
1 Getting started guide

1.1 Introduction

Welcome to Allegro 4.9!

Yes, the documentation is still very patchy. But if you’re interested anyway, this short guide should point
you at the parts of the API that you’ll want to know about first. It’s not a tutorial, as there isn’t much
discussion, only links into the manual. The rest you’ll have to discover for yourself. Read the examples, and
ask questions at Allegro.cc.

There is an unofficial tutorial at the wiki. Be aware that, being on the wiki, it may be a little out of date,
but the changes should be minor. Hopefully more will sprout when things stabilise, as they did for earlier
versions of Allegro.

1.2 Structure of the library and its addons

Allegro 4.9 is divided into a core library and multiple addons. The addons are bundled together and built at
the same time as the core, but they are distinct and kept in separate libraries. The core doesn’t depend on
anything in the addons, but addons may depend on the core and other addons and additional third party
libraries.

Here are the addons and their dependencies:

allegro_main -> allegro

allegro_image -> allegro
allegro_primitives -> allegro
allegro_color -> allegro

allegro_font -> allegro_image -> allegro
allegro_ttf -> allegro_font -> allegro_image -> allegro

allegro_audio -> allegro
allegro_flac -> allegro_audio -> allegro
allegro_vorbis -> allegro_audio -> allegro

allegro_memfile -> allegro
allegro_physfs -> allegro

allegro_native_dialog -> allegro

The header file for the core library is allegro5/allegro.h. The header files for the addons are named
allegro5/allegro_image.h, allegro5/allegro_font.h, etc. The allegro main addon does not have a
header file.

1.3 Initialisation

Before using Allegro you must call al init (19.2). Some addons have their own initialisation, e.g. al init image addon (29.1),
al init font addon (28.1.2), al init ttf addon (28.3.1).

1

http://www.allegro.cc/forums/
http://wiki.allegro.cc/index.php?title=Allegro_4.9.14_tutorials

To receive input, you need to initialise some subsystems like al install keyboard (11.4), al install mouse (14.2),
al install joystick (10.4).

1.4 Opening a window

al create display (4.1.2) will open a window and return an ALLEGRO DISPLAY (4.1.1).

To clear the display, call al clear to color (9.5.1). Use al map rgba (9.1.4) or al map rgba f (9.1.5) to obtain
an ALLEGRO COLOR (9.1.1) parameter.

Drawing operations are performed on a backbuffer. To make the operations visible, call al flip display (4.2.2).

1.5 Display an image

To load an image from disk, you need to have initialised the image I/O addon with al init image addon (29.1).
Then use al load bitmap (29.7), which returns an ALLEGRO BITMAP (9.3.1).

Use al draw bitmap (9.5.2), al draw scaled bitmap (9.5.7) or al draw rotated scaled bitmap (9.5.6) to draw
the image to the backbuffer. Remember to call al flip display (4.2.2).

1.6 Changing the drawing target

Notice that al clear to color (9.5.1) and al draw bitmap (9.5.2) didn’t take destination parameters: the
destination is implicit. Allegro remembers the current “target bitmap” for the current thread. To change
the target bitmap, call al set target bitmap (9.5.11).

The backbuffer of the display is also a bitmap. You can get it with al get backbuffer (4.2.3) and then restore
it as the target bitmap.

Other bitmaps can be created with al create bitmap (9.3.3), with options which can be adjusted with
al set new bitmap flags (9.3.8) and al set new bitmap format (9.3.9).

1.7 Event queues and input

Input comes from multiple sources: keyboard, mouse, joystick, timers, etc. Event queues aggregate events
from all these sources, then you can query the queue for events.

Create an event queue with al create event queue (5.8), then tell input sources to place new events into
that queue using al register event source (5.19). The usual input event sources can be retrieved with
al get keyboard event source (11.11), al get mouse event source (14.14) and al get joystick event source (10.19).

Events can be retrieved with al wait for event (5.23) or al get next event (5.17). Check the event type and
other fields of ALLEGRO EVENT (5.1) to react to the input.

Displays are also event sources, which emit events when they are resized. You’ll need to set the ALLE-
GRO RESIZABLE flag with al set new display flags (4.1.10) before creating the display, then register the
display with an event queue. When you get a resize event, call al acknowledge resize (4.2.1).

Timers are event sources which “tick” periodically, causing an event to be inserted into the queues that the
timer is registered with. Create some with al install timer (22.6).

al current time (21.2) and al rest (21.4) are more direct ways to deal with time.

2

1.8 Displaying some text

To display some text, initialise the font addon with al init font addon (28.1.2) then load a bitmap font with
al load font (28.1.4). Use al draw text (28.1.10) or al draw textf (28.1.14).

For TrueType fonts, you’ll need to initialise the TTF font addon with al init ttf addon (28.3.1) and load a
TTF font with al load ttf font (28.3.2).

1.9 Drawing primitives

The primitives addon provides some handy routines to draw lines (al draw line (32.2.1)), rectangles (al draw rectangle (32.2.4)),
circles (al draw circle (32.2.11)), etc.

1.10 Blending

To draw translucent or tinted images or primitives, change the blender state with al set blender (9.6.3).

As with al set target bitmap (9.5.11), this changes Allegro’s internal state (for the current thread). Often
you’ll want to save some part of the state and restore it later. The functions al store state (18.4) and
al restore state (18.3) provide a convenient way to do that.

1.11 Sound

Use al install audio (25.2.1) to initialize sound. This will allow loading uncompressed .wav files, for other
formats you need to initialize them first, for example with al init ogg vorbis addon (26.3.1) for the .ogg
format.

After that, you can simply use al reserve samples (25.2.4) and pass the number of sound effects typically
playing at the same time. Then load your sound effects with al load sample (25.8.7) and play them with
al play sample (25.4.3). To stream large pieces of music from disk, you can use al load audio stream (25.8.9)
so the whole piece will not have to be pre-loaded into memory.

If the above sounds too simple and you can’t help but think about clipping and latency issues, don’t
worry. Allegro gives you full control over how much or little you want its sound system to do. The
al reserve samples (25.2.4) function mentioned above only sets up a default mixer and a number of sample
instances but you don’t need to use it.

Instead, to get a “direct connection” to the sound system you would use an ALLEGRO VOICE (25.1.12) (but
depending on the platform only one such voice is guaranteed to be available and it might require a specific
format of audio data). Therefore all sound can be first routed through an ALLEGRO MIXER (25.1.5) which
is connected to such a voice (or another mixer) and will mix together all sample data fed to it.

You can then directly stream real-time sample data to a mixer or a voice using an ALLEGRO AUDIO STREAM (25.1.11)
or play complete sounds using an ALLEGRO SAMPLE INSTANCE (25.1.10). The latter simply points to
an ALLEGRO SAMPLE (25.1.9) and will stream it for you.

1.12 Not the end

There’s a heap of stuff we haven’t even mentioned yet.

Enjoy!

3

2 Configuration files

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

2.1 ALLEGRO CONFIG

typedef struct ALLEGRO_CONFIG ALLEGRO_CONFIG;

An abstract configuration structure.

2.2 al create config

ALLEGRO_CONFIG *al_create_config(void)

Create an empty configuration structure.

See also: al load config file (2.4), al destroy config (2.3)

2.3 al destroy config

void al_destroy_config(ALLEGRO_CONFIG *config)

Free the resources used by a configuration structure. Does nothing if passed NULL.

See also: al create config (2.2), al load config file (2.4)

2.4 al load config file

ALLEGRO_CONFIG *al_load_config_file(const char *filename)

Read a configuration file from disk. Returns NULL on error. The configuration structure should be destroyed
with al destroy config (2.3).

See also: al save config file (2.5)

2.5 al save config file

bool al_save_config_file(const ALLEGRO_CONFIG *config, const char *filename)

Write out a configuration file to disk. Returns true on success, false on error.

See also: al load config file (2.4)

4

2.6 al add config section

void al_add_config_section(ALLEGRO_CONFIG *config, const char *name)

Add a section to a configuration structure with the given name. If the section already exists then nothing
happens.

2.7 al add config comment

void al_add_config_comment(ALLEGRO_CONFIG *config,
const char *section, const char *comment)

Add a comment in a section of a configuration. If the section doesn’t yet exist, it will be created. The
section can be NULL or ”” for the global section.

The comment may or may not begin with a hash character. Any newlines in the comment string will be
replaced by space characters.

See also: al add config section (2.6)

2.8 al get config value

const char *al_get_config_value(const ALLEGRO_CONFIG *config,
const char *section, const char *key)

Gets a pointer to an internal character buffer that will only remain valid as long as the ALLEGRO CONFIG
structure is not destroyed. Copy the value if you need a copy. The section can be NULL or ”” for the global
section. Returns NULL if the section or key do not exist.

See also: al set config value (2.9)

2.9 al set config value

void al_set_config_value(ALLEGRO_CONFIG *config,
const char *section, const char *key, const char *value)

Set a value in a section of a configuration. If the section doesn’t yet exist, it will be created. If a value
already existed for the given key, it will be overwritten. The section can be NULL or ”” for the global
section.

For consistency with the on-disk format of config files, any leading and trailing whitespace will be stripped
from the value. If you have significant whitespace you wish to preserve, you should add your own quote
characters and remove them when reading the values back in.

See also: al get config value (2.8)

5

2.10 al get first config section

char const *al_get_first_config_section(ALLEGRO_CONFIG const *config,
void **iterator)

Returns the name of the first section in the given config file. Usually this will return an empty string for the
global section. The iterator parameter will receive an opaque iterator which is used by al get next config section (2.11)
to iterate over the remaining sections.

The returned string and the iterator are only valid as long as no change is made to the passed ALLE-
GRO CONFIG.

See also: al get next config section (2.11)

2.11 al get next config section

char const *al_get_next_config_section(void **iterator)

Returns the name of the next section in the given config file. The iterator must have been obtained with
al get first config section (2.10) first.

See also: al get first config section (2.10)

2.12 al get first config entry

char const *al_get_first_config_entry(ALLEGRO_CONFIG const *config,
char const *section, void **iterator)

Returns the name of the first key in the given section in the given config. The iterator works like the one
for al get first config section (2.10).

The returned string and the iterator are only valid as long as no change is made to the passed ALLE-
GRO CONFIG (2.1).

See also: al get next config entry (2.13)

2.13 al get next config entry

char const *al_get_next_config_entry(void **iterator)

Returns the next key for the iterator obtained by al get first config entry (2.12).

2.14 al merge config

ALLEGRO_CONFIG *al_merge_config(const ALLEGRO_CONFIG *cfg1,
const ALLEGRO_CONFIG *cfg2)

Merge two configuration structures, and return the result as a new configuration. Values in configuration
‘cfg2’ override those in ‘cfg1’. Neither of the input configuration structures are modified. Comments from
‘cfg2’ are not retained.

See also: al merge config into (2.15)

6

2.15 al merge config into

void al_merge_config_into(ALLEGRO_CONFIG *master, const ALLEGRO_CONFIG *add)

Merge one configuration structure into another. Values in configuration ‘add’ override those in ‘master’.
‘master’ is modified. Comments from ‘add’ are not retained.

See also: al merge config (2.14)

3 Direct3D

These functions are declared in the following header file:

#include <allegro5/allegro_direct3d.h>

3.1 al get d3d device

LPDIRECT3DDEVICE9 al_get_d3d_device(ALLEGRO_DISPLAY *display)

Returns the Direct3D device of the current display. The return value is undefined if the display was not
created with the Direct3D flag.

Returns: A pointer to the Direct3D device.

3.2 al get d3d system texture

LPDIRECT3DTEXTURE9 al_get_d3d_system_texture(ALLEGRO_BITMAP *bitmap)

Returns the system texture (stored with the D3DPOOL SYSTEMMEM flags). This texture is used for the
render-to-texture feature set.

Returns: A pointer to the Direct3D system texture.

3.3 al get d3d video texture

LPDIRECT3DTEXTURE9 al_get_d3d_video_texture(ALLEGRO_BITMAP *bitmap)

Returns the video texture (stored with the D3DPOOL DEFAULT or D3DPOOL MANAGED flags depend-
ing on whether render-to-texture is enabled or disabled respectively).

Returns: A pointer to the Direct3D video texture.

3.4 al have d3d non pow2 texture support

bool al_have_d3d_non_pow2_texture_support(void)

Returns whether the Direct3D device supports textures whose dimensions are not powers of two.

Returns: True if device suports NPOT textures, false otherwise.

7

3.5 al have d3d non square texture support

bool al_have_d3d_non_square_texture_support(void)

Returns whether the Direct3D device supports textures that are not square.

Returns: True if the Direct3D device suports non-square textures, false otherwise.

3.6 al get d3d texture position

void al_get_d3d_texture_position(ALLEGRO_BITMAP *bitmap, int *u, int *v)

Returns the u/v coordinates for the top/left corner of the bitmap within the used texture, in pixels.

Parameters:

• bitmap - ALLEGRO BITMAP to examine

• u - Will hold the returned u coordinate

• v - Will hold the returned v coordinate

4 Display

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

4.1 Display creation

4.1.1 ALLEGRO DISPLAY

typedef struct ALLEGRO_DISPLAY ALLEGRO_DISPLAY;

An opaque type representing an open display or window.

4.1.2 al create display

ALLEGRO_DISPLAY *al_create_display(int w, int h)

Create a display, or window, with the specified dimensions. The parameters of the display are determined
by the last calls to al set new display *. Default parameters are used if none are set explicitly. Creating a
new display will automatically make it the active one, with the backbuffer selected for drawing.

Returns NULL on error.

See also: al set new display flags (4.1.10), al set new display option (4.1.7), al set new display refresh rate (4.1.11)

8

4.1.3 al destroy display

void al_destroy_display(ALLEGRO_DISPLAY *display)

Destroy a display.

4.1.4 al get new display flags

int al_get_new_display_flags(void)

Gets the current flags used for newly created displays.

See also: al set new display flags (4.1.10), al toggle display flag (4.2.19)

4.1.5 al get new display refresh rate

int al_get_new_display_refresh_rate(void)

Gets the current refresh rate used for newly created displays.

See also: al set new display refresh rate (4.1.11)

4.1.6 al get new window position

void al_get_new_window_position(int *x, int *y)

Gets the position where newly created non-fullscreen displays will be placed.

See also: al set new window position (4.1.12)

4.1.7 al set new display option

void al_set_new_display_option(int option, int value, int importance)

Sets an extra display option. Allegro itself will not care about those options itself, but you may want to
specify them, for example if you want to use multisampling.

The ‘importance’ parameter can be either:

• ALLEGRO REQUIRE - The display will not be created if the setting can not be met.

• ALLEGRO SUGGEST - If the setting is not available, the display will be created anyway. FIXME:
We need a way to query the settings back from a created display.

• ALLEGRO DONTCARE - If you added a display option with one of the above two settings before, it
will be removed again. Else this does nothing.

The supported options are:

• ALLEGRO RED SIZE

9

• ALLEGRO GREEN SIZE

• ALLEGRO BLUE SIZE

• ALLEGRO ALPHA SIZE

• ALLEGRO COLOR SIZE

• ALLEGRO RED SHIFT

• ALLEGRO GREEN SHIFT

• ALLEGRO BLUE SHIFT

• ALLEGRO ALPHA SHIFT: These settings can be used to specify the pixel layout the display should
use.

• ALLEGRO ACC RED SIZE

• ALLEGRO ACC GREEN SIZE

• ALLEGRO ACC BLUE SIZE

• ALLEGRO ACC ALPHA SIZE: This and the preceding three settings can be used to define the re-
quired accumulation buffer size.

• ALLEGRO STEREO: Whether the display is a stereo display.

• ALLEGRO AUX BUFFERS: Number of auxiliary buffers the display should have.

• ALLEGRO DEPTH SIZE: How many depth buffer (z-buffer) bits to use.

• ALLEGRO STENCIL SIZE: How many bits to use for the stencil buffer.

• ALLEGRO SAMPLE BUFFERS: Whether to use multisampling (1) or not (0).

• ALLEGRO SAMPLES: If the above is 1, the number of samples to use per pixel. Else 0.

• ALLEGRO RENDER METHOD: 0 if hardware acceleration is not used with this display.

• ALLEGRO FLOAT COLOR: Whether to use floating point color components.

• ALLEGRO FLOAT DEPTH: Whether to use a floating point depth buffer.

• ALLEGRO SINGLE BUFFER: Whether the display uses a single buffer (1) or another update method
(0).

• ALLEGRO SWAP METHOD: If the above is 0, this is set to 1 to indicate the display is using a
copying method to make the next buffer in the flip chain available, or to 2 to indicate a flipping or
other method.

• ALLEGRO COMPATIBLE DISPLAY: Indicates if Allegro’s graphics functions can use this display. If
you request a display not useable by Allegro, you can still use for example OpenGL to draw graphics.

• ALLEGRO UPDATE DISPLAY REGION: Set to 1 if the current display is capable of updating just
a region, and 0 if calling al update display region (4.2.20) is equivalent to al flip display (4.2.2).

• ALLEGRO VSYNC: Set to 1 to tell the driver to wait for vsync in al flip display (4.2.2), or to 2 to
force vsync off.

FIXME: document them all in detail

See also: al set new display flags (4.1.10)

10

4.1.8 al get new display option

int al_get_new_display_option(int option, int *importance)

Retrieve an extra display setting which was previously set with al set new display option (4.1.7).

4.1.9 al reset new display options

void al_reset_new_display_options(void)

This undoes any previous calls to al set new display option (4.1.7).

4.1.10 al set new display flags

void al_set_new_display_flags(int flags)

Sets various flags for display creation. flags is a bitfield containing any reasonable combination of the
following:

• ALLEGRO WINDOWED - prefer a windowed mode

• ALLEGRO FULLSCREEN - prefer a fullscreen mode

• ALLEGRO FULLSCREEN WINDOW

Make the window span the entire screen. Unlike ALLEGRO FULLSCREEN this will never attempt to
modify the screen resolution. Instead the pixel dimensions of the created display will be the same as the
desktop.

The passed width and height are only used if the window is switched out of fullscreen mode later but will
be ignored initially.

Under Windows and X11 a fullscreen display created with this flag will behave differently from one created
with the ALLEGRO FULLSCREEN flag - even if the ALLEGRO FULLSCREEN display is passed the
desktop dimensions. The exact difference is platform dependent, but some things which may be different is
how alt-tab works, how fast you can toggle between fullscreen/windowed mode or how additional monitors
behave while your display is in fullscreen mode.

• ALLEGRO RESIZABLE - the display is resizable (only applicable if combined with ALLEGRO WINDOWED)

• ALLEGRO OPENGL - require the driver to provide an initialized opengl context after returning
successfully

• ALLEGRO OPENGL 3 0 - require the driver to provide an initialized opengl context compatible with
OpenGL version 3.0

• ALLEGRO OPENGL FORWARD COMPATIBLE - the opengl context created with ALLEGRO OPENGL 3 0
will be forwad compatible, meaning that all of the OpenGL API declared deprecated in OpenGL 3.0
will not be supported. For such displays, option ALLEGRO COMPATIBLE DISPLAY will be set to
false.

11

• ALLEGRO DIRECT3D - require the driver to do rendering with Direct3D and provide a Direct3D
device

• ALLEGRO NOFRAME - Try to create a window without a frame (i.e. no border or titlebar). This
usualy does nothing for fullscreen modes, and even in windowed moded it depends on the underlying
platform whether it is supported or not.

• ALLEGRO GENERATE EXPOSE EVENTS - Let the display generate expose events.

0 can be used for default values.

See also: al set new display option (4.1.7), al get display option (4.2.16)

4.1.11 al set new display refresh rate

void al_set_new_display_refresh_rate(int refresh_rate)

Sets the refresh rate to use for newly created displays. If the refresh rate is not available, al create display (4.1.2)
will fail. A list of modes with refresh rates can be found with al get num display modes (4.3.3) and
al get display mode (4.3.2).

4.1.12 al set new window position

void al_set_new_window_position(int x, int y)

Sets where the top left pixel of the client area of newly created windows (non-fullscreen) will be on screen.
Negative values allowed on some multihead systems.

See also: al get new window position (4.1.6)

4.2 Display operations

4.2.1 al acknowledge resize

bool al_acknowledge_resize(ALLEGRO_DISPLAY *display)

When the user receives a resize event from a resizable display, if they wish the display to be resized they
must call this function to let the graphics driver know that it can now resize the display. Returns true on
success.

Adjusts the clipping rectangle to the full size of the backbuffer.

Note that a resize event may be outdated by the time you acknowledge it; there could be further resize
events generated in the meantime.

See also: al resize display (4.2.13), ALLEGRO EVENT (5.1)

12

4.2.2 al flip display

void al_flip_display(void)

Copies or updates the front and back buffers so that what has been drawn previously on the currently selected
display becomes visible on screen. Pointers to the special back and front buffer bitmaps remain valid and
retain their semantics as back and front buffers respectively, although their contents may have changed.

Several display options change how this function behaves:

With ALLEGRO SINGLE BUFFER, no flipping is done. You still have to call this function to display
graphics, depending on how the used graphics system works.

The ALLEGRO SWAP METHOD option may have additional information about what kind of operation is
used internally to flip the front and back buffers.

If ALLEGRO VSYNC is 1, this function will force waiting for vsync. If ALLEGRO VSYNC is 2, this
function will not wait for vsync. With many drivers the vsync behavior is controlled by the user and not the
application, and ALLEGRO VSYNC will not be set; in this case al flip display (4.2.2) will wait for vsync
depending on the settings set in the system’s graphics preferences.

See also: al set new display flags (4.1.10), al set new display option (4.1.7)

4.2.3 al get backbuffer

ALLEGRO_BITMAP *al_get_backbuffer(void)

Return a special bitmap representing the back-buffer of the current display.

Care should be taken when using the backbuffer bitmap (and its sub-bitmaps) as the source bitmap (e.g as
the bitmap argument to al draw bitmap (9.5.2)). Only untransformed operations are hardware accelerated.
This consists of al draw bitmap (9.5.2) and al draw bitmap region (9.5.3) when the current transformation is
the identity. If the tranformation is not the identity, or some other drawing operation is used, the call will be
routed through the memory bitmap routines, which are slow. If you need those operations to be accelerated,
then first copy a region of the backbuffer into a temporary bitmap (via the al draw bitmap (9.5.2) and
al draw bitmap region (9.5.3)), and then use that temporary bitmap as the source bitmap.

See also: al get frontbuffer (4.2.10)

4.2.4 al get current display

ALLEGRO_DISPLAY *al_get_current_display(void)

Query for the current display in the calling thread. Returns NULL if there is none.

See also: al set current display (4.2.14)

4.2.5 al get display flags

int al_get_display_flags(void)

Gets the flags of the current display.

See also: al set new display flags (4.1.10)

13

4.2.6 al get display format

int al_get_display_format(void)

Gets the pixel format of the current display.

See also: ALLEGRO PIXEL FORMAT (9.2.2)

4.2.7 al get display height

int al_get_display_height(void)

Gets the height of the current display. This is like SCREEN H in Allegro 4.x.

See also: al get display width (4.2.9)

4.2.8 al get display refresh rate

int al_get_display_refresh_rate(void)

Gets the refresh rate of the current display.

See also: al set new display refresh rate (4.1.11)

4.2.9 al get display width

int al_get_display_width(void)

Gets the width of the current display. This is like SCREEN W in Allegro 4.x.

See also: al get display height (4.2.7)

4.2.10 al get frontbuffer

ALLEGRO_BITMAP *al_get_frontbuffer(void)

Return a special bitmap representing the front-buffer of the current display. This may not be supported by
the driver; returns NULL in that case.

See also: al get backbuffer (4.2.3)

4.2.11 al get window position

void al_get_window_position(ALLEGRO_DISPLAY *display, int *x, int *y)

Gets the position of a non-fullscreen display.

See also: al set window position (4.2.17)

14

4.2.12 al inhibit screensaver

bool al_inhibit_screensaver(bool inhibit)

This function allows the user to stop the system screensaver from starting up if true is passed, or resets the
system back to the default state (the state at program start) if false is passed. It returns true if the state
was set successfully, otherwise false.

4.2.13 al resize display

bool al_resize_display(int width, int height)

Resize the current display. Returns true on success, or false on error. This works on both fullscreen and
windowed displays, regardless of the ALLEGRO RESIZABLE flag.

Adjusts the clipping rectangle to the full size of the backbuffer.

See also: al acknowledge resize (4.2.1)

4.2.14 al set current display

bool al_set_current_display(ALLEGRO_DISPLAY *display)

Change the current display for the calling thread. Also sets the target bitmap to the display’s backbuffer.

A display may not be “current” for multiple threads simultaneously. To stop a display being current for
the calling thread, call al_set_current_display(NULL). Then the display may be made current by another
thread.

Returns true on success.

See also: al get current display (4.2.4)

4.2.15 al set display icon

void al_set_display_icon(ALLEGRO_BITMAP *icon)

Changes the icon associated with the current display (window).

Note: If the underlying OS can not use an icon with the size of the provided bitmap, it will be scaled.

TODO: Describe best practice for the size? TODO: Allow providing multiple icons in differet sizes?

4.2.16 al get display option

int al_get_display_option(int option)

Return an extra display setting of the current display.

See also: al set new display option (4.1.7)

15

4.2.17 al set window position

void al_set_window_position(ALLEGRO_DISPLAY *display, int x, int y)

Sets the position on screen of a non-fullscreen display.

See also: al get window position (4.2.11)

4.2.18 al set window title

void al_set_window_title(const char *title)

Set the title on a display.

4.2.19 al toggle display flag

bool al_toggle_display_flag(int flag, bool onoff)

Enable or disable one of the display flags. The flags are the same as for al set new display flags (4.1.10).
Note however that some of the flags cannot be changed after the display has been created.

Returns true if the driver supports toggling the specified flag else false. You can use al get display flags (4.2.5)
to query whether the given display property actually changed.

See also: al set new display flags (4.1.10), al get display flags (4.2.5)

4.2.20 al update display region

void al_update_display_region(int x, int y, int width, int height)

Does the same as al flip display (4.2.2), but tries to update only the specified region. With many drivers
this is not possible, but for some it can improve performance.

The ALLEGRO UPDATE DISPLAY REGION option (see al get display option (4.2.16)) will specify the
behavior of this function in the current display.

See also: al flip display (4.2.2), al get display option (4.2.16)

4.2.21 al wait for vsync

bool al_wait_for_vsync(void)

Wait for the beginning of a vertical retrace. Some driver/card/monitor combinations may not be capable of
this.

Note how al flip display (4.2.2) usually already waits for the vertical retrace, so unless you are doing some-
thing special, there is no reason to call this function.

Returns false if not possible, true if successful.

See also: al flip display (4.2.2)

16

4.2.22 al get display event source

ALLEGRO_EVENT_SOURCE *al_get_display_event_source(ALLEGRO_DISPLAY *display)

Retrieve the associated event source.

4.3 Fullscreen display modes

4.3.1 ALLEGRO DISPLAY MODE

typedef struct ALLEGRO_DISPLAY_MODE

Used for display mode queries. Contains information about a supported fullscreen display mode.

typedef struct ALLEGRO_DISPLAY_MODE {
int width; // Screen width
int height; // Screen height
int format; // The pixel format of the mode
int refresh_rate; // The refresh rate of the mode

} ALLEGRO_DISPLAY_MODE;

See also: al get display mode (4.3.2)

4.3.2 al get display mode

ALLEGRO_DISPLAY_MODE *al_get_display_mode(int index, ALLEGRO_DISPLAY_MODE *mode)

Retrieves a display mode. Display parameters should not be changed between a call of al get num display modes (4.3.3)
and al get display mode (4.3.2). index must be between 0 and the number returned from al get num display modes–
1. mode must be an allocated ALLEGRO DISPLAY MODE structure. This function will return NULL on
failure, and the mode parameter that was passed in on success.

See also: ALLEGRO DISPLAY MODE (4.3.1), al get num display modes (4.3.3)

4.3.3 al get num display modes

int al_get_num_display_modes(void)

Get the number of available fullscreen display modes for the current set of display parameters. This will use
the values set with al set new display refresh rate (4.1.11), and al set new display flags (4.1.10) to find the
number of modes that match. Settings the new display parameters to zero will give a list of all modes for
the default driver.

See also: al get display mode (4.3.2)

17

4.4 Monitors

4.4.1 ALLEGRO MONITOR INFO

typedef struct ALLEGRO_MONITOR_INFO

Describes a monitors size and position relative to other monitors. x1, y1 will be 0, 0 on the primary display.
Other monitors can have negative values if they are to the left or above the primary display.

typedef struct ALLEGRO_MONITOR_INFO
{

int x1;
int y1;
int x2;
int y2;

} ALLEGRO_MONITOR_INFO;

See also: al get monitor info (4.4.4)

4.4.2 al get current video adapter

int al_get_current_video_adapter(void)

Gets the video adapter index where new displays will be created.

See also: al set current video adapter (4.4.3)

4.4.3 al set current video adapter

void al_set_current_video_adapter(int adapter)

Sets the adapter to use for newly created displays. The adapter has a monitor attached to it. Information
about the monitor can be gotten using al get num video adapters (4.4.5) and al get monitor info (4.4.4).

See also: al get num video adapters (4.4.5), al get monitor info (4.4.4)

4.4.4 al get monitor info

void al_get_monitor_info(int adapter, ALLEGRO_MONITOR_INFO *info)

Get information about a monitor’s position on the desktop. adapter is a number from 0 to al get num video adapters()–
1.

See also: ALLEGRO MONITOR INFO (4.4.1), al get num video adapters (4.4.5)

18

4.4.5 al get num video adapters

int al_get_num_video_adapters(void)

Get the number of video “adapters” attached to the computer. Each video card attached to the computer
counts as one or more adapters. An adapter is thus really a video port that can have a monitor connected
to it.

See also: al get monitor info (4.4.4)

5 Events

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

5.1 ALLEGRO EVENT

typedef union ALLEGRO_EVENT ALLEGRO_EVENT;

An ALLEGRO EVENT is a union of all builtin event structures, i.e. it is an object large enough to hold
the data of any event type. All events have the following fields in common:

ALLEGRO_EVENT_TYPE type;
ALLEGRO_EVENT_SOURCE * any.source;
double any.timestamp;

By examining the type field you can then access type-specific fields. The any.source field tells you which event
source generated that particular event. The any.timestamp field tells you when the event was generated.
The time is referenced to the same starting point as al current time().

Each event is of one of the following types:

• ALLEGRO EVENT JOYSTICK AXIS - a joystick axis value changed.

Fields are:

– joystick.stick,

– joystick.axis,

– joystick.pos (–1.0 to 1.0).

• ALLEGRO EVENT JOYSTICK BUTTON DOWN - a joystick button was pressed.

Fields are:

– joystick.button.

• ALLEGRO EVENT JOYSTICK BUTTON UP - a joystick button was released.

Fields are:

– joystick.button.

19

• ALLEGRO EVENT KEY DOWN - a keyboard key was pressed.

Fields:

– keyboard.keycode,

– keyboard.unichar,

– keyboard.modifiers,

– keyboard.display.

• ALLEGRO EVENT KEY REPEAT - a typed character auto-repeated.

Fields:

– keyboard.keycode (ALLEGRO KEY *),

– keyboard.unichar (unicode character),

– keyboard.modifiers (ALLEGRO KEYMOD *),

– keyboard.display.

• ALLEGRO EVENT KEY UP - a keyboard key was released.

Fields:

– keyboard.keycode,

– keyboard.display.

• ALLEGRO EVENT MOUSE AXES - one or more mouse axis values changed.

Fields:

– mouse.x,

– mouse.y,

– mouse.z,

– mouse.dx,

– mouse.dy,

– mouse.dz,

– mouse.display.

Note: Calling al set mouse xy (14.11) also will result in a change of axis values, but such a change is
reported with ALLEGRO EVENT MOUSE WARPED events instead.

Note: currently mouse.display may be NULL if an event is generated in response to al set mouse axis (14.10).

• ALLEGRO EVENT MOUSE BUTTON DOWN - a mouse button was pressed.

Fields:

– mouse.x,

– mouse.y,

– mouse.z,

– mouse.button,

– mouse.display.

• ALLEGRO EVENT MOUSE BUTTON UP - a mouse button was released.

Fields:

20

– mouse.x,

– mouse.y,

– mouse.z,

– mouse.button,

– mouse.display.

• ALLEGRO EVENT MOUSE WARPED - al set mouse xy (14.11) was called to move the mouse. This
event is identical to ALLEGRO EVENT MOUSE AXES otherwise.

• ALLEGRO EVENT MOUSE ENTER DISPLAY - the mouse cursor entered a window opened by the
program.

Fields:

– mouse.x,

– mouse.y,

– mouse.z,

– mouse.display.

• ALLEGRO EVENT MOUSE LEAVE DISPLAY - the mouse cursor leave the boundaries of a window
opened by the program.

Fields:

– mouse.x,

– mouse.y,

– mouse.z,

– mouse.display.

• ALLEGRO EVENT TIMER - a timer counter incremented.

Fields:

– timer.count.

• ALLEGRO EVENT DISPLAY EXPOSE - The display (or a portion thereof) has become visible. Note:
The display needs to be created with ALLEGRO GENERATE EXPOSE EVENTS flag.

Fields:

– display.x,

– display.y,

– display.width,

– display.height

• ALLEGRO EVENT DISPLAY RESIZE - The window has been resized.

Fields:

– display.x,

– display.y,

– display.width,

– display.height

21

Note that further resize events may be generated by the time you process the event, so these fields
may hold outdated information.

• ALLEGRO EVENT DISPLAY CLOSE - The close button of the window has been pressed.

• ALLEGRO EVENT DISPLAY LOST - Displays can be lost with some drivers (just Direct3D?). This
means that rendering is impossible. The device will be restored as soon as it is possible. The program
should be able to ignore this event and continue rendering however it will have no effect.

• ALLEGRO EVENT DISPLAY FOUND - Generated when a lost device is regained. Drawing will no
longer be a no-op.

• ALLEGRO EVENT DISPLAY SWITCH OUT - The window is no longer active, that is the user might
have clicked into another window or “tabbed” away.

• ALLEGRO EVENT DISPLAY SWITCH IN - The window is the active one again.

See also: ALLEGRO EVENT SOURCE (5.4), ALLEGRO EVENT TYPE (5.5), ALLEGRO USER EVENT (5.2)

5.2 ALLEGRO USER EVENT

typedef struct ALLEGRO_USER_EVENT ALLEGRO_USER_EVENT;

An event structure that can be emitted by user event sources. These are the public fields:

ALLEGRO_EVENT_SOURCE *source;
intptr_t data1;
intptr_t data2;
intptr_t data3;
intptr_t data4;

See also: al emit user event (5.13)

5.3 ALLEGRO EVENT QUEUE

typedef struct ALLEGRO_EVENT_QUEUE ALLEGRO_EVENT_QUEUE;

An event queue holds events that have been generated by event sources that are registered with the queue.
Events are stored in the order they are generated. Access is in a strictly FIFO (first-in-first-out) order.

See also: al create event queue (5.8), al destroy event queue (5.10)

5.4 ALLEGRO EVENT SOURCE

typedef struct ALLEGRO_EVENT_SOURCE ALLEGRO_EVENT_SOURCE;

An event source is any object which can generate events. For example, an ALLEGRO DISPLAY can
generate events, and you can get the ALLEGRO EVENT SOURCE pointer from an ALLEGRO DISPLAY
with al get display event source (4.2.22).

You may create your own “user” event sources that emit custom events.

See also: ALLEGRO EVENT (5.1), al init user event source (5.9), al emit user event (5.13)

22

5.5 ALLEGRO EVENT TYPE

typedef unsigned int ALLEGRO_EVENT_TYPE;

An integer used to distinguish between different types of events.

See also: ALLEGRO EVENT (5.1), ALLEGRO GET EVENT TYPE (5.6), ALLEGRO EVENT TYPE IS USER (5.7)

5.6 ALLEGRO GET EVENT TYPE

#define ALLEGRO_GET_EVENT_TYPE(a, b, c, d) AL_ID(a, b, c, d)

Make an event type identifier, which is a 32-bit integer. Usually this will be made from four 8-bit character
codes, for example:

#define MY_EVENT_TYPE ALLEGRO_GET_EVENT_TYPE(’M’,’I’,’N’,’E’)

You should try to make your IDs unique so they don’t clash with any 3rd party code you may be using.

IDs less than 1024 are reserved for Allegro or its addons.

See also: ALLEGRO EVENT (5.1), ALLEGRO EVENT TYPE IS USER (5.7)

5.7 ALLEGRO EVENT TYPE IS USER

#define ALLEGRO_EVENT_TYPE_IS_USER(t) ((t) >= 512)

A macro which evaluates to true if the event type is not a builtin event type, i.e. one of those described in
ALLEGRO EVENT TYPE (5.5).

5.8 al create event queue

ALLEGRO_EVENT_QUEUE *al_create_event_queue(void)

Create a new, empty event queue, returning a pointer to object if successful. Returns NULL on error.

See also: ALLEGRO EVENT QUEUE (5.3)

5.9 al init user event source

void al_init_user_event_source(ALLEGRO_EVENT_SOURCE *src)

Initialise an event source for emitting user events. The space for the event source must already have been
allocated.

One possible way of creating custom event sources is to derive other structures with ALLEGRO EVENT SOURCE
at the head, e.g.

23

typedef struct THING THING;

struct THING {
ALLEGRO_EVENT_SOURCE event_source;
int field1;
int field2;
/* etc. */

};

THING *create_thing(void)
{

THING *thing = malloc(sizeof(THING));

if (thing) {
al_init_user_event_source(&thing->event_source);
thing->field1 = 0;
thing->field2 = 0;

}

return thing;
}

The advantage here is that the THING pointer will be the same as the ALLEGRO EVENT SOURCE
pointer. Events emitted by the event source will have the event source pointer as the source field, from
which you can get a pointer to a THING by a simple cast (after ensuring checking the event is of the correct
type).

However, it is only one technique and you are not obliged to use it.

See also: ALLEGRO EVENT SOURCE (5.4), al emit user event (5.13), al destroy user event source (5.11)

5.10 al destroy event queue

void al_destroy_event_queue(ALLEGRO_EVENT_QUEUE *queue)

Destroy the event queue specified. All event sources currently registered with the queue will be automatically
unregistered before the queue is destroyed.

See also: ALLEGRO EVENT QUEUE (5.3)

5.11 al destroy user event source

void al_destroy_user_event_source(ALLEGRO_EVENT_SOURCE *src)

Destroy an event source initialised with al init user event source (5.9).

