Fenômenos Naturais

Padrões da natureza Plantas - Paper Dr. P

Modeling and Visualization of Leaf Venation Patterns

Adam Runions, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle Rolland-Lagan, Przemyslaw Pruzinkiewicz

Sumário

- Motivação
- Folhas
- Modelo
- Modelo Alterado
- Implementação
- Resultados
- Conclusões

Motivação

- Modelagem baseada em simulação de padrões encontrados em organismos vivos
- Padrões de nervuras em folhas: admiráveis, porém relativamente pouco compreendidos
- Síntese dos padrões de nervuras em folhas
- Digitalização nem sempre é melhor saída

Folhas

Várias formas de crescimento da folha

- Hipótese da Canalização
 - Fontes de auxina (um hormônio), surgem em certos pontos da folha
 - Auxina flui pela folha em direção a nervuras existentes, originando novas nervuras

 Assumem que a formação dos padrões das nervuras decorrem da interação entre três processos

- Padrão é representado por um grafo
 - Nodos de nervura
 - Fontes de auxina

Crescimento da folha

- Crescimento marginal

- Crescimento uniforme

- Crescimento anisotrópico não-uniforme

- Criação de fontes de auxina
 - Devem ser criadas a uma distância maior que b_s de todas as fontes anteriores
 - Devem ser criadas a uma distância maior que b, de todas as nervuras existentes
 - A cada iteração são gerados pontos aleatoriamente na superfície da folha; os que atenderem estas condições são usados
 - Parâmetro ρ: número de pontos por iteração por unidade de área

- Desenvolvimento de nervuras
 - Cada fonte de auxina influencia o nodo de nervura mais próximo de si
 - Cada nodo de nervura influenciado por ao menos uma fonte de auxina origina um novo nodo de nervura
 - O novo nodo é colocado a uma distância D do anterior, numa direção definida pela média dos vetores normalizados do nodo original a cada fonte que influencia

Exploração dos parâmetros: k_d (kill distance)

• Exploração dos parâmetros: ρ

 Exploração dos parâmetros: velocidade de cresicmento da folha

Alguns padrões…

 Vizinhanças padrão (2h), fotografia, aproximação de Urquhart (2 min)

Fotografia x sintetizado

Fotografia x sintetizado

Conclusões

- Modelo para geração de padrões de nervuras de folhas
- Aplicação em síntese de texturas
- Primeiro modelo visualmente convincente baseado em conceitos biologicamente plausíveis

Generation of Cartoon 2D Cracks Based on Leaf Venation Patterns

Julia M. Colleoni Couto, Tiago Marcelino, Henry Braun, Diogo Strube de Lima, Soraia Raupp Musse

Introdução

- Griação de cracks usando Dr.Pi
- Cracks para games
- Customizar o local do tiro para iniciar os cracks

 kill distance: responsible for defining the threshold distance from crack node to markers that should be removed (default value is equal to 0.01).

Figure 4: Two images illustrating different values for kill_distance parameter. In a) kill_distance is equal to 0.01, while in b) it is 0.1. It is possible to see that image a) generates more crack nodes than in b).

 D: distance from a crack node to create another node (default value is equal to 0.1). Depending on the used value, crack segment generated between two crack nodes are smaller, for small D, or larger for large D

Figure 5: Two images illustrating different values for D distance parameter. In a) D is equal to 0.1, while in b) it is 0.04. It is possible to see that image a) generates less crack nodes than in b).

Num_interaction
Line_grid/col_grid
Crack_radius
Line_growth

Figure 6: Two images illustrating different values for crack_radius parameter. In a) crack_radius is equal to 0.5, while in b) it is 20.0. It is possible to see that image b) generates straighter crack segments than in a).

Figure 7: Two images illustrating different values for line_growth parameter. In a) line_growth is equal to 0.5, while in b) it is 0.0. It is possible to see that image b) generates varied lines width as a function of cracks hierarchy in generation process.

