
ACM SIGACT News Distributed Computing Column 17

Sergio Rajsbaum∗

Abstract
The Distributed Computing Column covers the theory of systems that are composed of a

number of interacting computing elements. These include problems of communication and net-
working, databases, distributed shared memory, multiprocessor architectures, operating systems,
verification, Internet, and the Web.

This issue consists of:

• “A Short Introduction to Failure Detectors for Asynchronous Distributed Systems,” an
introductory survey by Michel Raynal for readers who want to quickly understand the
aim, the basic principles, the power and limitations of the failure detector concept.

Many thanks to Michel for his contribution to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including
in this column, including news and communications, open problems, and authors willing to write
a guest column or to review an event related to theory of distributed computing.

A Short Introduction to Failure Detectors for Asynchronous
Distributed Systems

Michel Raynal 1

Abstract

Since the first version of Chandra and Toueg’s seminal paper titled “Unreliable failure
detectors for reliable distributed systems” in 1991, the failure detector concept has been
extensively studied and investigated. This is not at all surprising as failure detection is
pervasive in the design, the analysis and the implementation of a lot of fault-tolerant
distributed algorithms that constitute the core of distributed system middleware.

The literature on this topic is mostly technical and appears mainly in theoretically
inclined journals and conferences. The aim of this paper is to offer an introductory
survey to the failure detector concept for readers who are not familiar with it and want
to quickly understand its aim, its basic principles, its power and limitations. To attain
this goal, the paper first describes the motivations that underlie the concept, and then
surveys several distributed computing problems showing how they can be solved with
the help of an appropriate failure detector. So, this short paper presents motivations,
concepts, problems, definitions, and algorithms. It does not contain proofs. It is aimed
at people who want to understand basics of failure detectors.

∗Instituto de Matemáticas, UNAM. Ciudad Universitaria, Mexico City, D.F. 04510 rajsbaum@math.unam.mx.
1IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, raynal@irisa.fr.

ACM SIGACT News 53 March 2005 Vol. 36, No. 1



1 Why Failure Detectors?

To stop waiting or not to stop waiting? that is the question! Asynchronous distributed
systems are characterized by the fact there is no bound on the time it takes for a process to execute
a computation step, or for a message to go from its sender to its receiver. This is why these systems
are usually called “time-free” systems. The major part of the software that addresses non-realtime
problems implicitly considers a time-free underlying system. This has several advantages. The main
one is “generality”: as it is does not require that the underlying system satisfies specific timing
assumptions, the software can be safely executed on any system. Moreover, the understanding and
the correctness proof are usually easier as they don’t rest on particular timing assumptions.

Unfortunately, the previous advantage can become useless as soon as there are failures. As-
suming there is a process per node (processor), let us consider the case where a node can crash.
The problem is then for a process p to know if another process q has or has not crashed. The
bad news is that the combination of crashes and asynchrony creates a context where p has no safe
means to know whether q has or has not crashed. If, thinking q has crashed, p stops waiting from
q after some time, it can be wrong as maybe q has not crashed and the message from q to p is only
very slow. If, after it stops waiting from q and before it gets q’s message, p takes an irrevocable
decision (motivated by the fact that it thinks that q has crashed), this decision is wrong (and the
safety property of the upper layer application can consequently be violated2). On the other side,
let us assume that q has crashed. To prevent the bad previous scenario from occurring, p must
wait until it gets q’s message. It is easy to see that p will wait forever, and the liveness property
of the application will never be satisfied. This is one of the main problems we are faced with when
designing fault-tolerant distributed algorithms in asynchronous systems prone to failures [56].

Do the same as ancient Greeks did: Ask an oracle! To solve the previous dilemma, Chandra
and Toueg have introduced and investigated the notion of failure detectors [13]. A failure detector
can be seen as a distributed oracle related to the detection of failures3. Such oracles do not
change the pattern of failures that affect the execution in which they are used. Their essential
characteristic is related to the guess they provide about failures. As defined by Chandra and Toueg
[13], a failure detector class is basically defined by two properties, namely, a completeness property
and an accuracy property. Completeness is on the actual detection of failures, while accuracy
restricts the mistakes a failure detector can make.