See also: ALLEGRO EVENT SOURCE (5.4)

24

5.12 al drop next event

bool al_drop_next_event(ALLEGRO_EVENT_QUEUE *queue)

Drop the next event from the queue. If the queue is empty, nothing happens. Returns true iff an event was
dropped.

5.13 al emit user event

bool al_emit_user_event(ALLEGRO_EVENT_SOURCE *src,
ALLEGRO_EVENT *event, void (*dtor)(ALLEGRO_USER_EVENT *))

Emit a user event. The event source must have been initialised with al init user event source (5.9). Some
fields of the event being passed in may be modified. Returns false if the event source isn’t registered with
any queues, hence the event wouldn’t have been delivered into any queues.

Reference counting will be performed on the event if dtor is non-NULL. When the reference count drops
to zero dtor will be called with a copy of the event as an argument. It should free the resources associated
with the event. If dtor is NULL then reference counting will not be performed.

You need to call al unref user event (5.21) when you are done with a reference counted user event that you
have gotten from al get next event (5.17), al peek next event (5.18), al wait for event (5.23), etc. You may,
but do not need to, call al unref user event (5.21) on non-reference counted user events.

See also: ALLEGRO USER EVENT (5.2)

5.14 al event queue is empty

bool al_event_queue_is_empty(ALLEGRO_EVENT_QUEUE *queue)

Return true if the event queue specified is currently empty.

5.15 al flush event queue

void al_flush_event_queue(ALLEGRO_EVENT_QUEUE *queue)

Drops all events, if any, from the queue.

5.16 al get event source data

intptr_t al_get_event_source_data(const ALLEGRO_EVENT_SOURCE *source)

Returns the abstract user data associated with the event source. If no data was previously set, returns
NULL.

See also: al set event source data (5.20)

25

5.17 al get next event

bool al_get_next_event(ALLEGRO_EVENT_QUEUE *queue, ALLEGRO_EVENT *ret_event)

Take the next event out of the event queue specified, and copy the contents into ret_event, returning true.
The original event will be removed from the queue. If the event queue is empty, return false and the contents
of ret_event are unspecified.

See also: ALLEGRO EVENT (5.1)

5.18 al peek next event

bool al_peek_next_event(ALLEGRO_EVENT_QUEUE *queue, ALLEGRO_EVENT *ret_event)

Copy the contents of the next event in the event queue specified into ret_event and return true. The
original event packet will remain at the head of the queue. If the event queue is actually empty, this function
returns false and the contents of ret_event are unspecified.

See also: ALLEGRO EVENT (5.1)

5.19 al register event source

void al_register_event_source(ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT_SOURCE *source)

Register the event source with the event queue specified. An event source may be registered with any number
of event queues simultaneously, or none. Trying to register an event source with the same event queue more
than once does nothing.

See also: ALLEGRO EVENT QUEUE (5.3), ALLEGRO EVENT SOURCE (5.4)

5.20 al set event source data

void al_set_event_source_data(ALLEGRO_EVENT_SOURCE *source, intptr_t data)

Assign the abstract user data to the event source. Allegro does not use the data internally for anything; it
is simply meant as a convenient way to associate your own data or objects with events.

See also: al get event source data (5.16)

5.21 al unref user event

void al_unref_user_event(ALLEGRO_USER_EVENT *event)

Unreference a user-defined event. This must be called on any user event that you get from al get next event (5.17),
al peek next event (5.18), al wait for event (5.23), etc. which is reference counted. This function does noth-
ing if the event is not reference counted.

See also: al emit user event (5.13).

26

5.22 al unregister event source

void al_unregister_event_source(ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT_SOURCE *source)

Unregister an event source with an event queue. If the event source is not actually registered with the event
queue, nothing happens.

If the queue had any events in it which originated from the event source, they will no longer be in the queue
after this call.

5.23 al wait for event

void al_wait_for_event(ALLEGRO_EVENT_QUEUE *queue, ALLEGRO_EVENT *ret_event)

Wait until the event queue specified is non-empty. If ret_event is not NULL, the first event in the queue
will be copied into ret_event and removed from the queue. If ret_event is NULL the first event is left at
the head of the queue.

See also: ALLEGRO EVENT (5.1), al wait for event timed (5.24), al wait for event until (5.25)

5.24 al wait for event timed

bool al_wait_for_event_timed(ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT *ret_event, float secs)

Wait until the event queue specified is non-empty. If ret_event is not NULL, the first event in the queue
will be copied into ret_event and removed from the queue. If ret_event is NULL the first event is left at
the head of the queue.

timeout_msecs determines approximately how many seconds to wait. If the call times out, false is returned.
Otherwise true is returned.

See also: ALLEGRO EVENT (5.1), al wait for event (5.23), al wait for event until (5.25)

5.25 al wait for event until

bool al_wait_for_event_until(ALLEGRO_EVENT_QUEUE *queue,
ALLEGRO_EVENT *ret_event, ALLEGRO_TIMEOUT *timeout)

Wait until the event queue specified is non-empty. If ret_event is not NULL, the first event in the queue
will be copied into ret_event and removed from the queue. If ret_event is NULL the first event is left at
the head of the queue.

timeout determines how long to wait. If the call times out, false is returned. Otherwise true is returned.

See also: ALLEGRO EVENT (5.1), ALLEGRO TIMEOUT (21.1), al init timeout (21.3), al wait for event (5.23),
al wait for event timed (5.24)

27

6 File I/O

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

6.1 ALLEGRO FILE

typedef struct ALLEGRO_FILE ALLEGRO_FILE;

An opaque object representing an open file. This could be a real file on disk or a virtual file.

6.2 ALLEGRO FILE INTERFACE

typedef struct ALLEGRO_FILE_INTERFACE

A structure containing function pointers to handle a type of “file”, real or virtual. See the full discussion in
al set new file interface (6.29.1).

The fields are:

ALLEGRO_FILE* (*fi_fopen)(const char *path, const char *mode);
void (*fi_fclose)(ALLEGRO_FILE *handle);
size_t (*fi_fread)(ALLEGRO_FILE *f, void *ptr, size_t size);
size_t (*fi_fwrite)(ALLEGRO_FILE *f, const void *ptr, size_t size);
bool (*fi_fflush)(ALLEGRO_FILE *f);
int64_t (*fi_ftell)(ALLEGRO_FILE *f);
bool (*fi_fseek)(ALLEGRO_FILE *f, int64_t offset, int whence);
bool (*fi_feof)(ALLEGRO_FILE *f);
bool (*fi_ferror)(ALLEGRO_FILE *f);
int (*fi_fungetc)(ALLEGRO_FILE *f, int c);
off_t (*fi_fsize)(ALLEGRO_FILE *f);

6.3 ALLEGRO SEEK

typedef enum ALLEGRO_SEEK

• ALLEGRO SEEK SET - Seek to pos from beginning of file

• ALLEGRO SEEK CUR - Seek to pos from curent position

• ALLEGRO SEEK END - Seek to pos from end of file

28

6.4 al fopen

ALLEGRO_FILE *al_fopen(const char *path, const char *mode)

Creates and opens a file (real or virtual) given the path and mode. The current file interface is used to open
the file.

‘path’ - the path to open

‘mode’ - mode to open the entry in (“r”, “w”, etc.)

Depending on the stream type and the mode string, files may be opened in “text” mode. The handling of
newlines is particularly important. For example, using the default stdio-based streams on DOS and Windows
platforms, where the native end-of-line terminators are CR+LF sequences, a call to al fgetc (6.15) may return
just one character (‘\n’) where there were two bytes (CR+LF) in the file. When writing out ‘\n’, two bytes
would be written instead. (As an aside, ‘\n’ is not defined to be equal to LF either.)

Newline translations can be useful for text files but is disastrous for binary files. To avoid this behaviour
you need to open file streams in binary mode by using a mode argument containing a “b”, e.g. “rb”, “wb”.

See also: al set new file interface (6.29.1).

6.5 al fclose

void al_fclose(ALLEGRO_FILE *f)

Close the given file.

6.6 al fread

size_t al_fread(ALLEGRO_FILE *f, void *ptr, size_t size)

Read ‘size’ bytes into ‘ptr’ from entry ‘fp’

Return number of bytes actually read.

6.7 al fwrite

size_t al_fwrite(ALLEGRO_FILE *f, const void *ptr, size_t size)

Write ‘size’ bytes from ‘ptr’ into file ‘fp’

Return number of bytes actually written or 0 on error.

Does not distinguish between EOF and other errors. Use al feof (6.11) and al ferror (6.12) to tell them apart.

6.8 al fflush

bool al_fflush(ALLEGRO_FILE *f)

Flush any pending writes to ‘fp’ to disk.

Returns true on success, false otherwise, and errno is set to indicate the error.

See also: al get errno (18.5)

29

6.9 al ftell

int64_t al_ftell(ALLEGRO_FILE *f)

Returns the current position in file, or –1 on error. errno is set to indicate the error.

On some platforms this function may not support large files.

See also: al get errno (18.5)

6.10 al fseek

bool al_fseek(ALLEGRO_FILE *f, int64_t offset, int whence)

Seek to ‘offset’ in file based on ‘whence’.

‘whence’ can be:

• ALLEGRO SEEK SET - Seek from beggining of file

• ALLEGRO SEEK CUR - Seek from current position

• ALLEGRO SEEK END - Seek from end of file

Returns true on success, false on failure and errno is set to indicate the error.

On some platforms this function may not support large files.

See also: al get errno (18.5)

6.11 al feof

bool al_feof(ALLEGRO_FILE *f)

Returns true if the end-of-file indicator has been set on the file, i.e. we have attempted to read past the end
of the file.

This does not return true if we simply are at the end of the file. The following code correctly reads two
bytes, even when the file contains exactly two bytes:

int b1 = al_fgetc(f);
int b2 = al_fgetc(f);
if (al_feof(f)) {

/* At least one byte was unsuccessfully read. */
report_error();

}

See also: al ferror (6.12)

30

6.12 al ferror

bool al_ferror(ALLEGRO_FILE *f)

Returns true if there was some sort of previous error.

See also: al feof (6.11)

6.13 al fungetc

int al_fungetc(ALLEGRO_FILE *f, int c)

Ungets a single byte from a file. Does not write to file, it only places the char back into the entry’s buffer.

See also: al fgetc (6.15), al get errno (18.5)

6.14 al fsize

int64_t al_fsize(ALLEGRO_FILE *f)

Return the size of the file, if it can be determined, or –1 otherwise.

6.15 al fgetc

int al_fgetc(ALLEGRO_FILE *f)

Read and return next byte in entry ‘f’. Returns EOF on end of file or if an error occurred.

See also: al fungetc (6.13)

6.16 al fputc

int al_fputc(ALLEGRO_FILE *f, int c)

Write a single byte to entry.

Parameters:

• c - byte value to write

• f - entry to write to

Returns: EOF on error

31

6.17 al fread16le

int16_t al_fread16le(ALLEGRO_FILE *f)

Reads a 16-bit word in little-endian format (LSB first).

On success, returns the 16-bit word. On failure, returns EOF (–1). Since –1 is also a valid return value, use
al feof (6.11) to check if the end of the file was reached prematurely, or al ferror (6.12) to check if an error
occurred.

See also: al fread16be (6.18)

6.18 al fread16be

int16_t al_fread16be(ALLEGRO_FILE *f)

Reads a 16-bit word in big-endian format (MSB first).

On success, returns the 16-bit word. On failure, returns EOF (–1). Since –1 is also a valid return value, use
al feof (6.11) to check if the end of the file was reached prematurely, or al ferror (6.12) to check if an error
occurred.

See also: al fread16le (6.17)

6.19 al fwrite16le

size_t al_fwrite16le(ALLEGRO_FILE *f, int16_t w)

Writes a 16-bit word in little-endian format (LSB first).

Returns the number of bytes written: 2 on success, less than 2 on an error.

See also: al fwrite16be (6.20)

6.20 al fwrite16be

size_t al_fwrite16be(ALLEGRO_FILE *f, int16_t w)

Writes a 16-bit word in big-endian format (MSB first).

Returns the number of bytes written: 2 on success, less than 2 on an error.

See also: al fwrite16le (6.19)

6.21 al fread32le

int32_t al_fread32le(ALLEGRO_FILE *f)

Reads a 32-bit word in little-endian format (LSB first).

On success, returns the 32-bit word. On failure, returns EOF (–1). Since –1 is also a valid return value, use
al feof (6.11) to check if the end of the file was reached prematurely, or al ferror (6.12) to check if an error
occurred.

See also: al fread32be (6.22)

32

6.22 al fread32be

int32_t al_fread32be(ALLEGRO_FILE *f)

Read a 32-bit word in big-endian format (MSB first).

On success, returns the 32-bit word. On failure, returns EOF (–1). Since –1 is also a valid return value, use
al feof (6.11) to check if the end of the file was reached prematurely, or al ferror (6.12) to check if an error
occurred.

See also: al fread32le (6.21)

6.23 al fwrite32le

size_t al_fwrite32le(ALLEGRO_FILE *f, int32_t l)

Writes a 32-bit word in little-endian format (LSB first).

Returns the number of bytes written: 4 on success, less than 4 on an error.

See also: al fwrite32be (6.24)

6.24 al fwrite32be

size_t al_fwrite32be(ALLEGRO_FILE *f, int32_t l)

Writes a 32-bit word in big-endian format (MSB first).

Returns the number of bytes written: 4 on success, less than 4 on an error.

See also: al fwrite32le (6.23)

6.25 al fgets

char *al_fgets(ALLEGRO_FILE *f, char * const buf, size_t max)

Read a string of bytes terminated with a newline or end-of-file into the buffer given. The line terminator(s),
if any, are included in the returned string. A maximum of max–1 bytes are read, with one byte being reserved
for a NUL terminator.

Parameters:

• f - file to read from

• buf - buffer to fill

• max - maximum size of buffer

Returns the pointer to buf on success. Returns NULL if an error occurred or if the end of file was reached
without reading any bytes.

See al fopen (6.4) about translations of end-of-line characters.

33

6.26 al fget ustr

ALLEGRO_USTR *al_fget_ustr(ALLEGRO_FILE *f)

Read a string of bytes terminated with a newline or end-of-file. The line terminator(s), if any, are included
in the returned string.

On success returns a pointer to a new ALLEGRO USTR structure. This must be freed eventually with
al ustr free (24.3.4). Returns NULL if an error occurred or if the end of file was reached without reading
any bytes.

See al fopen (6.4) about translations of end-of-line characters.

6.27 al fputs

int al_fputs(ALLEGRO_FILE *f, char const *p)

Writes a string to file. Apart from the return value, this is equivalent to:

al_fwrite(f, p, strlen(p));

Parameters:

• f - file handle to write to

• p - string to write

Returns a non-negative integer on success, EOF on error.

Note: depending on the stream type and the mode passed to al fopen (6.4), newline characters in the string
may or may not be automatically translated to native end-of-line sequences, e.g. CR/LF instead of LF.

6.28 Standard I/O specific routines

6.28.1 al fopen fd

ALLEGRO_FILE *al_fopen_fd(int fd, const char *mode)

Create an ALLEGRO FILE (6.1) object that operates on an open file descriptor using stdio routines. See
the documentation of fdopen() for a description of the ‘mode’ argument.

Returns an ALLEGRO FILE object on success or NULL on an error. On an error, the Allegro errno will be
set and the file descriptor will not be closed.

The file descriptor will be closed by al fclose (6.5) so you should not call close() on it.

34

6.28.2 al make temp file

ALLEGRO_FILE *al_make_temp_file(const char *template, ALLEGRO_PATH **ret_path)

Make a temporary randomly named file given a filename ‘template’.

‘template’ is a string giving the format of the generated filename and should include one or more capital Xs.
The Xs are replaced with random alphanumeric characters. There should be no path separators.

If ‘ret path’ is not NULL, the address it points to will be set to point to a new path structure with the name
of the temporary file.

Returns the opened ALLEGRO FILE (6.1) on success, NULL on failure.

6.29 Alternative file streams

By default, the Allegro file I/O routines use the C library I/O routines, hence work with files on the local
filesystem, but can be overridden so that you can read and write to other streams. For example, you can
work with block of memory or sub-files inside .zip files.

There are two ways to get an ALLEGRO FILE (6.1) that doesn’t use stdio. An addon library may provide
a function that returns a new ALLEGRO FILE directly, after which, all al f* calls on that object will use
overridden functions for that type of stream. Alternatively, al set new file interface (6.29.1) changes which
function will handle the following al fopen (6.4) calls for the current thread.

6.29.1 al set new file interface

void al_set_new_file_interface(const ALLEGRO_FILE_INTERFACE *file_interface)

Set the ALLEGRO FILE INTERFACE (6.2) table for the calling thread. This will change the handler for
later calls to al fopen (6.4).

See also: al set standard file interface (6.29.2), al store state (18.4), al restore state (18.3).

6.29.2 al set standard file interface

void al_set_standard_file_interface(void)

Set the ALLEGRO FILE INTERFACE (6.2) table to the default, for the calling thread. This will change
the handler for later calls to al fopen (6.4).

See also: al set new file interface (6.29.1)

6.29.3 al get new file interface

const ALLEGRO_FILE_INTERFACE *al_get_new_file_interface(void)

Return a pointer to the ALLEGRO FILE INTERFACE (6.2) table in effect for the calling thread.

See also: al store state (18.4), al restore state (18.3).

35

7 File system

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

These functions allow access to the filesystem. This can either be the real filesystem like your harddrive, or
a virtual filesystem like a .zip archive (or whatever else you or an addon makes it do).

7.1 ALLEGRO FS ENTRY

typedef struct ALLEGRO_FS_ENTRY ALLEGRO_FS_ENTRY;

Opaque filesystem entry object. Represents a file or a directory (check with al fs entry is directory (7.14) or
al fs entry is file (7.13)). There are no user accessible member variables.

7.2 ALLEGRO FILE MODE

typedef enum ALLEGRO_FILE_MODE

Filesystem modes/types

• ALLEGRO FILEMODE READ - Readable

• ALLEGRO FILEMODE WRITE - Writable

• ALLEGRO FILEMODE EXECUTE - Executable

• ALLEGRO FILEMODE HIDDEN - Hidden

• ALLEGRO FILEMODE ISFILE - Regular file

• ALLEGRO FILEMODE ISDIR - Directory

7.3 al create fs entry

ALLEGRO_FS_ENTRY *al_create_fs_entry(const char *path)

Creates an ALLEGRO FS ENTRY (7.1) object pointing to path on the filesystem. ‘path’ can be a file or a
directory and must not be NULL.

7.4 al destroy fs entry

void al_destroy_fs_entry(ALLEGRO_FS_ENTRY *fh)

Destroys a fs entry handle. The file or directory represented by it is not destroyed.

Does nothing if passed NULL.

36

7.5 al get fs entry name

const ALLEGRO_PATH *al_get_fs_entry_name(ALLEGRO_FS_ENTRY *e)

Returns the entry’s filename path. Note that the path will not be an absolute path if the entry wasn’t
created from an absolute path. Also not that the filesystem encoding may not be known and the conversion
to UTF–8 could in very rare cases cause this to return an invalid path. Therefore it’s always safest to access
the file over its ALLEGRO FS ENTRY (7.1) and not the path.

On success returns a read only path structure, which you must not modify or destroy. Returns NULL on
failure; errno is set to indicate the error.

7.6 al update fs entry

bool al_update_fs_entry(ALLEGRO_FS_ENTRY *e)

Updates file status information for a filesystem entry. File status information is automatically updated when
the entry is created, however you may update it again with this function, e.g. in case it changed.

Returns true on success, false on failure. Fills in errno to indicate the error.

See also: al get errno (18.5), al get fs entry atime (7.8), al get fs entry ctime (7.9), al fs entry is directory (7.14),
al fs entry is file (7.13), al get fs entry mode (7.7)

7.7 al get fs entry mode

uint32_t al_get_fs_entry_mode(ALLEGRO_FS_ENTRY *e)

Returns the entry’s mode flags, i.e. permissions and whether the entry refers to a file or directory.

See also: al get errno (18.5), ALLEGRO FILE MODE (7.2)

7.8 al get fs entry atime

time_t al_get_fs_entry_atime(ALLEGRO_FS_ENTRY *e)

Returns the time in seonds since the epoch since the entry was last accessed.

Warning: some filesystem either don’t support this flag, or people turn it off to increase performance. It
may not be valid in all circumstances.

See also: al get fs entry ctime (7.9), al get fs entry mtime (7.10), al update fs entry (7.6)

7.9 al get fs entry ctime

time_t al_get_fs_entry_ctime(ALLEGRO_FS_ENTRY *e)

Returns the time in seconds since the epoch this entry was created on the filsystem.

See also: al get fs entry atime (7.8), al get fs entry mtime (7.10), al update fs entry (7.6)

37

7.10 al get fs entry mtime

time_t al_get_fs_entry_mtime(ALLEGRO_FS_ENTRY *e)

Returns the time in seconds since the epoch since the entry was last modified.

See also: al get fs entry atime (7.8), al get fs entry ctime (7.9), al update fs entry (7.6)

7.11 al get fs entry size

off_t al_get_fs_entry_size(ALLEGRO_FS_ENTRY *e)

Returns the size, in bytes, of the given entry. May not return anything sensible for a directory entry.

See also: al update fs entry (7.6)

7.12 al fs entry exists

bool al_fs_entry_exists(ALLEGRO_FS_ENTRY *e)

Check if the given entry exists on in the filesystem. Returns true if it does exist or false if it doesn’t exist,
or an error occured. Error is indicated in Allegro’ errno.

7.13 al fs entry is file

bool al_fs_entry_is_file(ALLEGRO_FS_ENTRY *e)

Return true iff this entry is a regular file.

See also: al get fs entry mode (7.7)

7.14 al fs entry is directory

bool al_fs_entry_is_directory(ALLEGRO_FS_ENTRY *e)

Return true iff this entry is a directory.

See also: al get fs entry mode (7.7)

7.15 al remove fs entry

bool al_remove_fs_entry(ALLEGRO_FS_ENTRY *e)

Delete this filesystem entry from the filesystem. Only files and empty directories may be deleted.

Returns true on success, and false on failure, error is indicated in Allegro’ errno.

See also: al filename exists (7.16)

38

7.16 al filename exists

bool al_filename_exists(const char *path)

Check if the path exists on the filesystem, without creating an ALLEGRO FS ENTRY (7.1) object explicitly.

See also: al fs entry exists (7.12)

7.17 al remove filename

bool al_remove_filename(const char *path)

Delete the given path from the filesystem, which may be a file or an empty directory. This is the same as
al remove fs entry (7.15), except it expects the path as a string.

Returns true on success, and false on failure. Allegro’s errno is filled in to indicate the error.

See also: al remove fs entry (7.15)

7.18 Directory functions

7.18.1 al open directory

bool al_open_directory(ALLEGRO_FS_ENTRY *e)

Opens a directory entry object. You must call this before using al read directory (7.18.2) on an entry and
you must call al close directory (7.18.3) when you no longer need it.

Returns true on success.

See also: al read directory (7.18.2), al close directory (7.18.3)

7.18.2 al read directory

ALLEGRO_FS_ENTRY *al_read_directory(ALLEGRO_FS_ENTRY *e)

Reads the next directory item and returns a filesystem entry for it.

Returns NULL if there are no more entries or if an error occurs. Call al close directory (7.18.3) on the
directory handle when you are done.

See also: al open directory (7.18.1), al close directory (7.18.3)

7.18.3 al close directory

bool al_close_directory(ALLEGRO_FS_ENTRY *e)

Closes a previously opened directory entry object.

Returns true on success, false on failure and fills in Allegro’s errno to indicate the error.

See also: al open directory (7.18.1), al read directory (7.18.2)

39

7.18.4 al get current directory

ALLEGRO_PATH *al_get_current_directory(void)

Returns the path to the current working directory, or NULL on failure. Allegro’s errno is filled in to indicate
the error.

See also: al get errno (18.5)

7.18.5 al change directory

bool al_change_directory(const char *path)

Changes the current working directory to ‘path’.

Returns true on success, false on error.

7.18.6 al make directory

bool al_make_directory(const char *path)

Creates a new directory on the filesystem.

Returns true on success, false on error. Fills in Allegro’s errno to indicate the error.

See also: al get errno (18.5)

7.19 Alternative filesystem functions

By default, Allegro uses platform specific filesystem functions for things like directory access. However if for
example the files of your game are not in the local filesystem but inside some file archive, you can provide
your own set of functions (or use an addon which does this for you, for example our physfs addon allows
access to the most common archive formats).

7.19.1 ALLEGRO FS INTERFACE

typedef struct ALLEGRO_FS_INTERFACE ALLEGRO_FS_INTERFACE;

The available functions you can provide for a filesystem. They are:

∼ ALLEGRO FS ENTRY * fs create entry (const char path); void fs destroy entry (ALLEGRO FS ENTRY e);
const ALLEGRO PATH fs entry name (ALLEGRO FS ENTRY e); bool fs update entry (ALLEGRO FS ENTRY
e); uint32 t fs entry mode (ALLEGRO FS ENTRY e); time t fs entry atime (ALLEGRO FS ENTRY e);
time t fs entry mtime (ALLEGRO FS ENTRY e); time t fs entry ctime (ALLEGRO FS ENTRY e); off t
fs entry size (ALLEGRO FS ENTRY e); bool fs entry exists (ALLEGRO FS ENTRY e); bool fs remove entry
(ALLEGRO FS ENTRY e);

bool fs open directory (ALLEGRO FS ENTRY e); ALLEGRO FS ENTRY fs read directory (ALLEGRO FS ENTRY
e); bool fs close directory(ALLEGRO FS ENTRY e);

bool fs filename exists(const char path); bool fs remove filename(const charpath); ALLEGRO PATH * fs get current directory(void);
bool fs change directory(const char path); bool fs make directory(const charpath); ∼

40

7.19.2 al set fs interface

void al_set_fs_interface(const ALLEGRO_FS_INTERFACE *fs_interface)

Set the ALLEGRO FS INTERFACE (7.19.1) table for the calling thread.

See also: al set standard fs interface (7.19.3), al store state (18.4), al restore state (18.3).

7.19.3 al set standard fs interface

void al_set_standard_fs_interface(void)

Return the ALLEGRO FS INTERFACE (7.19.1) table to the default, for the calling thread.

See also: al set fs interface (7.19.2).

7.19.4 al get fs interface

const ALLEGRO_FS_INTERFACE *al_get_fs_interface(void)

Return a pointer to the ALLEGRO FS INTERFACE (7.19.1) table in effect for the calling thread.

See also: al store state (18.4), al restore state (18.3).

8 Fixed point math routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

8.1 al fixed

typedef int32_t al_fixed;

A fixed point number.

Allegro provides some routines for working with fixed point numbers, and defines the type al_fixed to be
a signed 32-bit integer. The high word is used for the integer part and the low word for the fraction, giving
a range of –32768 to 32767 and an accuracy of about four or five decimal places. Fixed point numbers can
be assigned, compared, added, subtracted, negated and shifted (for multiplying or dividing by powers of
two) using the normal integer operators, but you should take care to use the appropriate conversion routines
when mixing fixed point with integer or floating point values. Writing fixed_point_1 + fixed_point_2 is
OK, but fixed_point + integer is not.

The only advantage of fixed point math routines is that you don’t require a floating point coprocessor to use
them. This was great in the time period of i386 and i486 machines, but stopped being so useful with the
coming of the Pentium class of processors. From Pentium onwards, CPUs have increased their strength in
floating point operations, equaling or even surpassing integer math performance.

Depending on the type of operations your program may need, using floating point types may be faster than
fixed types if you are targeting a specific machine class. Many embedded processors have no FPUs so fixed
point maths can be useful there.

41

8.2 al itofix

al_fixed al_itofix(int x);

Converts an integer to fixed point. This is the same thing as x<<16. Remember that overflows (trying to
convert an integer greater than 32767) and underflows (trying to convert an integer lesser than –32768) are
not detected even in debug builds! The values simply “wrap around”.

Example:

∼∼ al fixed number;

/* This conversion is OK. */
number = al_itofix(100);
assert(al_fixtoi(number) == 100);

number = al_itofix(64000);

/* This check will fail in debug builds. */
assert(al_fixtoi(number) == 64000);

∼∼
Return value: Returns the value of the integer converted to fixed point ignoring overflows.

See also: al fixtoi (8.3), al ftofix (8.6), al fixtof (8.7).

8.3 al fixtoi

int al_fixtoi(al_fixed x);

Converts fixed point to integer, rounding as required to the nearest integer.

Example:

∼∼ int result;

/* This will put 33 into ‘result’. */
result = al_fixtoi(al_itofix(100) / 3);

/* But this will round up to 17. */
result = al_fixtoi(al_itofix(100) / 6);

∼∼
See also: al itofix (8.2), al ftofix (8.6), al fixtof (8.7), al fixfloor (8.4), al fixceil (8.5).

8.4 al fixfloor

int al_fixfloor(al_fixed x);

42

Returns the greatest integer not greater than x. That is, it rounds towards negative infinity.

Example:

∼∼ int result;

/* This will put 33 into ‘result’. */
result = al_fixfloor(al_itofix(100) / 3);

/* And this will round down to 16. */
result = al_fixfloor(al_itofix(100) / 6);

∼∼
See also: al fixtoi (8.3), al fixceil (8.5).

8.5 al fixceil

int al_fixceil(al_fixed x);

Returns the smallest integer not less than x. That is, it rounds towards positive infinity.

Example:

∼∼ int result;

/* This will put 34 into ‘result’. */
result = al_fixceil(al_itofix(100) / 3);

/* This will round up to 17. */
result = al_fixceil(al_itofix(100) / 6);

∼∼
See also: al fixtoi (8.3), al fixfloor (8.4).

8.6 al ftofix

al_fixed al_ftofix(double x);

Converts a floating point value to fixed point. Unlike al itofix (8.2), this function clamps values which could
overflow the type conversion, setting Allegro’s errno to ERANGE in the process if this happens.

Example:

∼∼ al fixed number;

number = al_itofix(-40000);
assert(al_fixfloor(number) == -32768);

number = al_itofix(64000);
assert(al_fixfloor(number) == 32767);
assert(!al_get_errno()); /* This will fail. */

43

∼∼
Return value: Returns the value of the floating point value converted to fixed point clamping overflows (and
setting Allegro’s errno).

See also: al fixtof (8.7), al itofix (8.2), al fixtoi (8.3), al get errno (18.5)

8.7 al fixtof

double al_fixtof(al_fixed x);

Converts fixed point to floating point.

Example:

∼∼ float result;

/* This will put 33.33333 into ‘result’. */
result = al_fixtof(al_itofix(100) / 3);

/* This will put 16.66666 into ‘result’. */
result = al_fixtof(al_itofix(100) / 6);

∼∼
See also: al ftofix (8.6), al itofix (8.2), al fixtoi (8.3).

8.8 al fixmul

al_fixed al_fixmul(al_fixed x, al_fixed y);

A fixed point value can be multiplied or divided by an integer with the normal * and / operators. To multiply
two fixed point values, though, you must use this function.

If an overflow occurs, Allegro’s errno will be set and the maximum possible value will be returned, but errno
is not cleared if the operation is successful. This means that if you are going to test for overflow you should
call al_set_errno(0) before calling al fixmul (8.8).

Example:

∼∼ al fixed result;

/* This will put 30000 into ‘result’. */
result = al_fixmul(al_itofix(10), al_itofix(3000));

/* But this overflows, and sets errno. */
result = al_fixmul(al_itofix(100), al_itofix(3000));
assert(!al_get_errno());

∼∼
Return value: Returns the clamped result of multiplying x by y, setting Allegro’s errno to ERANGE if there
was an overflow.

See also: al fixadd (8.10), al fixsub (8.11), al fixdiv (8.9), al get errno (18.5).

44

8.9 al fixdiv

al_fixed al_fixdiv(al_fixed x, al_fixed y);

A fixed point value can be divided by an integer with the normal / operator. To divide two fixed point values,
though, you must use this function. If a division by zero occurs, Allegro’s errno will be set and the maximum
possible value will be returned, but errno is not cleared if the operation is successful. This means that if you
are going to test for division by zero you should call al_set_errno(0) before calling al fixdiv (8.9).

Example:

∼∼ al fixed result;

/* This will put 0.06060 ‘result’. */
result = al_fixdiv(al_itofix(2), al_itofix(33));

/* This will put 0 into ‘result’. */
result = al_fixdiv(0, al_itofix(-30));

/* Sets errno and puts -32768 into ‘result’. */
result = al_fixdiv(al_itofix(-100), al_itofix(0));
assert(!al_get_errno()); /* This will fail. */

∼∼
Return value: Returns the result of dividing x by y. If y is zero, returns the maximum possible fixed point
value and sets Allegro’s errno to ERANGE.

See also: al fixadd (8.10), al fixsub (8.11), al fixmul (8.8), al get errno (18.5).

8.10 al fixadd

al_fixed al_fixadd(al_fixed x, al_fixed y);

Although fixed point numbers can be added with the normal + integer operator, that doesn’t provide any
protection against overflow. If overflow is a problem, you should use this function instead. It is slower than
using integer operators, but if an overflow occurs it will set Allegro’s errno and clamp the result, rather than
just letting it wrap.

Example:

∼∼ al fixed result;

/* This will put 5035 into ‘result’. */
result = al_fixadd(al_itofix(5000), al_itofix(35));

/* Sets errno and puts -32768 into ‘result’. */
result = al_fixadd(al_itofix(-31000), al_itofix(-3000));
assert(!al_get_errno()); /* This will fail. */

∼∼
Return value: Returns the clamped result of adding x to y, setting Allegro’s errno to ERANGE if there was
an overflow.

See also: al fixsub (8.11), al fixmul (8.8), al fixdiv (8.9).

45

8.11 al fixsub

al_fixed al_fixsub(al_fixed x, al_fixed y);

Although fixed point numbers can be subtracted with the normal - integer operator, that doesn’t provide
any protection against overflow. If overflow is a problem, you should use this function instead. It is slower
than using integer operators, but if an overflow occurs it will set Allegro’s errno and clamp the result, rather
than just letting it wrap.

Example:

∼∼ al fixed result;

/* This will put 4965 into ‘result’. */
result = al_fixsub(al_itofix(5000), al_itofix(35));

/* Sets errno and puts -32768 into ‘result’. */
result = al_fixsub(al_itofix(-31000), al_itofix(3000));
assert(!al_get_errno()); /* This will fail. */

∼∼
Return value: Returns the clamped result of subtracting y from x, setting Allegro’s errno to ERANGE if
there was an overflow.

See also: al fixadd (8.10), al fixmul (8.8), al fixdiv (8.9), al get errno (18.5).

8.12 Fixed point trig

The fixed point square root, sin, cos, tan, inverse sin, and inverse cos functions are implemented using lookup
tables, which are very fast but not particularly accurate. At the moment the inverse tan uses an iterative
search on the tan table, so it is a lot slower than the others. On machines with good floating point processors
using these functions could be slower Always profile your code.

Angles are represented in a binary format with 256 equal to a full circle, 64 being a right angle and so on.
This has the advantage that a simple bitwise ‘and’ can be used to keep the angle within the range zero to a
full circle.

8.12.1 al fixtorad r

const al_fixed al_fixtorad_r = (al_fixed)1608;

This constant gives a ratio which can be used to convert a fixed point number in binary angle format to a
fixed point number in radians.

Example:

∼∼ al fixed rad angle, binary angle;

/* Set the binary angle to 90 degrees. */
binary_angle = 64;

/* Now convert to radians (about 1.57). */
rad_angle = al_fixmul(binary_angle, al_fixtorad_r);

46

∼∼
See also: al fixmul (8.8), al radtofix r (8.12.2).

8.12.2 al radtofix r

const al_fixed al_radtofix_r = (al_fixed)2670177;

This constant gives a ratio which can be used to convert a fixed point number in radians to a fixed point
number in binary angle format.

Example:

∼∼ al fixed rad angle, binary angle; . . . binary angle = al fixmul(rad angle, radtofix r);∼∼

See also: al fixmul (8.8), al fixtorad r (8.12.1).

8.12.3 al fixsin

al_fixed al_fixsin(al_fixed x);

This function finds the sine of a value using a lookup table. The input value must be a fixed point binary
angle.

Example:

∼∼ al fixed angle; int result;

/* Set the binary angle to 90 degrees. */
angle = al_itofix(64);

/* The sine of 90 degrees is one. */
result = al_fixtoi(al_fixsin(angle));
assert(result == 1);

∼∼
Return value: Returns the sine of a fixed point binary format angle. The return value will be in radians.

8.12.4 al fixcos

al_fixed al_fixcos(al_fixed x);

This function finds the cosine of a value using a lookup table. The input value must be a fixed point binary
angle.

Example:

∼∼ al fixed angle; float result;

47

/* Set the binary angle to 45 degrees. */
angle = al_itofix(32);

/* The cosine of 45 degrees is about 0.7071. */
result = al_fixtof(al_fixcos(angle));
assert(result > 0.7 && result < 0.71);

∼∼
Return value: Returns the cosine of a fixed point binary format angle. The return value will be in radians.

8.12.5 al fixtan

al_fixed al_fixtan(al_fixed x);

This function finds the tangent of a value using a lookup table. The input value must be a fixed point binary
angle.

Example:

∼∼ al fixed angle, res a, res b; float dif;

angle = al_itofix(37);
/* Prove that tan(angle) == sin(angle) / cos(angle). */
res_a = al_fixdiv(al_fixsin(angle), al_fixcos(angle));
res_b = al_fixtan(angle);
dif = al_fixtof(al_fixsub(res_a, res_b));
printf("Precision error: %f\n", dif);

∼∼
Return value: Returns the tangent of a fixed point binary format angle. The return value will be in radians.

8.12.6 al fixasin

al_fixed al_fixasin(al_fixed x);

This function finds the inverse sine of a value using a lookup table. The input value must be a fixed point
value. The inverse sine is defined only in the domain from –1 to 1. Outside of this input range, the function
will set Allegro’s errno to EDOM and return zero.

Example:

∼∼ float angle; al fixed val;

/* Sets ‘val’ to a right binary angle (64). */
val = al_fixasin(al_itofix(1));

/* Sets ‘angle’ to 0.2405. */
angle = al_fixtof(al_fixmul(al_fixasin(al_ftofix(0.238)), al_fixtorad_r));

/* This will trigger the assert. */
val = al_fixasin(al_ftofix(-1.09));
assert(!al_get_errno());

48

∼∼
Return value: Returns the inverse sine of a fixed point value, measured as fixed point binary format angle,
or zero if the input was out of the range. All return values of this function will be in the range –64 to 64.