Figure 8: Two images illustrating the effect of draw_connections parameter. In a) draw_connections is FALSE, while in b) it is TRUE. Other parameters used in these simulations are: $kill_distance = 0.02$, D = 0.2, $num_iterations = 80$ and $num_lines_grid = num_column_grid = 20$.

Modeling and Rendering of Individual Feathers

Cristiano Franco Marcelo Walter

Introduction

Modeling of Natural phenomena

- Development of this research area follows the complexity of nature
 - Mineral kingdom
 - Vegetable kingdom
 - Animal kingdom
- Challenges: humans and animals
- Modeling of birds and feathers

Previous Work

- Few works in this area
- The first one: Dai et al. in 1995
 - They model the structure of the feathers as line segments branching from a main structure
 - Overall structure is controlled by functions acting on the parameters
 - Main objective was generate textures based on dynamical systems

Previous Work

- Recently, two works were developed
- Chen et al.
 - Feathers are modeled with L-Systems
 - Approach to cover a bird with the feathers generated by the user
- Streit and Heidrich
 - Feathers are modeled with Bézier curves, as in our case
 - User specify key barbs from which the other barbs are derived by interpolation
 - Definition of key barbs can be a time consuming and boring task to the user

Feather Basics

Model based on real feathers
Feathers are a type of branching structure

Main parts

- Rachis
- Barbs
- Barbules
- Vanes

The Proposed Model

The model has a biological motivation
 Besides biological-based parameters, we have others created in order to facilitate the process of building feathers

Process of modeling:

- The user defines a cubic Bézier, which represents the rachis
- Then, the user defines
 2 Bézier curves with 5 control points, that defines the boundaries of the structure
- After that, the user manipulates the parameters in order to build in realtime a feather like he wishes

Parameter	Range Values	Description
N _b	[0,5000]	Number of Barbs
F _{pv}	[0,1]	Variation on length of barbs
F _b	[0,1]	Variation on form of barbs
S _v	ΤνϜ	Symmetry of Vanes
U f	ΤvF	Uniformity of barbs (form)
U _c	ΤvF	Uniformity of barbs (length)
I _s	[0,1]	Start of second segment
The Proposed Model

- For each barb, four control points
 Initial condition, P₀ and P₁ in the rachis and P₂ and P₃ in the limit of the vane
- The procedure will move points P₁ and P₂ away from their initial position, according to parameters

Rendering

- The rendering phase can be done in three ways:
 - We can render the feather in a non-realistic way (a)
 - We can render the feather with texture, taken from a real feather or generated artificially, using OpenGL
 - We can build a .pov file and render it using the raytracer POV-Ray (b) (not in the paper)

(a) Non-realistic rendering

(b) POV-Ray

Results - Hawk Feather

Λ							
Segment	Nb	Fpv	Fb	Sv	Uf	Uc	Is
Superior	250	0.03	0.3	Т	Т	F	0.2
Inferior	50	0.2	0.3	F	F	F	

Results - Blue Feather

Segment	Nb	Fpv	Fb	Sv	Uf	Uc	Is
Superior	250	0.1	0.4	Т	Т	F	0.2
Inferior	50	0.01	0.2	F	Т	F	

Results – Artistic Peacock

Segment	Nb	Fpv	Fb	Sv	Uf	Uc	Is
Superior	400	0.2	0.4	Т	Т	F	0.4
Inferior	200	0.4	0.6	F	F	F	

Conclusions

Our system allows a great deal of user control
 The set o parameters allows to create several types of feathers

 Future works include an investigation of an illumination model targeted to feathers

Integration of Complex Shapes and Natural Patterns

Marcelo Walter Dept. of Computer Science The University of British Columbia

Overall Goal

 Development of an integrated scheme for generating rich visual details for natural objects

Domain: Patterned Animals

The Problem

Integration of the visual and shape elements of an object

- Usual method is to model shape, then add pattern
- Usually done with texture mapping