Why use failure detectors? There are several good reasons for using a failure detector. One
lies in the design approach it favors. More precisely, a failure detector is not defined in terms of a
particular implementation (involving network topology, message delays, local clocks, etc.) but in
terms of abstract properties (related to the detection of failures) that allow problems to be solved
despite process crashes. Thus, the failure detector approach allows a modular decomposition that
not only simplifies protocol design but also provides general solutions. More specifically, during
a first step, a protocol is designed and proved correct assuming only the properties provided by
a failure detector class. So, this protocol is not expressed in terms of low-level parameters, but
depends only on a well defined set of abstract properties. The implementation of a failure detector

2A problem can be defined with a safety and a liveness property. The safety property stipulates that “nothing
bad ever happens”, while the liveness property stipulates that “something good eventually happens” [37].

3Let us notice that the oracle notion has first been introduced in language theory. An oracle is a language whose
words can be recognized in one step from a particular state of a Turing machine [33]. The main characteristic of
such oracles is to hide in a single “observed” step a sequence of computation steps or the use of an uncomputable
function. They have been used to provide hierarchies of problems with respect to complexity or computability.

ACM SIGACT News 54 March 2005 Vol. 36, No. 1



FD of the assumed class can then be addressed independently: additional assumptions can be
investigated and the ones that are sufficient to implement FD can be added to the underlying
distributed system in order to get an augmented system on top of which FD can be implemented.
In that way, FD can be implemented in one way in some context and in another way in another
context, according to the particular features of the underlying system. It follows that this layered
approach favors the design, the proof and the portability of protocols.

Another important advantage of failure detectors lies in the approach they promote to ad-
dress problems that are impossible to solve in time-free asynchronous distributed systems prone
to failures. One of the most famous of them is the consensus problem which cannot be solved in
asynchronous systems as soon as a process can crash [23]4. When faced with a problem Pb that
cannot be solved in an asynchronous system prone to failures, a natural and fundamental question
that comes to mind is:

Which is the weakest failure detector FDmin(Pb) the underlying asynchronous system
has to be equipped with in order for the problem Pb to be solved?”

Answering this question is important from both a practical and a theoretical point of view.
From a theoretical point of view, the properties defining such a weakest failure detector state the
necessary and sufficient conditions under which the problem Pb can be solved. This means that
FDmin(Pb) defines the borderline beyond which Pb cannot be solved. More precisely, Pb can
be solved only in asynchronous systems enriched with additional mechanisms able to implement
FDmin(Pb). This has an immediate practical consequence: to solve Pb we need a system where the
FDmin(Pb) properties can be implemented5. Of course, if the system we are provided with satisfies
stronger properties, Pb can be solved. This means that when a (provably correct) protocol does
not work in a system, it is only because the properties assumed by this protocol are not satisfied
by the underlying system. (Let us notice that the same argument applies to hierarchies of failure
modes [53].)

Failure detectors further a deeper understanding of distributed computing problems in presence
of failures, in the sense that they allow us to know whether a problem Pb1 is “more difficult” to solve
than a problem Pb2 or whether Pb1 and Pb2 require different kinds of assumptions. Pb1 is said
to be more difficult to solve than Pb2 if it requires that the underlying system satisfies additional
assumptions not necessary for solving Pb2, that is, formally, FDmin(Pb1) ⇒ FDmin(Pb2). If we
have neither FDmin(Pb1) ⇒ FDmin(Pb2), nor FDmin(Pb2) ⇒ FDmin(Pb1), Pb1 and Pb2 are
incomparable, which means that they require underlying systems with different properties in order
for them to be solved.

Can failure detectors be implemented? Guided by practical motivations, we only consider
failure detectors that cannot guess the future. Those failure detectors have been called realistic [17].
They actually do correspond to the failure detectors that can be implemented in a synchronous
system (i.e., a system with known upper bounds on both message delays and the time it requires
for a process to execute a step).

So, a simple way to implement a failure detector is to use an underlying synchronous system as
additional subsystem. This subsystem is only used to implement the required failure detector and
is not directly accessible by the processes. They do not ever know the existence of it: they evolve
in a computation model defined by an asynchronous system enriched with the appropriate failure
detector.

4Failure detectors have initially been introduced to cope with the impossibility to solve consensus in time-free
systems prone to process crashes [13].

5Or (in some cases) approximated, as we will see later.

ACM SIGACT News 55 March 2005 Vol. 36, No. 1



As we will see later, it is possible to solve some problems with eventually accurate failure
detectors. Those failure detectors are assumed to satisfy their accuracy property (restriction on
the mistakes they can make) only after some finite but unknown time. It appears that the use of
such failure detectors generally requires a majority of correct processes (this constraint can be seen
as the price that has to be paid to cope with eventual accuracy).