8.12.7 al fixacos

al_fixed al_fixacos(al_fixed x);

This function finds the inverse cosine of a value using a lookup table. The input value must be a fixed point
radian. The inverse cosine is defined only in the domain from –1 to 1. Outside of this input range, the
function will set Allegro’s errno to EDOM and return zero.

Example:

∼∼ al fixed result;

/* Sets result to binary angle 128. */
result = al_fixacos(al_itofix(-1));

∼∼
Return value: Returns the inverse sine of a fixed point value, measured as fixed point binary format angle,
or zero if the input was out of range. All return values of this function will be in the range 0 to 128.

8.12.8 al fixatan

al_fixed al_fixatan(al_fixed x)

This function finds the inverse tangent of a value using a lookup table. The input value must be a fixed
point radian. The inverse tangent is the value whose tangent is x.

Example:

∼∼ al fixed result;

/* Sets result to binary angle 13. */
result = al_fixatan(al_ftofix(0.326));

∼∼
Return value: Returns the inverse tangent of a fixed point value, measured as a fixed point binary format
angle.

8.12.9 al fixatan2

al_fixed al_fixatan2(al_fixed y, al_fixed x)

This is a fixed point version of the libc atan2() routine. It computes the arc tangent of y / x, but the signs
of both arguments are used to determine the quadrant of the result, and x is permitted to be zero. This
function is useful to convert Cartesian coordinates to polar coordinates.

Example:

∼∼ al fixed result;

49

/* Sets ‘result’ to binary angle 64. */
result = al_fixatan2(al_itofix(1), 0);

/* Sets ‘result’ to binary angle -109. */
result = al_fixatan2(al_itofix(-1), al_itofix(-2));

/* Fails the assert. */
result = al_fixatan2(0, 0);
assert(!al_get_errno());

∼∼
Return value: Returns the arc tangent of y / x in fixed point binary format angle, from –128 to 128. If
both x and y are zero, returns zero and sets Allegro’s errno to EDOM.

8.12.10 al fixsqrt

al_fixed al_fixsqrt(al_fixed x)

This finds out the non negative square root of x. If x is negative, Allegro’s errno is set to EDOM and the
function returns zero.

8.12.11 al fixhypot

al_fixed al_fixhypot(al_fixed x, al_fixed y)

Fixed point hypotenuse (returns the square root of x*x + y*y). This should be better than calculating the
formula yourself manually, since the error is much smaller.

9 Graphics

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

9.1 Colors

9.1.1 ALLEGRO COLOR

typedef struct ALLEGRO_COLOR ALLEGRO_COLOR;

An ALLEGRO COLOR structure describes a color in a device independant way. Use al map rgb (9.1.2) et
al. and al unmap rgb (9.1.6) et al. to translate from and to various color representations.

50

9.1.2 al map rgb

ALLEGRO_COLOR al_map_rgb(
unsigned char r, unsigned char g, unsigned char b)

Convert r, g, b (ranging from 0–255) into an ALLEGRO COLOR, using 255 for alpha.

See also: al map rgba (9.1.4), al map rgba f (9.1.5), al map rgb f (9.1.3)

9.1.3 al map rgb f

ALLEGRO_COLOR al_map_rgb_f(float r, float g, float b)

Convert r, g, b, (ranging from 0.0f–1.0f) into an ALLEGRO COLOR, using 1.0f for alpha.

See also: al map rgba (9.1.4), al map rgb (9.1.2), al map rgba f (9.1.5)

9.1.4 al map rgba

ALLEGRO_COLOR al_map_rgba(
unsigned char r, unsigned char g, unsigned char b, unsigned char a)

Convert r, g, b, a (ranging from 0–255) into an ALLEGRO COLOR.

See also: al map rgb (9.1.2), al map rgba f (9.1.5), al map rgb f (9.1.3)

9.1.5 al map rgba f

ALLEGRO_COLOR al_map_rgba_f(float r, float g, float b, float a)

Convert r, g, b, a (ranging from 0.0f–1.0f) into an ALLEGRO COLOR.

See also: al map rgba (9.1.4), al map rgb (9.1.2), al map rgb f (9.1.3)

9.1.6 al unmap rgb

void al_unmap_rgb(ALLEGRO_COLOR color,
unsigned char *r, unsigned char *g, unsigned char *b)

Retrieves components of an ALLEGRO COLOR, ignoring alpha Components will range from 0–255.

See also: al unmap rgba (9.1.8), al unmap rgba f (9.1.9), al unmap rgb f (9.1.7)

9.1.7 al unmap rgb f

void al_unmap_rgb_f(ALLEGRO_COLOR color, float *r, float *g, float *b)

Retrieves components of an ALLEGRO COLOR, ignoring alpha. Components will range from 0.0f–1.0f.

See also: al unmap rgba (9.1.8), al unmap rgb (9.1.6), al unmap rgba f (9.1.9)

51

9.1.8 al unmap rgba

void al_unmap_rgba(ALLEGRO_COLOR color,
unsigned char *r, unsigned char *g, unsigned char *b, unsigned char *a)

Retrieves components of an ALLEGRO COLOR. Components will range from 0–255.

See also: al unmap rgb (9.1.6), al unmap rgba f (9.1.9), al unmap rgb f (9.1.7)

9.1.9 al unmap rgba f

void al_unmap_rgba_f(ALLEGRO_COLOR color,
float *r, float *g, float *b, float *a)

Retrieves components of an ALLEGRO COLOR. Components will range from 0.0f–1.0f.

See also: al unmap rgba (9.1.8), al unmap rgb (9.1.6), al unmap rgb f (9.1.7)

9.2 Locking and pixel formats

9.2.1 ALLEGRO LOCKED REGION

typedef struct ALLEGRO_LOCKED_REGION ALLEGRO_LOCKED_REGION;

Users who wish to manually edit or read from a bitmap are required to lock it first. The ALLEGRO LOCKED REGION
structure represents the locked region of the bitmap. This call will work with any bitmap, including memory
bitmaps.

typedef struct ALLEGRO_LOCKED_REGION {
void *data; // the bitmap data
int format; // the pixel format of the data
int pitch; // the size in bytes of a single line

// pitch may be greater than pixel_size*bitmap->w
// i.e. padded with extra bytes

}

See also: al lock bitmap (9.2.5), al lock bitmap region (9.2.6), al unlock bitmap (9.2.7), ALLEGRO PIXEL FORMAT (9.2.2)

9.2.2 ALLEGRO PIXEL FORMAT

typedef enum ALLEGRO_PIXEL_FORMAT

Pixel formats. Each pixel format specifies the exact size and bit layout of a pixel in memory. Components
are specified from high bits to low bits, so for example a fully opaque red pixel in ARGB 8888 format is
0xFFFF0000.

Note:

The pixel format is independent of endianness. That is, in the above example you can always get the red
component with

52

(pixel & 0x00ff0000) >> 16

But you can not rely on this code:

*(pixel + 2)

It will return the red component on little endian systems, but the green component on big endian systems.

Also note that Allegro’s naming is different from OpenGL naming here, where a format of GL RGBA8 merely
defines the component order and the exact layout including endianness treatment is specified separately.
Usually GL RGBA8 will correspond to ALLEGRO PIXEL ABGR 8888 though on little endian systems, so
care must be taken (note the reversal of RGBA <-> ABGR).

The only exception to this ALLEGRO PIXEL FORMAT ABGR 8888 LE which will always have the com-
ponents as 4 bytes corresponding to red, green, blue and alpha, in this order, independent of the endianness.

Format Notes
ALLEGRO PIXEL FORMAT ANY Let the driver choose a format. This is the default

format at program start.
ALLEGRO PIXEL FORMAT ANY NO ALPHA Let the driver choose a format without alpha.
ALLEGRO PIXEL FORMAT ANY WITH ALPHA Let the driver choose a format with alpha.
ALLEGRO PIXEL FORMAT ANY 15 NO ALPHA Let the driver choose a 15 bit format without alpha.
ALLE-
GRO PIXEL FORMAT ANY 15 WITH ALPHA

Let the driver choose a 15 bit format with alpha.

ALLEGRO PIXEL FORMAT ANY 16 NO ALPHA Let the driver choose a 16 bit format without alpha.
ALLE-
GRO PIXEL FORMAT ANY 16 WITH ALPHA

Let the driver choose a 16 bit format with alpha.

ALLEGRO PIXEL FORMAT ANY 24 NO ALPHA Let the driver choose a 24 bit format without alpha.
ALLE-
GRO PIXEL FORMAT ANY 24 WITH ALPHA

Let the driver choose a 24 bit format with alpha.

ALLEGRO PIXEL FORMAT ANY 32 NO ALPHA Let the driver choose a 32 bit format without alpha.
ALLE-
GRO PIXEL FORMAT ANY 32 WITH ALPHA

Let the driver choose a 32 bit format with alpha.

ALLEGRO PIXEL FORMAT ARGB 8888 32 bit
ALLEGRO PIXEL FORMAT RGBA 8888 32 bit
ALLEGRO PIXEL FORMAT ARGB 4444 16 bit
ALLEGRO PIXEL FORMAT RGB 888 24 bit
ALLEGRO PIXEL FORMAT RGB 565 16 bit
ALLEGRO PIXEL FORMAT RGB 555 15 bit
ALLEGRO PIXEL FORMAT RGBA 5551 16 bit
ALLEGRO PIXEL FORMAT ARGB 1555 16 bit
ALLEGRO PIXEL FORMAT ABGR 8888 32 bit
ALLEGRO PIXEL FORMAT XBGR 8888 32 bit
ALLEGRO PIXEL FORMAT BGR 888 24 bit
ALLEGRO PIXEL FORMAT BGR 565 16 bit
ALLEGRO PIXEL FORMAT BGR 555 15 bit
ALLEGRO PIXEL FORMAT RGBX 8888 32 bit
ALLEGRO PIXEL FORMAT XRGB 8888 32 bit
ALLEGRO PIXEL FORMAT ABGR F32 128 bit
ALLEGRO PIXEL FORMAT ABGR 8888 LE Like the version without LE, but the component

order is guaranteed to be red, green, blue, alpha. This
only makes a difference on big endian systems, on
little endian it is just an alias.

53

See also: al set new bitmap format (9.3.9), al get bitmap format (9.4.2)

9.2.3 al get pixel size

int al_get_pixel_size(int format)

Return the number of bytes that a pixel of the given format occupies.

See also: ALLEGRO PIXEL FORMAT (9.2.2), al get pixel format bits (9.2.4)

9.2.4 al get pixel format bits

int al_get_pixel_format_bits(int format)

Return the number of bits that a pixel of the given format occupies.

See also: ALLEGRO PIXEL FORMAT (9.2.2), al get pixel size (9.2.3)

9.2.5 al lock bitmap

ALLEGRO_LOCKED_REGION *al_lock_bitmap(ALLEGRO_BITMAP *bitmap,
int format, int flags)

Lock an entire bitmap for reading or writing. If the bitmap is a display bitmap it will be updated from
system memory after the bitmap is unlocked (unless locked read only). Returns NULL if the bitmap cannot
be locked, e.g. the bitmap was locked previously and not unlocked.

Flags are:

• ALLEGRO LOCK READONLY - The locked region will not be written to. This can be faster if the
bitmap is a video texture, as it can be discarded after the lock instead of uploaded back to the card.

• ALLEGRO LOCK WRITEONLY - The locked region will not be read from. This can be faster if the
bitmap is a video texture, as no data need to be read from the video card. You are required to fill in
all pixels before unlocking the bitmap again, so be careful when using this flag.

• ALLEGRO LOCK READWRITE - The locked region can be written to and read from.

‘format’ indicates the pixel format that the returned buffer will be in. To lock in the same format as the
bitmap stores it’s data internally, call with al_get_bitmap_format(bitmap) as the format or use ALLE-
GRO PIXEL FORMAT ANY. Locking in the native format will usually be faster.

Note:

While a bitmap is locked, you can not use any drawing operations on it (with the sole exception of
al put pixel (9.5.9) and al put blended pixel (9.5.10)).

See also: ALLEGRO LOCKED REGION (9.2.1), ALLEGRO PIXEL FORMAT (9.2.2), al unlock bitmap (9.2.7)

54

9.2.6 al lock bitmap region

ALLEGRO_LOCKED_REGION *al_lock_bitmap_region(ALLEGRO_BITMAP *bitmap,
int x, int y, int width, int height, int format, int flags)

Like al lock bitmap (9.2.5), but only locks a specific area of the bitmap. If the bitmap is a display bitmap,
only that area of the texture will be updated when it is unlocked. Locking only the region you indend to
modify will be faster than locking the whole bitmap.

See also: ALLEGRO LOCKED REGION (9.2.1), ALLEGRO PIXEL FORMAT (9.2.2), al unlock bitmap (9.2.7)

9.2.7 al unlock bitmap

void al_unlock_bitmap(ALLEGRO_BITMAP *bitmap)

Unlock a previously locked bitmap or bitmap region. If the bitmap is a display bitmap, the texture will be
updated to match the system memory copy (unless it was locked read only).

See also: al lock bitmap (9.2.5), al lock bitmap region (9.2.6)

9.3 Bitmap creation

9.3.1 ALLEGRO BITMAP

typedef struct ALLEGRO_BITMAP ALLEGRO_BITMAP;

Abstract type representing a bitmap (2D image).

9.3.2 al clone bitmap

ALLEGRO_BITMAP *al_clone_bitmap(ALLEGRO_BITMAP *bitmap)

Clone a bitmap “exactly”, formats can be different.

XXX document this better

See also: al create bitmap (9.3.3)

9.3.3 al create bitmap

ALLEGRO_BITMAP *al_create_bitmap(int w, int h)

Creates a new bitmap using the bitmap format and flags for the current thread. Blitting between bitmaps
of differing formats, or blitting between memory bitmaps and display bitmaps may be slow.

Unless you set the ALLEGRO MEMORY BITMAP flag, the bitmap is created for the current display.
Blitting to another display may be slow.

If a display bitmap is created, there may be limitations on the allowed dimensions. For example a DirectX
or OpenGL backend usually has a maximum allowed texture size - so if bitmap creation fails for very large
dimensions, you may want to re-try with a smaller bitmap.

See also: al set new bitmap format (9.3.9), al set new bitmap flags (9.3.8), al clone bitmap (9.3.2), al create sub bitmap (9.3.4)

55

9.3.4 al create sub bitmap

ALLEGRO_BITMAP *al_create_sub_bitmap(ALLEGRO_BITMAP *parent,
int x, int y, int w, int h)

Creates a sub-bitmap of the parent, at the specified coordinates and of the specified size. A sub-bitmap is a
bitmap that shares drawing memory with a pre-existing (parent) bitmap, but possibly with a different size
and clipping settings.

If the sub-bitmap does not lie completely inside the parent bitmap, then it is automatically clipped so that
it does.

See the discussion in al get backbuffer (4.2.3) about using sub-bitmaps of the backbuffer.

The parent bitmap’s clipping rectangles are ignored.

If a sub-bitmap was not or cannot be created then NULL is returned.

Note that destroying parents of sub-bitmaps will not destroy the sub-bitmaps; instead the sub-bitmaps
become invalid and should no longer be used.

See also: al create bitmap (9.3.3)

9.3.5 al destroy bitmap

void al_destroy_bitmap(ALLEGRO_BITMAP *bitmap)

Destroys the given bitmap, freeing all resources used by it. Does nothing if given the null pointer.

9.3.6 al get new bitmap flags

int al_get_new_bitmap_flags(void)

Returns the flags used for newly created bitmaps.

See also: al set new bitmap flags (9.3.8)

9.3.7 al get new bitmap format

int al_get_new_bitmap_format(void)

Returns the format used for newly created bitmaps.

See also: ALLEGRO PIXEL FORMAT (9.2.2), al set new bitmap format (9.3.9)

9.3.8 al set new bitmap flags

void al_set_new_bitmap_flags(int flags)

Sets the flags to use for newly created bitmaps. Valid flags are:

56

• ALLEGRO VIDEO BITMAP - This is the default flag. Creates a bitmap that resides in the video
card memory. These types of bitmaps receive the greatest benefit from hardware acceleration.

• ALLEGRO MEMORY BITMAP - Create a bitmap residing in system memory. Operations on, and
with, memory bitmaps will not be hardware accelerated. However, direct pixel access can be relatively
quick compared to video bitmaps, which depend on the display driver in use. Note: Allegro’s software
rendering routines are currently very unoptimised.

• ALLEGRO KEEP BITMAP FORMAT - Only used when loading bitmaps from disk files, forces the
resulting ALLEGRO BITMAP to use the same format as the file.

• ALLEGRO FORCE LOCKING - When drawing to a bitmap with this flag set, always use pixel locking
and draw to it using Allegro’s software drawing primitives. This should never be used if you plan to
draw to the bitmap using Allegro’s graphics primitives as it would cause severe performance penalties.
However if you know that the bitmap will only ever be accessed by locking it, no unneeded FBOs will
be created for it in the OpenGL drivers.

• ALLEGRO NO PRESERVE TEXTURE - Normally, every effort is taken to preserve the contents of
bitmaps since some drivers may forget them. This can take extra time. If you know it doesn’t matter
if a bitmap keeps its image, for example a temporary buffer, use this flag to tell Allegro not to attempt
to preserve the contents of bitmaps created after this flag is set. This can lead to speed improvements
in your program.

• ALLEGRO ALPHA TEST - This is a driver hint only. It tells the graphics driver to do alpha testing
instead of alpha blending on bitmaps created with this flag. Alpha testing is usually faster and preferred
if your bitmaps have only one level of alpha (0). This flag is currently not widely implemented (i.e.,
only for memory bitmaps).

See also: al get new bitmap flags (9.3.6), al get bitmap flags (9.4.1)

9.3.9 al set new bitmap format

void al_set_new_bitmap_format(int format)

Sets the pixel format for newly created bitmaps. The default format is 0 and means the display driver will
choose the best format.

See also: ALLEGRO PIXEL FORMAT (9.2.2), al get new bitmap format (9.3.7), al get bitmap format (9.4.2)

9.4 Bitmap properties

9.4.1 al get bitmap flags

int al_get_bitmap_flags(ALLEGRO_BITMAP *bitmap)

Return the flags user to create the bitmap.

See also: al set new bitmap flags (9.3.8)

57

9.4.2 al get bitmap format

int al_get_bitmap_format(ALLEGRO_BITMAP *bitmap)

Returns the pixel format of a bitmap.

See also: ALLEGRO PIXEL FORMAT (9.2.2), al set new bitmap flags (9.3.8)

9.4.3 al get bitmap height

int al_get_bitmap_height(ALLEGRO_BITMAP *bitmap)

Returns the height of a bitmap in pixels.

9.4.4 al get bitmap width

int al_get_bitmap_width(ALLEGRO_BITMAP *bitmap)

Returns the width of a bitmap in pixels.

9.4.5 al get pixel

ALLEGRO_COLOR al_get_pixel(ALLEGRO_BITMAP *bitmap, int x, int y)

Get a pixel’s color value from the specified bitmap. This operation is slow on non-memory bitmaps. Consider
locking the bitmap if you are going to use this function multiple times on the same bitmap.

See also: ALLEGRO COLOR (9.1.1), al put pixel (9.5.9)

9.4.6 al is bitmap locked

bool al_is_bitmap_locked(ALLEGRO_BITMAP *bitmap)

Returns whether or not a bitmap is already locked.

See also: al lock bitmap (9.2.5), al lock bitmap region (9.2.6), al unlock bitmap (9.2.7)

9.4.7 al is compatible bitmap

bool al_is_compatible_bitmap(ALLEGRO_BITMAP *bitmap)

D3D and OpenGL allow sharing a texture in a way so it can be used for multiple windows. Each ALLE-
GRO BITMAP created with al create bitmap (9.3.3) however is usually tied to a single ALLEGRO DISPLAY.
This function can be used to know if the bitmap is compatible with the current display, even if it is another
display than the one it was created with. It returns true if the bitmap is compatible (things like a cached
texture version can be used) and false otherwise (blitting in the current display will be slow).

The only time this function is useful is if you are using multiple windows and need accelerated blitting of
the same bitmaps to both.

Returns true if the bitmap is compatible with the current display, false otherwise. If there is no current
display, false is returned.

58

9.4.8 al is sub bitmap

bool al_is_sub_bitmap(ALLEGRO_BITMAP *bitmap)

Returns true if the specified bitmap is a sub-bitmap, false otherwise.

See also: al create sub bitmap (9.3.4)

9.5 Drawing operations

All drawing operations draw to the current “target bitmap” of the current thread. Initially, the target
bitmap will be the backbuffer of the last display created in a thread.

9.5.1 al clear to color

void al_clear_to_color(ALLEGRO_COLOR color)

Clear the complete target bitmap, but confined by the clipping rectangle.

See also: ALLEGRO COLOR (9.1.1), al set clipping rectangle (9.7.2)

9.5.2 al draw bitmap

void al_draw_bitmap(ALLEGRO_BITMAP *bitmap, float dx, float dy, int flags)

Draws an unscaled, unrotated bitmap at the given position to the current target bitmap (see al set target bitmap (9.5.11)).
flags can be a combination of:

• ALLEGRO FLIP HORIZONTAL - flip the bitmap about the y-axis

• ALLEGRO FLIP VERTICAL - flip the bitmap about the x-axis

See also: al draw bitmap region (9.5.3), al draw scaled bitmap (9.5.7), al draw rotated bitmap (9.5.5), al draw rotated scaled bitmap (9.5.6)

9.5.3 al draw bitmap region

void al_draw_bitmap_region(ALLEGRO_BITMAP *bitmap,
float sx, float sy, float sw, float sh, float dx, float dy, int flags)

Draws a region of the given bitmap to the target bitmap.

• sx - source x

• sy - source y

• sw - source width (width of region to blit)

• sh - source height (height of region to blit)

• dx - destination x

59

• dy - destination y

• flags - same as for al draw bitmap (9.5.2)

See also: al draw bitmap (9.5.2), al draw scaled bitmap (9.5.7), al draw rotated bitmap (9.5.5), al draw rotated scaled bitmap (9.5.6)

9.5.4 al draw pixel

void al_draw_pixel(float x, float y, ALLEGRO_COLOR color)

Draws a single pixel at x, y. This function, unlike al put pixel (9.5.9), does blending and, unlike al put blended pixel (9.5.10),
respects the transformations. This function can be slow if called often; if you need to draw a lot of pixels
consider using the primitives addon.

• x - destination x

• y - destination y

• color - color of the pixel

See also: ALLEGRO COLOR (9.1.1), al put pixel (9.5.9)

9.5.5 al draw rotated bitmap

void al_draw_rotated_bitmap(ALLEGRO_BITMAP *bitmap,
float cx, float cy, float dx, float dy, float angle, int flags)

Draws a rotated version of the given bitmap to the target bitmap. The bitmap is rotated by ‘angle’ radians
clockwise.

The point at cx/cy inside the bitmap will be drawn at dx/dy and the bitmap is rotated around this point.

• cx - center x

• cy - center y

• dx - destination x

• dy - destination y

• angle - angle by which to rotate

• flags - same as for al draw bitmap (9.5.2)

See also: al draw bitmap (9.5.2), al draw bitmap region (9.5.3), al draw scaled bitmap (9.5.7), al draw rotated scaled bitmap (9.5.6)

60

9.5.6 al draw rotated scaled bitmap

void al_draw_rotated_scaled_bitmap(ALLEGRO_BITMAP *bitmap,
float cx, float cy, float dx, float dy, float xscale, float yscale,
float angle, int flags)

Like al draw rotated bitmap (9.5.5), but can also scale the bitmap.

The point at cx/cy in the bitmap will be drawn at dx/dy and the bitmap is rotated and scaled around this
point.

• cx - center x

• cy - center y

• dx - destination x

• dy - destination y

• xscale - how much to scale on the x-axis (e.g. 2 for twice the size)

• yscale - how much to scale on the y-axis

• angle - angle by which to rotate

• flags - same as for al draw bitmap (9.5.2)

See also: al draw bitmap (9.5.2), al draw bitmap region (9.5.3), al draw scaled bitmap (9.5.7), al draw rotated bitmap (9.5.5)

9.5.7 al draw scaled bitmap

void al_draw_scaled_bitmap(ALLEGRO_BITMAP *bitmap,
float sx, float sy, float sw, float sh,
float dx, float dy, float dw, float dh, int flags)

Draws a scaled version of the given bitmap to the target bitmap.

• sx - source x

• sy - source y

• sw - source width

• sh - source height

• dx - destination x

• dy - destination y

• dw - destination width

• dh - destination height

• flags - same as for al draw bitmap (9.5.2)

See also: al draw bitmap (9.5.2), al draw bitmap region (9.5.3), al draw rotated bitmap (9.5.5), al draw rotated scaled bitmap (9.5.6),

61

9.5.8 al get target bitmap

ALLEGRO_BITMAP *al_get_target_bitmap(void)

Return the target bitmap of the current display.

See also: al set target bitmap (9.5.11)

9.5.9 al put pixel

void al_put_pixel(int x, int y, ALLEGRO_COLOR color)

Draw a single pixel on the target bitmap. This operation is slow on non-memory bitmaps. Consider locking
the bitmap if you are going to use this function multiple times on the same bitmap. This function is not
affected by neither the transformations nor the color blenders.

See also: ALLEGRO COLOR (9.1.1), al get pixel (9.4.5), al put blended pixel (9.5.10)

9.5.10 al put blended pixel

void al_put_blended_pixel(int x, int y, ALLEGRO_COLOR color)

Like al put pixel (9.5.9), but the pixel color is blended using the current blenders before being drawn.

See also: ALLEGRO COLOR (9.1.1), al put pixel (9.5.9)

9.5.11 al set target bitmap

void al_set_target_bitmap(ALLEGRO_BITMAP *bitmap)

Select the bitmap to which all subsequent drawing operations in the calling thread will draw. Select the
backbuffer (see al get backbuffer (4.2.3)) to return to drawing to the screen normally.

OpenGL note:

Framebuffer objects (FBOs) allow OpenGL to directly draw to a bitmap, which is very fast. However, each
created FBO needs additional resources, therefore an FBO is not automatically assigned to each non-memory
bitmap when it is created (as is done with textures).

When using an OpenGL display, only if all of the following conditions are met an FBO will be created for
the bitmap:

• The GL EXT framebuffer object OpenGL extension is available.

• The bitmap is not a memory bitmap.

• The bitmap is not currently locked.

Once created, the FBO is kept around until the bitmap is destroyed or you explicitely call al remove opengl fbo (15.7)
on the bitmap.

In the following example, no FBO will be created:

62

lock = al_lock_bitmap(bitmap);
al_set_target_bitmap(bitmap);
al_put_pixel(x, y, color);
al_unlock_bitmap(bitmap);

The above allows using al put pixel (9.5.9) on a locked bitmap without creating an FBO.

In this example an FBO is created however:

al_set_target_bitmap(bitmap);
al_draw_line(x1, y1, x2, y2, color, 0);

And an OpenGL command will be used to directly draw the line into the bitmap’s associated texture.

See also: al get target bitmap (9.5.8)

9.6 Blending modes

9.6.1 al get blender

void al_get_blender(int *op, int *src, int *dst, ALLEGRO_COLOR *color)

Returns the active blender for the current thread. You can pass NULL for values you are not interested in.

See also: al set blender (9.6.3), al get separate blender (9.6.2)

9.6.2 al get separate blender

void al_get_separate_blender(int *op, int *src, int *dst,
int *alpha_op, int *alpha_src, int *alpha_dst, ALLEGRO_COLOR *color)

Returns the active blender for the current thread. You can pass NULL for values you are not interested in.

See also: al set separate blender (9.6.4), al get blender (9.6.1)

9.6.3 al set blender

void al_set_blender(int op, int src, int dst, ALLEGRO_COLOR color)

Sets the function to use for blending for the current thread.

Blending means, the source and destination colors are combined in drawing operations.

Assume the source color (e.g. color of a rectangle to draw, or pixel of a bitmap to draw) is given as its
red/green/blue/alpha components (if the bitmap has no alpha it always is assumed to be fully opaque, so
255 for 8-bit or 1.0 for floating point): sr, sg, sb, sa. And this color is drawn to a destination, which already
has a color: dr, dg, db, da.

The conceptional formula used by Allegro to draw any pixel then depends on the op parameter:

• ALLEGRO ADD

63

r = dr * dst + sr * src
g = dg * dst + sg * src
b = db * dst + sb * src
a = da * dst + sa * src

• ALLEGRO DEST MINUS SRC

r = dr * dst - sr * src
g = dg * dst - sg * src
b = db * dst - sb * src
a = da * dst - sa * src

• ALLEGRO SRC MINUS DEST

r = sr * src - dr * dst
g = sg * src - dg * dst
b = sb * src - db * dst
a = sa * src - da * dst

Valid values for src and dst passed to this function are

• ALLEGRO ZERO

src = 0
dst = 0

• ALLEGRO ONE

src = 1
dst = 1

• ALLEGRO ALPHA

src = sa
dst = sa

• ALLEGRO INVERSE ALPHA

src = 1 - sa
dst = 1 - sa

The color parameter specifies the blend color, it is multipled with the source color before the above blending
operation.

Blending examples:

So for example, to restore the default of using alpha blending, you would use (pseudo code)

al_set_blender(ALLEGRO_ADD, ALLEGRO_ALPHA, ALLEGRO_INVERSE_ALPHA, {1, 1, 1, 1})

64

If in addition you want to draw half transparently

al_set_blender(ALLEGRO_ADD, ALLEGRO_ALPHA, ALLEGRO_INVERSE_ALPHA, {1, 1, 1, 0.5})

Additive blending would be achieved with

al_set_blender(ALLEGRO_ADD, ALLEGRO_ONE, ALLEGRO_ONE, {1, 1, 1, 1})

Copying the source to the destination (including alpha) unmodified

al_set_blender(ALLEGRO_ADD, ALLEGRO_ONE, ALLEGRO_ZERO, {1, 1, 1, 1})

See also: al set separate blender (9.6.4), al get blender (9.6.1)

9.6.4 al set separate blender

void al_set_separate_blender(int op, int src, int dst,
int alpha_op, int alpha_src, int alpha_dst, ALLEGRO_COLOR color)

Like al set blender (9.6.3), but allows specifying a separate blending operation for the alpha channel.

See also: al set blender (9.6.3), al get blender (9.6.1), al get separate blender (9.6.2)

9.7 Clipping

9.7.1 al get clipping rectangle

void al_get_clipping_rectangle(int *x, int *y, int *w, int *h)

Gets the clipping rectangle of the target bitmap.

See also: al set clipping rectangle (9.7.2)

9.7.2 al set clipping rectangle

void al_set_clipping_rectangle(int x, int y, int width, int height)

Set the region of the target bitmap or display that pixels get clipped to. The default is to clip pixels to the
entire bitmap.

See also: al get clipping rectangle (9.7.1)

9.8 Graphics utility functions

9.8.1 al convert mask to alpha

void al_convert_mask_to_alpha(ALLEGRO_BITMAP *bitmap, ALLEGRO_COLOR mask_color)

Convert the given mask color to an alpha channel in the bitmap. Can be used to convert older 4.2-style
bitmaps with magic pink to alpha-ready bitmaps.

See also: ALLEGRO COLOR (9.1.1)

65

9.9 Deferred drawing

9.9.1 al hold bitmap drawing

void al_hold_bitmap_drawing(bool hold)

Enables or disables deferred bitmap drawing. This allows for efficient drawing of many bitmaps that share
a parent bitmap, such as sub-bitmaps from a tilesheet or simply identical bitmaps. Drawing bitmaps that
do not share a parent is less efficient, so it is advisable to stagger bitmap drawing calls such that the parent
bitmap is the same for large number of those calls. While deferred bitmap drawing is enabled, the only
functions that can be used are the bitmap drawing functions and font drawing functions. Changing the state
such as the blending modes will result in undefined behaviour. However, changing the blending color, but
keeping the blending modes the same will work as expected.

No drawing is guaranteed to take place until you disable the hold. Thus, the idiom of this function’s usage
is to enable the deferred bitmap drawing, draw as many bitmaps as possible, taking care to stagger bitmaps
that share parent bitmaps, and then disable deferred drawing. As mentioned above, this function also works
with bitmap and truetype fonts, so if multiple lines of text need to be drawn, this function can speed things
up.

See also: al is bitmap drawing held (9.9.2)

9.9.2 al is bitmap drawing held

bool al_is_bitmap_drawing_held(void)

Returns whether the deferred bitmap drawing mode is turned on or off.

See also: al hold bitmap drawing (9.9.1)

10 Joystick

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

10.1 ALLEGRO JOYSTICK

typedef struct ALLEGRO_JOYSTICK ALLEGRO_JOYSTICK;

This is an abstract data type representing a physical joystick.

See also: al get joystick (10.7)

66

10.2 ALLEGRO JOYSTICK STATE

typedef struct ALLEGRO_JOYSTICK_STATE ALLEGRO_JOYSTICK_STATE;

This is a structure that is used to hold a “snapshot” of a joystick’s axes and buttons at a particular instant.
All fields public and read-only.

struct {
float axis[num_axes]; // -1.0 to 1.0

} stick[num_sticks];
int button[num_buttons]; // 0 to 32767

See also: al get joystick state (10.18)

10.3 ALLEGRO JOYFLAGS

enum

• ALLEGRO JOYFLAG DIGITAL - the stick provides digital input

• ALLEGRO JOYFLAG ANALOGUE - the stick provides analogue input

(this enum is a holdover from the old API and may be removed)

See also: al get joystick stick flags (10.14)

10.4 al install joystick

bool al_install_joystick(void)

Install a joystick driver, returning true if successful. If a joystick driver was already installed, returns true
immediately.

See also: al uninstall joystick (10.5)

10.5 al uninstall joystick

void al_uninstall_joystick(void)

Uninstalls the active joystick driver. All outstanding ALLEGRO JOYSTICK (10.1) structures are automat-
ically released. If no joystick driver was active, this function does nothing.

This function is automatically called when Allegro is shut down.

See also: al install joystick (10.4)

67

10.6 al get num joysticks

int al_get_num_joysticks(void)

Return the number of joysticks on the system (depending on the OS this may not be accurate). Returns 0
if there is no joystick driver installed.

See also: al get joystick (10.7)

10.7 al get joystick

ALLEGRO_JOYSTICK *al_get_joystick(int num)

Get a handle for joystick number num on the system. If successful a pointer to a joystick object is returned.
Otherwise NULL is returned.

If the joystick was previously ‘gotten’ (and not yet released) then the returned pointer will be the same as
in previous calls.

See also: al get num joysticks (10.6)

10.8 al release joystick

void al_release_joystick(ALLEGRO_JOYSTICK *joy)

Release a previously ‘gotten’ joystick object. You do not normally need to do this explicitly as al uninstall joystick (10.5)
will automatically release joysticks.

See also: al get joystick (10.7)

10.9 al get joystick name

const char *al_get_joystick_name(ALLEGRO_JOYSTICK *joy)

Return the name of the given joystick.

See also: al get joystick stick name (10.10), al get joystick axis name (10.11), al get joystick button name (10.12)

10.10 al get joystick stick name

const char *al_get_joystick_stick_name(const ALLEGRO_JOYSTICK *joy, int stick)

Return the name of the given “stick”. If the stick doesn’t exist, NULL is returned.

See also: al get joystick axis name (10.11), al get joystick num sticks (10.15)

68

10.11 al get joystick axis name

const char *al_get_joystick_axis_name(const ALLEGRO_JOYSTICK *joy, int stick, int axis)

Return the name of the given axis. If the axis doesn’t exist, NULL is returned.

See also: al get joystick stick name (10.10), al get joystick num axes (10.16)

10.12 al get joystick button name

const char *al_get_joystick_button_name(const ALLEGRO_JOYSTICK *joy, int button)

Return the name of the given button. If the button doesn’t exist, NULL is returned.

See also: al get joystick stick name (10.10), al get joystick axis name (10.11), al get joystick num buttons (10.17)

10.13 al get joystick number

int al_get_joystick_number(ALLEGRO_JOYSTICK *joy)

Return the joystick number, i.e. the parameter passed to al get joystick (10.7).

10.14 al get joystick stick flags

int al_get_joystick_stick_flags(const ALLEGRO_JOYSTICK *joy, int stick)

Return the flags of the given “stick”. If the stick doesn’t exist, NULL is returned.

See also: ALLEGRO JOYFLAGS (10.3)

10.15 al get joystick num sticks

int al_get_joystick_num_sticks(const ALLEGRO_JOYSTICK *joy)

Return the number of “sticks” on the given joystick. A stick has one or more axes.

See also: al get joystick num axes (10.16), al get joystick num buttons (10.17)

10.16 al get joystick num axes

int al_get_joystick_num_axes(const ALLEGRO_JOYSTICK *joy, int stick)

Return the number of axes on the given “stick”. If the stick doesn’t exist, 0 is returned.

See also: al get joystick num sticks (10.15)

69

10.17 al get joystick num buttons

int al_get_joystick_num_buttons(const ALLEGRO_JOYSTICK *joy)

Return the number of buttons on the joystick.

See also: al get joystick num sticks (10.15)

10.18 al get joystick state

void al_get_joystick_state(ALLEGRO_JOYSTICK *joy, ALLEGRO_JOYSTICK_STATE *ret_state)

Get the current joystick state.

See also: ALLEGRO JOYSTICK STATE (10.2), al get joystick num buttons (10.17), al get joystick num axes (10.16)

10.19 al get joystick event source

ALLEGRO_EVENT_SOURCE *al_get_joystick_event_source(ALLEGRO_JOYSTICK *joystick)

Retrieve the associated event source.

11 Keyboard

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

11.1 ALLEGRO KEYBOARD STATE

typedef struct ALLEGRO_KEYBOARD_STATE ALLEGRO_KEYBOARD_STATE;

This is a structure that is used to hold a “snapshot” of a keyboard’s state at a particular instant. It contains
the following publically readable fields:

• display - points to the display that had keyboard focus at the time the state was saved. If no display
was focused, this points to NULL.

You cannot read the state of keys directly. Use the function al key down (11.8).

70

11.2 Key codes

These are the list of key codes used by Allegro, which you can pass to al key down (11.8).