Example of Texture Mapping

Strategy

- Develop a method to generate patterns found in mammalian coats, especially giraffes and big cats
- 2 Controlled transformation of a shape
- 3 Integration of the two
- "Inspired" by Nature itself

Pattern Formation "in place"

Growth

Overview of the Model

Cells are modelled as points
Types of cells characterized by:

Division rates, adhesion, colour, initial probability, mutation probability
Type: randomly or manually determined

Cell size: relaxation procedure to keep min distance between points

Parameters and their roles

 Division rate: absolute and relative numbers of cells of each type

- Colour: colour
- Adhesion: tendency of cells to stay together
- Anisotropy: tendency of cells to move in a preferred direction

Probabilities: distribution of types of cells

Illustration

Giraffe Patterns (**Reticulata**)

Giraffe Patterns (Tippelskirschi)

Spotted Patterns

Rosette

Anisotropic Patterns

Other Big Cats (Ocelot)

Assessing the results

Qualitative (looks good)
Quantitative
Many patterns have Voronoi diagrams as basis

Metric: Geometric Construction

Approximate Voronoi cell Measure is sum of squared distances

Assessing the patterns

Real Giraffe M =1.43%

Simulação em Tempo-Real de Nuvens utilizando Billboards

Soraia Raupp Musse

Sumário

- Introdução
- Estado da Arte
- Modelo Proposto
- Resultados
- Demonstração
- Conclusão

Motivação

Realismo visual de nuvens e variações ambientais de céus para aplicações em tempo-real, em especial jogos 3D

Problema

- Complexidade Computacional
- Volume
- Variação nos modelos tridimensionais
- Variação ambiental
- Iluminação

Objetivos

Sistema de simulação em tempo-real de nuvens volumétricas, utilizando um sistema semi-automático de geração de modelos tridimensionais de nuvens

Skybox

Estado da Arte

 Mark J. Harris, Anselmo Lastra Real-Time Cloud Rendering, 2001, EUROGRAPHICS, Volume 20, Number 3.

Estado da Arte (cont.)

Visão Geral

Semente - Modelo Base - Disposição dos Billboards - Nuvem

Billboards

Utilização de impostores por Mark J. Harris

Exemplo de texturas utilizadas

Sementes

- Billboards
- Raízes
- Absorção de luz
- Artista

Raízes

- Tamanho dos Billboards
- Distribuição dos Billboards
- Texturas utilizadas
- Ângulo de abertura das raízes
- Níveis de reproduções
- Número de reproduções por nível

Iluminação

- Luz Direcional
- Vertex-Shader

Modelo proposto por Niniane Wang

- Conjunto de Nuvens
- Representa um Estado Climático

Variação Climática (cont.)

Resultados - Nuvens

Resultados - Céus

Fractostratus – Render

Fractostratus - Natureza

100 nuvens - 30 FPS

2 - Controlled Shape Transformation

- Set of primitives defines a hierarchical structure. Ancestry is defined by the user
- Overlap of primitives guarantees continuity and smoothness
- Primitives are cylinders

Controlled Shape Transformation

 Set of features drives the transformation
Position and size

of features match real measurements

Example - Quarter Horse

 9 real measurements (3 legs, 2 body, 2 neck, 2 head) and 2 fake ones (tail)

9 ages: 0, 3, 6, 12, 18, 24, 36, 48, and
60 months

 Polygonal model with 674 vertices and 863 faces

Original and Quarter Horse

Applying Growth

3 - Integration

 Simulate the CM model directly on the surface of geometrical models

- Generate pattern on a fixed geometry
- Change geometry and keep pattern
- Develop pattern on a changing geometry
- Compute splitting rates from growth information

From 2D to 3D

 Distribution of random points on the surface

 Relaxation and computation of the Voronoi on the surface

Pattern on the Surface

Pattern on the surface

Cell's centers

Voronoi borders

Cell's centers and borders

Pattern on a fixed geometry

Change geometry and keep pattern

Develop pattern on a changing geometry