Interestingly, the use of eventually accurate failure detectors allows the design of indulgent
algorithms [26], i.e., algorithms that never violate their safety property, whatever the behavior of
the failure detector they use. This means that, if the failure detector never meets its accuracy
property, these algorithms cannot terminate, but if they terminate they terminate correctly. Such
eventually accurate failure detectors are very interesting for a simple reason. They have best effort
implementations in asynchronous systems, namely, these implementations provide failure detector
outputs that a priori can only be considered as approximate outputs. But, very interestingly, when
the underlying system behaves synchronously during a long enough period, the outputs are no
longer approximate but become correct. The periods during which the underlying asynchronous
system behaves synchronously are usually called “stable” periods. An interesting consequence is
that, as we can see, the protocols implementing such failure detectors can run concurrently with
the application processes on the same asynchronous system. This is practically relevant.

2 Asynchronous System Models

Process model We consider a system consisting of a finite set of n processes Π = {p1, p2, . . . , pn}.
A process can fail by crashing, i.e., prematurely halting. It behaves correctly (i.e., according to its
specification) until it (possibly) crashes. By definition a process is correct (during a run) if it does
not crash (during that run); otherwise, it is faulty. There is no assumption on the time it takes
for a (non-crashed) process to execute a step. In the following, t ≤ n − 1 denotes the maximum
number of processes that can crash, and f ≤ t the actual number of process crashes during a given
run.

Communication model Processes communicate and synchronize by exchanging message through
links. Every pair of processes is connected by a link. We consider two types of links.

• The link connecting pi to pj is reliable if it does not create or duplicate messages, and every
message sent by pi to pj is eventually received by pj (if pj is correct).

• The link connecting pi to pj is fair lossy if, while it does not create or duplicate messages, it
can lose messages but, if pi sends an infinite number of messages to pj and pj executes receive
actions infinitely often, then it receives an infinite number of messages from pi.

A process pi sends a message m to a process pj by invoking “send(m) to pj”; pj receives it when
it terminates the invocation of “receive()”. The send() and receive() primitives are provided by the
underlying communication network. The notation “broadcast(m)” is used as a shortcut for “forall
j ∈ {1, . . . , n} do send(m) to pj enddo”. If pi crashes while executing “send(m) to pj”, either m
is sent, or m is not sent at all (i.e., send() is atomic, while broadcast() is not.)

Computation models In the following we consider two types of asynchronous computation
models.

ACM SIGACT News 56 March 2005 Vol. 36, No. 1



• The FLP computation model that considers crash-prone processes and reliable links6.

• The FLL computation model that considers crash-prone processes and fair lossy links.

3 Solving Consensus

3.1 The Consensus Problem

The consensus problem is a paradigm of agreement problems. It appears, in one form or another, as
soon as processes have to agree, e.g., on a common action to execute, on the same decision to take,
etc. A well-known example where consensus appears is atomic broadcast. That problem, which
appears as a basic software layer in a lot of replication-based fault-tolerant distributed systems,
requires that the correct processes deliver the same set of messages in the same order. So, it is at
the same time a communication problem (all the correct processes have to deliver the same set of
broadcast messages), and a consensus problem (as they have to deliver them in the same order)
[13]. So, in the consensus problem, every correct process pi proposes a value vi and all correct
processes have to decide on some value v, in relation to the set of proposed values. More precisely,
the consensus problem is defined by the following three properties [13, 23]:

• C-Termination: Every correct process eventually decides on some value.

• C-Validity: If a process decides v, then v was proposed by some process.

• C-Agreement: No two correct processes decide differently.

The agreement property applies only to correct processes. So, it is possible that a process decides
on a distinct value just before crashing. Uniform consensus prevents such a possibility. It has the
same Termination and Validity properties plus the following agreement property:

• C-Uniform Agreement: No two processes (correct or not) decide differently.

In the following we consider the uniform consensus problem.

3.2 An Eventually Accurate Failure Detector

As indicated in the Introduction, the consensus problem cannot be solved in asynchronous systems
prone to even a single process failure [23]. It is to circumvent this impossibility that Chandra and
Toueg proposed the failure detector concept [13]. Among the several classes of failure detectors they
have proposed, the one denoted �S has been shown to be the weakest to solve consensus [12]. Each
process pi is equipped with a local failure detector module that provides it with a set suspectedi;
pi can only read this set that contains the identities of the processes that are currently suspected
to have crashed. Any failure detector module is inherently unreliable: it can make mistakes by not
suspecting a crashed process or by erroneously suspecting a correct one. Moreover, suspicions are
not necessarily stable: a process pj can be added to or removed from a set suspectedi according
to whether pi’s failure detector module currently suspects pj or not. We say “process pi suspects
process pj” at some time, if at that time we have pj ∈ suspectedi.