ALLEGRO_KEY_A ... ALLEGRO_KEY_Z,
ALLEGRO_KEY_0 ... ALLEGRO_KEY_9,
ALLEGRO_KEY_PAD_0 ... ALLEGRO_KEY_PAD_9,
ALLEGRO_KEY_F1 ... ALLEGRO_KEY_F12,
ALLEGRO_KEY_ESCAPE,
ALLEGRO_KEY_TILDE,
ALLEGRO_KEY_MINUS,
ALLEGRO_KEY_EQUALS,
ALLEGRO_KEY_BACKSPACE,
ALLEGRO_KEY_TAB,
ALLEGRO_KEY_OPENBRACE, ALLEGRO_KEY_CLOSEBRACE,
ALLEGRO_KEY_ENTER,
ALLEGRO_KEY_SEMICOLON,
ALLEGRO_KEY_QUOTE,
ALLEGRO_KEY_BACKSLASH, ALLEGRO_KEY_BACKSLASH2,
ALLEGRO_KEY_COMMA,
ALLEGRO_KEY_FULLSTOP,
ALLEGRO_KEY_SLASH,
ALLEGRO_KEY_SPACE,
ALLEGRO_KEY_INSERT, ALLEGRO_KEY_DELETE,
ALLEGRO_KEY_HOME, ALLEGRO_KEY_END,
ALLEGRO_KEY_PGUP, ALLEGRO_KEY_PGDN,
ALLEGRO_KEY_LEFT, ALLEGRO_KEY_RIGHT,
ALLEGRO_KEY_UP, ALLEGRO_KEY_DOWN,
ALLEGRO_KEY_PAD_SLASH, ALLEGRO_KEY_PAD_ASTERISK,
ALLEGRO_KEY_PAD_MINUS, ALLEGRO_KEY_PAD_PLUS,
ALLEGRO_KEY_PAD_DELETE, ALLEGRO_KEY_PAD_ENTER,
ALLEGRO_KEY_PRINTSCREEN, ALLEGRO_KEY_PAUSE,
ALLEGRO_KEY_ABNT_C1, ALLEGRO_KEY_YEN, ALLEGRO_KEY_KANA,
ALLEGRO_KEY_CONVERT, ALLEGRO_KEY_NOCONVERT,
ALLEGRO_KEY_AT, ALLEGRO_KEY_CIRCUMFLEX,
ALLEGRO_KEY_COLON2, ALLEGRO_KEY_KANJI,
ALLEGRO_KEY_LSHIFT, ALLEGRO_KEY_RSHIFT,
ALLEGRO_KEY_LCTRL, ALLEGRO_KEY_RCTRL,
ALLEGRO_KEY_ALT, ALLEGRO_KEY_ALTGR,
ALLEGRO_KEY_LWIN, ALLEGRO_KEY_RWIN,
ALLEGRO_KEY_MENU,
ALLEGRO_KEY_SCROLLLOCK,
ALLEGRO_KEY_NUMLOCK,
ALLEGRO_KEY_CAPSLOCK
ALLEGRO_KEY_EQUALS_PAD,
ALLEGRO_KEY_BACKQUOTE,
ALLEGRO_KEY_SEMICOLON2,
ALLEGRO_KEY_COMMAND

71

11.3 Keyboard modifier flags

ALLEGRO_KEYMOD_SHIFT
ALLEGRO_KEYMOD_CTRL
ALLEGRO_KEYMOD_ALT
ALLEGRO_KEYMOD_LWIN
ALLEGRO_KEYMOD_RWIN
ALLEGRO_KEYMOD_MENU
ALLEGRO_KEYMOD_ALTGR
ALLEGRO_KEYMOD_COMMAND
ALLEGRO_KEYMOD_SCROLLLOCK
ALLEGRO_KEYMOD_NUMLOCK
ALLEGRO_KEYMOD_CAPSLOCK
ALLEGRO_KEYMOD_INALTSEQ
ALLEGRO_KEYMOD_ACCENT1
ALLEGRO_KEYMOD_ACCENT2
ALLEGRO_KEYMOD_ACCENT3
ALLEGRO_KEYMOD_ACCENT4

11.4 al install keyboard

bool al_install_keyboard(void)

Install a keyboard driver. Returns true if successful. If a driver was already installed, nothing happens and
true is returned.

See also: al uninstall keyboard (11.6), al is keyboard installed (11.5)

11.5 al is keyboard installed

bool al_is_keyboard_installed(void)

Returns true if al install keyboard (11.4) was called successfully.

11.6 al uninstall keyboard

void al_uninstall_keyboard(void)

Uninstalls the active keyboard driver, if any. This will automatically unregister the keyboard event source
with any event queues.

This function is automatically called when Allegro is shut down.

See also: al install keyboard (11.4)

72

11.7 al get keyboard state

void al_get_keyboard_state(ALLEGRO_KEYBOARD_STATE *ret_state)

Save the state of the keyboard specified at the time the function is called into the structure pointed to by
ret state.

See also: al key down (11.8), ALLEGRO KEYBOARD STATE (11.1)

11.8 al key down

bool al_key_down(const ALLEGRO_KEYBOARD_STATE *state, int keycode)

Return true if the key specified was held down in the state specified.

See also: ALLEGRO KEYBOARD STATE (11.1)

11.9 al keycode to name

const char *al_keycode_to_name(int keycode)

Converts the given keycode to a description of the key.

11.10 al set keyboard leds

bool al_set_keyboard_leds(int leds)

Overrides the state of the keyboard LED indicators. Set to –1 to return to default behavior. False is returned
if the current keyboard driver cannot set LED indicators.

11.11 al get keyboard event source

ALLEGRO_EVENT_SOURCE *al_get_keyboard_event_source(void)

Retrieve the keyboard event source.

Returns NULL if the keyboard subsystem was not installed.

12 Memory

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

73

12.1 al set memory management functions

void al_set_memory_management_functions(
void *(*malloc)(void *opaque, size_t size),
void *(*malloc_atomic)(void *opaque, size_t size),
void (*free)(void *opaque, void *ptr),
void *(*realloc)(void *opaque, void *ptr, size_t size),
void *(*debug_malloc)(int line, const char *file, const char *func,

void *opaque, size_t size),
void *(*debug_malloc_atomic)(int line, const char *file, const char *func,

void *opaque, size_t size),
void (*debug_free)(int line, const char *file, const char *func,

void *opaque, void *ptr),
void *(*debug_realloc)(int line, const char *file, const char *func,

void *opaque, void *ptr, size_t size),
void *user_opaque)

Customise the memory management functions used by the library. A default function will be used in place
of any function pointer which is NULL. The default debug variants simply call the non-debug variants.

• malloc atomic - malloc() replacement for objects not containing pointers

• user opaque - will be passed through to all the functions above

13 Miscellaneous

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

13.1 ALLEGRO PI

#define ALLEGRO_PI 3.14159265358979323846

C99 compilers have no predefined value like M PI for the constant , but you can use this one instead.

13.2 al run main

int al_run_main(int argc, char **argv, int (*user_main)(int, char **))

This function is useful in cases where you don’t have a main() function but want to run Allegro (mostly
useful in a wrapper library). Under Windows and Linux this is no problem because you simply can call
al install system (19.1). But some other system (like OSX) don’t allow calling al install system (19.1) in the
main thread. al run main will know what to do in that case.

The passed argc and argv will simply be passed on to user main and the return value of user main will be
returned.

74

14 Mouse

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

14.1 ALLEGRO MOUSE STATE

typedef struct ALLEGRO_MOUSE_STATE ALLEGRO_MOUSE_STATE;

Public fields (read only):

• x - mouse x

• y - mouse y

• w, z - Mouse wheel position (2D ‘ball’)

buttons - mouse buttons

See also: al get mouse state (14.7), al get mouse state axis (14.8), al mouse button down (14.9)

14.2 al install mouse

bool al_install_mouse(void)

Install a mouse driver.

Returns true if successful. If a driver was already installed, nothing happens and true is returned.

14.3 al is mouse installed

bool al_is_mouse_installed(void)

Returns true if al install mouse (14.2) was called successfully.

14.4 al uninstall mouse

void al_uninstall_mouse(void)

Uninstalls the active mouse driver, if any. This will automatically unregister the mouse event source with
any event queues.

This function is automatically called when Allegro is shut down.

75

14.5 al get mouse num axes

unsigned int al_get_mouse_num_axes(void)

Return the number of buttons on the mouse.

14.6 al get mouse num buttons

unsigned int al_get_mouse_num_buttons(void)

Return the number of buttons on the mouse.

14.7 al get mouse state

void al_get_mouse_state(ALLEGRO_MOUSE_STATE *ret_state)

Save the state of the mouse specified at the time the function is called into the given structure.

See also: ALLEGRO MOUSE STATE (14.1), al get mouse state axis (14.8)

14.8 al get mouse state axis

int al_get_mouse_state_axis(ALLEGRO_MOUSE_STATE *ret_state, int axis)

Extract the mouse axis value from the saved state.

See also: ALLEGRO MOUSE STATE (14.1), al get mouse state (14.7), al mouse button down (14.9)

14.9 al mouse button down

bool al_mouse_button_down(ALLEGRO_MOUSE_STATE *state, int button)

Return true if the mouse button specified was held down in the state specified.

See also: ALLEGRO MOUSE STATE (14.1), al get mouse state (14.7), al get mouse state axis (14.8)

14.10 al set mouse axis

bool al_set_mouse_axis(int which, int value)

Set the given mouse axis to the given value.

For now: the axis number must not be 0 or 1, which are the X and Y axes.

Returns true on success, false on failure.

76

14.11 al set mouse xy

bool al_set_mouse_xy(int x, int y)

Try to position the mouse at the given coordinates on the current display. The mouse movement resulting
from a successful move will generate an ALLEGRO EVENT MOUSE WARPED event.

Returns true on success, false on failure.

See also: al set mouse z (14.12), al set mouse w (14.13)

14.12 al set mouse z

bool al_set_mouse_z(int z)

Set the mouse wheel position to the given value.

Returns true on success, false on failure.

See also: al set mouse w (14.13)

14.13 al set mouse w

bool al_set_mouse_w(int w)

Set the second mouse wheel position to the given value.

Returns true on success, false on failure.

See also: al set mouse z (14.12)

14.14 al get mouse event source

ALLEGRO_EVENT_SOURCE *al_get_mouse_event_source(void)

Retrieve the mouse event source.

Returns NULL if the mouse subsystem was not installed.

14.15 Mouse cursors

14.15.1 al create mouse cursor

ALLEGRO_MOUSE_CURSOR *al_create_mouse_cursor(ALLEGRO_BITMAP *bmp,
int x_focus, int y_focus)

Create a mouse cursor from the bitmap provided. There must be a current display in effect.

Returns a pointer to the cursor on success, or NULL on failure.

See also: al set mouse cursor (14.15.3), al destroy mouse cursor (14.15.2)

77

14.15.2 al destroy mouse cursor

void al_destroy_mouse_cursor(ALLEGRO_MOUSE_CURSOR *cursor)

Free the memory used by the given cursor.

The display that was in effect when the cursor was created must still be in effect. XXX that’s terrible and
should be changed

Has no effect if cursor is NULL.

See also: al create mouse cursor (14.15.1)

14.15.3 al set mouse cursor

bool al_set_mouse_cursor(ALLEGRO_MOUSE_CURSOR *cursor)

Set the given mouse cursor to be the current mouse cursor for the current display.

The display that was in effect when the cursor was created must still be in effect. XXX that’s terrible and
should be changed

If the cursor is currently ‘shown’ (as opposed to ‘hidden’) the change is immediately visible.

Returns true on success, false on failure.

See also: al set system mouse cursor (14.15.4), al show mouse cursor (14.15.7), al hide mouse cursor (14.15.6)

14.15.4 al set system mouse cursor

bool al_set_system_mouse_cursor(ALLEGRO_SYSTEM_MOUSE_CURSOR cursor_id)

Set the given system mouse cursor to be the current mouse cursor for the current display. If the cursor is
currently ‘shown’ (as opposed to ‘hidden’) the change is immediately visible.

If the cursor doesn’t exist on the current platform another cursor will be silently be substituted.

The cursors are:

• ALLEGRO SYSTEM MOUSE CURSOR DEFAULT

• ALLEGRO SYSTEM MOUSE CURSOR ARROW

• ALLEGRO SYSTEM MOUSE CURSOR BUSY

• ALLEGRO SYSTEM MOUSE CURSOR QUESTION

• ALLEGRO SYSTEM MOUSE CURSOR EDIT

• ALLEGRO SYSTEM MOUSE CURSOR MOVE

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE N

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE W

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE S

78

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE E

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE NW

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE SW

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE SE

• ALLEGRO SYSTEM MOUSE CURSOR RESIZE NE

• ALLEGRO SYSTEM MOUSE CURSOR PROGRESS

• ALLEGRO SYSTEM MOUSE CURSOR PRECISION

• ALLEGRO SYSTEM MOUSE CURSOR LINK

• ALLEGRO SYSTEM MOUSE CURSOR ALT SELECT

• ALLEGRO SYSTEM MOUSE CURSOR UNAVAILABLE

Returns true on success, false on failure.

See also: al set mouse cursor (14.15.3), al show mouse cursor (14.15.7), al hide mouse cursor (14.15.6)

14.15.5 al get mouse cursor position

bool al_get_mouse_cursor_position(int *ret_x, int *ret_y)

On platforms where this information is available, this function returns the global location of the mouse
cursor, relative to the desktop. You should not normally use this function, as the information is not useful
except for special scenarios as moving a window.

Returns true on success, false on failure.

14.15.6 al hide mouse cursor

bool al_hide_mouse_cursor(void)

Hide the mouse cursor in the current display of the calling thread. This has no effect on what the current
mouse cursor looks like; it just makes it disappear.

Returns true on success (or if the cursor already was hidden), false otherwise.

See also: al show mouse cursor (14.15.7)

14.15.7 al show mouse cursor

bool al_show_mouse_cursor(void)

Make a mouse cursor visible in the current display of the calling thread.

Returns true if a mouse cursor is shown as a result of the call (or one already was visible), false otherwise.

See also: al hide mouse cursor (14.15.6)

79

15 OpenGL

These functions are declared in the following header file:

#include <allegro5/allegro_opengl.h>

15.1 al get opengl extension list

ALLEGRO_OGL_EXT_LIST *al_get_opengl_extension_list(void)

Returns the list of OpenGL extensions supported by Allegro, for the current display.

Allegro will keep information about all extensions it knows about in a structure returned by al_get_opengl_extension_list.

For example:

if (al_get_opengl_extension_list()->ALLEGRO_GL_ARB_multitexture) {
use it

}

The extension will be set to true if available for the current display and false otherwise. This means to use
the definitions and functions from an OpenGL extension, all you need to do is to check for it as above at
run time, after acquiring the OpenGL display from Allegro.

Under Windows, this will also work with WGL extensions, and under Unix with GLX extensions.

In case you want to manually check for extensions and load function pointers yourself (say, in case the
Allegro developers did not include it yet), you can use the al is opengl extension supported (15.8) and
al get opengl proc address (15.2) functions instead.

15.2 al get opengl proc address

void *al_get_opengl_proc_address(const char *name)

Helper to get the address of an OpenGL symbol

Example:

How to get the function glMultiTexCoord3fARB that comes with ARB’s Multitexture extension:

// define the type of the function
ALLEGRO_DEFINE_PROC_TYPE(void, MULTI_TEX_FUNC,

(GLenum, GLfloat, GLfloat, GLfloat));
// declare the function pointer

MULTI_TEX_FUNC glMultiTexCoord3fARB;
// get the address of the function

glMultiTexCoord3fARB = (MULTI_TEX_FUNC) al_get_opengl_proc_address(
"glMultiTexCoord3fARB");

80

If glMultiTexCoord3fARB is not NULL then it can be used as if it has been defined in the OpenGL core
library. Note that the use of the ALLEGRO DEFINE PROC TYPE macro is mandatory if you want your
program to be portable.

Parameters:

name - The name of the symbol you want to link to.

Return value:

A pointer to the symbol if available or NULL otherwise.

15.3 al get opengl texture

GLuint al_get_opengl_texture(ALLEGRO_BITMAP *bitmap)

Returns the OpenGL texture id internally used by the given bitmap if it uses one, else 0.

Example:

bitmap = al_load_bitmap("my_texture.png");
texture = al_get_opengl_texture(bitmap);
if (texture != 0)

glBindTexture(GL_TEXTURE_2D, texture);

15.4 al get opengl texture size

void al_get_opengl_texture_size(ALLEGRO_BITMAP *bitmap, int *w, int *h)

Retrieves the size of the texture used for the bitmap. This can be different from the bitmap size if OpenGL
only supports power-of-two sizes or if it is a sub-bitmap.

15.5 al get opengl texture position

void al_get_opengl_texture_position(ALLEGRO_BITMAP *bitmap, int *u, int *v)

Returns the u/v coordinates for the top/left corner of the bitmap within the used texture, in pixels.

15.6 al get opengl fbo

GLuint al_get_opengl_fbo(ALLEGRO_BITMAP *bitmap)

Returns the OpenGL FBO id internally used by the given bitmap if it uses one, else 0. An FBO is created
for a bitmap when you call al set target bitmap (9.5.11) for it.

15.7 al remove opengl fbo

void al_remove_opengl_fbo(ALLEGRO_BITMAP *bitmap)

If the bitmap has an OpenGL FBO created for it (see al set target bitmap (9.5.11)), it is freed. It also is
freed automatically when the bitmap is destroyed.

81

15.8 al is opengl extension supported

int al_is_opengl_extension_supported(const char *extension)

This function is a helper to determine whether an OpenGL extension is available on the current display or
not.

Example:

int packedpixels = al_is_opengl_extension_supported("GL_EXT_packed_pixels");

If packedpixels is TRUE then you can safely use the constants related to the packed pixels extension.

Parameters:

extension - The name of the extension that is needed

Return value:

TRUE if the extension is available FALSE otherwise.

15.9 al get opengl version

float al_get_opengl_version(void)

Returns the OpenGL version number of the client (the computer the program is running on), for the current
DISPLAY. “1.0” is returned as 1.0, “1.2.1” is returned as 1.21, and “1.2.2” as 1.22, etc.

A valid OpenGL context must exist for this function to work, which means you may not call it before
al create display (4.1.2).

15.10 OpenGL configuration

You can disable the detection of any OpenGL extension by Allegro with a section like this in allegro5.cfg:

[opengl_disabled_extensions]
GL_ARB_texture_non_power_of_two=0
GL_EXT_framebuffer_object=0

Any extension which appears in the section is treated as not available (it does not matter if you set it to 0
or any other value).

16 Path

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

We define a path as an optional drive, followed by zero or more directory components, followed by an optional
filename. The filename may be broken up into a basename and an extension, where the basename includes
the start of the filename up to, but not including, the last dot (.) character. If no dot character exists the
basename is the whole filename. The extension is everything from the last dot character to the end of the
filename.

82

16.1 al create path

ALLEGRO_PATH *al_create_path(const char *str)

Create a path structure from a string. The string may be NULL for an empty path.

See also: al destroy path (16.3)

16.2 al create path for directory

ALLEGRO_PATH *al_create_path_for_directory(const char *str)

This is the same as al create path (16.1), but interprets the passed string as a directory path. The filename
component of the returned path will always be empty.

See also: al destroy path (16.3)

16.3 al destroy path

void al_destroy_path(ALLEGRO_PATH *path)

Free a path structure. Does nothing if passed NULL.

See also: al create path (16.1), al create path for directory (16.2)

16.4 al clone path

ALLEGRO_PATH *al_clone_path(const ALLEGRO_PATH *path)

Clones an ALLEGRO PATH structure. Returns NULL on failure.

See also: al destroy path (16.3)

16.5 al join paths

bool al_join_paths(ALLEGRO_PATH *path, const ALLEGRO_PATH *tail)

Concatenate two path structures. The first path structure is modified. If ‘tail’ is an absolute path, this
function does nothing.

If ‘tail’ is a relative path, all of its directory components will be appended to ‘path’. tail’s filename will also
overwrite path’s filename, even if it is just the empty string.

Tail’s drive is ignored.

Returns true if ‘tail’ was a relative path and so concatenated to ‘path’, otherwise returns false.

83

16.6 al get path drive

const char *al_get_path_drive(const ALLEGRO_PATH *path)

Return the drive letter on a path, or the empty string if there is none.

The “drive letter” is only used on Windows, and is usually a string like “c:”, but may be something like
“\\Computer Name” in the case of UNC (Uniform Naming Convention) syntax.

16.7 al get path num components

int al_get_path_num_components(const ALLEGRO_PATH *path)

Return the number of directory components in a path.

The directory components do not include the final part of a path (the filename).

See also: al get path component (16.8)

16.8 al get path component

const char *al_get_path_component(const ALLEGRO_PATH *path, int i)

Return the i’th directory component of a path, counting from zero. If the index is negative then count from
the right, i.e. –1 refers to the last path component. It is an error to pass an index which is out of bounds.

See also: al get path num components (16.7), al get path tail (16.9)

16.9 al get path tail

const char *al_get_path_tail(const ALLEGRO_PATH *path)

Returns the last directory component, or NULL if there are no directory components.

16.10 al get path filename

const char *al_get_path_filename(const ALLEGRO_PATH *path)

Return the filename part of the path, or the empty string if there is none.

The returned pointer is valid only until the filename part of the path is modified in any way, or until the
path is destroyed.

See also: al get path basename (16.11), al get path extension (16.12), al get path component (16.8)

84

16.11 al get path basename

const char *al_get_path_basename(const ALLEGRO_PATH *path)

Return the basename, i.e. filename with the extension removed. If the filename doesn’t have an extension,
the whole filename is the basename. If there is no filename part then the empty string is returned.

The returned pointer is valid only until the filename part of the path is modified in any way, or until the
path is destroyed.

See also: al get path filename (16.10), al get path extension (16.12)

16.12 al get path extension

const char *al_get_path_extension(const ALLEGRO_PATH *path)

Return a pointer to the start of the extension of the filename, i.e. everything from the final dot (’.’) character
onwards. If no dot exists, returns an empty string.

The returned pointer is valid only until the filename part of the path is modified in any way, or until the
path is destroyed.

See also: al get path filename (16.10), al get path basename (16.11)

16.13 al set path drive

void al_set_path_drive(ALLEGRO_PATH *path, const char *drive)

Set the drive string on a path. The drive may be NULL, which is equivalent to setting the drive string to
the empty string.

See also: al get path drive (16.6)

16.14 al append path component

void al_append_path_component(ALLEGRO_PATH *path, const char *s)

Append a directory component.

See also: al insert path component (16.15)

16.15 al insert path component

void al_insert_path_component(ALLEGRO_PATH *path, int i, const char *s)

Insert a directory component at index i. If the index is negative then count from the right, i.e. –1 refers to
the last path component.

It is an error to pass an index i which is not within these bounds: 0 <= i <= al get path num components(path).

See also: al append path component (16.14), al replace path component (16.16), al remove path component (16.17)

85

16.16 al replace path component

void al_replace_path_component(ALLEGRO_PATH *path, int i, const char *s)

Replace the i’th directory component by another string. If the index is negative then count from the right,
i.e. –1 refers to the last path component. It is an error to pass an index which is out of bounds.

See also: al insert path component (16.15), al remove path component (16.17)

16.17 al remove path component

void al_remove_path_component(ALLEGRO_PATH *path, int i)

Delete the i’th directory component. If the index is negative then count from the right, i.e. –1 refers to the
last path component. It is an error to pass an index which is out of bounds.

See also: al insert path component (16.15), al replace path component (16.16), al drop path tail (16.18)

16.18 al drop path tail

void al_drop_path_tail(ALLEGRO_PATH *path)

Remove the last directory component, if any.

See also: al remove path component (16.17)

16.19 al set path filename

void al_set_path_filename(ALLEGRO_PATH *path, const char *filename)

Set the optional filename part of the path. The filename may be NULL, which is equivalent to setting the
filename to the empty string.

See also: al set path extension (16.20), al get path filename (16.10)

16.20 al set path extension

bool al_set_path_extension(ALLEGRO_PATH *path, char const *extension)

Replaces the extension of the path with the given one, i.e. replaces everything from the final dot (’.’) character
onwards, including the dot. If the filename of the path has no extension, the given one is appended. Usually
the new extension you supply should include a leading dot.

Returns false if the path contains no filename part, i.e. the filename part is the empty string.

See also: al set path filename (16.19), al get path extension (16.12)

86

16.21 al path cstr

const char *al_path_cstr(const ALLEGRO_PATH *path, char delim)

Convert a path to its string representation, i.e. optional drive, followed by directory components separated
by ‘delim’, followed by an optional filename.

To use the current native path separator, use ALLEGRO NATIVE PATH SEP for ‘delim’.

The returned pointer is valid only until the path is modified in any way, or until the path is destroyed.

16.22 al make path absolute

bool al_make_path_absolute(ALLEGRO_PATH *path)

Prepends the current working directory to ‘path’ if it is a relative path. The drive is also set to the driver
of the current working directory. Does nothing if ‘path’ is an absolute path.

See also: al make path canonical (16.23)

16.23 al make path canonical

bool al_make_path_canonical(ALLEGRO_PATH *path)

Removes any leading ’..’ directory components in absolute paths. Removes all ’.’ directory components.

Note that this does not collapse “x/../y” sections into “y”. This is by design. If “/foo” on your system is
a symlink to “/bar/baz”, then “/foo/../quux” is actually “/bar/quux”, not “/quux” as a naive removal of
“..” components would give you.

See also: al make path absolute (16.22)

16.24 al is path present

bool al_is_path_present(const ALLEGRO_PATH *path)

Return true if path represents an existing file on the system, or false if it doesn’t exist.

17 Platform-specific functions

17.1 Windows

These functions are declared in the following header file:

#include <allegro5/allegro_windows.h>

87

17.1.1 al get win window handle

HWND al_get_win_window_handle(ALLEGRO_DISPLAY *display)

Returns the handle to the window that the passed display is using.

18 State

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

18.1 ALLEGRO STATE

typedef struct ALLEGRO_STATE ALLEGRO_STATE;

Opaque type which is passed to al store state (18.4)/al restore state (18.3).

The various state kept internally by Allegro can be displayed like this:

global
active system driver

current config
per thread

new bitmap params
new display params
active file interface
errno
current display

current transformation
current blending mode
deferred drawing

current target bitmap
current clipping rectangle
bitmap locking

In general, the only real global state is the active system driver. All other global state is per-thread, so if
your application has multiple separate threads they never will interfere with each other. (Except if there
are objects accessed by multiple threads of course. Usually you want to minimize that though and for the
remaining cases use synchronization primitives described in the threads section or events described in the
events section to control inter-thread communication.)

18.2 ALLEGRO STATE FLAGS

typedef enum ALLEGRO_STATE_FLAGS

Flags which can be passed to al store state (18.4)/al restore state (18.3) as bit combinations. The following
flags store or restore settings corresponding to the following al set /al get calls:

88

• ALLEGRO STATE NEW DISPLAY PARAMETERS - new display format, new display refresh rate,
new display flags

• ALLEGRO STATE NEW BITMAP PARAMETERS - new bitmap format, new bitmap flags

• ALLEGRO STATE DISPLAY - current display

• ALLEGRO STATE TARGET BITMAP - target bitmap

• ALLEGRO STATE BLENDER - blender

• ALLEGRO STATE TRANSFORM - current transformation

• ALLEGRO STATE NEW FILE INTERFACE - new file interface

• ALLEGRO STATE BITMAP - same as ALLEGRO STATE NEW BITMAP PARAMETERS and AL-
LEGRO STATE TARGET BITMAP

• ALLEGRO STATE ALL - all of the above

18.3 al restore state

void al_restore_state(ALLEGRO_STATE const *state)

Restores part of the state of the current thread from the given ALLEGRO STATE (18.1) object.

See also: al store state (18.4), ALLEGRO STATE FLAGS (18.2)

18.4 al store state

void al_store_state(ALLEGRO_STATE *state, int flags)

Stores part of the state of the current thread in the given ALLEGRO STATE (18.1) objects. The flags
parameter can take any bit-combination of the flags described under ALLEGRO STATE FLAGS (18.2).

See also: al restore state (18.3)

18.5 al get errno

int al_get_errno(void)

Some Allegro functions will set an error number as well as returning an error code. Call this function to
retrieve the last error number set for the calling thread.

18.6 al set errno

void al_set_errno(int errnum)

Set the error number for for the calling thread.

89

19 System

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

19.1 al install system

bool al_install_system(int version, int (*atexit_ptr)(void (*)(void)))

Initialize the Allegro system. No other Allegro functions can be called before this (with one or two excep-
tions).

The version field should always be set to ALLEGRO VERSION INT.

If atexit ptr is non-NULL, and if hasn’t been done already, al uninstall system (19.3) will be registered as
an atexit function.

Returns true if Allegro was successfully initialized by this function call (or already was initialized previously),
false if Allegro cannot be used.

See also: al init (19.2)

19.2 al init

#define al_init() (al_install_system(ALLEGRO_VERSION_INT, atexit))

Like al install system (19.1), but automatically passes in the version and uses the atexit function visible in
the current compilation unit.

See also: al install system (19.1)

19.3 al uninstall system

void al_uninstall_system(void)

Closes down the Allegro system.

Note: al uninstall system() can be called without a corresponding al install system (19.1) call, e.g. from
atexit().

19.4 al get allegro version

uint32_t al_get_allegro_version(void)

Returns the (compiled) version of the Allegro library, packed into a single integer as groups of 8 bits in the
form (major << 24) | (minor << 16) | (revision << 8) | release.

You can use code like this to extract them:

90

uint32_t version = al_get_allegro_version();
int major = version >> 24;
int minor = (version >> 16) & 255;
int revision = (version >> 8) & 255;
int release = version & 255;

The release number is 0 for an unofficial version and 1 or greater for an official release. For example
“5.0.2[1]” would be the (first) official 5.0.2 release while “5.0.2[0]” would be a compile of a version from the
“5.0.2” branch before the official release.

19.5 al get standard path

ALLEGRO_PATH *al_get_standard_path(int id)

Gets a system path, depending on the id parameter:

id description
ALLEGRO PROGRAM PATH Directory with the executed

program.
ALLEGRO TEMP PATH Path to the directory for

temporary files.
ALLEGRO SYSTEM DATA PATH Data path for system-wide

installation.
ALLEGRO USER DATA PATH Data path for per-user

installation.
ALLEGRO USER HOME PATH Path to the user’s home

directory.
ALLEGRO USER SETTINGS PATH Path to per-user settings

directory.
ALLE-
GRO SYSTEM SETTINGS PATH

Path to system-wide settings
directory.

ALLEGRO EXENAME PATH The full path to the executable.

Returns NULL on failure. The returned path should be freed with al destroy path (16.3).

See also: al set appname (19.6), al set orgname (19.7), al destroy path (16.3)

19.6 al set appname

void al_set_appname(const char *appname)

Sets the global application name.

The application name is used by al get standard path (19.5) to build the full path to an application’s files.

This function may be called before al init (19.2) or al install system (19.1).

See also: al get appname (19.8), al set orgname (19.7)

91

19.7 al set orgname

void al_set_orgname(const char *orgname)

Sets the global organization name.

The organization name is used by al get standard path (19.5) to build the full path to an application’s files.

This function may be called before al init (19.2) or al install system (19.1).

See also: al get orgname (19.9), al set appname (19.6)

19.8 al get appname

const char *al_get_appname(void)

Returns the global application name string.

See also: al set appname (19.6)

19.9 al get orgname

const char *al_get_orgname(void)

Returns the global organization name string.

See also: al set orgname (19.7)

19.10 al get system driver

ALLEGRO_SYSTEM *al_get_system_driver(void)

Returns the currently active system driver, or NULL.

19.11 al get system config

ALLEGRO_CONFIG *al_get_system_config(void)

Returns the configuration for the installed system, if any, or NULL otherwise. This is mainly used for
configuring Allegro and its addons.

20 Threads

Allegro 4.9 includes a simple cross-platform threading interface. It is a thin layer on top of two threading
APIs: Windows threads and POSIX Threads (pthreads). Enforcing a consistent semantics on all platforms
would be difficult at best, hence the behaviour of the following functions will differ subtly on different
platforms (more so than usual). Your best bet is to be aware of this and code to the intersection of the
semantics and avoid edge cases.

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

92

20.1 ALLEGRO THREAD

typedef struct ALLEGRO_THREAD ALLEGRO_THREAD;

An opaque structure representing a thread.

20.2 ALLEGRO MUTEX

typedef struct ALLEGRO_MUTEX ALLEGRO_MUTEX;

An opaque structure representing a mutex.

20.3 ALLEGRO COND

typedef struct ALLEGRO_COND ALLEGRO_COND;

An opaque structure representing a condition variable.

20.4 al create thread

ALLEGRO_THREAD *al_create_thread(
void *(*proc)(ALLEGRO_THREAD *thread, void *arg), void *arg)

Spawn a new thread which begins executing proc. The new thread is passed its own thread handle and the
value arg.

Returns true if the thread was created, false if there was an error.

See also: al start thread (20.5), al join thread (20.6).

20.5 al start thread

void al_start_thread(ALLEGRO_THREAD *thread)

When a thread is created, it is initially in a suspended state. Calling al start thread (20.5) will start its
actual execution.

Starting a thread which has already been started does nothing.

See also: al create thread (20.4).

20.6 al join thread

void al_join_thread(ALLEGRO_THREAD *thread, void **ret_value)

Wait for the thread to finish executing. This implicitly calls al set thread should stop (20.7) first.

If ret_value is non-NULL, the value returned by the thread function will be stored at the location pointed
to by ret_value.

See also: al set thread should stop (20.7), al get thread should stop (20.8), al destroy thread (20.9).

93

20.7 al set thread should stop

void al_set_thread_should_stop(ALLEGRO_THREAD *thread)

Set the flag to indicate thread should stop. Returns immediately.

See also: al join thread (20.6), al get thread should stop (20.8).

20.8 al get thread should stop

bool al_get_thread_should_stop(ALLEGRO_THREAD *thread)

Check if another thread is waiting for thread to stop. Threads which run in a loop should check this
periodically and act on it when convenient.

Returns true if another thread has called al join thread (20.6) or al set thread should stop (20.7) on this
thread.

See also: al join thread (20.6), al set thread should stop (20.7).

Note: We don’t support forceful killing of threads.

20.9 al destroy thread

void al_destroy_thread(ALLEGRO_THREAD *thread)

Free the resources used by a thread. Implicitly performs al join thread (20.6) on the thread if it hasn’t been
done already.

Does nothing if thread is NULL.

See also: al join thread (20.6).

20.10 al run detached thread

void al_run_detached_thread(void *(*proc)(void *arg), void *arg)

Runs the passed function in its own thread, with arg passed to it as only parameter. This is similar to calling
al create thread (20.4), al start thread (20.5) and (after the thread has finished) al destroy thread (20.9) -
but you don’t have the possibility of ever calling al join thread (20.6) on the thread any longer.

20.11 al create mutex

ALLEGRO_MUTEX *al_create_mutex(void)

Create the mutex object (a mutual exclusion device). The mutex may or may not support “recursive”
locking.

Returns the mutex on success or NULL on error.

See also: al create mutex recursive (20.12).

94

20.12 al create mutex recursive

ALLEGRO_MUTEX *al_create_mutex_recursive(void)

Create the mutex object (a mutual exclusion device), with support for “recursive” locking. That is, the
mutex will count the number of times it has been locked by the same thread. If the caller tries to acquire a
lock on the mutex when it already holds the lock then the count is incremented. The mutex is only unlocked
when the thread releases the lock on the mutex an equal number of times, i.e. the count drops down to zero.

See also: al create mutex (20.11).

20.13 al lock mutex

void al_lock_mutex(ALLEGRO_MUTEX *mutex)

Acquire the lock on mutex. If the mutex is already locked by another thread, the call will block until the
mutex becomes available and locked.

If the mutex is already locked by the calling thread, then the behaviour depends on whether the mutex was
created with al create mutex (20.11) or al create mutex recursive (20.12). In the former case, the behaviour
is undefined; the most likely behaviour is deadlock. In the latter case, the count in the mutex will be
incremented and the call will return immediately.

See also: al unlock mutex (20.14).

We don’t yet have al mutex trylock.

20.14 al unlock mutex

void al_unlock_mutex(ALLEGRO_MUTEX *mutex)

Release the lock on mutex if the calling thread holds the lock on it.

If the calling thread doesn’t hold the lock, or if the mutex is not locked, undefined behaviour results.

See also: al lock mutex (20.13).

20.15 al destroy mutex

void al_destroy_mutex(ALLEGRO_MUTEX *mutex)

Free the resources used by the mutex. The mutex should be unlocked. Destroying a locked mutex results in
undefined behaviour.

Does nothing if mutex is NULL.

20.16 al create cond

ALLEGRO_COND *al_create_cond(void)

Create a condition variable.

Returns the condition value on success or NULL on error.

95

20.17 al destroy cond

void al_destroy_cond(ALLEGRO_COND *cond)

Destroy a condition variable.

Destroying a condition variable which has threads block on it results in undefined behaviour.

Does nothing if cond is NULL.

20.18 al wait cond

void al_wait_cond(ALLEGRO_COND *cond, ALLEGRO_MUTEX *mutex)

On entering this function, mutex must be locked by the calling thread. The function will atomically release
mutex and block on cond. The function will return when cond is “signalled”, acquiring the lock on the
mutex in the process.

Example of proper use:

al_lock_mutex(mutex);
while (something_not_true) {

al_wait_cond(cond, mutex);
}
do_something();
al_unlock_mutex(mutex);

The mutex should be locked before checking the condition, and should be rechecked al wait cond (20.18)
returns. al wait cond (20.18) can return for other reasons than the condition becoming true (e.g. the process
was signalled). If multiple threads are blocked on the condition variable, the condition may no longer be true
by the time the second and later threads are unblocked. Remember not to unlock the mutex prematurely.

See also: al wait cond timed (20.19), al broadcast cond (20.20), al signal cond (20.21).

20.19 al wait cond timed

int al_wait_cond_timed(ALLEGRO_COND *cond, ALLEGRO_MUTEX *mutex,
const ALLEGRO_TIMEOUT *timeout)

Like al wait cond (20.18) but the call can return if the absolute time passes timeout before the condition is
signalled.

Returns zero on success, non-zero if the call timed out.

Fix up the return value. pthread cond timedwait returns ETIMEDOUT but can return other
errors. Do we need to return other errors?

96

20.20 al broadcast cond

void al_broadcast_cond(ALLEGRO_COND *cond)

Unblock all threads currently waiting on a condition variable. That is, broadcast that some condition which
those threads were waiting for has become true.

See also: al signal cond (20.21).

Note: The pthreads spec says to lock the mutex associated with cond before signalling for predictable
scheduling behaviour.

20.21 al signal cond

void al_signal_cond(ALLEGRO_COND *cond)

Unblock at least one thread waiting on a condition variable.

Generally you should use al broadcast cond (20.20) but al signal cond (20.21) may be more efficient when
it’s applicable.

