
OPTIMIZING COMBINED VOLUME AND SURFACE DATA

RAY CASTING

Marcelo Rodrigo Maciel Silva, Isabel Harb Manssour, Carla Maria Dal Sasso Freitas

Instituto de Informática, UFRGS

Caixa Postal 15064 - 91501-970 Porto Alegre, RS

Brazil

{mrms, manssour, carla}@inf.ufrgs.br http://www.inf.ufrgs.br/cg

ABSTRACT

Techniques for simultaneous display of volume data and geometric models have been reported in the

literature. These techniques either require conversion from one representation to the other or are based on

a hybrid data model. This paper reports on the optimization of the classical ray casting technique for direct

volume rendering applied to both volume data and geometric model visualization. The algorithm was

implemented as part of an interactive volume visualization tool named RenderVox currently under

validation. Images and performance data are presented and discussed.

Keywords: Volume visualization, Hybrid Visualization

1. INTRODUCTION

Volume visualization deals with the problem of

generating images from volumetric data with the

purpose of revealing and exploring the inner

structures of these data. Volumetric data can be

obtained either by scanning real objects using a

sampling device, as for example CT and MRI

scanners, or generated by a simulation program.

Moreover, volume data can be produced by a scan

conversion technique applied to a 3D geometric

model [Kaufm87]. Such 3D voxels are usually stored

in a 3D array representing a set of values of discrete

sample points obtained from the domain space. In

case of volumetric data obtained from 2D images,

image processing and reconstruction techniques

should be employed in order to obtain the regular set

of data.

Surface rendering and direct volume

rendering are two main categories for visualizing

volumetric data. Techniques following these two

methodologies have been thoroughly described and

employed. Surface rendering techniques rely on

segmentation and reconstruction processes to obtain

geometric primitives that correspond to the

structures of interest inside the volume. Since these

geometric primitives can be rendered with traditional

computer graphics techniques [Fuchs77; Loren87],

they can take advantage of common graphics

acceleration hardware to be employed in real-time

applications. Direct volume rendering algorithms

transform, shade and project 3D voxels into 2D pixel

space (see, for example, the work of Levoy

[Levoy90a], and Drebin [Drebi88]). Moreover,

specific hardware for supporting real-time

visualization has also been developed [Günth94;

Knitt94; Brady97] and parallel versions of the

algorithms have been reported [Ma94].

Although surface-based methods and direct

volume rendering algorithms are suited for

displaying volumetric data in different situations, or

rendering different types of data, there are many

applications where volume data should be either

displayed, or manipulated along with geometric

modeled objects. For example, in surgical planning,

surgery simulation, and radiation therapy planning,

volume data obtained from 2D images taken with

imaging devices need to be rendered with geometric

models of prosthesis, surgical instruments, and

radiation beams.

Techniques for simultaneous display of

volume data and geometric models have been

described in the literature [Kaufm90; Levoy90b].

They either require conversion from one

representation to the other or are based on a hybrid

data model. This paper reports on the optimization

of the ray casting technique for direct volume

rendering applied to both volume data and geometric

model visualization. The technique was implemented

as part of an interactive volume visualization tool

named RenderVox.

2. BASIC ALGORITHM

In our technique for rendering volume data and

geometric objects the first ray is fired into the scene

from the central point of a projection plane. The

other rays start at adjacent points and are fired

following a center-border direction, so we can stop

generating rays when the borders of the volume (or

the borders of the objects' bounding rectangle) are

reached. The sampling points in the volume along a

ray are calculated as usual, considering a fixed step

on the path determined by the ray. Intersection points

between the ray and the geometric models are

calculated following Badouel's technique [Badou90],

and inserted in the same path so the algorithm can

accumulate both color and opacity values along the

ray. Both sampling and intersection points are

parametrically represented so it's easier to obtain the

ordered set of samples in a ray. Color and opacity

values for each sample point are obtained by

sampling the voxels values or the geometric surface,

which is considered as flat-shaded. The parametric

representation of sampling and intersection points

also allows to correct color and opacity values when

an intersection point lies between two volume

sampling points.

P0
OCOC P1P1

t0t0 t1t1

A

B

C

D

E

Sampling points

Rays

Geometric surface

Volumetric
data

Sampling
step

®®

s
PA

Sampling and intersection points along rays.

Figure 1

As can be seen in Fig. 1, the ray labeled as

C enters the volume and then intercepts the

geometric surface at the point Oc. Voxel values are

sampled and mapped to colors and opacities

considering P0 as outside the inner structure. In this

case, the intersection point with the geometric

surface would be considered in front of the

volumetric data, and then its color and opacity would

superimpose those of the volumetric data. Colors are

accumulated in the correct sequence and the opacity

is calculated as

Ocorrected = 1 - (1 - Osample)
t/|s|

where O means opacity, |s| is the sample step, t=t0
for point P0, and t1 for point P1.

3. OPTIMIZING THE COMPUTATION OF

INTERSECTIONS

Using bounding boxes, or bounding spheres for each

object, or indexing the space with an octree usually

do optimize the computation of intersections in

classical ray tracing. When using bounding boxes or

bounding spheres, each ray is firstly tested against

the bounding volumes of objects [Whitt80].