To be useful a failure detector class has to satisfy some properties, and those have to be as
weak as possible while allowing the problem of interest to be solved. The class �S includes all the
failure detectors satisfying the following properties:

6The name “FLP” is coined from the first letters of Fischer, Lynch and Paterson who proved the impossibility of
solving consensus in this system model [23]. This acronym is of general use in the literature.

ACM SIGACT News 57 March 2005 Vol. 36, No. 1



• Strong Completeness: Eventually, every process that crashes is permanently suspected by
every correct process.

• Eventual Weak Accuracy: There is a time after which some correct process is never suspected
by the correct processes.

The implementation of failure detectors of the class �S has been addressed in [22, 30, 38, 39, 41].
As noted in the Introduction, all these implementations assume that the underlying system is
eventually stable. If the stability assumption is satisfied during a long enough period, the sets
suspectedi satisfy the properties defining �S. “Long enough” means here “a duration allowing the
protocol using the failure detector to terminate”.

3.3 A �S-based Consensus Protocol

The protocol that follows considers the FLP model. It is indulgent, so it enjoys the nice property
of never violating consensus safety (validity and uniform agreement), whatever the sequence of
(correct or bad) values read from the suspectedi sets; moreover, it terminates (at least) when
these sets contain correct values during a long enough period (namely, the period during which the
consensus protocol needs the failure detector).

The protocol presented in Figure 1 is a particular instance of the generic protocol introduced in
[46]. It requires a majority of correct processes (t < n/2), which has been shown to be a necessary
requirement for indulgent protocols [26]. Its principles are surprisingly simple. The processes (pi)
proceed by asynchronous consecutive rounds (ri). Each round r is coordinated by a process pc such
that c = (r mod n) + 1 (hence, if the round number never stops increasing, each process is ensured
to be the coordinator of a future round).

Let vi be the value initially proposed by pi. The local variable esti represents pi’s estimate of
the decision value. During a round r, its coordinator pc tries to impose its current estimate as the
decision value. To attain this goal, a round is made up of two phases. During the first phase (1) pc

sends estc to all the processes (line 4), and (2) any process pi waits until it receives pc’s estimate
or suspects it (line 5). According to the result of its waiting, a process pi sets a local variable auxi

to the received value v = estc, or sets it to a default value ⊥ (line 6). It is important to notice that
due to the completeness property of the underlying failure detector no process can block forever at
line 5.

Then, the processes start the second phase of round r, during which they exchange the values
of their auxi variables (line 7). Let us observe that, due to the “majority of correct processes”
assumption, no process can block forever at line 8. Moreover, it is important to notice that only
two values can be exchanged: v = estc or ⊥. Consequently, the set reci of values received by a
process pi can only have the values {v}, {v,⊥}, or {⊥}. Moreover, due to the “majority of correct
processes” assumption it is impossible for two sets reci and recj to be such that reci = {v} and
recj = {⊥}, so we also have the following invariant (for each pair of processes pi and pj that have
not crashed):

reci = {v} ⇒ (∀ pj : (recj = {v}) ∨ (recj = {v,⊥}))
reci = {⊥} ⇒ (∀ pj : (recj = {⊥}) ∨ (recj = {v,⊥})).

This invariant dictates the behavior of pi:

• reci = {v} (line 10). In this case, pi decides the value v. It can safely do so, since in this
case, a process that does not decide adopts v as its new estimate value. Moreover, to prevent
possible deadlock situations, pi broadcasts its decision value.

ACM SIGACT News 58 March 2005 Vol. 36, No. 1



Function Consensus(vi)

Task T1:
(1) ri ← 0; esti ← vi;
(2) while true do
(3) c ← (ri mod n) + 1; ri ← ri + 1; % 1 ≤ ri < +∞ %

———————— Phase 1 of round r: from pc to all —————————
(4) if (i = c) then broadcast phase1(ri, esti) endif;
(5) wait until (phase1(ri, v) has been received from pc ∨ c ∈ suspectedi);
(6) if (phase1(ri, v) received from pc) then auxi ← v else auxi ← ⊥ endif;

———————— Phase 2 of round r: from all to all —————————
(7) broadcast phase2(ri, auxi);
(8) wait until (phase2 (ri, aux) msgs have been received from a majority of proc.);
(9) let reci be the set of values received by pi at line 8;

% We have reci = {v}, or reci = {v,⊥}, or reci = {⊥} where v = estc %
(10) case reci = {v} then esti ← v; broadcast decision(esti); stop T1
(11) reci = {v,⊥} then esti ← v
(12) reci = {⊥} then skip
(13) endcase
(14) endwhile

Task T2: when decision(est) is received: broadcast decision(esti); return(est)

Figure 1: A Simple �S-Based Consensus Protocol (t < n/2) [46]

• reci = {v,⊥}: (line 11). In this case, consistently with the previous item, pi adopts v as its
new estimate value, and proceeds to the next round.