See also: al broadcast cond (20.20).

21 Time routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

21.1 ALLEGRO TIMEOUT

typedef struct ALLEGRO_TIMEOUT ALLEGRO_TIMEOUT;

Represent a timeout value. The size of the structure is known so can be statically allocated. The contents
are private.

See also: al init timeout (21.3)

21.2 al current time

double al_current_time(void)

Return the number of seconds since the Allegro library was initialised. The return value is undefined if
Allegro is uninitialised. The resolution depends on the used driver, but typically can be in the order of
microseconds.

97

21.3 al init timeout

void al_init_timeout(ALLEGRO_TIMEOUT *timeout, double seconds)

Set timeout value of some number of seconds after the function call.

See also: ALLEGRO TIMEOUT (21.1)

21.4 al rest

void al_rest(double seconds)

Waits for the specified number seconds. This tells the system to pause the current thread for the given
amount of time. With some operating systems, the accuracy can be in the order of 10ms. That is, even

al_rest(0.000001)

might pause for something like 10ms. Also see the section on easier ways to time your program without
using up all CPU.

22 Timer

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

22.1 ALLEGRO TIMER

typedef struct ALLEGRO_TIMER ALLEGRO_TIMER;

This is an abstract data type representing a timer object.

22.2 ALLEGRO USECS TO SECS

#define ALLEGRO_USECS_TO_SECS(x) ((x) / 1000000.0)

Convert microseconds to seconds.

22.3 ALLEGRO MSECS TO SECS

#define ALLEGRO_MSECS_TO_SECS(x) ((x) / 1000.0)

Convert milliseconds to seconds.

98

22.4 ALLEGRO BPS TO SECS

#define ALLEGRO_BPS_TO_SECS(x) (1.0 / (x))

Convert beats per second to seconds.

22.5 ALLEGRO BPM TO SECS

#define ALLEGRO_BPM_TO_SECS(x) (60.0 / (x))

Convert beats per minute to seconds.

22.6 al install timer

ALLEGRO_TIMER* al_install_timer(double speed_secs)

Install a new timer. If successful, a pointer to a new timer object is returned, otherwise NULL is returned.
speed secs is in seconds per “tick”, and must be positive. The new timer is initially stopped.

The system driver must be installed before this function can be called.

Usage note: typical granularity is on the order of microseconds, but with some drivers might only be
milliseconds.

See also: al start timer (22.7), al uninstall timer (22.10)

22.7 al start timer

void al_start_timer(ALLEGRO_TIMER *timer)

Start the timer specified. From then, the timer’s counter will increment at a constant rate, and it will begin
generating events. Starting a timer that is already started does nothing.

See also: al stop timer (22.8), al timer is started (22.9)

22.8 al stop timer

void al_stop_timer(ALLEGRO_TIMER *timer)

Stop the timer specified. The timer’s counter will stop incrementing and it will stop generating events.
Stopping a timer that is already stopped does nothing.

See also: al start timer (22.7), al timer is started (22.9)

22.9 al timer is started

bool al_timer_is_started(const ALLEGRO_TIMER *timer)

Return true if the timer specified is currently started.

99

22.10 al uninstall timer

void al_uninstall_timer(ALLEGRO_TIMER *timer)

Uninstall the timer specified. If the timer is started, it will automatically be stopped before uninstallation.
It will also automatically unregister the timer with any event queues.

Does nothing if passed the NULL pointer.

See also: al install timer (22.6)

22.11 al get timer count

int64_t al_get_timer_count(const ALLEGRO_TIMER *timer)

Return the timer’s counter value. The timer can be started or stopped.

See also: al set timer count (22.12)

22.12 al set timer count

void al_set_timer_count(ALLEGRO_TIMER *timer, int64_t new_count)

Change a timer’s counter value. The timer can be started or stopped. The count value may be positive or
negative, but will always be incremented by +1.

See also: al get timer count (22.11)

22.13 al get timer speed

double al_get_timer_speed(const ALLEGRO_TIMER *timer)

Return the timer’s speed, in seconds.

See also: al set timer speed (22.14)

22.14 al set timer speed

void al_set_timer_speed(ALLEGRO_TIMER *timer, double new_speed_secs)

Set the timer’s speed, i.e. the rate at which its counter will be incremented when it is started. This can be
done when the timer is started or stopped. If the timer is currently running, it is made to look as though
the speed change occured precisely at the last tick.

speed secs has exactly the same meaning as with al install timer (22.6).

See also: al get timer speed (22.13)

100

22.15 al get timer event source

ALLEGRO_EVENT_SOURCE *al_get_timer_event_source(ALLEGRO_TIMER *timer)

Retrieve the associated event source.

23 Transformations

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

23.1 ALLEGRO TRANSFORM

typedef struct ALLEGRO_TRANSFORM ALLEGRO_TRANSFORM;

Defines the generic transformation type, a 4x4 matrix. 2D transforms use only a small subsection of this
matrix, namely the top left 2x2 matrix, and the right most 2x1 matrix, for a total of 6 values.

Fields:

• m - A 4x4 float matrix

23.2 al copy transform

void al_copy_transform(const ALLEGRO_TRANSFORM *src, ALLEGRO_TRANSFORM *dest)

Makes a copy of a transformation.

Parameters:

• src - Source transformation

• dest - Destination transformation

23.3 al use transform

void al_use_transform(const ALLEGRO_TRANSFORM *trans)

Sets the transformation to be used for the the drawing operations. Every drawing operation after this call
will be transformed using this transformation. Call this function with an identity transformation to return
to the default behaviour.

Parameters:

• trans - Transformation to use

101

23.4 al get current transform

const ALLEGRO_TRANSFORM *al_get_current_transform()

Returns the current transformation, as set by al use transform (23.3).

Returns: A pointer to the current transformation.

23.5 al invert transform

void al_invert_transform(ALLEGRO_TRANSFORM *trans)

Inverts the passed transformation. If the transformation is nearly singular (close to not having an inverse)
then the returned transformation may be invalid. Use al check inverse (23.6) to assertain if the transforma-
tion has an inverse before inverting it if you are in doubt.

Parameters:

• trans - Transformation to invert

See Also: al check inverse (23.6)

23.6 al check inverse

int al_check_inverse(const ALLEGRO_TRANSFORM *trans, float tol)

Checks if the transformation has an inverse using the supplied tolerance. Tolerance should be a small value
between 0 and 1, with 0.001 being sufficient for most applications. Note that this check is superfluous most
of the time if you never touched the transformation matrix values yourself. The only thing that would cause
the transformation to not have an inverse is if you applied a 0 (or very small) scale to the transformation.
As long as the scale is comfortably above 0, the transformation will be invertible.

Parameters:

• trans - Transformation to check

• tol - Tolerance

Returns: 1 if the transformation is invertible, 0 otherwise

See Also: al invert transform (23.5)

23.7 al identity transform

void al_identity_transform(ALLEGRO_TRANSFORM *trans)

Sets the transformation to be the identity transformation.

Parameters:

• trans - Transformation to alter

102

23.8 al build transform

void al_build_transform(ALLEGRO_TRANSFORM *trans, float x, float y,
float sx, float sy, float theta)

Builds a transformation given some parameters. This call is equivalent to calling the transformations in this
order: make identity, scale, rotate, translate. This method is faster, however, than actually calling those
functions.

Parameters:

• trans - Transformation to alter

• x, y - Translation

• sx, sy - Scale

• theta - Rotation angle

23.9 al translate transform

void al_translate_transform(ALLEGRO_TRANSFORM *trans, float x, float y)

Apply a translation to a transformation.

Parameters:

• trans - Transformation to alter

• x, y - Translation

23.10 al rotate transform

void al_rotate_transform(ALLEGRO_TRANSFORM *trans, float theta)

Apply a rotation to a transformation.

Parameters:

• trans - Transformation to alter

• theta - Rotation angle

23.11 al scale transform

void al_scale_transform(ALLEGRO_TRANSFORM *trans, float sx, float sy)

Apply a scale to a transformation.

Parameters:

• trans - Transformation to alter

• sx, sy - Scale

103

23.12 al transform coordinates

void al_transform_coordinates(const ALLEGRO_TRANSFORM *trans, float *x, float *y)

Transform a pair of coordinates.

Parameters:

• trans - Transformation to use

• x, y - Pointers to the coordinates

23.13 al transform transform

void al_transform_transform(const ALLEGRO_TRANSFORM *trans, ALLEGRO_TRANSFORM *trans2)

Transform a transformation.

Parameters:

• trans - Transformation to use

• trans2 - Transformation to transform

24 UTF–8 string routines

These functions are declared in the main Allegro header file:

#include <allegro5/allegro.h>

24.1 About Unicode

Here we should give a short overview of Unicode/UCS and in particular UTF–8 encoding.

Explain about code points and relationship to “characters”.

Explain about half-open intervals.

Always be careful whether a function takes byte offsets or code-point indices. In general, all position
parameters are in byte offsets, not code point indices. This may be surprising, but it is because the functions
are designed to be highly performant and to also work with arbitrary byte buffers. Therefore UTF8 decoding
is not done by default.

For actual text processing, where you want to specify positions with code point indices, you should use
al ustr offset (24.6.3) to find the byte position of a code point.

24.2 UTF–8 string types

24.2.1 ALLEGRO USTR

typedef struct _al_tagbstring ALLEGRO_USTR;

104

24.2.2 ALLEGRO USTR INFO

typedef struct ALLEGRO_USTR_INFO ALLEGRO_USTR_INFO;

24.3 Creating and destroying strings

24.3.1 al ustr new

ALLEGRO_USTR *al_ustr_new(const char *s)

Create a new string containing a copy of the C-style string s. The string must eventually be freed with
al ustr free (24.3.4).

24.3.2 al ustr new from buffer

ALLEGRO_USTR *al_ustr_new_from_buffer(const char *s, size_t size)

Create a new string containing a copy of the buffer pointed to by s of the given size. The string must
eventually be freed with al ustr free (24.3.4).

24.3.3 al ustr newf

ALLEGRO_USTR *al_ustr_newf(const char *fmt, ...)

Create a new string using a printf-style format string.

Notes:

That “%s” specifier takes C string arguments, not ALLEGRO USTRs. Therefore to pass an ALLE-
GRO USTR as a parameter you must use al cstr (24.3.5), and it must be NUL terminated. If the string
contains an embedded NUL byte everything from that byte onwards will be ignored.

The “%c” specifier outputs a single byte, not the UTF–8 encoding of a code point. Therefore it’s only usable
for ASCII characters (value <= 127) or if you really mean to output byte values from 128—255. To insert
the UTF–8 encoding of a code point, encode it into a memory buffer using al utf8 encode (24.16.2) then use
the “%s” specifier. Remember to NUL terminate the buffer.

24.3.4 al ustr free

void al_ustr_free(ALLEGRO_USTR *us)

Free a previously allocated string.

105

24.3.5 al cstr

const char *al_cstr(const ALLEGRO_USTR *us)

Get a char * pointer to the data in a string. This pointer will only be valid while the underlying string is
not modified and not destroyed. The pointer may be passed to functions expecting C-style strings, with the
following caveats:

• ALLEGRO USTRs are allowed to contain embedded NUL (‘\0’) bytes. That means al_ustr_size(u)
and strlen(al_cstr(u)) may not agree.

• An ALLEGRO USTR may be created in such a way that it is not NUL terminated. A string which
is dynamically allocated will always be NUL terminated, but a string which references the middle of
another string or region of memory will not be NUL terminated.

• If the ALLEGRO USTR references another string, the returned c-string will point into the referenced
string, the length of the string will be ignored.

24.3.6 al ustr to buffer

void al_ustr_to_buffer(const ALLEGRO_USTR *us, char *buffer, int size)

Write the contents of the string into a pre-allocated buffer of the given size in bytes. The result will always
be 0-terminated.

24.3.7 al cstr dup

char *al_cstr_dup(const ALLEGRO_USTR *us)

Create a NUL (‘\0’) terminated copy of the string. Any embedded NUL bytes will still be presented in the
returned string. The new string must eventually be freed with free(). If an error occurs NULL is returned.

[after we introduce al free it should be freed with al free]

24.3.8 al ustr dup

ALLEGRO_USTR *al_ustr_dup(const ALLEGRO_USTR *us)

Return a duplicate copy of a string. The new string will need to be freed with al ustr free (24.3.4).

24.3.9 al ustr dup substr

ALLEGRO_USTR *al_ustr_dup_substr(const ALLEGRO_USTR *us, int start_pos,
int end_pos)

Return a new copy of a string, containing its contents in the byte interval [start pos, end pos). The new
string will be NUL terminated and will need to be freed with al ustr free (24.3.4).

If you need a range of code-points instead of bytes, use al ustr offset (24.6.3) to find the byte offsets.

106

24.4 Predefined strings

24.4.1 al ustr empty string

ALLEGRO_USTR *al_ustr_empty_string(void)

Return a pointer to a static empty string. The string is read only.

24.5 Creating strings by referencing other data

24.5.1 al ref cstr

ALLEGRO_USTR *al_ref_cstr(ALLEGRO_USTR_INFO *info, const char *s)

Create a string that references the storage of a C-style string. The information about the string (e.g. its
size) is stored in the structure pointed to by the info parameter. The string will not have any other storage
allocated of its own, so if you allocate the info structure on the stack then no explicit “free” operation is
required.

The string is valid until the underlying C string disappears.

Example:

ALLEGRO_USTR_INFO info;
ALLEGRO_USTR us = al_ref_cstr(&info, "my string");

24.5.2 al ref buffer

ALLEGRO_USTR *al_ref_buffer(ALLEGRO_USTR_INFO *info, const char *s, size_t size)

Like al ref cstr (24.5.1) but the size of the string data is passed in as a parameter. Hence you can use it to
reference only part of a string or an arbitrary region of memory.

The string is valid while the underlying C string is valid.

24.5.3 al ref ustr

ALLEGRO_USTR *al_ref_ustr(ALLEGRO_USTR_INFO *info, const ALLEGRO_USTR *us,
int start_pos, int end_pos)

Create a read-only string that references the storage of another string. The information about the string
(e.g. its size) is stored in the structure pointed to by the info parameter. The string will not have any
other storage allocated of its own, so if you allocate the info structure on the stack then no explicit “free”
operation is required.

The referenced interval is [start pos, end pos).

The string is valid until the underlying string is modified or destroyed.

If you need a range of code-points instead of bytes, use al ustr offset (24.6.3) to find the byte offsets.

107

24.6 Sizes and offsets

24.6.1 al ustr size

size_t al_ustr_size(const ALLEGRO_USTR *us)

Return the size of the string in bytes. This is equal to the number of code points in the string if the string
is empty or contains only 7-bit ASCII characters.

24.6.2 al ustr length

size_t al_ustr_length(const ALLEGRO_USTR *us)

Return the number of code points in the string.

24.6.3 al ustr offset

int al_ustr_offset(const ALLEGRO_USTR *us, int index)

Return the offset (in bytes from the start of the string) of the code point at the specified index in the string.
A zero index parameter will return the first character of the string. If index is negative, it counts backward
from the end of the string, so an index of –1 will return an offset to the last code point.

If the index is past the end of the string, returns the offset of the end of the string.

24.6.4 al ustr next

bool al_ustr_next(const ALLEGRO_USTR *us, int *pos)

Find the byte offset of the next code point in string, beginning at *pos. *pos does not have to be at the
beginning of a code point. Returns true on success, then value pointed to by pos will be updated to the
found offset. Otherwise returns false if *pos was already at the end of the string, then *pos is unmodified.

This function just looks for an appropriate byte; it doesn’t check if found offset is the beginning of a valid
code point. If you are working with possibly invalid UTF–8 strings then it could skip over some invalid
bytes.

24.6.5 al ustr prev

bool al_ustr_prev(const ALLEGRO_USTR *us, int *pos)

Find the byte offset of the previous code point in string, before *pos. *pos does not have to be at the
beginning of a code point. Returns true on success, then value pointed to by pos will be updated to the
found offset. Otherwise returns false if *pos was already at the end of the string, then *pos is unmodified.

This function just looks for an appropriate byte; it doesn’t check if found offset is the beginning of a valid
code point. If you are working with possibly invalid UTF–8 strings then it could skip over some invalid
bytes.

108

24.7 Getting code points

24.7.1 al ustr get

int32_t al_ustr_get(const ALLEGRO_USTR *ub, int pos)

Return the code point in us beginning at pos.

On success returns the code point value. If pos was out of bounds (e.g. past the end of the string), return
–1. On an error, such as an invalid byte sequence, return –2.

24.7.2 al ustr get next

int32_t al_ustr_get_next(const ALLEGRO_USTR *us, int *pos)

Find the code point in us beginning at *pos, then advance to the next code point.

On success return the code point value. If pos was out of bounds (e.g. past the end of the string), return
–1. On an error, such as an invalid byte sequence, return –2. As with al ustr next (24.6.4), invalid byte
sequences may be skipped while advancing.

24.7.3 al ustr prev get

int32_t al_ustr_prev_get(const ALLEGRO_USTR *us, int *pos)

Find the beginning of a code point before *pos, then return it. Note this performs a pre-increment.

On success returns the code point value. If pos was out of bounds (e.g. past the end of the string), return
–1. On an error, such as an invalid byte sequence, return –2. As with al ustr prev (24.6.5), invalid byte
sequences may be skipped while advancing.

24.8 Inserting into strings

24.8.1 al ustr insert

bool al_ustr_insert(ALLEGRO_USTR *us1, int pos, const ALLEGRO_USTR *us2)

Insert us2 into us1 beginning at pos. pos cannot be less than 0. If pos is past the end of us1 then the space
between the end of the string and pos will be padded with NUL (‘\0’) bytes. pos is specified in bytes.

Use al ustr offset (24.6.3) to find the byte offset for a code-points offset

Returns true on success, false on error.

24.8.2 al ustr insert cstr

bool al_ustr_insert_cstr(ALLEGRO_USTR *us, int pos, const char *s)

Like al ustr insert (24.8.1) but inserts a C-style string.

109

24.8.3 al ustr insert chr

size_t al_ustr_insert_chr(ALLEGRO_USTR *us, int pos, int32_t c)

Insert a code point into us beginning at byte offset pos. pos cannot be less than 0. If pos is past the end
of us then the space between the end of the string and pos will be padded with NUL (‘\0’) bytes.

Returns the number of bytes inserted, or 0 on error.

24.9 Appending to strings

24.9.1 al ustr append

bool al_ustr_append(ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Append us2 to the end of us1.

Returns true on success, false on error.

24.9.2 al ustr append cstr

bool al_ustr_append_cstr(ALLEGRO_USTR *us, const char *s)

Append C-style string s to the end of us.

Returns true on success, false on error.

24.9.3 al ustr append chr

size_t al_ustr_append_chr(ALLEGRO_USTR *us, int32_t c)

Append a code point to the end of us.

Returns the number of bytes added, or 0 on error.

24.9.4 al ustr appendf

bool al_ustr_appendf(ALLEGRO_USTR *us, const char *fmt, ...)

This function appends formatted output to the string us. fmt is a printf-style format string. See al ustr newf (24.3.3)
about the “%s” and “%c” specifiers.

Returns true on success, false on error.

24.9.5 al ustr vappendf

bool al_ustr_vappendf(ALLEGRO_USTR *us, const char *fmt, va_list ap)

Like al ustr appendf (24.9.4) but you pass the variable argument list directly, instead of the arguments
themselves. See al ustr newf (24.3.3) about the “%s” and “%c” specifiers.

Returns true on success, false on error.

110

24.10 Removing parts of strings

24.10.1 al ustr remove chr

bool al_ustr_remove_chr(ALLEGRO_USTR *us, int pos)

Remove the code point beginning at byte offset pos. Returns true on success. If pos is out of range or pos
is not the beginning of a valid code point, returns false leaving the string unmodified.

Use al ustr offset (24.6.3) to find the byte offset for a code-points offset.

24.10.2 al ustr remove range

bool al_ustr_remove_range(ALLEGRO_USTR *us, int start_pos, int end_pos)

Remove the interval [start pos, end pos) (in bytes) from a string. start_pos and end_pos may both be past
the end of the string but cannot be less than 0 (the start of the string).

Returns true on success, false on error.

24.10.3 al ustr truncate

bool al_ustr_truncate(ALLEGRO_USTR *us, int start_pos)

Truncate a portion of a string at byte offset start_pos onwards. start_pos can be past the end of the
string (has no effect) but cannot be less than 0.

Returns true on success, false on error.

24.10.4 al ustr ltrim ws

bool al_ustr_ltrim_ws(ALLEGRO_USTR *us)

Remove leading whitespace characters from a string, as defined by the C function isspace().

Returns true on success, or false if the function was passed an empty string.

24.10.5 al ustr rtrim ws

bool al_ustr_rtrim_ws(ALLEGRO_USTR *us)

Remove trailing (“right”) whitespace characters from a string, as defined by the C function isspace().

Returns true on success, or false if the function was passed an empty string.

24.10.6 al ustr trim ws

bool al_ustr_trim_ws(ALLEGRO_USTR *us)

Remove both leading and trailing whitespace characters from a string.

Returns true on success, or false if the function was passed an empty string.

111

24.11 Assigning one string to another

24.11.1 al ustr assign

bool al_ustr_assign(ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Overwrite the string us1 with another string us2. Returns true on success, false on error.

24.11.2 al ustr assign substr

bool al_ustr_assign_substr(ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2,
int start_pos, int end_pos)

Overwrite the string us1 with the contents of us2 in the byte interval [start pos, end pos). The end points
will be clamed to the bounds of us2.

Usually you will first have to use al ustr offset (24.6.3) to find the byte offsets.

Returns true on success, false on error.

24.11.3 al ustr assign cstr

bool al_ustr_assign_cstr(ALLEGRO_USTR *us1, const char *s)

Overwrite the string us with the contents of the C-style string s. Returns true on success, false on error.

24.12 Replacing parts of string

24.12.1 al ustr set chr

size_t al_ustr_set_chr(ALLEGRO_USTR *us, int start_pos, int32_t c)

Replace the code point beginning at byte offset pos with c. pos cannot be less than 0. If pos is past the
end of us1 then the space between the end of the string and pos will be padded with NUL (‘\0’) bytes. If
pos is not the start of a valid code point, that is an error and the string will be unmodified.

On success, returns the number of bytes written, i.e. the offset to the following code point. On error, returns
0.

24.12.2 al ustr replace range

bool al_ustr_replace_range(ALLEGRO_USTR *us1, int start_pos1, int end_pos1,
const ALLEGRO_USTR *us2)

Replace the part of us1 in the byte interval [start pos, end pos) with the contents of us2. start_pos cannot
be less than 0. If start_pos is past the end of us1 then the space between the end of the string and
start_pos will be padded with NUL (‘\0’) bytes.

Use al ustr offset (24.6.3) to find the byte offsets.

Returns true on success, false on error.

112

24.13 Searching

24.13.1 al ustr find chr

int al_ustr_find_chr(const ALLEGRO_USTR *us, int start_pos, int32_t c)

Search for the encoding of code point c in us from byte offset start_pos (inclusive).

Returns the position where it is found or –1 if it is not found.

24.13.2 al ustr rfind chr

int al_ustr_rfind_chr(const ALLEGRO_USTR *us, int end_pos, int32_t c)

Search for the encoding of code point c in us backwards from byte offset end_pos (exclusive). Returns the
position where it is found or –1 if it is not found.

24.13.3 al ustr find set

int al_ustr_find_set(const ALLEGRO_USTR *us, int start_pos,
const ALLEGRO_USTR *accept)

This function finds the first code point in us, beginning from byte offset start_pos, that matches any code
point in accept. Returns the position if a code point was found. Otherwise returns –1.

24.13.4 al ustr find set cstr

int al_ustr_find_set_cstr(const ALLEGRO_USTR *us, int start_pos,
const char *accept)

Like al ustr find set (24.13.3) but takes a C-style string for accept.

24.13.5 al ustr find cset

int al_ustr_find_cset(const ALLEGRO_USTR *us, int start_pos,
const ALLEGRO_USTR *reject)

This function finds the first code point in us, beginning from byte offset start_pos, that does not match
any code point in reject. In other words it finds a code point in the complementary set of reject. Returns
the byte position of that code point, if any. Otherwise returns –1.

24.13.6 al ustr find cset cstr

int al_ustr_find_cset_cstr(const ALLEGRO_USTR *us, int start_pos,
const char *reject)

Like al ustr find cset (24.13.5) but takes a C-style string for reject.

113

24.13.7 al ustr find str

int al_ustr_find_str(const ALLEGRO_USTR *haystack, int start_pos,
const ALLEGRO_USTR *needle)

Find the first occurrence of string needle in haystack, beginning from byte offset pos (inclusive). Return
the byte offset of the occurrence if it is found, otherwise return –1.

24.13.8 al ustr find cstr

int al_ustr_find_cstr(const ALLEGRO_USTR *haystack, int start_pos,
const char *needle)

Like al ustr find str (24.13.7) but takes a C-style string for needle.

24.13.9 al ustr rfind str

int al_ustr_rfind_str(const ALLEGRO_USTR *haystack, int end_pos,
const ALLEGRO_USTR *needle)

Find the last occurrence of string needle in haystack before byte offset end_pos (exclusive). Return the
byte offset of the occurrence if it is found, otherwise return –1.

24.13.10 al ustr rfind cstr

int al_ustr_rfind_cstr(const ALLEGRO_USTR *haystack, int end_pos,
const char *needle)

Like al ustr rfind str (24.13.9) but takes a C-style string for needle.

24.13.11 al ustr find replace

bool al_ustr_find_replace(ALLEGRO_USTR *us, int start_pos,
const ALLEGRO_USTR *find, const ALLEGRO_USTR *replace)

Replace all occurrences of find in us with replace, beginning at byte offset start_pos. The find string
must be non-empty. Returns true on success, false on error.

24.13.12 al ustr find replace cstr

bool al_ustr_find_replace_cstr(ALLEGRO_USTR *us, int start_pos,
const char *find, const char *replace)

Like al ustr find replace (24.13.11) but takes C-style strings for find and replace.

114

24.14 Comparing

24.14.1 al ustr equal

bool al_ustr_equal(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Return true iff the two strings are equal. This function is more efficient than al ustr compare (24.14.2) so is
preferable if ordering is not important.

24.14.2 al ustr compare

int al_ustr_compare(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

This function compares us1 and us2 by code point values. Returns zero if the strings are equal, a positive
number if us1 comes after us2, else a negative number.

This does not take into account locale-specific sorting rules. For that you will need to use another library.

24.14.3 al ustr ncompare

int al_ustr_ncompare(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2, int n)

Like al ustr compare (24.14.2) but only compares up to the first n code points of both strings.

Returns zero if the strings are equal, a positive number if us1 comes after us2, else a negative number.

24.14.4 al ustr has prefix

bool al_ustr_has_prefix(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Returns true iff us1 begins with us2.

24.14.5 al ustr has prefix cstr

bool al_ustr_has_prefix_cstr(const ALLEGRO_USTR *us1, const char *s2)

Returns true iff us1 begins with s2.

24.14.6 al ustr has suffix

bool al_ustr_has_suffix(const ALLEGRO_USTR *us1, const ALLEGRO_USTR *us2)

Returns true iff us1 ends with us2.

24.14.7 al ustr has suffix cstr

bool al_ustr_has_suffix_cstr(const ALLEGRO_USTR *us1, const char *s2)

Returns true iff us1 ends with s2.

115

24.15 UTF–16 conversion

24.15.1 al ustr new from utf16

ALLEGRO_USTR *al_ustr_new_from_utf16(uint16_t const *s)

Create a new string containing a copy of the 0-terminated string s which must be encoded as UTF–16. The
string must eventually be freed with al ustr free (24.3.4).

24.15.2 al ustr size utf16

size_t al_ustr_size_utf16(const ALLEGRO_USTR *us)

Returns the number of bytes required to encode the string in UTF–16 (including the terminating 0). Usually
called before al ustr encode utf16 (24.15.3) to determine the size of the buffer to allocate.

24.15.3 al ustr encode utf16

size_t al_ustr_encode_utf16(const ALLEGRO_USTR *us, uint16_t *s,
size_t n)

Encode the string into the given buffer, in UTF–16. Returns the number of bytes written. There are
never more than n bytes written. The minimum size to encode the complete string can be queried with
al ustr size utf16 (24.15.2). If the n parameter is smaller than that, the string will be truncated but still
always 0 terminated.

24.16 Low-level UTF–8 routines

24.16.1 al utf8 width

size_t al_utf8_width(int c)

Returns the number of bytes that would be occupied by the specified code point when encoded in UTF–8.
This is between 1 and 4 bytes for legal code point values. Otherwise returns 0.

24.16.2 al utf8 encode

size_t al_utf8_encode(char s[], int32_t c)

Encode the specified code point to UTF–8 into the buffer s. The buffer must have enough space to hold
the encoding, which takes between 1 and 4 bytes. This routine will refuse to encode code points above
0x10FFFF.

Returns the number of bytes written, which is the same as that returned by al utf8 width (24.16.1).

116

24.17 Low-level UTF–16 routines

24.17.1 al utf16 width

size_t al_utf16_width(int c)

Returns the number of bytes that would be occupied by the specified code point when encoded in UTF–16.
This is either 2 or 4 bytes for legal code point values. Otherwise returns 0.

24.17.2 al utf16 encode

size_t al_utf16_encode(uint16_t s[], int32_t c)

Encode the specified code point to UTF–8 into the buffer s. The buffer must have enough space to hold the
encoding, which takes either 2 or 4 bytes. This routine will refuse to encode code points above 0x10FFFF.

Returns the number of bytes written, which is the same as that returned by al utf16 width (24.17.1).

25 Audio addon

These functions are declared in the following header file. Link with allegro audio.

#include <allegro5/allegro_audio.h>

25.1 Audio types

25.1.1 ALLEGRO AUDIO DEPTH

enum ALLEGRO_AUDIO_DEPTH

Sample depth and type, and signedness. Mixers only use 32-bit signed float (–1..+1), or 16-bit signed
integers. The unsigned value is a bit-flag applied to the depth value.

• ALLEGRO AUDIO DEPTH INT8

• ALLEGRO AUDIO DEPTH INT16

• ALLEGRO AUDIO DEPTH INT24

• ALLEGRO AUDIO DEPTH FLOAT32

• ALLEGRO AUDIO DEPTH UNSIGNED

For convenience:

• ALLEGRO AUDIO DEPTH UINT8

• ALLEGRO AUDIO DEPTH UINT16

• ALLEGRO AUDIO DEPTH UINT24

117

25.1.2 ALLEGRO AUDIO DRIVER ENUM

enum ALLEGRO_AUDIO_DRIVER_ENUM

The sound driver to use. It is highly recommended to use ALLEGRO AUDIO DRIVER AUTODETECT
whenever possible.

• ALLEGRO AUDIO DRIVER AUTODETECT

• ALLEGRO AUDIO DRIVER OPENAL

• ALLEGRO AUDIO DRIVER ALSA

• ALLEGRO AUDIO DRIVER DSOUND

• ALLEGRO AUDIO DRIVER OSS

• ALLEGRO AUDIO DRIVER PULSEAUDIO

• ALLEGRO AUDIO DRIVER AQUEUE

25.1.3 ALLEGRO AUDIO PAN NONE

#define ALLEGRO_AUDIO_PAN_NONE (-1000.0f)

Special value for the ALLEGRO AUDIOPROP PAN property. Use this value to play samples at their
original volume with panning disabled.

25.1.4 ALLEGRO CHANNEL CONF

enum ALLEGRO_CHANNEL_CONF

Speaker configuration (mono, stereo, 2.1, 3, etc).

• ALLEGRO CHANNEL CONF 1

• ALLEGRO CHANNEL CONF 2

• ALLEGRO CHANNEL CONF 3

• ALLEGRO CHANNEL CONF 4

• ALLEGRO CHANNEL CONF 5 1

• ALLEGRO CHANNEL CONF 6 1

• ALLEGRO CHANNEL CONF 7 1

25.1.5 ALLEGRO MIXER

typedef struct ALLEGRO_MIXER ALLEGRO_MIXER;

A mixer is a type of stream which mixes together attached streams into a single buffer.

118

25.1.6 ALLEGRO MIXER QUALITY

enum ALLEGRO_MIXER_QUALITY

• ALLEGRO MIXER QUALITY POINT

• ALLEGRO MIXER QUALITY LINEAR

25.1.7 ALLEGRO PLAYMODE

enum ALLEGRO_PLAYMODE

Sample and stream looping mode.

• ALLEGRO PLAYMODE ONCE

• ALLEGRO PLAYMODE LOOP

• ALLEGRO PLAYMODE BIDIR

25.1.8 ALLEGRO SAMPLE ID

typedef struct ALLEGRO_SAMPLE_ID ALLEGRO_SAMPLE_ID;

An ALLEGRO SAMPLE ID represents a sample being played via al play sample (25.4.3). It can be used
to later stop the sample with al stop sample (25.4.4).

25.1.9 ALLEGRO SAMPLE

typedef struct ALLEGRO_SAMPLE ALLEGRO_SAMPLE;

An ALLEGRO SAMPLE object stores the data necessary for playing pre-defined digital audio. It holds
information pertaining to data length, frequency, channel configuration, etc. You can have an ALLE-
GRO SAMPLE object playing multiple times simultaneously. The object holds a user-specified PCM data
buffer, of the format the object is created with.

25.1.10 ALLEGRO SAMPLE INSTANCE

typedef struct ALLEGRO_SAMPLE_INSTANCE ALLEGRO_SAMPLE_INSTANCE;

An ALLEGRO SAMPLE INSTANCE object represents a playable instance of a predefined sound effect. It
holds information pertaining to the looping mode, loop start/end points, playing position, etc. An instance
uses the data from an ALLEGRO SAMPLE (25.1.9) object. Multiple instances may be created from the
same ALLEGRO SAMPLE. An ALLEGRO SAMPLE must not be destroyed while there are instances which
reference it.

To be played, an ALLEGRO SAMPLE INSTANCE object must be attached to an ALLEGRO VOICE (25.1.12)
object, or to an ALLEGRO MIXER (25.1.5) object which is itself attached to an ALLEGRO VOICE object
(or to another ALLEGRO MIXER object which is attached to an ALLEGRO VOICE object, etc).

119

25.1.11 ALLEGRO AUDIO STREAM

typedef struct ALLEGRO_AUDIO_STREAM ALLEGRO_AUDIO_STREAM;

An ALLEGRO AUDIO STREAM object is used to stream generated audio to the sound device, in real-time.
This is done by reading from a buffer, which is split into a number of fragments. Whenever a fragment has
finished playing, the user can refill it with new data.

As with ALLEGRO SAMPLE INSTANCE (25.1.10) objects, streams store information necessary for play-
back, so you may not play the same stream multiple times simultaneously. Streams also need to be attached
to an ALLEGRO VOICE (25.1.12) object, or to an ALLEGRO MIXER (25.1.5) object which, eventually,
reaches an ALLEGRO VOICE object.

While playing, you must periodically fill fragments with new audio data. To know when a new fragment is
ready to be filled, you can either directly check with al get available audio stream fragments (25.7.25), or
listen to events from the stream.

You can register an audio stream event source to an event queue; see al get audio stream event source (25.7.3).
An ALLEGRO EVENT AUDIO STREAM FRAGMENT event is generated whenever a new fragment is
ready. When you receive an event, use al get audio stream fragment (25.7.22) to obtain a pointer to the frag-
ment to be filled. The size and format are determined by the parameters passed to al create audio stream (25.7.1).

If you’re late with supplying new data, the stream will be silent until new data is provided. You must call
al drain audio stream (25.7.4) when you’re finished with supplying data to the stream.

If the stream is created by al load audio stream (25.8.9) then it can also generate an ALLEGRO EVENT audio stream FINISHED
event if it reaches the end of the file and is not set to loop.

25.1.12 ALLEGRO VOICE

typedef struct ALLEGRO_VOICE ALLEGRO_VOICE;

A voice structure that you’d attach a mixer or sample to. Ideally there would be one ALLEGRO VOICE
per system/hardware voice.

25.2 Setting up

25.2.1 al install audio

bool al_install_audio(ALLEGRO_AUDIO_DRIVER_ENUM mode)

Install the audio subsystem.

Parameters:

• mode - see ALLEGRO AUDIO DRIVER ENUM (25.1.2). It is recommended to pass ALLEGRO AUDIO DRIVER AUTODETECT.

Returns true on success, false on failure.

See also: al reserve samples (25.2.4), al uninstall audio (25.2.2), al is audio installed (25.2.3)

120

25.2.2 al uninstall audio

void al_uninstall_audio(void)

Uninstalls the audio subsystem.

See also: al install audio (25.2.1)

25.2.3 al is audio installed

bool al_is_audio_installed(void)

Returns true if al install audio (25.2.1) was called previously and returned successfully.

25.2.4 al reserve samples

bool al_reserve_samples(int reserve_samples)

Reserves ‘reserve samples’ number of samples attached to the default mixer. al install audio (25.2.1) must
have been called first. If no default mixer is set, then this function will create a voice with an attached
mixer.

Returns true on success, false on error.

See also: al set default mixer (25.6.4)

25.2.5 al get allegro audio version

uint32_t al_get_allegro_audio_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

25.2.6 al get depth size

Return the size of a sample, in bytes, for the given format. The format is one of the values listed under
ALLEGRO AUDIO DEPTH (25.1.1).

25.2.7 al get channel count

Return the number of channels for the given channel configuration, which is one of the values listed under
ALLEGRO CHANNEL CONF (25.1.4).

121

25.3 Voice functions

25.3.1 al create voice

ALLEGRO_VOICE *al_create_voice(unsigned int freq,
ALLEGRO_AUDIO_DEPTH depth, ALLEGRO_CHANNEL_CONF chan_conf)

Creates a voice struct and allocates a voice from the digital sound driver. The passed frequency, sample
format and channel configuration are used as a hint to what kind of data will be sent to the voice. However,
the underlying sound driver is free to use non-matching values. For example it may be the native format of
the sound hardware. If you attach a mixer to the voice, the mixer will convert from the mixer’s format to
the voice format and you do not have to care about this. If you access the voice directly, make sure to not
rely on the parameters passed to this function, but query the returned voice for the actual settings.

See also: al destroy voice (25.3.2)

25.3.2 al destroy voice

void al_destroy_voice(ALLEGRO_VOICE *voice)

Destroys the voice and deallocates it from the digital driver. Does nothing if the voice is NULL.

See also: al create voice (25.3.1)

25.3.3 al detach voice

void al_detach_voice(ALLEGRO_VOICE *voice)

Detaches the sample or mixer stream from the voice.