Intersections are then calculated only for objects

whose bounding volumes are intercepted by the rays.

The use of octrees to index the object space avoids

intersection calculation for objects that are in a

subspace out of the path of the ray [Glass84].

These techniques proved to be useful in

reducing the total processing time in ray tracing.

Since in volume rendering projection can be parallel

and there are no second-generation rays, we adopt

similar approaches: instead of bounding volumes,

bounding rectangles are computed for each

triangular face of the geometric objects, and instead

of subdividing the space in octants, our algorithm

subdivide the viewport in cells.

In the first approach, triangular faces are

projected into the viewport, their bounding

rectangles are determined (Fig. 2), and then

intersection points between a ray and each face are

calculated only for those rays that are fired from

pixels inside the bounding rectangles.

We choose to use bounding rectangles

because these elements provide better performance

for the point containment test than projected

triangles. Also, we do not need to order the bounding

rectangles because the parametric representation of

intersection and sample points gives their relative

position.

In the latter optimization approach, the

viewport is subdivided into square cells (Fig. 3) and

a list stores pointers to the bounding rectangles,

which lie inside each cell. When a ray R is fired from

a pixel inside cell C, only the bounding rectangles

belonging to the cell C list are tested, in order to

determine which faces are likely to be intercepted by

the ray. The size of the cells is calculated based on

the average size of the bounding rectangles of each

face as well as the total size of objects' projection

onto the viewport. This approach corresponds to an

optimization of the previous one.

pixel

bounding
rectangle

face

triangular

vertex
vertex

vertex

Triangular face and its bounding rectangle.

Figure 2

cells

face

triangular

bounding
rectangle

C

D

B

A

pixel

Viewport subdivision.

Figure 3

4. RESULTS AND DISCUSSION

The basic, brute force algorithm (1), the bounding

rectangle technique (2) and the subdivided viewport

method (3) were executed in an Intel Pentium II 300

MHz, 64 Mb RAM computer, using the geometric

models shown in fig. 4a-c. Each head was rendered

combined with a brain manually segmented from a

102x161x175 voxels MRI volume (Fig 4d). All the

images for these tests were generated with neither

flat shading, no ambient light nor specular reflection.

Table 1 presents processing time and other

results obtained with the 9,184 faces geometric

model (Fig. 4c), while Table 2 shows total

processing time for each algorithm executed with

each geometric model.

Analysis of Table 1 shows that for these

tests the algorithm with bounding rectangles testing

was 17 times faster than the brute force algorithm,

while that with viewport subdivision was 119 times

faster, generating the same image in only 14.7

seconds. From Table 2 we can conclude that

processing time of the brute-force algorithm

increases faster with the number of faces than the

optimized viewport subdivision method. Since the

procedures associated with the volumetric part of the

hybrid ray casting are the same for all algorithms, the

total processing time reduction is only due to the

intersection computation optimization. This is easily

observed in the second line of Table 1 (processing

time without volume sampling).

Table 2 also allows observing that the

optimized viewport subdivision algorithm takes only

9% more time to render the combined brain volume

and 9,184-faces model, than it takes to render the

combination of volume with the simpler model,

although complexity (measured in number of faces)

increases 1,528%. The same analysis for the brute

force algorithm shows that the processing time for

this algorithm increases 2,187% to render the more

complex combination.

Pre-processing time is very short in both

approaches. For example, using the 2,296-faces

model, pre-processing time was 0.01 seconds in the

bounding rectangle method and 0.08 seconds when

subdividing the viewport in 64 cells.

Figure 5 shows three images produced with

the hybrid ray casting in RenderVox. The first one

corresponds to the volume and 564-faces model used

in the above tests. The others were obtained by

processing a 113x256x256 CT volume of a head

with geometric objects representing schematic

radiation beams and a (manually inserted) sphere

representing a tumor. In the third example, the parts

corresponding to the intersection of each radiation

beam with the volume itself are shown in green (see

color plate of Figure 5), thus identifying those

regions affected by each radiation beam. These

images were produced using non-segmented data,

i.e., based only on selective classification tables. For

better results one can use segmented volumes.

5. FINAL REMARKS

Considering the well-known proposals for

simultaneous rendering of volume and surface data

[Kaufm90; Levoy90b], the technique reported here

is based on optimization approaches for hybrid

models different from those already described in the

literature. Hybrid ray casting has the disadvantage of

repeatedly render volume data even if changes occur

only in the position or orientation of geometric

objects. For rendering static volume data and

dynamic geometric objects, the Z-merging technique

[Kaufm90] could be interpreted as a better solution.

However, this technique produces two separate

images, one for the volumetric part and the other for

the geometric objects, and so it does not correctly

combine color and opacity data for non-opaque

objects. Our approach has not been tested in real-

time visualization but a parallel ray casting

implementation certainly allow this possibility.

It should be noticed that our basic algorithm

is based on parallel projection, as mentioned in

section 2. However, perspective projection is needed

for navigation techniques employed in virtual

endoscopy, for example. For sure, this is easy to

incorporate and does not affect the proposed

optimizations.

