Ontology Matching and Evaluation

Cássia Trojahn dos Santos
EXMO Group - INRIA Rhône Alpes & LIG
Grenoble, France
cassia.trojahn@inrialpes.fr
INRIA

- Institut National de Recherche en Informatique et en Automatique

EXMO Group: Computer mediated exchange of structured knowledge
- Leader: Jérôme Euzenat
- http://www.inrialpes.fr/exmo/

30 groups of research
~210 researchers
~210 engineers and administratives
~240 docs and post docs (45% étrangers)
Outline

- What is ontology matching
- Matching approaches and strategies
- Ontology Alignment Evaluation Initiative (OAEI)
- SEALS project
- Alignment API
- 10 challenges for ontology matching
Context

- **Ontology**
 - a formal, explicit specification of a shared conceptualization (Gruber, 1993)
 - key role in knowledge based systems

- **Problem**
 - semantic heterogeneity between ontology-based systems

- **Solution**
 - ontology matching
Ontology matching

Traditional application domains:
- Schema integration
- Data warehouse
- Mediator generator

Emergent
- P2P databases
- Agent communication
- Web services integration
Matching process

(Shvaiko and Euzenat [2005])
Correspondence

Definition (Correspondence)

Given two ontologies o and o', a correspondence between o and o' is a 5-tuple $<id, e, e', e, n>$ where

- id is a identifier of the correspondence
- e and e' are entities of o and o'
- r is a relation (equivalence, more general, disjointness)
- n is a confidence measure (usually in the $[0,1]$ range)
Alignment

Definition (Alignment)

Given two ontologies \(o \) and \(o' \), an **alignment** between \(o \) and \(o' \) is

- a set of correspondences on \(o \) and \(o' \)
- includes some metadata (multiplicity: 1-1, 1-*: method, data, etc)
Matching approaches

(Euzenat and Shvaiko [2007])
Matching approaches

- Representative categories
 - Syntactic/lexical (string-based similarity)
 - Semantic (WordNet based)
 - Structural (positions of the terms in the ontology hierarchy)
Syntactic and semantic

• Syntactic/lexical matcher (string-based similarity)
 • e = “photo-camera” and e’ = “camera-photo”
 - exactMatch, with strength = matches/max length = 2 / 2 = 1

 • e = “science” and e’ = “computer-science”
 - broadMatch, with strength = matches/max length = 1 / 2 = 0.5

• Semantic matcher (WordNet based)
 • e = “personal-computer” and e’ = “pc”
 - exactMatch, with strength = 1, direct synonymous WordNet
Structural matcher

- Structural matcher
 - Based on taxonomy overlap and semantic cotopy (Maedche and Staab, 2002)

\[
TO_n(e_s, e_t, O_s, O_t) = \frac{|\text{Electronic, PersonalComputer} \cap \text{Electronic, PC}|}{|\text{Electronic, PersonalComputer} \cup \text{Electronic, PC}|}
\]

\[
SC(\text{PersonalComputer}, O_e) = \{\text{Electronic, PersonalComputer}\}
\]

\[
SC(\text{PC}, O_e) = \{\text{Electronic, PC}\}
\]

\[
\text{exactMatch} = \frac{2}{2} = 1
\]
Matching strategies

Ontology Matching Strategies

- Manual
- Automatic
- Hybrid

Kind of processing:
- Sequential
- Parallel

Strategies:
- Similarity Aggregation
- Agent-based
- Machine Learning
- Probabilistic
- Argumentation
- Negotiation

(Trojahn, 2008)
Goal of evaluation

- Improve the performance of systems
- Comparison of systems
- Various sets of tests and criterion
- Created the **Ontology Alignment Evaluation Initiative** (OAEI)
OAEI

- Organization of a yearly evaluation event
- Different domains of test data (complexity, size, ...)
- Participants submit their alignments in a standard format
- These are compared with available reference alignments
- Deviation is measured by classical measures, such as precision and recall
- Results are published on the web site and OM Workshop
- http://oaei.ontologymatching.org/
OAEI
OAEI metrics

Definition (Precision and Recall)

Given a reference alignment R

- **precision** of some alignment A is given by
 $$P(A, R) = \frac{|R \cap A|}{|A|}$$

- **recall** is given by
 $$R(A, R) = \frac{|R \cap A|}{|R|}.$$

When no reference alignment is provided: consensus, task-oriented,..
Extended precision and recall

- **Problems with classical P and R**
 - Do not make difference between a nearly good alignment and a bad one
 - P and R do not recognise two equivalent alignments
 - If they are not the same exact correspondence they score zero
 - How to know if an alignment is closer to the expected?