25.3.4 al attach audio stream to voice

bool al_attach_audio_stream_to_voice(ALLEGRO_AUDIO_STREAM *stream,
ALLEGRO_VOICE *voice)

Attaches an audio stream to a voice. The same rules as al attach sample instance to voice (25.3.6) apply.
This may fail if the driver can’t create a voice with the buffer count and buffer size the stream uses.

An audio stream attached directly to a voice has a number of limitations. The audio stream plays immediately
and cannot be stopped. The stream position, speed, gain, panning, cannot be changed. At this time, we
don’t recommend attaching audio streams directly to voices. Use a mixer in between.

Returns true on success, false on failure.

25.3.5 al attach mixer to voice

bool al_attach_mixer_to_voice(ALLEGRO_MIXER *mixer, ALLEGRO_VOICE *voice)

Attaches a mixer to a voice. The same rules as al attach sample instance to voice (25.3.6) apply, with the
exception of the depth requirement.

Returns true on success, false on failure.

122

25.3.6 al attach sample instance to voice

bool al_attach_sample_instance_to_voice(ALLEGRO_SAMPLE_INSTANCE *spl,
ALLEGRO_VOICE *voice)

Attaches a sample to a voice, and allows it to play. The sample’s volume and loop mode will be ignored,
and it must have the same frequency and depth (including signed-ness) as the voice. This function may fail
if the selected driver doesn’t support preloading sample data.

At this time, we don’t recommend attaching samples directly to voices. Use a mixer in between.

Returns true on success, false on failure.

25.3.7 al get voice frequency

unsigned int al_get_voice_frequency(const ALLEGRO_VOICE *voice)

Return the frequency of the voice, e.g. 44100.

25.3.8 al get voice channels

ALLEGRO_CHANNEL_CONF al_get_voice_channels(const ALLEGRO_VOICE *voice)

Return the channel configuration of the voice.

See also: ALLEGRO CHANNEL CONF (25.1.4).

25.3.9 al get voice depth

ALLEGRO_AUDIO_DEPTH al_get_voice_depth(const ALLEGRO_VOICE *voice)

Return the audio depth of the voice.

See also: ALLEGRO AUDIO DEPTH (25.1.1).

25.3.10 al get voice playing

bool al_get_voice_playing(const ALLEGRO_VOICE *voice)

Return true if the voice is currently playing.

25.3.11 al set voice playing

bool al_set_voice_playing(ALLEGRO_VOICE *voice, bool val)

Change whether a voice is playing or not. The voice must have a sample or mixer attached to it.

Returns true on success, false on failure.

123

25.3.12 al get voice position

unsigned int al_get_voice_position(const ALLEGRO_VOICE *voice)

When the voice has a non-streaming object attached to it, e.g. a sample, returns the voice’s current sample
position. Otherwise, returns zero.

See also: al set voice position (25.3.13).

25.3.13 al set voice position

bool al_set_voice_position(ALLEGRO_VOICE *voice, unsigned int val)

Set the voice position. This can only work if the voice has a non-streaming object attached to it, e.g. a
sample.

Returns true on success, false on failure.

See also: al get voice position (25.3.12).

25.4 Sample functions

25.4.1 al create sample

ALLEGRO_SAMPLE *al_create_sample(void *buf, unsigned int samples,
unsigned int freq, ALLEGRO_AUDIO_DEPTH depth,
ALLEGRO_CHANNEL_CONF chan_conf, bool free_buf)

Create a sample data structure from the supplied buffer. If free_buf is true then the buffer will be freed as
well when the sample data structure is destroyed.

To allocate a buffer of the correct size, you can use something like this:

sample_size = al_get_channel_count(chan_conf) * al_get_depth_size(depth);
bytes = samples * sample_size;
buffer = al_malloc(bytes)

See also: al destroy sample (25.4.2).

25.4.2 al destroy sample

void al_destroy_sample(ALLEGRO_SAMPLE *spl)

Free the sample data structure. If it was created with the free_buf parameter set to true, then the buffer
will be freed as well.

You must stop or destroy any ALLEGRO SAMPLE INSTANCE (25.1.10) structures which reference this
ALLEGRO SAMPLE (25.1.9) beforehand.

If you have used al play sample (25.4.3) at all, it is a very good idea to call al stop samples (25.4.5) before
destroying samples at the end of the program, in case any are still playing.

See also: al destroy sample instance (25.5.2), al stop sample (25.4.4), al stop samples (25.4.5)

124

25.4.3 al play sample

bool al_play_sample(ALLEGRO_SAMPLE *spl, float gain, float pan, float speed,
int loop, ALLEGRO_SAMPLE_ID *ret_id)

Plays a sample over the default mixer. al reserve samples (25.2.4) must have previously been called. Returns
true on success, false on failure. Playback may fail because all the reserved samples are currently used.

Parameters:

• gain - relative volume at which the sample is played; 1.0 is normal.

• pan - 0.0 is centred, –1.0 is left, 1.0 is right, or ALLEGRO AUDIO PAN NONE.

• speed - relative speed at which the sample is played; 1.0 is normal.

• loop - the play mode.

• ret id - if non-NULL the variable which this points to will be assigned an id representing the sample
being played.

See also: ALLEGRO PLAYMODE (25.1.7), ALLEGRO AUDIO PAN NONE (25.1.3), ALLEGRO SAMPLE ID (25.1.8),
al stop sample (25.4.4), al stop samples (25.4.5).

25.4.4 al stop sample

void al_stop_sample(ALLEGRO_SAMPLE_ID *spl_id)

Stop the sample started by al play sample (25.4.3).

See also: al stop samples (25.4.5)

25.4.5 al stop samples

void al_stop_samples(void)

Stop all samples started by al play sample (25.4.3).

See also: al stop sample (25.4.4)

25.4.6 al get sample channels

ALLEGRO_CHANNEL_CONF al_get_sample_channels(const ALLEGRO_SAMPLE *spl)

Return the channel configuration.

See also: ALLEGRO CHANNEL CONF (25.1.4).

125

25.4.7 al get sample depth

ALLEGRO_AUDIO_DEPTH al_get_sample_depth(const ALLEGRO_SAMPLE *spl)

Return the audio depth.

See also: ALLEGRO AUDIO DEPTH (25.1.1).

25.4.8 al get sample frequency

unsigned int al_get_sample_frequency(const ALLEGRO_SAMPLE *spl)

Return the frequency of the sample.

25.4.9 al get sample length

unsigned int al_get_sample_length(const ALLEGRO_SAMPLE *spl)

Return the length of the sample in sample values.

25.4.10 al get sample data

void *al_get_sample_data(const ALLEGRO_SAMPLE *spl)

Return a pointer to the raw sample data.

25.5 Sample instance functions

25.5.1 al create sample instance

ALLEGRO_SAMPLE_INSTANCE *al_create_sample_instance(ALLEGRO_SAMPLE *sample_data)

Creates a sample stream, using the supplied data. This must be attached to a voice or mixer before it can
be played. The argument may be NULL. You can then set the data later with al set sample (25.5.26).

25.5.2 al destroy sample instance

void al_destroy_sample_instance(ALLEGRO_SAMPLE_INSTANCE *spl)

Detaches the sample stream from anything it may be attached to and frees it (the sample data is not freed!).

25.5.3 al play sample instance

bool al_play_sample_instance(ALLEGRO_SAMPLE_INSTANCE *spl)

Play an instance of a sample data. Returns true on success, false on failure.

126

25.5.4 al stop sample instance

bool al_stop_sample_instance(ALLEGRO_SAMPLE_INSTANCE *spl)

Stop an sample instance playing.

25.5.5 al get sample instance channels

ALLEGRO_CHANNEL_CONF al_get_sample_instance_channels(
const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the channel configuration.

See also: ALLEGRO CHANNEL CONF (25.1.4).

25.5.6 al get sample instance depth

ALLEGRO_AUDIO_DEPTH al_get_sample_instance_depth(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the audio depth.

See also: ALLEGRO AUDIO DEPTH (25.1.1).

25.5.7 al get sample instance frequency

unsigned int al_get_sample_instance_frequency(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the frequency of the sample instance.

25.5.8 al get sample instance length

unsigned int al_get_sample_instance_length(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the length of the sample instance in sample values.

25.5.9 al set sample instance length

bool al_set_sample_instance_length(ALLEGRO_SAMPLE_INSTANCE *spl,
unsigned int val)

Set the length of the sample instance in sample values.

Return true on success, false on failure. Will fail if the sample instance is currently playing.

25.5.10 al get sample instance position

unsigned int al_get_sample_instance_position(const ALLEGRO_SAMPLE_INSTANCE *spl)

Get the playback position of a sample instance.

127

25.5.11 al set sample instance position

bool al_set_sample_instance_position(ALLEGRO_SAMPLE_INSTANCE *spl,
unsigned int val)

Set the playback position of a sample instance.

Returns true on success, false on failure.

25.5.12 al get sample instance speed

float al_get_sample_instance_speed(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the playback speed.

25.5.13 al set sample instance speed

bool al_set_sample_instance_speed(ALLEGRO_SAMPLE_INSTANCE *spl, float val)

Set the playback speed.

Return true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

25.5.14 al get sample instance gain

float al_get_sample_instance_gain(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the playback gain.

25.5.15 al set sample instance gain

bool al_set_sample_instance_gain(ALLEGRO_SAMPLE_INSTANCE *spl, float val)

Set the playback gain.

Returns true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

25.5.16 al get sample instance pan

float al_get_sample_instance_pan(const ALLEGRO_SAMPLE_INSTANCE *spl)

Get the pan value.

See also: al set sample instance pan (25.5.17).

128

25.5.17 al set sample instance pan

bool al_set_sample_instance_pan(ALLEGRO_SAMPLE_INSTANCE *spl, float val)

Set the pan value on a sample instance. A value of –1.0 means to play the sample only through the left
speaker; +1.0 means only through the right speaker; 0.0 means the sample is centre balanced.

A constant sound power level is maintained as the sample is panned from left to right. As a consequence,
a pan value of 0.0 will play the sample 3 dB softer than the original level. To disable panning and play a
sample at its original level, set the pan value to ALLEGRO AUDIO PAN NONE (25.1.3).

Returns true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

(A sound guy should explain that better; I only implemented it. Also this might be more properly called a
balance control than pan. Also we don’t attempt anything with more than two channels yet.)

See also: al get sample instance pan (25.5.16).

25.5.18 al get sample instance time

float al_get_sample_instance_time(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the length of the sample instance in seconds, assuming a playback speed of 1.0.

25.5.19 al get sample instance playmode

ALLEGRO_PLAYMODE al_get_sample_instance_playmode(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return the playback mode.

25.5.20 al set sample instance playmode

bool al_set_sample_instance_playmode(ALLEGRO_SAMPLE_INSTANCE *spl,
ALLEGRO_PLAYMODE val)

Set the playback mode.

Returns true on success, false on failure.

25.5.21 al get sample instance playing

bool al_get_sample_instance_playing(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return true if the sample instance is playing.

25.5.22 al set sample instance playing

bool al_set_sample_instance_playing(ALLEGRO_SAMPLE_INSTANCE *spl, bool val)

Change whether the sample instance is playing.

Returns true on success, false on failure.

129

25.5.23 al get sample instance attached

bool al_get_sample_instance_attached(const ALLEGRO_SAMPLE_INSTANCE *spl)

Return whether the sample instance is attached to something.

25.5.24 al detach sample instance

bool al_detach_sample_instance(ALLEGRO_SAMPLE_INSTANCE *spl)

Detach the sample instance from whatever it’s attached to, if anything.

Returns true on success.

25.5.25 al get sample

ALLEGRO_SAMPLE *al_get_sample(ALLEGRO_SAMPLE_INSTANCE *spl)

Return the sample data that the sample instance plays.

25.5.26 al set sample

bool al_set_sample(ALLEGRO_SAMPLE_INSTANCE *spl, ALLEGRO_SAMPLE *data)

Change the sample data that a sample instance plays. This can be quite an involved process.

First, the sample is stopped if it is not already.

Next, if data is NULL, the sample is detached from its parent (if any).

If data is not NULL, the sample may be detached and reattached to its parent (if any). This is not necessary
if the old sample data and new sample data have the same frequency, depth and channel configuration.
Reattaching may not always succeed.

On success, the sample remains stopped. The playback position and loop end points are reset to their default
values. The loop mode remains unchanged.

Returns true on success, false on failure. On failure, the sample will be stopped and detached from its parent.

25.6 Mixer functions

25.6.1 al create mixer

ALLEGRO_MIXER *al_create_mixer(unsigned int freq,
ALLEGRO_AUDIO_DEPTH depth, ALLEGRO_CHANNEL_CONF chan_conf)

Creates a mixer stream, to attach sample streams or other mixers to. It will mix into a buffer at the requested
frequency and channel count.

The only supported audio depths are ALLEGRO AUDIO DEPTH FLOAT32 and ALLEGRO AUDIO DEPTH INT16
(not yet complete).

Returns true on success, false on error.

See also: al destroy mixer (25.6.2)

130

25.6.2 al destroy mixer

void al_destroy_mixer(ALLEGRO_MIXER *mixer)

Destroys the mixer stream.

See also: al create mixer (25.6.1)

25.6.3 al get default mixer

ALLEGRO_MIXER *al_get_default_mixer(void)

Return the default mixer, or NULL if one has not been set. Although different configurations of mixers and
voices can be used, in most cases a single mixer attached to a voice is what you want. The default mixer is
used by al play sample (25.4.3).

See also: al reserve samples (25.2.4), al play sample (25.4.3), al set default mixer (25.6.4), al restore default mixer (25.6.5)

25.6.4 al set default mixer

bool al_set_default_mixer(ALLEGRO_MIXER *mixer)

Sets the default mixer. All samples started with al play sample (25.4.3) will be stopped. If you are using
your own mixer, this should be called before al reserve samples (25.2.4).

Returns true on success, false on error.

See also: al reserve samples (25.2.4), al play sample (25.4.3), al get default mixer (25.6.3), al restore default mixer (25.6.5)

25.6.5 al restore default mixer

bool al_restore_default_mixer(void)

Restores Allegro’s default mixer. All samples started with al play sample (25.4.3) will be stopped. Returns
true on success, false on error.

See also: al get default mixer (25.6.3), al set default mixer (25.6.4), al reserve samples (25.2.4).

25.6.6 al attach mixer to mixer

bool al_attach_mixer_to_mixer(ALLEGRO_MIXER *stream, ALLEGRO_MIXER *mixer)

Attaches a mixer onto another mixer. The same rules as with al attach sample instance to mixer (25.6.7)
apply, with the added caveat that both mixers must be the same frequency. Returns true on success, false
on error.

Currently both mixers must have the same audio depth, otherwise the function fails.

See also: al detach mixer (25.6.18).

131

25.6.7 al attach sample instance to mixer

bool al_attach_sample_instance_to_mixer(ALLEGRO_SAMPLE_INSTANCE *spl,
ALLEGRO_MIXER *mixer)

Attach a sample instance to a mixer. The instance must not already be attached to anything.

Returns true on success, false on failure.

See also: al detach sample instance (25.5.24).

25.6.8 al attach audio stream to mixer

bool al_attach_audio_stream_to_mixer(ALLEGRO_AUDIO_STREAM *stream, ALLEGRO_MIXER *mixer)

Attach a stream to a mixer.

Returns true on success, false on failure.

See also: al detach audio stream (25.7.21).

25.6.9 al get mixer frequency

unsigned int al_get_mixer_frequency(const ALLEGRO_MIXER *mixer)

Return the mixer frequency.

25.6.10 al set mixer frequency

bool al_set_mixer_frequency(ALLEGRO_MIXER *mixer, unsigned int val)

Set the mixer frequency. This will only work if the mixer is not attached to anything.

Returns true on success, false on failure.

25.6.11 al get mixer channels

ALLEGRO_CHANNEL_CONF al_get_mixer_channels(const ALLEGRO_MIXER *mixer)

Return the mixer channel configuration.

See also: ALLEGRO CHANNEL CONF (25.1.4).

25.6.12 al get mixer depth

ALLEGRO_AUDIO_DEPTH al_get_mixer_depth(const ALLEGRO_MIXER *mixer)

Return the mixer audio depth.

See also: ALLEGRO AUDIO DEPTH (25.1.1).

132

25.6.13 al get mixer quality

ALLEGRO_MIXER_QUALITY al_get_mixer_quality(const ALLEGRO_MIXER *mixer)

Return the mixer quality.

See also: ALLEGRO MIXER QUALITY (25.1.6).

25.6.14 al set mixer quality

bool al_set_mixer_quality(ALLEGRO_MIXER *mixer, ALLEGRO_MIXER_QUALITY new_quality)

Set the mixer quality. This can only succeed if the mixer does not have anything attached to it.

Returns true on success, false on failure.

See also: ALLEGRO MIXER QUALITY (25.1.6).

25.6.15 al get mixer playing

bool al_get_mixer_playing(const ALLEGRO_MIXER *mixer)

Return true if the mixer is playing.

See also: al set mixer playing (25.6.16).

25.6.16 al set mixer playing

bool al_set_mixer_playing(ALLEGRO_MIXER *mixer, bool val)

Change whether the mixer is playing.

Returns true on success, false on failure.

See also: al get mixer playing (25.6.15).

25.6.17 al get mixer attached

bool al_get_mixer_attached(const ALLEGRO_MIXER *mixer)

Return true if the mixer is attached to something.

See also: al attach sample instance to mixer (25.6.7), al attach audio stream to mixer (25.6.8), al attach mixer to mixer (25.6.6)

25.6.18 al detach mixer

bool al_detach_mixer(ALLEGRO_MIXER *mixer)

Detach the mixer from whatever it is attached to, if anything.

See also: al attach mixer to mixer (25.6.6).

133

25.6.19 al set mixer postprocess callback

bool al_set_mixer_postprocess_callback(ALLEGRO_MIXER *mixer,
void (*pp_callback)(void *buf, unsigned int samples, void *data),
void *pp_callback_userdata)

Sets a post-processing filter function that’s called after the attached streams have been mixed. The buffer’s
format will be whatever the mixer was created with. The sample count and user-data pointer is also passed.

25.7 Stream functions

25.7.1 al create audio stream

ALLEGRO_AUDIO_STREAM *al_create_audio_stream(size_t fragment_count,
unsigned int samples, unsigned int freq, ALLEGRO_AUDIO_DEPTH depth,
ALLEGRO_CHANNEL_CONF chan_conf)

Creates an ALLEGRO AUDIO STREAM (25.1.11). The stream will be set to play by default. It will feed
audio data from a buffer, which is split into a number of fragments.

Parameters:

• fragment count - How many fragments to use for the audio stream. Usually only two fragments are
required - splitting the audio buffer in two halves. But it means that the only time when new data
can be supplied is whenever one half has finished playing. When using many fragments, you usually
will use fewer samples for one, so there always will be (small) fragments available to be filled with new
data.

• samples - The size of a fragment in samples. See note below.

• freq - The frequency, in Hertz.

• depth - Must be one of the values listed for ALLEGRO AUDIO DEPTH (25.1.1).

• chan conf - Must be one of the values listed for ALLEGRO CHANNEL CONF (25.1.4).

The choice of fragment count, samples and freq directly influences the audio delay. The delay in seconds can
be expressed as:

delay = fragment_count * samples / freq

This is only the delay due to Allegro’s streaming, there may be additional delay caused by sound drivers
and/or hardware.

Note: If you know the fragment size in bytes, you can get the size in samples like this:

sample_size = al_get_channel_count(chan_conf) * al_get_depth_size(depth);
samples = bytes_per_fragment / sample_size;

The size of the complete buffer is:

buffer_size = bytes_per_fragment * fragment_count

Note: unlike many Allegro objects, audio streams are not implicitly destroyed when Allegro is shut down.
You must destroy them manually with al destroy audio stream (25.7.2) before the audio system is shut down.

134

25.7.2 al destroy audio stream

void al_destroy_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

Destroy an audio stream which was created with al create audio stream (25.7.1) or al load audio stream (25.8.9).

Note: If the stream is still attached to a mixer or voice, al detach audio stream (25.7.21) is automatically
called on it first.

See also: al drain audio stream (25.7.4).

25.7.3 al get audio stream event source

ALLEGRO_EVENT_SOURCE *al_get_audio_stream_event_source(
ALLEGRO_AUDIO_STREAM *stream)

Retrieve the associated event source.

See al get audio stream fragment (25.7.22) for a description of the ALLEGRO EVENT AUDIO STREAM FRAGMENT
event that audio streams emit.

25.7.4 al drain audio stream

void al_drain_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

You should call this to finalise an audio stream that you will no longer be feeding, to wait for all pending
buffers to finish playing. The stream’s playing state will change to false.

25.7.5 al rewind audio stream

bool al_rewind_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

Set the streaming file playing position to the beginning. Returns true on success. Currently this can only
be called on streams created with al load audio stream (25.8.9), al load audio stream f (25.8.10) and the
format-specific functions underlying those functions.

25.7.6 al get audio stream frequency

unsigned int al_get_audio_stream_frequency(const ALLEGRO_AUDIO_STREAM *stream)

Return the stream frequency.

25.7.7 al get audio stream channels

ALLEGRO_CHANNEL_CONF al_get_audio_stream_channels(
const ALLEGRO_AUDIO_STREAM *stream)

Return the stream channel configuration.

See also: ALLEGRO CHANNEL CONF (25.1.4).

135

25.7.8 al get audio stream depth

ALLEGRO_AUDIO_DEPTH al_get_audio_stream_depth(
const ALLEGRO_AUDIO_STREAM *stream)

Return the stream audio depth.

See also: ALLEGRO AUDIO DEPTH (25.1.1).

25.7.9 al get audio stream length

unsigned int al_get_audio_stream_length(const ALLEGRO_AUDIO_STREAM *stream)

Return the stream length in samples.

25.7.10 al get audio stream speed

float al_get_audio_stream_speed(const ALLEGRO_AUDIO_STREAM *stream)

Return the playback speed.

See also: al set audio stream speed (25.7.11).

25.7.11 al set audio stream speed

bool al_set_audio_stream_speed(ALLEGRO_AUDIO_STREAM *stream, float val)

Set the playback speed.

Return true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

See also: al get audio stream speed (25.7.10).

25.7.12 al get audio stream gain

float al_get_audio_stream_gain(const ALLEGRO_AUDIO_STREAM *stream)

Return the playback gain.

See also: al set audio stream gain (25.7.13).

25.7.13 al set audio stream gain

bool al_set_audio_stream_gain(ALLEGRO_AUDIO_STREAM *stream, float val)

Set the playback gain.

Returns true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

See also: al get audio stream gain (25.7.12).

136

25.7.14 al get audio stream pan

float al_get_audio_stream_pan(const ALLEGRO_AUDIO_STREAM *stream)

Get the pan value.

See also: al set audio stream pan (25.7.15).

25.7.15 al set audio stream pan

bool al_set_audio_stream_pan(ALLEGRO_AUDIO_STREAM *stream, float val)

Set the pan value on a sample instance. A value of –1.0 means to play the sample only through the left
speaker; +1.0 means only through the right speaker; 0.0 means the sample is centre balanced.

Returns true on success, false on failure. Will fail if the sample instance is attached directly to a voice.

See also: al get audio stream playing (25.7.16).

25.7.16 al get audio stream playing

bool al_get_audio_stream_playing(const ALLEGRO_AUDIO_STREAM *stream)

Return true if the stream is playing.

See also: al set audio stream playing (25.7.17).

25.7.17 al set audio stream playing

bool al_set_audio_stream_playing(ALLEGRO_AUDIO_STREAM *stream, bool val)

Change whether the stream is playing.

Returns true on success, false on failure.

25.7.18 al get audio stream playmode

ALLEGRO_PLAYMODE al_get_audio_stream_playmode(
const ALLEGRO_AUDIO_STREAM *stream)

Return the playback mode.

See also: ALLEGRO PLAYMODE (25.1.7), al set audio stream playmode (25.7.19).

25.7.19 al set audio stream playmode

bool al_set_audio_stream_playmode(ALLEGRO_AUDIO_STREAM *stream,
ALLEGRO_PLAYMODE val)

Set the playback mode.

Returns true on success, false on failure.

See also: ALLEGRO PLAYMODE (25.1.7), al get audio stream playmode (25.7.18).

137

25.7.20 al get audio stream attached

bool al_get_audio_stream_attached(const ALLEGRO_AUDIO_STREAM *stream)

Return whether the stream is attached to something.

See also: al attach audio stream to mixer (25.6.8), al attach audio stream to voice (25.3.4), al detach audio stream (25.7.21).

25.7.21 al detach audio stream

bool al_detach_audio_stream(ALLEGRO_AUDIO_STREAM *stream)

Detach the stream from whatever it’s attached to, if anything.

See also: al attach audio stream to mixer (25.6.8), al attach audio stream to voice (25.3.4), al get audio stream attached (25.7.20).

25.7.22 al get audio stream fragment

void *al_get_audio_stream_fragment(const ALLEGRO_AUDIO_STREAM *stream)

When using Allegro’s audio streaming, you will use this function to continuously provide new sample data
to a stream.

If the stream is ready for new data, the function will return the address of an internal buffer to be filled with
audio data. The length and format of the buffer are specified with al create audio stream (25.7.1) or can be
queried with the various functions described here. Once the buffer is filled, you must signal this to Allegro
by passing the buffer to al set audio stream fragment (25.7.23).

If the stream is not ready for new data, the function will return NULL.

Note: If you listen to events from the stream, an ALLEGRO EVENT AUDIO STREAM FRAGMENT
event will be generated whenever a new fragment is ready. However, getting an event is not a guarantee
that al get audio stream fragment (25.7.22) will not return NULL, so you still must check for it.

See also: al set audio stream fragment (25.7.23), al get audio stream event source (25.7.3), al get audio stream frequency (25.7.6),
al get audio stream channels (25.7.7), al get audio stream depth (25.7.8), al get audio stream length (25.7.9)

25.7.23 al set audio stream fragment

bool al_set_audio_stream_fragment(ALLEGRO_AUDIO_STREAM *stream, void *val)

This function needs to be called for every successful call of al get audio stream fragment (25.7.22) to indicate
that the buffer is filled with new data.

25.7.24 al get audio stream fragments

unsigned int al_get_audio_stream_fragments(const ALLEGRO_AUDIO_STREAM *stream)

Returns the number of fragments this stream uses. This is the same value as passed to al create audio stream (25.7.1)
when a new stream is created.

138

25.7.25 al get available audio stream fragments

unsigned int al_get_available_audio_stream_fragments(
const ALLEGRO_AUDIO_STREAM *stream)

Returns the number of available fragments in the stream, that is, fragments which are not currently filled
with data for playback.

See also: al get audio stream fragment (25.7.22)

25.7.26 al seek audio stream secs

bool al_seek_audio_stream_secs(ALLEGRO_AUDIO_STREAM *stream, double time)

Set the streaming file playing position to time. Returns true on success. Currently this can only be called on
streams created with al load audio stream (25.8.9), al load audio stream f (25.8.10) and the format-specific
functions underlying those functions.

25.7.27 al get audio stream position secs

double al_get_audio_stream_position_secs(ALLEGRO_AUDIO_STREAM *stream)

Return the position of the stream in seconds. Currently this can only be called on streams created with
al load audio stream (25.8.9).

25.7.28 al get audio stream length secs

double al_get_audio_stream_length_secs(ALLEGRO_AUDIO_STREAM *stream)

Return the length of the stream in seconds, if known. Otherwise returns zero.

Currently this can only be called on streams created with al load audio stream (25.8.9), al load audio stream f (25.8.10)
and the format-specific functions underlying those functions.

25.7.29 al set audio stream loop secs

bool al_set_audio_stream_loop_secs(ALLEGRO_AUDIO_STREAM *stream,
double start, double end)

Sets the loop points for the stream in seconds. Currently this can only be called on streams created with
al load audio stream (25.8.9), al load audio stream f (25.8.10) and the format-specific functions underlying
those functions.

139

25.8 Audio file I/O

25.8.1 al register sample loader

bool al_register_sample_loader(const char *ext,
ALLEGRO_SAMPLE *(*loader)(const char *filename))

Register a handler for al load sample (25.8.7). The given function will be used to handle the loading of
sample files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The loader argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

25.8.2 al register sample loader f

bool al_register_sample_loader_f(const char *ext,
ALLEGRO_SAMPLE *(*loader)(ALLEGRO_FILE* fp))

Register a handler for al load sample f (25.8.8). The given function will be used to handle the loading of
sample files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The loader argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

25.8.3 al register sample saver

bool al_register_sample_saver(const char *ext,
bool (*saver)(const char *filename, ALLEGRO_SAMPLE *spl))

Register a handler for al save sample (25.8.11). The given function will be used to handle the saving of
sample files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The saver argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

25.8.4 al register sample saver f

bool al_register_sample_saver_f(const char *ext,
bool (*saver)(ALLEGRO_FILE* fp, ALLEGRO_SAMPLE *spl))

Register a handler for al save sample f (25.8.12). The given function will be used to handle the saving of
sample files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The saver argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

140

25.8.5 al register audio stream loader

bool al_register_audio_stream_loader(const char *ext,
ALLEGRO_AUDIO_STREAM *(*stream_loader)(const char *filename,

size_t buffer_count, unsigned int samples))

Register a handler for al load audio stream (25.8.9). The given function will be used to open streams from
files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The stream_loader argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

25.8.6 al register audio stream loader f

bool al_register_audio_stream_loader_f(const char *ext,
ALLEGRO_AUDIO_STREAM *(*stream_loader)(ALLEGRO_FILE* fp,

size_t buffer_count, unsigned int samples))

Register a handler for al load audio stream f (25.8.10). The given function will be used to open streams
from files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The stream_loader argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

25.8.7 al load sample

ALLEGRO_SAMPLE *al_load_sample(const char *filename)

Loads a few different audio file formats based on their extension. Some formats require external libraries to
be installed prior to compiling the library.

Note that this stores the entire file in memory at once, which may be time consuming. To read the file as it
is needed, use al load audio stream (25.8.9).

Returns the sample on success, NULL on failure.

See also: al register sample loader (25.8.1), al load wav (25.8.13)

25.8.8 al load sample f

ALLEGRO_SAMPLE *al_load_sample_f(ALLEGRO_FILE* fp, const char *ident)

Loads an audio file from an ALLEGRO FILE stream into an ALLEGRO SAMPLE. The file type is deter-
mined by the passed ‘ident’ parameter, which is a file name extension including the leading dot.

Note that this stores the entire file in memory at once, which may be time consuming. To read the file as it
is needed, use al load audio stream f (25.8.10).

Returns the sample on success, NULL on failure.

See also: al register sample loader f (25.8.2), al load wav f (25.8.14)

141

25.8.9 al load audio stream

ALLEGRO_AUDIO_STREAM *al_load_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads an audio file from disk as it is needed.

Unlike regular streams, the one returned by this function need not be fed by the user; the library will
automatically read more of the file as it is needed. The stream will contain buffer count buffers with samples
samples.

A stream must be attached to a voice to be used. See ALLEGRO AUDIO STREAM (25.1.11) for more
details.

Returns the stream on success, NULL on failure.

See also: al register audio stream loader (25.8.5), al load wav audio stream (25.8.17)

25.8.10 al load audio stream f

ALLEGRO_AUDIO_STREAM *al_load_audio_stream_f(ALLEGRO_FILE* fp, const char *ident,
size_t buffer_count, unsigned int samples)

Loads an audio file from ALLEGRO FILE stream as it is needed.

Unlike regular streams, the one returned by this function need not be fed by the user; the library will
automatically read more of the file as it is needed. The stream will contain buffer count buffers with samples
samples.

The file type is determined by the passed ‘ident’ parameter, which is a file name extension including the
leading dot.

A stream must be attached to a voice to be used. See ALLEGRO AUDIO STREAM (25.1.11) for more
details.

Returns the stream on success, NULL on failure.

See also: al register audio stream loader f (25.8.6), al load wav audio stream f (25.8.18)

25.8.11 al save sample

bool al_save_sample(const char *filename, ALLEGRO_SAMPLE *spl)

Writes a sample into a file. Currently, wav is the only supported format, and the extension must be ’.wav’.

Returns true on success, false on error.

See also: al register sample saver (25.8.3), al save wav (25.8.15)

25.8.12 al save sample f

bool al_save_sample_f(ALLEGRO_FILE *fp, const char *ident, ALLEGRO_SAMPLE *spl)

142

Writes a sample into a ALLEGRO FILE (6.1) filestream. Currently, wav is the only supported format, and
the extension must be ’.wav’.

Returns true on success, false on error.

See also: al register sample saver f (25.8.4), al save wav f (25.8.16)

25.8.13 al load wav

ALLEGRO_SAMPLE *al_load_wav(const char *filename)

Load a sample from a PCM .wav file.

Returns the sample on success, NULL on failure.

See also: al load sample (25.8.7), al load wav f (25.8.14)

25.8.14 al load wav f

ALLEGRO_SAMPLE *al_load_wav_f(ALLEGRO_FILE *fp)

Load a sample from a ALLEGRO FILE (6.1) stream.

Returns the sample on success, NULL on failure.

See also: al load sample (25.8.7), al load wav (25.8.13)

25.8.15 al save wav

bool al_save_wav(const char *filename, ALLEGRO_SAMPLE *spl)

Save a sample to a PCM .wav file.

Returns true on success, false on error.

See also: al save sample (25.8.11), al save wav f (25.8.16)

25.8.16 al save wav f

bool al_save_wav_f(ALLEGRO_FILE *pf, ALLEGRO_SAMPLE *spl)

Write a PCM .wav file into the ALLEGRO FILE (6.1) stream given.

Returns true on success, false on error.

See also: al save sample (25.8.11), al save wav (25.8.15)

25.8.17 al load wav audio stream

ALLEGRO_AUDIO_STREAM *al_load_wav_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Like al load audio stream (25.8.9) but assumes the file is PCM .wav file.

See also: al load audio stream (25.8.9), al load wav audio stream f (25.8.18)

143

25.8.18 al load wav audio stream f

ALLEGRO_AUDIO_STREAM *al_load_wav_audio_stream_f(ALLEGRO_FILE* f,
size_t buffer_count, unsigned int samples)

Like al load audio stream f (25.8.10) but assumes the file is PCM .wav file.

See also: al load audio stream f (25.8.10), al load wav audio stream (25.8.17)

26 Audio codecs

26.1 FLAC addon

These functions are declared in the following header file. Link with allegro flac.

#include <allegro5/allegro_flac.h>

26.1.1 al init flac addon

bool al_init_flac_addon(void)

This function registers al load flac (26.1.3) with al load sample (25.8.7) to handle files with the extension
“.flac”. You will need to include the allegro_flac.h header file and link with the allegro_flac library.

Return true on success.

26.1.2 al get allegro flac version

uint32_t al_get_allegro_flac_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

26.1.3 al load flac

ALLEGRO_SAMPLE *al_load_flac(const char *filename)

Loads a sample in FLAC format.

See also: al load sample (25.8.7)

26.1.4 al load flac f

ALLEGRO_SAMPLE *al_load_flac_f(ALLEGRO_FILE* f)

Loads a sample in FLAC format from the ALLEGRO FILE (6.1) stream given.

See also: al load sample f (25.8.8)

144

26.1.5 al load flac audio stream

ALLEGRO_AUDIO_STREAM *al_load_flac_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads a stream in FLAC format.

See also: al load audio stream (25.8.9)

26.1.6 al load flac audio stream f

ALLEGRO_AUDIO_STREAM *al_load_flac_audio_stream_f(ALLEGRO_FILE* f,
size_t buffer_count, unsigned int samples)

Loads a stream in FLAC format from the ALLEGRO FILE (6.1) stream given.

See also: al load audio stream f (25.8.10)

26.2 MOD Audio addon

These functions are declared in the following header file. Link with allegro modaudio.

#include <allegro5/allegro_modaudio.h>

26.2.1 al init modaudio addon

bool al_init_modaudio_addon()

This function registers al load it audio stream (26.2.3), al load mod audio stream (26.2.5), al load s3m audio stream (26.2.7),
and al load xm audio stream (26.2.9) with al load audio stream (25.8.9) to handle files with the extensions
“.it”, “.mod”, “.s3m”, and “.xm”. You will need to include the allegro_modaudio.h header file and link
with the allegro_modaudio library.

Return true if every function is registered successfully.

26.2.2 al get allegro modaudio version

uint32_t al_get_allegro_modaudio_version()

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

26.2.3 al load it audio stream

ALLEGRO_AUDIO_STREAM *al_load_it_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads a stream in the Impulse Tracker format.

See also: al load audio stream (25.8.9)

145

26.2.4 al load it audio stream f

ALLEGRO_AUDIO_STREAM *al_load_it_audio_stream_f(ALLEGRO_FILE *f,
size_t buffer_count, unsigned int samples)

Loads a stream in the Impulse Tracker format from the ALLEGRO FILE (6.1) stream given.

See also: al load audio stream f (25.8.10)

26.2.5 al load mod audio stream

ALLEGRO_AUDIO_STREAM *al_load_mod_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads a stream in the Amiga Module format.

See also: al load audio stream (25.8.9)

26.2.6 al load mod audio stream f

ALLEGRO_AUDIO_STREAM *al_load_mod_audio_stream_f(ALLEGRO_FILE *f,
size_t buffer_count, unsigned int samples)

Loads a stream in the Amiga Module format from the ALLEGRO FILE (6.1) stream given.

See also: al load audio stream f (25.8.10)

26.2.7 al load s3m audio stream

ALLEGRO_AUDIO_STREAM *al_load_s3m_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads a stream in the Scream Tracker 3 format.

See also: al load audio stream (25.8.9)

26.2.8 al load s3m audio stream f

ALLEGRO_AUDIO_STREAM *al_load_s3m_audio_stream_f(ALLEGRO_FILE *f,
size_t buffer_count, unsigned int samples)

Loads a stream in the Scream Tracker 3 format from the ALLEGRO FILE (6.1) stream given.

See also: al load audio stream f (25.8.10)

26.2.9 al load xm audio stream

ALLEGRO_AUDIO_STREAM *al_load_xm_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads a stream in the Fast Tracker 2 format.

See also: al load audio stream (25.8.9)

146

26.2.10 al load xm audio stream f

ALLEGRO_AUDIO_STREAM *al_load_xm_audio_stream_f(ALLEGRO_FILE *f,
size_t buffer_count, unsigned int samples)

Loads a stream in Fast Tracker 2 format from the ALLEGRO FILE (6.1) stream given.