This work is part of a project that intends to

provide a framework for surgery simulation based on

virtual patients. RenderVox provides many functions

for volume visualization based on ray casting,

including a simple one for visualizing volumes from

different modalities.

(a) (b) (c) (d)

Geometric object modeled with (a) 564 faces, (b) 2,296 faces, (c) 9,184 faces, and (d) manually

segmented brain from a MRI volume.

Figure 4

Brute force With bounding
rectangles

With viewport
subdivision

(1)

Total rendering time 1754.6 s (@ 29 min) 103.3 s 14.7 s

Time without volume sampling
(2)

1742.2 s 91.0 s 3.1 s

#pixels x rectangles tests
(3)

- 1,043,449,344 3,632,535 (0.35%)

#ray x faces tests
(4)

1,043,449,344 873,061 (0.08%) 873,061 (24.0%)

intercepted faces
(5)

166,642 (0.016%) 166,642 (19.1%) 166,642 (19.1%)

(1) The 360x360 pixels viewport was divided in 1024 square cells.

(2) This is the processing time for the geometric model rendering only.

(3) The percentage indicates the number of rectangles tested against a cell relative to the total number of tests in

second column.

(4) and (5) Percentage indicates the number of tests returning true relative to the total number of tests.

Hybrid ray casting with the 9,184 faces geometric model.

Table 1

Number of faces in the
geometric model

Brute force With bounding
rectangles

With viewport
subdivision

564 faces 76.7 s 19.0 s 13.5 s

2,296 faces 297.8 s (@ 5 min) 30.6 s 14.0 s

9,184 faces 1,754.6 s (@ 29 min) 103.3 s 14.7 s

Comparison of rendering time obtained with each technique when rendering the geometric objects

combined with the brain volume.

Table 2

Images obtained with hybrid ray casting in RenderVox.

Figure 5

REFERENCES

[Badou90] Badouel, D. An efficient ray-polygon

intersection. In: Graphics Gems, A.S.

Glassner (ed.). pp. 390-396, Academic Press,

New York, 1990.

[Brady97] Brady, M.; Jung, K.; Nguyen, H. Two-

phase perspective ray casting for interactive

volume navigation. Visualization'97,

Phoenix, AZ, 1997. pp. 183-189.

[Drebi88] Drebin, R.A.; Carpenter, L.; Hanrahan, P.

Volume rendering. Computer Graphics,

22(4):64-75, 1988.

[Fuchs77] Fuchs H.; Kedem, Z.M., Uselton, S.P.

Optimal surface reconstruction from planar

contours. Communications of the ACM,

20(10):693-702, October, 1977.

[Glassn84] Glassner, A.S. Space subdivision for fast

ray tracing. IEEE Comp. Graphics and

Applications., 4(10): 15-22, 1984.

[Günth94] Günther, T.; Poliwoda, C.; Reinhart, C.

Hesser, J., Manner, R.; Meinzer H.P., Baur,

H.J. VIRIM: a massively parallel processor

for real-time volume visualization in

medicine. 9th Eurographics Workshop on

Graphics Hardware, Oslo, Norway, 1994.

pp. 103-108.

[Kaufm87] Kaufman, A. Efficient algorithms for 3D

scan-conversion of parametric curves,

surfaces, and volumes. Computer Graphics,

21:4(171-179, July 1987.

[Kaufm90] Kaufman, A.; Yagel, R.; Cohen, D.

Intermixing surface and volume rendering.

In: 3D Imaging in Medicine, Algorithms,

Systems, Applications, K. H. Hoehne, H.

Fuchs; S. M. Pizer, (eds.), Springer-Verlag,

1990.

[Knitt94] Knittel, G. and Strasser, W. A compact

volume rendering accelerator. 1994

Symposium on Volume Visualization, 1994.

pp. 67-74

[Levoy90a] Levoy, M. Efficient ray tracing of

volume data. ACM Transactions on

Graphics, 9(3):245-261, July 1990.

[Levoy90b] Levoy, M. A hybrid ray tracer for

rendering polygons and volume data. IEEE

Computer Graphics and Applications, 10(3):

33-40, 1990.

[Loren87] Lorensen, W. and Cline, H. Marching

cubes: a high-resolution 3D surface

construction algorithm. Computer Graphics,

21(4):163-170, July 1987.

[Ma94] Ma, K.-L., Painter, J.S., Hansen, C.D., and

Krogh, M.F. Parallel volume rendering using

binary-swap image composition. IEEE

Computer Graphics and Applications, 14(4):

59-68, 1994.

[Whitt80] Whitted, T. An improved illumination

model for shaded displays. Communications

of the ACM, 23(6):342-349, 1980.

Credits - Data volumes were obtained from Chapel

Hill Volume Rendering Test Data Set, Volume

II, provided by the North Carolina Memorial

Hospital.

Acknowledgments - Thanks are due to Luciana

Porcher Nedel, from UFRGS, for helpful

comments on a previous version of this paper.

We also acknowledge the financial support from

CAPES and CNPq.

Images obtained with hybrid ray casting in RenderVox.

Color plate of Figure 5