- **Solution**
 - Measuring the “proximity” of alignments: generalizing precision and recall
Extended precision and recall

A_2 – reasonable

\[
\begin{align*}
<\text{o1:Car, o2:Thing, =, 1.0}> \\
<\text{o1:hasSpeed, o2:hasProperty, =, 1.0}> \\
<\text{o1:MotorKA1, o2:Marcsporsche, =, 1.0}> \\
<\text{o1:250kmh, o2:fast, =, 1.0}>
\end{align*}
\]

R

\[
\begin{align*}
<\text{o1:Object, o2:Thing, =, 1.0}> \\
<\text{o1:Car, o2:Automobile, =, 1.0}> \\
<\text{o1:Speed, o2:Characteristic, =, 1.0}> \\
<\text{o1:250kmh, o2:fast, =, 1.0}> \\
<\text{o1:PorscheKA123, o2:Marcsporsche, =, 1.0}>
\end{align*}
\]

A_3 – wrong

\[
\begin{align*}
<\text{o1:Object, o2:Thing, =, 1.0}> \\
<\text{o1:Owner, o2:Volkswagen, =, 1.0}> \\
<\text{o1:Boat, o2:Porsche, =, 1.0}> \\
<\text{o1:hasOwner, o2:hasMotor, =, 1.0}> \\
<\text{o1:Marc, o2:fast, =, 1.0}>
\end{align*}
\]
Relaxed P and R [Ehrig and Euzenat 2005]

- Generalises classical P and R by using a **proximity** function ω instead of $|A \cap R|$
- Three concrete extensions proposed.

Definition (Relaxed precision and recall)

Given a reference alignment R and an overlap function ω between alignments

\[
P_\omega(A, R) = \frac{\omega(R \cap A)}{|A|}
\]

\[
R_\omega(A, R) = \frac{\omega(R \cap A)}{|R|}
\]
Relaxed P and R \cite{Ehrig2005}

\[\omega(A, R) = \sum_{<a,r> \in M(A,R)} \sigma(a, r) \]

Symmetric

\[\sigma_{\text{pair}}(<e_a, e'_a>, <e_r, e'_r>) \]
\[\sigma_{\text{rel}}(r_a, r_r) \]
\[\sigma_{\text{conf}}(n_a, n_r) \]

- distance 0 at class, 0.5 sub classe, 1 others
- 1 correct relations in both \(r_a \) and \(r_r \), 0.5 if found equivalence but correct is subsumption
- complement of the difference
Relaxed P and R [Ehrig and Euzenat 2005]

<table>
<thead>
<tr>
<th>ω</th>
<th>(R, R)</th>
<th>(R, A_1)</th>
<th>(R, A_2)</th>
<th>(R, A_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>standard</td>
<td>1.0</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>symmetric</td>
<td>1.0</td>
<td>1.0</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>edit</td>
<td>1.0</td>
<td>1.0</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>oriented</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Semantic P and R [Euzenat 2007]

- Previous solution: syntactic
- P and R semantically grounded
 - correspondences that are consequences of the evaluated alignment: recalled
 - correspondences that are consequences of the reference alignment: correct

Definition (Semantic precision and recall)