See also: al load audio stream f (25.8.10)

26.3 Ogg Vorbis addon

These functions are declared in the following header file. Link with allegro vorbis.

#include <allegro5/allegro_vorbis.h>

26.3.1 al init ogg vorbis addon

bool al_init_ogg_vorbis_addon(void)

This function registers al load ogg vorbis (26.3.3) with al load sample (25.8.7) and al load ogg vorbis audio stream (26.3.5)
with al load audio stream (25.8.9) to handle files with the extension “.ogg” (assumed to contain Vorbis data).
You will need to include the allegro_vorbis.h header file and link with the allegro_vorbis library.

Return true on success.

26.3.2 al get allegro ogg vorbis version

uint32_t al_get_allegro_ogg_vorbis_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

26.3.3 al load ogg vorbis

ALLEGRO_SAMPLE *al_load_ogg_vorbis(const char *filename)

Loads a sample in Ogg Vorbis format.

See also: al load sample (25.8.7)

26.3.4 al load ogg vorbis f

ALLEGRO_SAMPLE *al_load_ogg_vorbis_f(ALLEGRO_FILE* file)

Loads a sample in Ogg Vorbis format from the ALLEGRO FILE (6.1) stream given.

See also: al load sample f (25.8.8)

147

26.3.5 al load ogg vorbis audio stream

ALLEGRO_AUDIO_STREAM *al_load_ogg_vorbis_audio_stream(const char *filename,
size_t buffer_count, unsigned int samples)

Loads a stream in Ogg Vorbis format.

See also: al load audio stream (25.8.9)

26.3.6 al load ogg vorbis audio stream f

ALLEGRO_AUDIO_STREAM *al_load_ogg_vorbis_audio_stream_f(ALLEGRO_FILE* file,
size_t buffer_count, unsigned int samples)

Loads a stream in Ogg Vorbis format from the ALLEGRO FILE (6.1) stream given.

See also: al load audio stream f (25.8.10)

27 Color addon

These functions are declared in the following header file. Link with allegro color.

#include <allegro5/allegro_color.h>

27.1 al color cmyk

ALLEGRO_COLOR al_color_cmyk(float c, float m, float y, float k)

Return an ALLEGRO COLOR (9.1.1) structure from CMYK values (cyan, magenta, yellow, black).

See also: al color cmyk to rgb (27.2), al color rgb to cmyk (27.12)

27.2 al color cmyk to rgb

void al_color_cmyk_to_rgb(float cyan, float magenta, float yellow,
float key, float *red, float *green, float *blue)

Convert CMYK values to RGB values.

See also: al color cmyk (27.1), al color rgb to cmyk (27.12)

27.3 al color hsl

ALLEGRO_COLOR al_color_hsl(float h, float s, float l)

Return an ALLEGRO COLOR (9.1.1) structure from HSL (hue, saturation, lightness) values.

See also: al color hsl to rgb (27.4), al color hsv (27.5)

148

27.4 al color hsl to rgb

void al_color_hsl_to_rgb(float hue, float saturation, float lightness,
float *red, float *green, float *blue)

Convert values in HSL color model to RGB color model.

Parameters:

• hue - Color hue angle in the range 0..360.

• saturation - Color saturation in the range 0..1.

• lightness - Color lightness in the range 0..1.

• red, green, blue - returned RGB values in the range 0..1.

See also: al color rgb to hsl (27.13), al color hsl (27.3), al color hsv to rgb (27.6)

27.5 al color hsv

ALLEGRO_COLOR al_color_hsv(float h, float s, float v)

Return an ALLEGRO COLOR (9.1.1) structure from HSV (hue, saturation, value) values.

See also: al color hsv to rgb (27.6), al color hsl (27.3)

27.6 al color hsv to rgb

void al_color_hsv_to_rgb(float hue, float saturation, float value,
float *red, float *green, float *blue)

Convert values in HSV color model to RGB color model.

Parameters:

• hue - Color hue angle in the range 0..360.

• saturation - Color saturation in the range 0..1.

• value - Color value in the range 0..1.

• red, green, blue - returned RGB values in the range 0..1.

See also: al color rgb to hsv (27.14), al color hsv (27.5), al color hsl to rgb (27.4)

27.7 al color html

ALLEGRO_COLOR al_color_html(char const *string)

Interprets an HTML styled hex number (e.g. #00faff) as a color. Components that are malformed are set
to 0.

See also: al color html to rgb (27.8), al color rgb to html (27.9)

149

27.8 al color html to rgb

void al_color_html_to_rgb(char const *string,
float *red, float *green, float *blue)

Interprets an HTML styled hex number (e.g. #00faff) as a color. Components that are malformed are set
to 0.

See also: al color html (27.7), al color rgb to html (27.9)

27.9 al color rgb to html

void al_color_rgb_to_html(float red, float green, float blue,
char *string)

Create an HTML-style string representation of an ALLEGRO COLOR (9.1.1), e.g. #00faff.

Parameters:

• red, green, blue - The color components in the range 0..1.

• string - A string with a size of 8 bytes into which the result will be written.

Example:

char html[8];
al_color_rgb_to_html(1, 0, 0, html);

Now html will contain “#ff0000”.

See also: al color html (27.7), al color html to rgb (27.8)

27.10 al color name

ALLEGRO_COLOR al_color_name(char const *name)

Return an ALLEGRO COLOR (9.1.1) with the given name. If the color is not found then black is returned.

See al color name to rgb (27.11) for the list of names.

27.11 al color name to rgb

bool al_color_name_to_rgb(char const *name, float *r, float *g, float *b)

Parameters:

• name - The (lowercase) name of the color.

• r, g, b - If one of the recognized color names below is passed, the corresponding RGB values in the
range 0..1 are written.

150

The recognized names are:

aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue,
blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk,
crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgreen, darkkhaki, darkma-
genta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue,
darkslategray, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dodgerblue, firebrick,
floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, goldenrod, gold, gray, green, greenyel-
low, honeydew, hotpink, indianred, indigo, ivory, khaki, lavenderblush, lavender, lawngreen,
lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgreen, lightgrey, light-
pink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightsteelblue, lightyellow, lime,
limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpur-
ple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumviole-
tred, midnightblue, mintcream, mistyrose, moccasin, avajowhite, navy, oldlace, olive, olivedrab,
orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip,
peachpuff, peru, pink, plum, powderblue, purple, purwablue, red, rosybrown, royalblue, saddle-
brown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, snow,
springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yel-
low, yellowgreen

They are taken from http://en.wikipedia.org/wiki/X11_color_names, with CSS names being preferred
over X11 ones where there is overlap.

Returns: true if a name from the list above was passed, else false.

See also: al color name (27.10)

27.12 al color rgb to cmyk

void al_color_rgb_to_cmyk(float red, float green, float blue,
float *cyan, float *magenta, float *yellow, float *key)

Each RGB color can be represented in CMYK with a K component of 0 with the following formula:

C = 1 - R
M = 1 - G
Y = 1 - B
K = 0

This function will instead find the representation with the maximal value for K and minimal color compo-
nents.

See also: al color cmyk (27.1), al color cmyk to rgb (27.2)

27.13 al color rgb to hsl

void al_color_rgb_to_hsl(float red, float green, float blue,
float *hue, float *saturation, float *lightness)

Given an RGB triplet with components in the range 0..1, return the hue in degrees from 0..360 and saturation
and lightness in the range 0..1.

See also: al color hsl to rgb (27.4), al color hsl (27.3)

151

http://en.wikipedia.org/wiki/X11_color_names

27.14 al color rgb to hsv

void al_color_rgb_to_hsv(float red, float green, float blue,
float *hue, float *saturation, float *value)

Given an RGB triplet with components in the range 0..1, return the hue in degrees from 0..360 and saturation
and value in the range 0..1.

See also: al color hsv to rgb (27.6), al color hsv (27.5)

27.15 al color rgb to name

char const *al_color_rgb_to_name(float r, float g, float b)

Given an RGB triplet with components in the range 0..1, find a color name describing it approximately.

See also: al color name to rgb (27.11), al color name (27.10)

27.16 al color rgb to yuv

void al_color_rgb_to_yuv(float red, float green, float blue,
float *y, float *u, float *v)

Convert RGB values to YUV color space.

See also: al color yuv (27.17), al color yuv to rgb (27.18)

27.17 al color yuv

ALLEGRO_COLOR al_color_yuv(float y, float u, float v)

Return an ALLEGRO COLOR (9.1.1) structure from YUV values.

See also: al color yuv to rgb (27.18), al color rgb to yuv (27.16)

27.18 al color yuv to rgb

void al_color_yuv_to_rgb(float y, float u, float v,
float *red, float *green, float *blue)

Convert YUV color values to RGB color space.

See also: al color yuv (27.17), al color rgb to yuv (27.16)

27.19 al get allegro color version

uint32_t al_get_allegro_color_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

152

28 Font addons

These functions are declared in the following header file. Link with allegro font.

#include <allegro5/allegro_font.h>

28.1 General font routines

28.1.1 ALLEGRO FONT

typedef struct ALLEGRO_FONT ALLEGRO_FONT;

A handle identifying any kind of font. Usually you will create it with al load font (28.1.4) which supports
loading all kinds of TrueType fonts supported by the FreeType library. If you instead pass the filename of a
bitmap file, it will be loaded with al load bitmap (29.7) and a font in Allegro’s bitmap font format will be
created from it with al grab font from bitmap (28.2.1).

28.1.2 al init font addon

void al_init_font_addon(void)

Initialise the font addon.

See also: al init ttf addon (28.3.1), al shutdown font addon (28.1.3)

28.1.3 al shutdown font addon

void al_shutdown_font_addon(void)

Shut down the font addon. This is done automatically at program exit, but can be called any time the user
wishes as well.

See also: al init font addon (28.1.2)

28.1.4 al load font

ALLEGRO_FONT *al_load_font(char const *filename, int size, int flags)

Loads a font from disk. This will use al load bitmap font (28.2.2) if you pass the name of a known bitmap
format, or else al load ttf font (28.3.2).

See also: al destroy font (28.1.5), al init font addon (28.1.2)

28.1.5 al destroy font

void al_destroy_font(ALLEGRO_FONT *f)

Frees the memory being used by a font structure.

See also: al load font (28.1.4)

153

28.1.6 al register font loader

bool al_register_font_loader(char const *extension,
ALLEGRO_FONT *(*load_font)(char const *filename, int size, int flags))

Informs Allegro of a new font file type, telling it how to load files of this format.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The load_font argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

See also: al init font addon (28.1.2)

28.1.7 al get font line height

int al_get_font_line_height(const ALLEGRO_FONT *f)

Returns the usual height of a line of text in the specified font. For bitmap fonts this is simply the height of
all glyph bitmaps. For truetype fonts it is whatever the font file specifies. In particular, some special glyphs
may be higher than the height returned here.

See also: al get text width (28.1.8), al get text dimensions (28.1.16)

28.1.8 al get text width

int al_get_text_width(const ALLEGRO_FONT *f, const char *str)

Calculates the length of a string in a particular font, in pixels.

See also: al get ustr width (28.1.9), al get font line height (28.1.7), al get text dimensions (28.1.16)

28.1.9 al get ustr width

int al_get_ustr_width(const ALLEGRO_FONT *f, ALLEGRO_USTR const *ustr)

Like al get text width (28.1.8) but expects an ALLEGRO USTR.

See also: al get text width (28.1.8), al get ustr dimensions (28.1.17)

28.1.10 al draw text

void al_draw_text(const ALLEGRO_FONT *font, float x, float y, int flags,
char const *text)

Writes the 0-terminated string text onto bmp at position x, y, using the specified font.

The flags parameter can be 0 or one of the following flags:

• ALLEGRO ALIGN LEFT - Draw the text left-aligned (same as 0).

154

• ALLEGRO ALIGN CENTRE - Draw the text centered around the given position.

• ALLEGRO ALIGN RIGHT - Draw the text right-aligned to the given position.

See also: al draw ustr (28.1.11), al draw textf (28.1.14), al draw justified text (28.1.12)

28.1.11 al draw ustr

void al_draw_ustr(const ALLEGRO_FONT *font, float x, float y, int flags,
const ALLEGRO_USTR *ustr)

Like al draw text (28.1.10), except the text is passed as an ALLEGRO USTR instead of a 0-terminated char
array.

See also: al draw text (28.1.10), al draw justified ustr (28.1.13)

28.1.12 al draw justified text

void al_draw_justified_text(const ALLEGRO_FONT *font, float x1, float x2,
float y, float diff, int flags, const char *text)

Like al draw text (28.1.10), but justifies the string to the specified area.

See also: al draw justified textf (28.1.15), al draw justified ustr (28.1.13)

28.1.13 al draw justified ustr

void al_draw_justified_ustr(const ALLEGRO_FONT *font, float x1, float x2,
float y, float diff, int flags, const ALLEGRO_USTR *ustr)

Like al draw ustr (28.1.11), but justifies the string to the specified area.

See also: al draw justified text (28.1.12), al draw justified textf (28.1.15).

28.1.14 al draw textf

void al_draw_textf(const ALLEGRO_FONT *font, float x, float y, int flags,
const char *format, ...)

Formatted text output, using a printf() style format string, all parameters have the same meaning as with
al draw text (28.1.10) otherwise.

See also: al draw text (28.1.10), al draw ustr (28.1.11)

28.1.15 al draw justified textf

void al_draw_justified_textf(const ALLEGRO_FONT *f, float x1, float x2, float y,
float diff, int flags, const char *format, ...)

Like al draw justified text (28.1.12) and al draw textf (28.1.14).

See also: al draw justified text (28.1.12), al draw justified ustr (28.1.13).

155

28.1.16 al get text dimensions

void al_get_text_dimensions(const ALLEGRO_FONT *f,
char const *text,
int *bbx, int *bby, int *bbw, int *bbh, int *ascent, int *descent)

Sometimes, the al get text width (28.1.8) and al get font line height (28.1.7) functions are not enough for
exact text placement, so this function returns some additional information.

Returned variables (all in pixel):

• x, y - Offset to upper left corner of bounding box.

• w, h - Dimensions of bounding box.

• ascent - Ascent of the font.

• descent - Descent of the font.

If the X is the position you specify to draw text, the meaning of ascent and descent and the line height is
like in the figure below. Note that glyphs may go to the left and upwards of the X, in which case x and y
will have negative values.

X------------------------
/\ | |
/ \ | |
/____\ ascent |

/ \ | |
/ \ | height
---------------- |

| |
descent |
| |

See also: al get text width (28.1.8), al get font line height (28.1.7), al get ustr dimensions (28.1.17)

28.1.17 al get ustr dimensions

void al_get_ustr_dimensions(const ALLEGRO_FONT *f,
ALLEGRO_USTR const *ustr,
int *bbx, int *bby, int *bbw, int *bbh, int *ascent, int *descent)

Sometimes, the al get ustr width (28.1.9) and al get font line height (28.1.7) functions are not enough for
exact text placement, so this function returns some additional information.

See also: al get text dimensions (28.1.16)

28.1.18 al get allegro font version

uint32_t al_get_allegro_font_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

156

28.2 Bitmap fonts

28.2.1 al grab font from bitmap

ALLEGRO_FONT *al_grab_font_from_bitmap(ALLEGRO_BITMAP *bmp,
int ranges_n, int ranges[])

Creates a new font from an Allegro bitmap. You can delete the bitmap after the function returns as the font
will contain a copy for itself.

Parameters:

• bmp: The bitmap with the glyphs drawn onto it

• n: Number of unicode ranges in the bitmap.

• ranges: ‘n’ pairs of first and last unicode point to map glyphs to for each range.

The bitmap format is as in the following example, which contains three glyphs for 1, 2 and 3.

.............

. 1 .222.333.

. 1 . 2. 3.

. 1 .222.333.

. 1 .2 . 3.

. 1 .222.333.

.............

In the above illustration, the dot is for pixels having the background color. It is determined by the color of
the top left pixel in the bitmap. There should be a border of at least 1 pixel with this color to the bitmap
edge and between all glyphs.

Each glyph is inside a rectangle of pixels not containing the background color. The height of all glyph
rectangles should be the same, but the width can vary.

The placement of the rectangles does not matter, except that glyphs are scanned from left to right and top
to bottom to match them to the specified unicode codepoints.

The glyphs will simply be drawn using al draw bitmap (9.5.2), so usually you will want the rectangles filled
with full transparency and the glyphs drawn in opaque white.

Examples:

int ranges[] = {32, 126};
al_font_grab_font_from_bitmap(bitmap, 1, ranges)

int ranges[] = {
0x0020, 0x007F, /* ASCII */
0x00A1, 0x00FF, /* Latin 1 */
0x0100, 0x017F, /* Extended-A */
0x20AC, 0x20AC}; /* Euro */

al_font_grab_font_from_bitmap(bitmap, 4, ranges)

157

The first example will grab glyphs for the 95 standard printable ASCII characters, beginning with the space
character (32) and ending with the tilde character (126). The second example will map the first 96 glyphs
found in the bitmap to ASCII range, the next 95 glyphs to Latin 1, the next 128 glyphs to Extended-A, and
the last glyph to the Euro character. (This is just the characters found in the Allegro 4 font.)

See also: al load bitmap (29.7), al grab font from bitmap (28.2.1)

28.2.2 al load bitmap font

ALLEGRO_FONT *al_load_bitmap_font(const char *fname)

Load a bitmap font from. It does this by first calling al load bitmap (29.7) and then al grab font from bitmap (28.2.1).
If you want to for example load an old A4 font, you could load the bitmap yourself, then call al convert mask to alpha (9.8.1)
on it and only then pass it to al grab font from bitmap (28.2.1).

28.3 TTF fonts

These functions are declared in the following header file. Link with allegro ttf.

#include <allegro5/allegro_ttf.h>

28.3.1 al init ttf addon

bool al_init_ttf_addon(void)

Call this after al init font addon (28.1.2) to make al load font (28.1.4) recognize .ttf and other formats
supported by al load ttf font (28.3.2).

28.3.2 al load ttf font

ALLEGRO_FONT *al_load_ttf_font(char const *filename, int size, int flags)

Loads a TrueType font from a file using the FreeType library. Quoting from the FreeType FAQ this means
support for many different font formats:

TrueType, OpenType, Type1, CID, CFF, Windows FON/FNT, X11 PCF, and others

The size parameter determines the size the font will be rendered at, specified in pixel. The standard font
size is measured in units per EM, if you instead want to specify the size as the total height of glyphs in pixel,
pass it as a negative value.

Note: If you want to display text at multiple sizes, load the font multiple times with different size parameters.

The only flag supported right now is:

• ALLEGRO TTF NO KERNING - Do not use any kerning even if the font file supports it.

See also: al init ttf addon (28.3.1), al load ttf font entry (28.3.3)

158

28.3.3 al load ttf font entry

ALLEGRO_FONT *al_load_ttf_font_entry(ALLEGRO_FILE *file,
char const *filename, int size, int flags)

Like al load ttf font (28.3.2), but the font is read from the file handle. The filename is only used to find
possible additional files next to a font file.

Note: The file handle is owned by the returned ALLEGRO FONT object and must not be freed by the
caller, as FreeType expects to be able to read from it at a later time.

28.3.4 al get allegro ttf version

uint32_t al_get_allegro_ttf_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

29 Image I/O addon

These functions are declared in the following header file. Link with allegro image.

#include <allegro5/allegro_image.h>

29.1 al init image addon

bool al_init_image_addon(void)

Initializes the IIO addon.

29.2 al shutdown image addon

void al_shutdown_image_addon(void)

Shut down the IIO addon. This is done automatically at program exit, but can be called any time the user
wishes as well.

29.3 al register bitmap loader

bool al_register_bitmap_loader(const char *extension,
ALLEGRO_BITMAP *(*loader)(const char *filename))

Register a handler for al load bitmap (29.7). The given function will be used to handle the loading of bitmaps
files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The loader argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

159

29.4 al register bitmap saver

bool al_register_bitmap_saver(const char *extension,
bool (*saver)(const char *filename, ALLEGRO_BITMAP *bmp))

Register a handler for al save bitmap (29.9). The given function will be used to handle the loading of bitmaps
files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The saver argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

29.5 al register bitmap loader f

bool al_register_bitmap_loader_f(const char *extension,
ALLEGRO_BITMAP *(*loader_f)(ALLEGRO_FILE *fp))

Register a handler for al load bitmap f (29.8). The given function will be used to handle the loading of
bitmaps files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The fs_loader argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

29.6 al register bitmap saver f

bool al_register_bitmap_saver_f(const char *extension,
bool (*saver_f)(ALLEGRO_FILE *fp, ALLEGRO_BITMAP *bmp))

Register a handler for al save bitmap f (29.10). The given function will be used to handle the loading of
bitmaps files with the given extension.

The extension should include the leading dot (’.’) character. It will be matched case-insensitively.

The saver_f argument may be NULL to unregister an entry.

Returns true on success, false on error. Returns false if unregistering an entry that doesn’t exist.

29.7 al load bitmap

ALLEGRO_BITMAP *al_load_bitmap(const char *filename)

Loads an image file into an ALLEGRO BITMAP. The file type is determined by the extension.

Returns NULL on error.

See also: al load bitmap f (29.8), al register bitmap loader (29.3), al set new bitmap format (9.3.9), al set new bitmap flags (9.3.8)

160

29.8 al load bitmap f

ALLEGRO_BITMAP *al_load_bitmap_f(ALLEGRO_FILE *fp, const char *ident)

Loads an image from an ALLEGRO FILE stream into an ALLEGRO BITMAP. The file type is determined
by the passed ‘ident’ parameter, which is a file name extension including the leading dot.

Returns NULL on error.

See also: al load bitmap (29.7), al register bitmap loader f (29.5)

29.9 al save bitmap

bool al_save_bitmap(const char *filename, ALLEGRO_BITMAP *bitmap)

Saves an ALLEGRO BITMAP to an image file. The file type is determined by the extension.

Returns true on success, false on error.

See also: al save bitmap f (29.10), al register bitmap saver (29.4)

29.10 al save bitmap f

bool al_save_bitmap_f(ALLEGRO_FILE *fp, const char *ident,
ALLEGRO_BITMAP *bitmap)

Saves an ALLEGRO BITMAP to an ALLEGRO FILE stream. The file type is determined by the passed
‘ident’ parameter, which is a file name extension including the leading dot.

Returns true on success, false on error.

See also: al save bitmap (29.9), al register bitmap saver f (29.6)

29.11 al load bmp

ALLEGRO_BITMAP *al_load_bmp(const char *filename)

Create a new ALLEGRO BITMAP from a BMP file. The bitmap is created with al create bitmap (9.3.3).

Returns NULL on error.

See Also: al load bitmap (29.7).

29.12 al load bmp f

ALLEGRO_BITMAP *al_load_bmp_f(ALLEGRO_FILE *f)

See al load bmp (29.11) and al load bitmap f (29.8).

161

29.13 al load jpg

ALLEGRO_BITMAP *al_load_jpg(char const *filename)

Create a new ALLEGRO BITMAP from a JPEG file. The bitmap is created with al create bitmap (9.3.3).

Returns NULL on error.

See Also: al load bitmap (29.7).

29.14 al load jpg f

ALLEGRO_BITMAP *al_load_jpg_f(ALLEGRO_FILE *fp)

See al load jpg (29.13) and al load bitmap f (29.8).

29.15 al load pcx

ALLEGRO_BITMAP *al_load_pcx(const char *filename)

Create a new ALLEGRO BITMAP from a PCX file. The bitmap is created with al create bitmap (9.3.3).

Returns NULL on error.

See Also: al load bitmap (29.7).

29.16 al load pcx f

ALLEGRO_BITMAP *al_load_pcx_f(ALLEGRO_FILE *f)

See al load pcx (29.15) and al load bitmap f (29.8).

29.17 al load png

ALLEGRO_BITMAP *al_load_png(const char *filename)

Create a new ALLEGRO BITMAP from a PNG file. The bitmap is created with al create bitmap (9.3.3).

Returns NULL on error.

See Also: al load bitmap (29.7).

29.18 al load png f

ALLEGRO_BITMAP *al_load_png_f(ALLEGRO_FILE *fp)

See al load png (29.17) and al load bitmap f (29.8).

162

29.19 al load tga

ALLEGRO_BITMAP *al_load_tga(const char *filename)

Create a new ALLEGRO BITMAP from a TGA file. The bitmap is created with al create bitmap (9.3.3).

Returns NULL on error.

See Also: al load bitmap (29.7).

29.20 al load tga f

ALLEGRO_BITMAP *al_load_tga_f(ALLEGRO_FILE *f)

See al load tga (29.19) and al load bitmap f (29.8).

29.21 al save bmp

bool al_save_bmp(const char *filename, ALLEGRO_BITMAP *bmp)

Save an ALLEGRO BITMAP as a BMP file.

Returns true on success, false on error.

See Also: al save bitmap (29.9).

29.22 al save bmp f

bool al_save_bmp_f(ALLEGRO_FILE *f, ALLEGRO_BITMAP *bmp)

See al save bmp (29.21) and al save bitmap f (29.10).

29.23 al save jpg

bool al_save_jpg(char const *filename, ALLEGRO_BITMAP *bmp)

Save an ALLEGRO BITMAP as a JPEG file.

Returns true on success, false on error.

See Also: al save bitmap (29.9).

29.24 al save jpg f

bool al_save_jpg_f(ALLEGRO_FILE *fp, ALLEGRO_BITMAP *bmp)

See al save jpg (29.23) and al save bitmap f (29.10).

163

29.25 al save pcx

bool al_save_pcx(const char *filename, ALLEGRO_BITMAP *bmp)

Save an ALLEGRO BITMAP as a PCX file.

Returns true on success, false on error.

See Also: al save bitmap (29.9).

29.26 al save pcx f

bool al_save_pcx_f(ALLEGRO_FILE *f, ALLEGRO_BITMAP *bmp)

See al save pcx (29.25) and al save bitmap f (29.10).

29.27 al save png

bool al_save_png(const char *filename, ALLEGRO_BITMAP *bmp)

Save an ALLEGRO BITMAP as a PNG file.

Returns true on success, false on error.

See Also: al save bitmap (29.9).

29.28 al save png f

bool al_save_png_f(ALLEGRO_FILE *fp, ALLEGRO_BITMAP *bmp)

See al save png (29.27) and al save bitmap f (29.10).

29.29 al save tga

bool al_save_tga(const char *filename, ALLEGRO_BITMAP *bmp)

Save an ALLEGRO BITMAP as a TGA file.

Returns true on success, false on error.

See Also: al save bitmap (29.9).

29.30 al save tga f

bool al_save_tga_f(ALLEGRO_FILE *f, ALLEGRO_BITMAP *bmp)

See al save tga (29.29) and al save bitmap f (29.10).

164

29.31 al get allegro image version

uint32_t al_get_allegro_image_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

30 Native dialogs support

These functions are declared in the following header file. Link with allegro dialog.

#include <allegro5/allegro_native_dialog.h>

30.1 ALLEGRO NATIVE DIALOG

typedef struct ALLEGRO_NATIVE_DIALOG ALLEGRO_NATIVE_DIALOG;

Opaque handle to a native file dialog. You should only have one such dialog opened at a time.

30.2 al create native file dialog

ALLEGRO_NATIVE_DIALOG *al_create_native_file_dialog(
ALLEGRO_PATH const *initial_path,
char const *title,
char const *patterns,
int mode)

Creates a new native file dialog.

Parameters:

• initial path: The initial search path and filename. Can be NULL.

• title: Title of the dialog.

• patterns: A list of semi-colon separated patterns to match. You should always include the pattern
“*.*” as usually the MIME type and not the file pattern is relevant. If no file patterns are supported
by the native dialog, this parameter is ignored.

• mode: 0, or a combination of the flags below.

Possible flags for the ‘mode’ parameter are:

• ALLEGRO FILECHOOSER FILE MUST EXIST: If supported by the native dialog, it will not allow
entering new names, but just allow existing files to be selected. Else it is ignored.

• ALLEGRO FILECHOOSER SAVE: If the native dialog system has a different dialog for saving (for
example one which allows creating new directories), it is used. Else ignored.

165

• ALLEGRO FILECHOOSER FOLDER: If there is support for a separate dialog to select a folder
instead of a file, it will be used.

• ALLEGRO FILECHOOSER PICTURES: If a different dialog is available for selecting pictures, it is
used. Else ignored.

• ALLEGRO FILECHOOSER SHOW HIDDEN: If the platform supports it, also hidden files will be
shown.

• ALLEGRO FILECHOOSER MULTIPLE: If supported, allow selecting multiple files.

Returns:

A handle to the dialog which you can pass to al show native file dialog (30.3) to display it, and from which
you then can query the results. When you are done, call [al destroy native file dialog] on it.

30.3 al show native file dialog

void al_show_native_file_dialog(ALLEGRO_NATIVE_DIALOG *fd)

Show the dialog window.

This function blocks the calling thread until it returns, so you may want to spawn a thread with al create thread (20.4)
and call it from inside that thread.

30.4 al get native file dialog count

int al_get_native_file_dialog_count(const ALLEGRO_NATIVE_DIALOG *fc)

Returns the number of files selected, or 0 if the dialog was cancelled.

30.5 al get native file dialog path

const ALLEGRO_PATH *al_get_native_file_dialog_path(
const ALLEGRO_NATIVE_DIALOG *fc, size_t i)

Returns one of the selected paths.

30.6 al destroy native dialog

void al_destroy_native_dialog(ALLEGRO_NATIVE_DIALOG *fd)

Frees up all resources used by the dialog.

166

30.7 al show native message box

int al_show_native_message_box(
char const *title, char const *heading, char const *text,
char const *buttons, int flags)

Show a native GUI message box. This can be used for example to display an error message if creation of an
initial display fails. You should usually not use this function as long as an ALLEGRO DISPLAY is active
(but you may).

The message box will have a single “OK” button and use the style informative dialog boxes usually have
on the native system. If the buttons parameter is not NULL, you can instead specify the button text in a
string, with buttons separated by a vertical bar (|).

Flags
ALLEGRO MESSAGEBOX WARN The message is a warning. This may cause a different icon (or

other effects).
ALLEGRO MESSAGEBOX ERROR The message is an error.
ALLE-
GRO MESSAGEBOX QUESTION

The message is a question.

ALLE-
GRO MESSAGEBOX OK CANCEL

Instead of the “OK” button also display a cancel button. Ignored if
buttons is not NULL.

ALLEGRO MESSAGEBOX YES NO Instead of the “OK” button display Yes/No buttons. Ignored if
buttons is not NULL.

Returns:

• 0 if the dialog window was closed without activating a button.

• 1 if the OK or Yes button was pressed.

• 2 if the Cancel or No button was pressed.

If buttons is not NULL, the number of the pressed button is returned, starting with 1.

Example:

button = al_show_native_message_box("Fullscreen?",
"Do you want to run this game in fullscreen mode?",
"Never|Always|Not this time|Only this time",
ALLEGRO_MESSAGEBOX_QUESTION);

/* button is 1/2/3/4 if one of the buttons is pressed, 0 if the window
* is closed.
*/

30.8 al get allegro native dialog version

uint32_t al_get_allegro_native_dialog_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

167

31 PhysicsFS integration

PhysicsFS is a library to provide abstract access to various archives. See http://icculus.org/physfs/ for
more information.

This addon makes it possible to read and write files (on disk or inside archives) using PhysicsFS, through
Allegro’s file I/O API. For example, that means you can use the Image I/O addon to load images from .zip
files.

You must set up PhysicsFS through its own API. When you want to open an ALLEGRO FILE using
PhysicsFS, first call al set physfs file interface (31.1), then al fopen (6.4) or another function that calls
al fopen (6.4).

These functions are declared in the following header file. Link with allegro physfs.

#include <allegro5/allegro_physfs.h>

31.1 al set physfs file interface

void al_set_physfs_file_interface(void)

After calling this, subsequent calls to al fopen (6.4) will be handled by PHYSFS open(). Operations on the
files returned by al fopen (6.4) will then be performed through PhysicsFS.

At the same time, all filesystem functions like al read directory (7.18.2) or al create fs entry (7.3) will use
PhysicsFS.

This functions only affects the thread it was called from.

To remember and restore another file I/O backend, you can use al store state (18.4)/al restore state (18.3).

See also: al set new file interface (6.29.1).

31.2 al get allegro physfs version

uint32_t al_get_allegro_physfs_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

32 Primitives addon

These functions are declared in the following header file. Link with allegro primitives.

#include <allegro5/allegro_primitives.h>

32.1 General

32.1.1 al get allegro primitives version

uint32_t al_get_allegro_primitives_version(void)

Returns the (compiled) version of the addon, in the same format as al get allegro version (19.4).

168

http://icculus.org/physfs/

32.2 High level drawing routines

High level drawing routines encompass the most common usage of this addon: to draw geometric primitives,
both smooth (variations on the circle theme) and piecewise linear. Outlined primitives support the concept
of thickness with two distinct modes of output: hairline lines and think lines. Hairline lines are specifically
designed to be exactly a pixel wide, and are commonly used for drawing outlined figures that need to be a
pixel wide. Hairline thickness is designated as thickness less than or equal to 0. Unfortunately, the exact
rasterization rules for drawing these hairline lines vary from one video card to another, and sometimes leave
gaps where the lines meet. If that matters to you, then you should use thick lines. In many cases, having a
thickness of 1 will produce 1 pixel wide lines that look better than hairline lines. Obviously, hairline lines
cannot replicate thicknesses greater than 1. Thick lines grow symmetrically around the generating shape as
thickness is increased.

32.2.1 al draw line

void al_draw_line(float x1, float y1, float x2, float y2,
ALLEGRO_COLOR color, float thickness)

Draws a line segment between two points.

Parameters:

• x1, y1, x2, y2 - Start and end points of the line

• color - Color of the line

• thickness - Thickness of the line, pass <= 0 to draw hairline lines

32.2.2 al draw triangle

void al_draw_triangle(float x1, float y1, float x2, float y2,
float x3, float y3, ALLEGRO_COLOR color, float thickness)

Draws an outlined triangle.

Parameters:

• x1, y1, x2, y2, x3, y3 - Three points of the triangle

• color - Color of the triangle

• thickness - Thickness of the lines, pass <= 0 to draw hairline lines

32.2.3 al draw filled triangle

void al_draw_filled_triangle(float x1, float y1, float x2, float y2,
float x3, float y3, ALLEGRO_COLOR color)

Draws a filled triangle.

Parameters:

• x1, y1, x2, y2, x3, y3 - Three points of the triangle

• color - Color of the triangle

169

32.2.4 al draw rectangle

void al_draw_rectangle(float x1, float y1, float x2, float y2,
ALLEGRO_COLOR color, float thickness)

Draws an outlined rectangle.

Parameters:

• x1, y1, x2, y2 - Upper left and lower right points of the rectangle

• color - Color of the rectangle

• thickness - Thickness of the lines, pass <= 0 to draw hairline lines

32.2.5 al draw filled rectangle

void al_draw_filled_rectangle(float x1, float y1, float x2, float y2,
ALLEGRO_COLOR color)

Draws a filled rectangle.

Parameters:

• x1, y1, x2, y2 - Upper left and lower right points of the rectangle

• color - Color of the rectangle

32.2.6 al draw rounded rectangle

void al_draw_rounded_rectangle(float x1, float y1, float x2, float y2,
float rx, float ry, ALLEGRO_COLOR color, float thickness)

Draws an outlined rounded rectangle.

Parameters:

• x1, y1, x2, y2 - Upper left and lower right points of the rectangle

• color - Color of the rectangle

• rx, ry - The radii of the round

• thickness - Thickness of the lines, pass <= 0 to draw hairline lines

170

32.2.7 al draw filled rounded rectangle

void al_draw_filled_rounded_rectangle(float x1, float y1, float x2, float y2,
float rx, float ry, ALLEGRO_COLOR color)

Draws an filled rounded rectangle.

Parameters:

• x1, y1, x2, y2 - Upper left and lower right points of the rectangle

• color - Color of the rectangle

• rx, ry - The radii of the round

32.2.8 al calculate arc

void al_calculate_arc(float* dest, int stride, float cx, float cy,
float rx, float ry, float start_theta, float delta_theta, float thickness,
int num_segments)

Calculates an elliptical arc, and sets the vertices in the destination buffer to the calculated positions. If
thickness <= 0, then num_points of points are required in the destination, otherwise twice as many are
needed. The destination buffer should consist of regularly spaced (by distance of stride bytes) doublets of
floats, corresponding to x and y coordinates of the vertices.

Parameters:

• dest - The destination buffer

• stride - Distance (in bytes) between starts of successive pairs of coordinates

• cx, cy - Center of the arc

• rx, ry - Radii of the arc

• start theta - The initial angle from which the arc is calculated

• delta theta - Angular span of the arc (pass a negative number to switch direction)

• thickness - Thickness of the arc

• num points - The number of points to calculate

32.2.9 al draw ellipse

void al_draw_ellipse(float cx, float cy, float rx, float ry,
ALLEGRO_COLOR color, float thickness)

Draws an outlined ellipse.

Parameters:

171

• cx, cy - Center of the ellipse

• rx, ry - Radii of the ellipse

• color - Color of the ellipse

• thickness - Thickness of the ellipse, pass <= 0 to draw a hairline ellipse

32.2.10 al draw filled ellipse

void al_draw_filled_ellipse(float cx, float cy, float rx, float ry,
ALLEGRO_COLOR color)

Draws a filled ellipse.

Parameters:

• cx, cy - Center of the ellipse

• rx, ry - Radii of the ellipse

• color - Color of the ellipse

32.2.11 al draw circle

void al_draw_circle(float cx, float cy, float r, ALLEGRO_COLOR color,
float thickness)

Draws an outlined circle.

Parameters:

• cx, cy - Center of the circle

• r - Radius of the circle

• color - Color of the circle

• thickness - Thickness of the circle, pass <= 0 to draw a hairline circle

32.2.12 al draw filled circle

void al_draw_filled_circle(float cx, float cy, float r, ALLEGRO_COLOR color)

Draws a filled circle.

Parameters:

• cx, cy - Center of the circle

• r - Radius of the circle

• color - Color of the circle

172

32.2.13 al draw arc

void al_draw_arc(float cx, float cy, float r, float start_theta,
float delta_theta, ALLEGRO_COLOR color, float thickness)

Draws an arc.

Parameters:

• cx, cy - Center of the arc

• r - Radius of the arc

• color - Color of the arc

• start theta - The initial angle from which the arc is calculated

• delta theta - Angular span of the arc (pass a negative number to switch direction)

• thickness - Thickness of the circle, pass <= 0 to draw hairline circle

32.2.14 al calculate spline

void al_calculate_spline(float* dest, int stride, float points[8],
float thickness, int num_segments)

Calculates a Bzier spline given 4 control points. If thickness <= 0, then num_segments of points are
required in the destination, otherwise twice as many are needed. The destination buffer should consist of
regularly spaced (by distance of stride bytes) doublets of floats, corresponding to x and y coordinates of the
vertices.