• reci = {⊥} (line 12). In this case, pi proceeds to the next round without modifying esti.

The proof that this �S-based consensus protocol is correct is relatively easy. It is left to the
reader (who can also find it in [46]). The strong completeness property is used to show that the
protocol never blocks. The eventual weak accuracy property is used to ensure termination (there
will be a round coordinated by a correct non-suspected process). The majority of correct processes
is used to prove consensus agreement.

Other �S-based consensus protocols can be found in [13, 35, 34, 58].

3.4 Interactive Consistency

This problem has first been introduced in the context of synchronous systems where some processes
can behave in a Byzantine way [51]. Here we consider the interactive consistency problem in the
FLP model.

This problem is harder than consensus in the following sense: the processes have to agree not
on a proposed value but on the vector of proposed values. So, each process pi proposes a value vi

and has to decide a vector Di such that the following properties are satisfied (we consider here the
uniform version of the problem):

• IC-Termination: Every correct process eventually decides on a vector.

• IC-Validity: Any decided vector D is such that D[i] ∈ {vi,⊥}, and is vi if pi does not crash.

ACM SIGACT News 59 March 2005 Vol. 36, No. 1



• IC-Agreement: No two processes decide differently.

It is shown in [32] that the weakest failure detector class that allows the interactive consistency
problem to be solved in the FLP model is the class of perfect failure detectors. This class, denoted
P, contains all the failure detectors that satisfy the following properties [13]:

• Strong Completeness: Eventually, every process that crashes is permanently suspected by
every correct process.

• Strong Accuracy: No process is suspected before it crashes.

As we can see, a perfect failure detector never makes mistakes. A P-based interactive consistency
protocol is described in [21]. Interestingly, this protocol which proceeds by consecutive asyn-
chronous rounds, is as efficient as the “best” synchronous interactive consistency protocol (“best”
from a time complexity point of view, i.e., when we count the maximum number of rounds that are
required, namely, min(f + 2, t + 1, n)).

While consensus can be solved in the FLP model (with a majority of correct processes) equipped
with �S, it is not possible, assuming a solution to the consensus problem, to design a protocol
building a failure detector of �S. On the contrary, we show here that, in the FLP model, the
construction of a perfect failure detector and interactive consistency are equivalent problems in the
sense that one can solve either of them as soon as we are provided with a solution to the other.

Interactive consistency protocols based on a perfect failure detector are described in [21, 32].
A protocol providing the inverse construction is described here (Figure 2): assuming a solution
to the interactive consistency problem (subroutine protocol called IC Protocol(x, v)), this protocol
implements a perfect failure detector. The protocol consists of two tasks and is very simple7. Task
T1 repeatedly invokes the interactive consistency protocol and suspects a process pj as soon as the
output Di returned by an invocation is such that Di[j] = ⊥. Task T2 processes the queries issued
by the upper layer: it returns the current value of suspectedi. The reader can easily check that the
sets suspectedi satisfy strong completeness and strong accuracy.

init: suspectedi ← ∅; seqi ← 0

task T1: while true do
seqi ← seqi + 1; % IC instance number %
Di ← IC Protocol(seqi, vi); % vi �= ⊥ %
suspectedi ← {j | Di[j] = ⊥}

enddo

task T2: when pi issues QUERY: return(suspectedi)

Figure 2: From Interactive Consistency to a Perfect Failure Detector [32]

4 Solving Non-Blocking Atomic Commit

4.1 The Non-Blocking Atomic Commit Problem

Originated from databases, the non-blocking atomic commit problem (NBAC) is certainly one of
the oldest agreement problems encountered in distributed computing. According to its local state,

7The difficult construction is the other one: solving interactive consistency from a perfect failure detector [21, 32].

