	0	1	1	1	1	0	1	0	1	X	X	X	0	1	0	1	Write UDC-5 into Digit 2	(Digit 2) A

Electrical and Mechanical Considerations Voltage Transient Suppression

For best results power the display and the components that interface with the display to avoid logic inputs higher than V_{CC}. Additionally, the LEDs may cause transients in the power supply line while they change display states. The common practice is to place a parallel combination of a . $01 \mu \mathrm{~F}$ and a $22 \mu \mathrm{~F}$ capacitor between V_{CC} and GND for all display packages.

ESD Protection

The input protection structure of the IPD2131X provides significant protection against ESD damage. It is capable of withstanding discharges greater than 4.0 kV . Take all the standard precautions normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with unshielded parts. If these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

Soldering Considerations

The IPD213X can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible. Use water soluble organic acid flux or resin based RMA flux.
A wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 seconds to 3.0 seconds can be used. Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$ for five seconds at 0.063 " below the seating plane. The packages should not be immersed in the wave.

Post Solder Cleaning Procedures

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

For faster cleaning, solvents may be used. Suggested solvents include Freon TE, Freon TF, Genesolv DE-15, Genesolv DI-15, and Genesolv DES.

An alternative to soldering and cleaning the display modules is to use sockets. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New
Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardward, New Albany, IN.

For further information refer to Appnote 22 at www.infineon.com/opto.

Optical Considerations

The .200" high character of the IPD213X gives readability up to eight feet. Proper filter selection enhances readability over this distance

Using filters emphasizes the contrast ratio between a lit LED and the character background. This will increase the discrimination of different characters. The only limitation is cost. Take into consideration the ambient lighting environment for the best cost/benefit ratio for filters.

Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are an inexpensive and effective way to strengthen contrast ratios. The high efficiency red displays should be matched with a long wavelength pass filter in the 570 nm to 590 nm range. The IPD2133 should be matched with a yellow-green band-pass filter that peaks at 565 nm . For displays of multiple colors, neutral density grey filters offer the best compromise.

Additional contrast enhancement is gained by shading the displays. Plastic band-pass filters with built-in louvers offer the next step up in contrast improvement. Plastic filters can be improved further with anti-reflective coatings to reduce glare. The trade-off is fuzzy characters. Mounting the filters close to the display reduces this effect. Take care not to overheat the plastic filter by allowing for proper air flow.
Optimal filter enhancements are gained by using circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.

Several filter manufacturers supply quality filter materials Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY, Hoya Optics, Inc., Fremont, CA.

One last note on mounting filters: recessing displays and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.-Atlas, Van Nuys, CA.