Parameters:

• dest - The destination buffer

• stride - Distance (in bytes) between starts of successive pairs of coordinates

• points - An array of 4 pairs of coordinates of the 4 control points

• thickness - Thickness of the spline ribbon

• num segments - The number of points to calculate

32.2.15 al draw spline

void al_draw_spline(float points[8], ALLEGRO_COLOR color, float thickness)

Draws a Bzier spline given 4 control points.

Parameters:

• points - An array of 4 pairs of coordinates of the 4 control points

• color - Color of the spline

• thickness - Thickness of the spline, pass <= 0 to draw a hairline spline

173

32.2.16 al calculate ribbon

void al_calculate_ribbon(float* dest, int dest_stride, const float *points,
int points_stride, float thickness, int num_segments)

Calculates a ribbon given an array of points. The ribbon will go through all of the passed points. If
thickness <= 0, then num_segments of points are required in the destination buffer, otherwise twice as
many are needed. The destination and the points buffer should consist of regularly spaced doublets of floats,
corresponding to x and y coordinates of the vertices.

Parameters:

• dest - Pointer to the destination buffer

• dest stride - Distance (in bytes) between starts of successive pairs of coordinates in the destination
buffer

• points - An array of pairs of coordinates for each point

• points stride - Distance (in bytes) between starts successive pairs of coordinates in the points buffer

• thickness - Thickness of the spline ribbon

• num segments - The number of points to calculate

32.2.17 al draw ribbon

void al_draw_ribbon(const float *points, int points_stride, ALLEGRO_COLOR color,
float thickness, int num_segments)

Draws a ribbon given given an array of points. The ribbon will go through all of the passed points.

Parameters:

• points - An array of pairs of coordinates for each point

• color - Color of the spline

• thickness - Thickness of the spline, pass <= 0 to draw hairline spline

32.3 Low level drawing routines

Low level drawing routines allow for more advanced usage of the addon, allowing you to pass arbitrary
sequences of vertices to draw to the screen. These routines also support using textures on the primitives
with some restrictions. For maximum portability, you should only use textures that have dimensions that
are a power of two, as not every videocard supports them completely. This warning is relaxed, however, if
the texture coordinates never exit the boundaries of a single bitmap (i.e. you are not having the texture
repeat/tile). As long as that is the case, any texture can be used safely. Sub-bitmaps work as textures, but
cannot be tiled.

174

32.3.1 al draw prim

int al_draw_prim(const void* vtxs, const ALLEGRO_VERTEX_DECL* decl,
ALLEGRO_BITMAP* texture, int start, int end, int type)

Draws a subset of the passed vertex buffer.

Parameters:

• texture - Texture to use, pass 0 to use only color shaded primitves

• vtxs - Pointer to an array of vertices

• decl - Pointer to a vertex declaration. If set to 0, the vtxs are assumed to be of the ALLEGRO VERTEX
type

• start, end - Start and end of the subset of the vertex buffer to draw

• type - Primitive type to draw

Returns: Number of primitives drawn

See Also: ALLEGRO VERTEX (32.4.2), ALLEGRO PRIM TYPE (32.4.5), ALLEGRO VERTEX DECL (32.4.3),
al draw indexed prim (32.3.2)

32.3.2 al draw indexed prim

int al_draw_indexed_prim(const void* vtxs, const ALLEGRO_VERTEX_DECL* decl,
ALLEGRO_BITMAP* texture, const int* indices, int num_vtx, int type)

Draws a subset of the passed vertex buffer. This function uses an index array to specify which vertices to
use.

Parameters:

• texture - Texture to use, pass 0 to use only shaded primitves

• vtxs - Pointer to an array of vertices

• decl - Pointer to a vertex declaration. If set to 0, the vtxs are assumed to be of the ALLEGRO VERTEX
type

• indices - An array of indices into the vertex buffer

• num vtx - Number of indices from the indices array you want to draw

• type - Primitive type to draw

Returns: Number of primitives drawn

See Also: ALLEGRO VERTEX (32.4.2), ALLEGRO PRIM TYPE (32.4.5), ALLEGRO VERTEX DECL (32.4.3),
al draw prim (32.3.1)

175

32.3.3 al get allegro color

ALLEGRO_COLOR al_get_allegro_color(ALLEGRO_PRIM_COLOR col)

Converts an ALLEGRO_PRIM_COLOR into a ALLEGRO_COLOR.

Parameters:

• col - ALLEGRO PRIM COLOR to convert

Returns: Converted ALLEGRO COLOR

See Also: ALLEGRO PRIM COLOR (32.4.1), al get prim color (32.3.4)

32.3.4 al get prim color

ALLEGRO_PRIM_COLOR al_get_prim_color(ALLEGRO_COLOR col)

Converts an ALLEGRO_COLOR into a ALLEGRO_PRIM_COLOR.

Parameters:

• col - ALLEGRO COLOR to convert

Returns: Converted ALLEGRO PRIM COLOR

See Also: ALLEGRO PRIM COLOR (32.4.1), al get allegro color (32.3.3)

32.3.5 al create vertex decl

ALLEGRO_VERTEX_DECL* al_create_vertex_decl(const ALLEGRO_VERTEX_ELEMENT* elements, int stride)

Creates a vertex declaration, which describes a custom vertex format.

Parameters:

• elements - An array of ALLEGRO VERTEX ELEMENT structures.

• stride - Size of the custom vertex structure

Returns: Newly created vertex declaration.

See Also: ALLEGRO VERTEX ELEMENT (32.4.4), ALLEGRO VERTEX DECL (32.4.3), al destroy vertex decl (32.3.6)

32.3.6 al destroy vertex decl

void al_destroy_vertex_decl(ALLEGRO_VERTEX_DECL* decl)

Destroys a vertex declaration.

Parameters:

• decl - Vertex declaration to destroy

See Also: ALLEGRO VERTEX ELEMENT (32.4.4), ALLEGRO VERTEX DECL (32.4.3), al create vertex decl (32.3.5)

176

32.3.7 al draw soft triangle

void al_draw_soft_triangle(
ALLEGRO_VERTEX* v1, ALLEGRO_VERTEX* v2, ALLEGRO_VERTEX* v3, uintptr_t state,
void (*init)(uintptr_t, ALLEGRO_VERTEX*, ALLEGRO_VERTEX*, ALLEGRO_VERTEX*),
void (*first)(uintptr_t, int, int, int, int),
void (*step)(uintptr_t, int),
void (*draw)(uintptr_t, int, int, int))

Draws a triangle using the software rasterizer and user supplied pixel functions. For help in understanding
what these functions do, see the implementation of the various shading routines in addons/primitives/tri soft.c.
The triangle is drawn in two segments, from top to bottom. The segments are deliniated by the vertically
middle vertex of the triangle. One of each segment may be absent if two vertices are horizontally collinear.

Parameters:

• v1, v2, v3 - The three vertices of the triangle

• state - A pointer to a user supplied struct, this struct will be passed to all the pixel functions

• init - Called once per call before any drawing is done. The three points passed to it may be altered by
clipping.

• first - Called twice per call, once per triangle segment. It is passed 4 parameters, the first two are the
coordinates of the initial pixel drawn in the segment. The second two are the left minor and the left
major steps, respectively. They represent the sizes of two steps taken by the rasterizer as it walks on
the left side of the triangle. From then on, the each step will either be classified as a minor or a major
step, corresponding to the above values.

• step - Called once per scanline. The last parameter is set to 1 if the step is a minor step, and 0 if it is
a major step.

• draw - Called once per scanline. The function is expected to draw the scanline starting with a point
specified by the first two parameters (corresponding to x and y values) going to the right until it reaches
the value of the third parameter (the x value of the end point). All coordinates are inclusive.

32.3.8 al draw soft line

void al_draw_soft_line(ALLEGRO_VERTEX* v1, ALLEGRO_VERTEX* v2, uintptr_t state,
void (*first)(uintptr_t, int, int, ALLEGRO_VERTEX*, ALLEGRO_VERTEX*),
void (*step)(uintptr_t, int),
void (*draw)(uintptr_t, int, int))

Draws a line using the software rasterizer and user supplied pixel functions. For help in understanding what
these functions do, see the implementation of the various shading routines in addons/primitives/line soft.c.
The line is drawn top to bottom.

Parameters:

• v1, v2 - The two vertices of the line

• state - A pointer to a user supplied struct, this struct will be passed to all the pixel functions

177

• first - Called before drawing the first pixel of the line. It is passed the coordinates of this pixel, as well
as the two vertices above. The passed vertices may have been altered by clipping.

• step - Called once per pixel. The second parameter is set to 1 if the step is a minor step, and 0 if this
step is a major step. Minor steps are taken only either in x or y directions. Major steps are taken in
both directions diagonally. In all cases, the the absolute value of the change in coordinate is at most
1 in either direction.

• draw - Called once per pixel. The function is expected to draw the pixel at the coordinates passed to
it.

32.4 Structures and types

32.4.1 ALLEGRO PRIM COLOR

typedef uint32_t ALLEGRO_PRIM_COLOR;

A special structure that defines a color in a way that understandable to both OpenGL and Direct3D backends.
You should never access internal fields, instead using the two conversion functions to convert between it and
ALLEGRO COLOR (9.1.1) structure.

See Also: al get allegro color (32.3.3), al get prim color (32.3.4)

32.4.2 ALLEGRO VERTEX

typedef struct ALLEGRO_VERTEX ALLEGRO_VERTEX;

Defines the generic vertex type, with a 3D position, color and texture coordinates for a single texture. Note
that at this time, the software driver for this addon cannot render 3D primitives. If you want a 2D only
primitive, set z to 0.

Fields:

• x, y, z - Position of the vertex

• color - ALLEGRO_PRIM_COLOR structure

• u, v - Texture coordinates measured in pixels

See Also: ALLEGRO PRIM COLOR (32.4.1), ALLEGRO PRIM ATTR (32.4.6)

32.4.3 ALLEGRO VERTEX DECL

typedef struct ALLEGRO_VERTEX_DECL ALLEGRO_VERTEX_DECL;

A vertex declaration. This opaque structure is responsible for describing the format and layout of a user
defined custom vertex. It is created and destroyed by specialized functions.

See Also: al create vertex decl (32.3.5), al destroy vertex decl (32.3.6), ALLEGRO VERTEX ELEMENT (32.4.4)

178

32.4.4 ALLEGRO VERTEX ELEMENT

typedef struct ALLEGRO_VERTEX_ELEMENT ALLEGRO_VERTEX_ELEMENT;

A small structure describing a certain element of a vertex. E.g. the position of the vertex, or its color.
These structures are used by the al create vertex decl function to create the vertex declaration. For that
they generally occur in an array. The last element of such an array should have the attribute field equal to 0,
to signify that it is the end of the array. Here is an example code that would create a declaration describing
the ALLEGRO VERTEX structure:

ALLEGRO_VERTEX_ELEMENT elems[] = {
{ALLEGRO_PRIM_POSITION, ALLEGRO_PRIM_FLOAT_3, offsetof(ALLEGRO_VERTEX, x)},
{ALLEGRO_PRIM_TEX_COORD_PIXEL, ALLEGRO_PRIM_FLOAT_2, offsetof(ALLEGRO_VERTEX, u)},
{ALLEGRO_PRIM_COLOR_ATTR, 0, offsetof(CUSTOM_VERTEX, color)},
{0, 0, 0}

};
ALLEGRO_VERTEX_DECL* decl = al_create_vertex_decl(elems, sizeof(ALLEGRO_VERTEX));

Fields:

• attribute - A member of the ALLEGRO PRIM ATTR enumeration, specifying what this attribute
signifies

• storage - A member of the ALLEGRO PRIM STORAGE enumeration, specifying how this attribute
is stored

• offset - Offset in bytes from the beginning of the custom vertex structure. C function offsetof is very
useful here.

See Also: al create vertex decl (32.3.5), ALLEGRO VERTEX DECL (32.4.3), ALLEGRO PRIM STORAGE (32.4.7)

32.4.5 ALLEGRO PRIM TYPE

typedef enum ALLEGRO_PRIM_TYPE

Enumerates the types of primitives this addon can draw.

• ALLEGRO PRIM POINT LIST - A list of points, each vertex defines a point

• ALLEGRO PRIM LINE LIST - A list of lines, sequential pairs of vertices define disjointed lines

• ALLEGRO PRIM LINE STRIP - A strip of lines, sequential vertices define a strip of lines

• ALLEGRO PRIM LINE LOOP - Like a line strip, except at the end the first and the last vertices are
also connected by a line

• ALLEGRO PRIM TRIANGLE LIST - A list of triangles, sequential triplets of vertices define disjointed
triangles

• ALLEGRO PRIM TRIANGLE STRIP - A strip of triangles, sequential vertices define a strip of tri-
angles

• ALLEGRO PRIM TRIANGLE FAN - A fan of triangles, all triangles share the first vertex

179

32.4.6 ALLEGRO PRIM ATTR

typedef enum ALLEGRO_PRIM_ATTR

Enumerates the types of vertex attributes that a custom vertex may have.

• ALLEGRO PRIM POSITION - Position information, can be stored in any supported fashion

• ALLEGRO PRIM COLOR ATTR - Color information, stored in an ALLEGRO PRIM COLOR. The
storage field of ALLEGRO VERTEX ELEMENT is ignored

• ALLEGRO PRIM TEX COORD - Texture coordinate information, can be stored only in ALLE-
GRO PRIM FLOAT 2 and ALLEGRO PRIM SHORT 2. These coordinates are normalized by the
width and height of the texture, meaning that the bottom-right corner has texture coordinates of (1,
1).

• ALLEGRO PRIM TEX COORD PIXEL - Texture coordinate information, can be stored only in AL-
LEGRO PRIM FLOAT 2 and ALLEGRO PRIM SHORT 2. These coordinates are measured in pixels.

A note about pixel coordinates. In OpenGL the texture coordinate (0, 0) refers to the top left corner of
the pixel. This confuses some drivers, because due to rounding errors the actual pixel sampled might be the
pixel to the top and/or left of the (0, 0) pixel. To make this error less likely it is advisable to offset the
texture coordinates you pass to the al draw prim by (0.5, 0.5) if you need precise pixel control. E.g. to refer
to pixel (5, 10) you’d set the u and v to 5.5 and 10.5 respectively.

See Also: ALLEGRO VERTEX DECL (32.4.3), ALLEGRO PRIM STORAGE (32.4.7)

32.4.7 ALLEGRO PRIM STORAGE

typedef enum ALLEGRO_PRIM_STORAGE

Enumerates the types of storage an attribute of a custom vertex may be stored in.

• ALLEGRO PRIM FLOAT 2 - A doublet of floats

• ALLEGRO PRIM FLOAT 3 - A triplet of floats

• ALLEGRO PRIM SHORT 2 - A doublet of shorts

See Also: ALLEGRO PRIM ATTR (32.4.6)

32.4.8 ALLEGRO VERTEX CACHE SIZE

#define ALLEGRO_VERTEX_CACHE_SIZE 256

Defines the size of the transformation vertex cache for the software renderer. If you pass less than this many
vertices to the primitive rendering functions you will get a speed boost. This also defines the size of the
cache vertex buffer, used for the high-level primitives. This corresponds to the maximum number of line
segments that will be used to form them.

180

32.4.9 ALLEGRO PRIM QUALITY

#define ALLEGRO_PRIM_QUALITY 10

Defines the quality of the quadratic primitives. At 10, this roughly corresponds to error of less than half of
a pixel.

181

	Getting started guide
	Introduction
	Structure of the library and its addons
	Initialisation
	Opening a window
	Display an image
	Changing the drawing target
	Event queues and input
	Displaying some text
	Drawing primitives
	Blending
	Sound
	Not the end

	Configuration files
	ALLEGRO_CONFIG
	al_create_config
	al_destroy_config
	al_load_config_file
	al_save_config_file
	al_add_config_section
	al_add_config_comment
	al_get_config_value
	al_set_config_value
	al_get_first_config_section
	al_get_next_config_section
	al_get_first_config_entry
	al_get_next_config_entry
	al_merge_config
	al_merge_config_into

	Direct3D
	al_get_d3d_device
	al_get_d3d_system_texture
	al_get_d3d_video_texture
	al_have_d3d_non_pow2_texture_support
	al_have_d3d_non_square_texture_support
	al_get_d3d_texture_position

	Display
	Display creation
	ALLEGRO_DISPLAY
	al_create_display
	al_destroy_display
	al_get_new_display_flags
	al_get_new_display_refresh_rate
	al_get_new_window_position
	al_set_new_display_option
	al_get_new_display_option
	al_reset_new_display_options
	al_set_new_display_flags
	al_set_new_display_refresh_rate
	al_set_new_window_position

	Display operations
	al_acknowledge_resize
	al_flip_display
	al_get_backbuffer
	al_get_current_display
	al_get_display_flags
	al_get_display_format
	al_get_display_height
	al_get_display_refresh_rate
	al_get_display_width
	al_get_frontbuffer
	al_get_window_position
	al_inhibit_screensaver
	al_resize_display
	al_set_current_display
	al_set_display_icon
	al_get_display_option
	al_set_window_position
	al_set_window_title
	al_toggle_display_flag
	al_update_display_region
	al_wait_for_vsync
	al_get_display_event_source

	Fullscreen display modes
	ALLEGRO_DISPLAY_MODE
	al_get_display_mode
	al_get_num_display_modes

	Monitors
	ALLEGRO_MONITOR_INFO
	al_get_current_video_adapter
	al_set_current_video_adapter
	al_get_monitor_info
	al_get_num_video_adapters

	Events
	ALLEGRO_EVENT
	ALLEGRO_USER_EVENT
	ALLEGRO_EVENT_QUEUE
	ALLEGRO_EVENT_SOURCE
	ALLEGRO_EVENT_TYPE
	ALLEGRO_GET_EVENT_TYPE
	ALLEGRO_EVENT_TYPE_IS_USER
	al_create_event_queue
	al_init_user_event_source
	al_destroy_event_queue
	al_destroy_user_event_source
	al_drop_next_event
	al_emit_user_event
	al_event_queue_is_empty
	al_flush_event_queue
	al_get_event_source_data
	al_get_next_event
	al_peek_next_event
	al_register_event_source
	al_set_event_source_data
	al_unref_user_event
	al_unregister_event_source
	al_wait_for_event
	al_wait_for_event_timed
	al_wait_for_event_until

	File I/O
	ALLEGRO_FILE
	ALLEGRO_FILE_INTERFACE
	ALLEGRO_SEEK
	al_fopen
	al_fclose
	al_fread
	al_fwrite
	al_fflush
	al_ftell
	al_fseek
	al_feof
	al_ferror
	al_fungetc
	al_fsize
	al_fgetc
	al_fputc
	al_fread16le
	al_fread16be
	al_fwrite16le
	al_fwrite16be
	al_fread32le
	al_fread32be
	al_fwrite32le
	al_fwrite32be
	al_fgets
	al_fget_ustr
	al_fputs
	Standard I/O specific routines
	al_fopen_fd
	al_make_temp_file

	Alternative file streams
	al_set_new_file_interface
	al_set_standard_file_interface
	al_get_new_file_interface

	File system
	ALLEGRO_FS_ENTRY
	ALLEGRO_FILE_MODE
	al_create_fs_entry
	al_destroy_fs_entry
	al_get_fs_entry_name
	al_update_fs_entry
	al_get_fs_entry_mode
	al_get_fs_entry_atime
	al_get_fs_entry_ctime
	al_get_fs_entry_mtime
	al_get_fs_entry_size
	al_fs_entry_exists
	al_fs_entry_is_file
	al_fs_entry_is_directory
	al_remove_fs_entry
	al_filename_exists
	al_remove_filename
	Directory functions
	al_open_directory
	al_read_directory
	al_close_directory
	al_get_current_directory
	al_change_directory
	al_make_directory

	Alternative filesystem functions
	ALLEGRO_FS_INTERFACE
	al_set_fs_interface
	al_set_standard_fs_interface
	al_get_fs_interface

	Fixed point math routines
	al_fixed
	al_itofix
	al_fixtoi
	al_fixfloor
	al_fixceil
	al_ftofix
	al_fixtof
	al_fixmul
	al_fixdiv
	al_fixadd
	al_fixsub
	Fixed point trig
	al_fixtorad_r
	al_radtofix_r
	al_fixsin
	al_fixcos
	al_fixtan
	al_fixasin
	al_fixacos
	al_fixatan
	al_fixatan2
	al_fixsqrt
	al_fixhypot

	Graphics
	Colors
	ALLEGRO_COLOR
	al_map_rgb
	al_map_rgb_f
	al_map_rgba
	al_map_rgba_f
	al_unmap_rgb
	al_unmap_rgb_f
	al_unmap_rgba
	al_unmap_rgba_f

	Locking and pixel formats
	ALLEGRO_LOCKED_REGION
	ALLEGRO_PIXEL_FORMAT
	al_get_pixel_size
	al_get_pixel_format_bits
	al_lock_bitmap
	al_lock_bitmap_region
	al_unlock_bitmap

	Bitmap creation
	ALLEGRO_BITMAP
	al_clone_bitmap
	al_create_bitmap
	al_create_sub_bitmap
	al_destroy_bitmap
	al_get_new_bitmap_flags
	al_get_new_bitmap_format
	al_set_new_bitmap_flags
	al_set_new_bitmap_format

	Bitmap properties
	al_get_bitmap_flags
	al_get_bitmap_format
	al_get_bitmap_height
	al_get_bitmap_width
	al_get_pixel
	al_is_bitmap_locked
	al_is_compatible_bitmap
	al_is_sub_bitmap

	Drawing operations
	al_clear_to_color
	al_draw_bitmap
	al_draw_bitmap_region
	al_draw_pixel
	al_draw_rotated_bitmap
	al_draw_rotated_scaled_bitmap
	al_draw_scaled_bitmap
	al_get_target_bitmap
	al_put_pixel
	al_put_blended_pixel
	al_set_target_bitmap

	Blending modes
	al_get_blender
	al_get_separate_blender
	al_set_blender
	al_set_separate_blender

	Clipping
	al_get_clipping_rectangle
	al_set_clipping_rectangle

	Graphics utility functions
	al_convert_mask_to_alpha

	Deferred drawing
	al_hold_bitmap_drawing
	al_is_bitmap_drawing_held

	Joystick
	ALLEGRO_JOYSTICK
	ALLEGRO_JOYSTICK_STATE
	ALLEGRO_JOYFLAGS
	al_install_joystick
	al_uninstall_joystick
	al_get_num_joysticks
	al_get_joystick
	al_release_joystick
	al_get_joystick_name
	al_get_joystick_stick_name
	al_get_joystick_axis_name
	al_get_joystick_button_name
	al_get_joystick_number
	al_get_joystick_stick_flags
	al_get_joystick_num_sticks
	al_get_joystick_num_axes
	al_get_joystick_num_buttons
	al_get_joystick_state
	al_get_joystick_event_source

	Keyboard
	ALLEGRO_KEYBOARD_STATE
	Key codes
	Keyboard modifier flags
	al_install_keyboard
	al_is_keyboard_installed
	al_uninstall_keyboard
	al_get_keyboard_state
	al_key_down
	al_keycode_to_name
	al_set_keyboard_leds
	al_get_keyboard_event_source

	Memory
	al_set_memory_management_functions

	Miscellaneous
	ALLEGRO_PI
	al_run_main

	Mouse
	ALLEGRO_MOUSE_STATE
	al_install_mouse
	al_is_mouse_installed
	al_uninstall_mouse
	al_get_mouse_num_axes
	al_get_mouse_num_buttons
	al_get_mouse_state
	al_get_mouse_state_axis
	al_mouse_button_down
	al_set_mouse_axis
	al_set_mouse_xy
	al_set_mouse_z
	al_set_mouse_w
	al_get_mouse_event_source
	Mouse cursors
	al_create_mouse_cursor
	al_destroy_mouse_cursor
	al_set_mouse_cursor
	al_set_system_mouse_cursor
	al_get_mouse_cursor_position
	al_hide_mouse_cursor
	al_show_mouse_cursor

	OpenGL
	al_get_opengl_extension_list
	al_get_opengl_proc_address
	al_get_opengl_texture
	al_get_opengl_texture_size
	al_get_opengl_texture_position
	al_get_opengl_fbo
	al_remove_opengl_fbo
	al_is_opengl_extension_supported
	al_get_opengl_version
	OpenGL configuration

	Path
	al_create_path
	al_create_path_for_directory
	al_destroy_path
	al_clone_path
	al_join_paths
	al_get_path_drive
	al_get_path_num_components
	al_get_path_component
	al_get_path_tail
	al_get_path_filename
	al_get_path_basename
	al_get_path_extension
	al_set_path_drive
	al_append_path_component
	al_insert_path_component
	al_replace_path_component
	al_remove_path_component
	al_drop_path_tail
	al_set_path_filename
	al_set_path_extension
	al_path_cstr
	al_make_path_absolute
	al_make_path_canonical
	al_is_path_present

	Platform-specific functions
	Windows
	al_get_win_window_handle

	State
	ALLEGRO_STATE
	ALLEGRO_STATE_FLAGS
	al_restore_state
	al_store_state
	al_get_errno
	al_set_errno

	System
	al_install_system
	al_init
	al_uninstall_system
	al_get_allegro_version
	al_get_standard_path
	al_set_appname
	al_set_orgname
	al_get_appname
	al_get_orgname
	al_get_system_driver
	al_get_system_config

	Threads
	ALLEGRO_THREAD
	ALLEGRO_MUTEX
	ALLEGRO_COND
	al_create_thread
	al_start_thread
	al_join_thread
	al_set_thread_should_stop
	al_get_thread_should_stop
	al_destroy_thread
	al_run_detached_thread
	al_create_mutex
	al_create_mutex_recursive
	al_lock_mutex
	al_unlock_mutex
	al_destroy_mutex
	al_create_cond
	al_destroy_cond
	al_wait_cond
	al_wait_cond_timed
	al_broadcast_cond
	al_signal_cond

	Time routines
	ALLEGRO_TIMEOUT
	al_current_time
	al_init_timeout
	al_rest

	Timer
	ALLEGRO_TIMER
	ALLEGRO_USECS_TO_SECS
	ALLEGRO_MSECS_TO_SECS
	ALLEGRO_BPS_TO_SECS
	ALLEGRO_BPM_TO_SECS
	al_install_timer
	al_start_timer
	al_stop_timer
	al_timer_is_started
	al_uninstall_timer
	al_get_timer_count
	al_set_timer_count
	al_get_timer_speed
	al_set_timer_speed
	al_get_timer_event_source

	Transformations
	ALLEGRO_TRANSFORM
	al_copy_transform
	al_use_transform
	al_get_current_transform
	al_invert_transform
	al_check_inverse
	al_identity_transform
	al_build_transform
	al_translate_transform
	al_rotate_transform
	al_scale_transform
	al_transform_coordinates
	al_transform_transform

	UTF--8 string routines
	About Unicode
	UTF--8 string types
	ALLEGRO_USTR
	ALLEGRO_USTR_INFO

	Creating and destroying strings
	al_ustr_new
	al_ustr_new_from_buffer
	al_ustr_newf
	al_ustr_free
	al_cstr
	al_ustr_to_buffer
	al_cstr_dup
	al_ustr_dup
	al_ustr_dup_substr

	Predefined strings
	al_ustr_empty_string

	Creating strings by referencing other data
	al_ref_cstr
	al_ref_buffer
	al_ref_ustr

	Sizes and offsets
	al_ustr_size
	al_ustr_length
	al_ustr_offset
	al_ustr_next
	al_ustr_prev

	Getting code points
	al_ustr_get
	al_ustr_get_next
	al_ustr_prev_get

	Inserting into strings
	al_ustr_insert
	al_ustr_insert_cstr
	al_ustr_insert_chr

	Appending to strings
	al_ustr_append
	al_ustr_append_cstr
	al_ustr_append_chr
	al_ustr_appendf
	al_ustr_vappendf

	Removing parts of strings
	al_ustr_remove_chr
	al_ustr_remove_range
	al_ustr_truncate
	al_ustr_ltrim_ws
	al_ustr_rtrim_ws
	al_ustr_trim_ws

	Assigning one string to another
	al_ustr_assign
	al_ustr_assign_substr
	al_ustr_assign_cstr

	Replacing parts of string
	al_ustr_set_chr
	al_ustr_replace_range

	Searching
	al_ustr_find_chr
	al_ustr_rfind_chr
	al_ustr_find_set
	al_ustr_find_set_cstr
	al_ustr_find_cset
	al_ustr_find_cset_cstr
	al_ustr_find_str
	al_ustr_find_cstr
	al_ustr_rfind_str
	al_ustr_rfind_cstr
	al_ustr_find_replace
	al_ustr_find_replace_cstr

	Comparing
	al_ustr_equal
	al_ustr_compare
	al_ustr_ncompare
	al_ustr_has_prefix
	al_ustr_has_prefix_cstr
	al_ustr_has_suffix
	al_ustr_has_suffix_cstr

	UTF--16 conversion
	al_ustr_new_from_utf16
	al_ustr_size_utf16
	al_ustr_encode_utf16

	Low-level UTF--8 routines
	al_utf8_width
	al_utf8_encode

	Low-level UTF--16 routines
	al_utf16_width
	al_utf16_encode

	Audio addon
	Audio types
	ALLEGRO_AUDIO_DEPTH
	ALLEGRO_AUDIO_DRIVER_ENUM
	ALLEGRO_AUDIO_PAN_NONE
	ALLEGRO_CHANNEL_CONF
	ALLEGRO_MIXER
	ALLEGRO_MIXER_QUALITY
	ALLEGRO_PLAYMODE
	ALLEGRO_SAMPLE_ID
	ALLEGRO_SAMPLE
	ALLEGRO_SAMPLE_INSTANCE
	ALLEGRO_AUDIO_STREAM
	ALLEGRO_VOICE

	Setting up
	al_install_audio
	al_uninstall_audio
	al_is_audio_installed
	al_reserve_samples
	al_get_allegro_audio_version
	al_get_depth_size
	al_get_channel_count

	Voice functions
	al_create_voice
	al_destroy_voice
	al_detach_voice
	al_attach_audio_stream_to_voice
	al_attach_mixer_to_voice
	al_attach_sample_instance_to_voice
	al_get_voice_frequency
	al_get_voice_channels
	al_get_voice_depth
	al_get_voice_playing
	al_set_voice_playing
	al_get_voice_position
	al_set_voice_position

	Sample functions
	al_create_sample
	al_destroy_sample
	al_play_sample
	al_stop_sample
	al_stop_samples
	al_get_sample_channels
	al_get_sample_depth
	al_get_sample_frequency
	al_get_sample_length
	al_get_sample_data

	Sample instance functions
	al_create_sample_instance
	al_destroy_sample_instance
	al_play_sample_instance
	al_stop_sample_instance
	al_get_sample_instance_channels
	al_get_sample_instance_depth
	al_get_sample_instance_frequency
	al_get_sample_instance_length
	al_set_sample_instance_length
	al_get_sample_instance_position
	al_set_sample_instance_position
	al_get_sample_instance_speed
	al_set_sample_instance_speed
	al_get_sample_instance_gain
	al_set_sample_instance_gain
	al_get_sample_instance_pan
	al_set_sample_instance_pan
	al_get_sample_instance_time
	al_get_sample_instance_playmode
	al_set_sample_instance_playmode
	al_get_sample_instance_playing
	al_set_sample_instance_playing
	al_get_sample_instance_attached
	al_detach_sample_instance
	al_get_sample
	al_set_sample

	Mixer functions
	al_create_mixer
	al_destroy_mixer
	al_get_default_mixer
	al_set_default_mixer
	al_restore_default_mixer
	al_attach_mixer_to_mixer
	al_attach_sample_instance_to_mixer
	al_attach_audio_stream_to_mixer
	al_get_mixer_frequency
	al_set_mixer_frequency
	al_get_mixer_channels
	al_get_mixer_depth
	al_get_mixer_quality
	al_set_mixer_quality
	al_get_mixer_playing
	al_set_mixer_playing
	al_get_mixer_attached
	al_detach_mixer
	al_set_mixer_postprocess_callback

	Stream functions
	al_create_audio_stream
	al_destroy_audio_stream
	al_get_audio_stream_event_source
	al_drain_audio_stream
	al_rewind_audio_stream
	al_get_audio_stream_frequency
	al_get_audio_stream_channels
	al_get_audio_stream_depth
	al_get_audio_stream_length
	al_get_audio_stream_speed
	al_set_audio_stream_speed
	al_get_audio_stream_gain
	al_set_audio_stream_gain
	al_get_audio_stream_pan
	al_set_audio_stream_pan
	al_get_audio_stream_playing
	al_set_audio_stream_playing
	al_get_audio_stream_playmode
	al_set_audio_stream_playmode
	al_get_audio_stream_attached
	al_detach_audio_stream
	al_get_audio_stream_fragment
	al_set_audio_stream_fragment
	al_get_audio_stream_fragments
	al_get_available_audio_stream_fragments
	al_seek_audio_stream_secs
	al_get_audio_stream_position_secs
	al_get_audio_stream_length_secs
	al_set_audio_stream_loop_secs

	Audio file I/O
	al_register_sample_loader
	al_register_sample_loader_f
	al_register_sample_saver
	al_register_sample_saver_f
	al_register_audio_stream_loader
	al_register_audio_stream_loader_f
	al_load_sample
	al_load_sample_f
	al_load_audio_stream
	al_load_audio_stream_f
	al_save_sample
	al_save_sample_f
	al_load_wav
	al_load_wav_f
	al_save_wav
	al_save_wav_f
	al_load_wav_audio_stream
	al_load_wav_audio_stream_f

	Audio codecs
	FLAC addon
	al_init_flac_addon
	al_get_allegro_flac_version
	al_load_flac
	al_load_flac_f
	al_load_flac_audio_stream
	al_load_flac_audio_stream_f

	MOD Audio addon
	al_init_modaudio_addon
	al_get_allegro_modaudio_version
	al_load_it_audio_stream
	al_load_it_audio_stream_f
	al_load_mod_audio_stream
	al_load_mod_audio_stream_f
	al_load_s3m_audio_stream
	al_load_s3m_audio_stream_f
	al_load_xm_audio_stream
	al_load_xm_audio_stream_f

	Ogg Vorbis addon
	al_init_ogg_vorbis_addon
	al_get_allegro_ogg_vorbis_version
	al_load_ogg_vorbis
	al_load_ogg_vorbis_f
	al_load_ogg_vorbis_audio_stream
	al_load_ogg_vorbis_audio_stream_f

	Color addon
	al_color_cmyk
	al_color_cmyk_to_rgb
	al_color_hsl
	al_color_hsl_to_rgb
	al_color_hsv
	al_color_hsv_to_rgb
	al_color_html
	al_color_html_to_rgb
	al_color_rgb_to_html
	al_color_name
	al_color_name_to_rgb
	al_color_rgb_to_cmyk
	al_color_rgb_to_hsl
	al_color_rgb_to_hsv
	al_color_rgb_to_name
	al_color_rgb_to_yuv
	al_color_yuv
	al_color_yuv_to_rgb
	al_get_allegro_color_version

	Font addons
	General font routines
	ALLEGRO_FONT
	al_init_font_addon
	al_shutdown_font_addon
	al_load_font
	al_destroy_font
	al_register_font_loader
	al_get_font_line_height
	al_get_text_width
	al_get_ustr_width
	al_draw_text
	al_draw_ustr
	al_draw_justified_text
	al_draw_justified_ustr
	al_draw_textf
	al_draw_justified_textf
	al_get_text_dimensions
	al_get_ustr_dimensions
	al_get_allegro_font_version

	Bitmap fonts
	al_grab_font_from_bitmap
	al_load_bitmap_font

	TTF fonts
	al_init_ttf_addon
	al_load_ttf_font
	al_load_ttf_font_entry
	al_get_allegro_ttf_version

	Image I/O addon
	al_init_image_addon
	al_shutdown_image_addon
	al_register_bitmap_loader
	al_register_bitmap_saver
	al_register_bitmap_loader_f
	al_register_bitmap_saver_f
	al_load_bitmap
	al_load_bitmap_f
	al_save_bitmap
	al_save_bitmap_f
	al_load_bmp
	al_load_bmp_f
	al_load_jpg
	al_load_jpg_f
	al_load_pcx
	al_load_pcx_f
	al_load_png
	al_load_png_f
	al_load_tga
	al_load_tga_f
	al_save_bmp
	al_save_bmp_f
	al_save_jpg
	al_save_jpg_f
	al_save_pcx
	al_save_pcx_f
	al_save_png
	al_save_png_f
	al_save_tga
	al_save_tga_f
	al_get_allegro_image_version

	Native dialogs support
	ALLEGRO_NATIVE_DIALOG
	al_create_native_file_dialog
	al_show_native_file_dialog
	al_get_native_file_dialog_count
	al_get_native_file_dialog_path
	al_destroy_native_dialog
	al_show_native_message_box
	al_get_allegro_native_dialog_version

	PhysicsFS integration
	al_set_physfs_file_interface
	al_get_allegro_physfs_version

	Primitives addon
	General
	al_get_allegro_primitives_version

	High level drawing routines
	al_draw_line
	al_draw_triangle
	al_draw_filled_triangle
	al_draw_rectangle
	al_draw_filled_rectangle
	al_draw_rounded_rectangle
	al_draw_filled_rounded_rectangle
	al_calculate_arc
	al_draw_ellipse
	al_draw_filled_ellipse
	al_draw_circle
	al_draw_filled_circle
	al_draw_arc
	al_calculate_spline
	al_draw_spline
	al_calculate_ribbon
	al_draw_ribbon

	Low level drawing routines
	al_draw_prim
	al_draw_indexed_prim
	al_get_allegro_color
	al_get_prim_color
	al_create_vertex_decl
	al_destroy_vertex_decl
	al_draw_soft_triangle
	al_draw_soft_line

	Structures and types
	ALLEGRO_PRIM_COLOR
	ALLEGRO_VERTEX
	ALLEGRO_VERTEX_DECL
	ALLEGRO_VERTEX_ELEMENT
	ALLEGRO_PRIM_TYPE
	ALLEGRO_PRIM_ATTR
	ALLEGRO_PRIM_STORAGE
	ALLEGRO_VERTEX_CACHE_SIZE
	ALLEGRO_PRIM_QUALITY