Given a reference alignment R, the precision of some alignment A is given by

$$P_{sem}(A, R) = \frac{|A \cap Cn(R)|}{|A|}$$

and recall is given by

$$R_{sem}(A, R) = \frac{|Cn(A) \cap R|}{|R|}$$
OAEI 2009 dataset

<table>
<thead>
<tr>
<th>test</th>
<th>formalism</th>
<th>relations</th>
<th>confidence</th>
<th>modalities</th>
<th>language</th>
</tr>
</thead>
<tbody>
<tr>
<td>benchmarks</td>
<td>OWL</td>
<td>=</td>
<td>[0 1]</td>
<td>open</td>
<td>EN</td>
</tr>
<tr>
<td>anatomy</td>
<td>OWL</td>
<td>=</td>
<td>[0 1]</td>
<td>blind</td>
<td>EN</td>
</tr>
<tr>
<td>conference</td>
<td>OWL-DL</td>
<td>=,<=</td>
<td>[0 1]</td>
<td>blind+open</td>
<td>EN</td>
</tr>
<tr>
<td>fishery</td>
<td>OWL</td>
<td>=</td>
<td>1</td>
<td>expert</td>
<td>EN+FR+ES</td>
</tr>
<tr>
<td>directory</td>
<td>OWL</td>
<td>=</td>
<td>1</td>
<td>blind+open</td>
<td>EN</td>
</tr>
<tr>
<td>library</td>
<td>SKOS</td>
<td>exact-,narrow-,</td>
<td>1</td>
<td>blind</td>
<td>EN+DU+FR</td>
</tr>
<tr>
<td></td>
<td>+OWL</td>
<td>broadMatch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benchmarksubs</td>
<td>OWL</td>
<td>=,<,></td>
<td>[0 1]</td>
<td>open</td>
<td>EN</td>
</tr>
<tr>
<td>ars</td>
<td>RDF</td>
<td>=</td>
<td>[0 1]</td>
<td>open</td>
<td>EN</td>
</tr>
<tr>
<td>tap</td>
<td>RDF</td>
<td>=</td>
<td>[0 1]</td>
<td>open</td>
<td>EN</td>
</tr>
<tr>
<td>imb</td>
<td>RDF</td>
<td>=</td>
<td>[0 1]</td>
<td>open</td>
<td>EN</td>
</tr>
<tr>
<td>vlcr</td>
<td>SKOS</td>
<td>exact-,</td>
<td>[0 1]</td>
<td>blind</td>
<td>DU+EN</td>
</tr>
<tr>
<td></td>
<td>+OWL</td>
<td>closeMatch</td>
<td></td>
<td>expert</td>
<td></td>
</tr>
</tbody>
</table>
OAEI 2009 participants

<table>
<thead>
<tr>
<th>Software</th>
<th>confidence</th>
<th>benchmark</th>
<th>anatomy</th>
<th>conference</th>
<th>directory</th>
<th>library</th>
<th>bench-sub</th>
<th>bsw</th>
<th>limb</th>
<th>web</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>aflod</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>AgrMaker</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AMExt</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AROMA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ASMOV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>DSSim</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>FBEM</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>GeRoMe</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GG2WW</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HMatch</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>kosimap</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lily</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MapPSO</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RiMOM</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SOBOM</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TaxoMap</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total=16</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>
SEALS Project

Semantic Evaluation at Large Scale
http://www.seals-project.eu/

- Scalability and new metrics
- New open platform for semantic technology evaluation
- Automated test infrastructure
- Organize integrated evaluation campaigns
- Online evaluation
- Participants run the evaluation for themselves
Alignment API

- http://alignapi.gforge.inria.fr/

- Reads two OWL/RDF ontologies
- Computes the alignment between these ontologies
- Displays the result (OWL, SWRL, XSTL)
- Evaluate the alignment (precision, recall, f-measure, extended precision and recall)
- Display the evaluation results (graphs, tables)
Alignment API

Alignment format

```xml
<Alignment>
  <xml>yes</xml>
  <level>0</level>
  <type>11</type>
  <onto1>http://oaei.ontologymatching.org/2009/benchmarks/101/onto.rdf</onto1>
  <uri1>http://oaei.ontologymatching.org/2009/benchmarks/101/onto.rdf</uri1>
  <map>
    <Cell>
      <measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1.0</measure>
      <relation>==</relation>
    </Cell>
  </map>
  ...
</Alignment>
</rdf:RDF>
```
Alignment API

Examples evaluation output
10 Challenges [Shvaiko and Euzenat, 20008]

1. large-scale evaluation
2. performance of ontology-matching techniques
3. discovering missing background knowledge
4. uncertainty in ontology matching
5. matcher selection and self-configuration
6. user involvement
7. explanation of matching results
8. social and collaborative ontology matching
9. alignment management: infrastructure and support
10. reasoning with alignments
Acknowledges

- Thanks to Jérôme Euzenat for sharing some material.
- Thanks to Renata Vieira for the opportunity.
- Thank you for the attention.