ACM SIGACT News 60 March 2005 Vol. 36, No. 1



each process first issues a vote (yes or no). Then, according to the set of votes and the fact that
some processes possibly crashed, the non-crashed processes have to decide on a single value, namely,
commit or abort. More precisely, the problem is defined by the following properties:

• NBAC-Termination: Every correct process eventually decides.

• NBAC-Validity: A decided value is commit or abort. Moreover:

– NBAC-Justification: If a process decides commit, all processes have voted yes.

– NBAC-Obligation: If all processes vote yes and there is no crash, then the decision value
is commit.

• NBAC-Agreement: No two processes decide differently.

It is easy to see that the justification property relates the commit decision to the yes votes, while
the obligation property eliminates the trivial and useless solution where all processes would always
decide abort. Actually, this property defines what is a “good” run: it is a run in which all the
processes want to commit (they voted yes) and the environment behaves correctly (no process
crashes). The decision can only be commit in good runs.

As the reader can see, a major difference between the specification of consensus and the specifi-
cation of NBAC lies in the fact that the latter mentions explicitly process crashes occurring during
a protocol execution.

4.2 An Appropriate Failure Detector

Solving NBAC in the FLP model requires the model to be enriched with appropriate failure de-
tectors. Such failure detectors are studied and investigated in [27, 28]. We consider here timeless
failure detectors, i.e., failure detectors that do not provide information on when exactly (in the
sense of global time) failures occurred. (Let us notice that P and �S define classes of timeless
failure detectors.)

To address this question, a failure detector class, denoted ?P and called the class of anonymously
perfect failure detectors, has been proposed in [27]. This class is defined as follows:

• Anonymous completeness: If a crash occurs, eventually every correct process is permanently
informed that some crash occurred.

• Anonymous accuracy: No crash is detected unless some process crashed.

The class of failure detectors denoted ?P+�S includes all the failure detectors that satisfy both ?P
and �S. It has then been been shown [28] that this is the weakest class of timeless failure detectors
to solve NBAC, assuming a majority of correct processes (t < n/2). In the following, a failure
detector module of that class is represented at pi as a boolean variable ap flagi (“approximate
flag”) that is true iff a crash is detected.

Figure 3 describes a NBAC protocol based on a failure detector of ?P + �S. This protocol
actually reduces NBAC to consensus (which, as we have seen, can be solved in the FLP model
enriched with �S when t < n/2). The protocol is pretty simple. From a methodological point of
view, it is interesting to see how each of ?P and �S are used: the first is for ensuring the validity
of NBAC, the second to be able to use the subroutine consensus protocol.

ACM SIGACT News 61 March 2005 Vol. 36, No. 1



Function Nbac(votei)

broadcast my vote(votei);
wait until (my vote(vote) has been received from each process ∨ ap flagi);
if (a vote yes has been received from each of the n processes)

then outputi ← Consensus(commit)
else outputi ← Consensus(abort)

endif;
return(outputi)

Figure 3: A Simple ?P + �S-Based NBAC Protocol (t < n/2) [27]

5 Implementing Quiescent Communication

This section continues our visit of the failure detector concept by considering the problem that
consists of implementing quiescent communication despite process crashes and fair lossy links, i.e.,
in the FLL model [2].

5.1 The Quiescence Problem

Considering two processes pi and pj that do not crash connected by a fair lossy link, a basic
communication problem consists in building a reliable link on top of that fair lossy link. This
problem is well-known and basic mechanisms such as retransmission and acknowledgments allow it
to be solved. Retransmission allows message losses to be tolerated, while acknowledgments allow
their retransmission to be eventually stopped: when a receiver receives a message m, it sends back
ack(m), and for each message m it wants to send, the sender repeatedly resends it until it gets an
ack(m). This simple protocol is quiescent in the sense that, after some time, no process sends or
receives messages related to the transmission of m.

Let us now consider the case where the receiver pj can crash. In this case, it is possible that pj

crashes before receiving m and the sender will consequently send copies of m forever. The protocol
is no longer quiescent. So, the problem is to provide quiescent implementations of communication
primitives in the FLL model. This is the problem addressed and solved in [2]. This paper first shows
that the quiescent communication problem cannot be solved in a pure FLL model. To solve it, that
model has to be appropriately enriched with a failure detector. This is not at all counter-intuitive
since, to stop retransmitting a message, the sender has to know -in a way or another- whether the
receiver has crashed.

[2] shows that the weakest class of failure detectors solving the quiescent communication problem
is the class of eventually perfect failure detectors, i.e., the failure detectors that, after some unknown
but finite time, suspect all the crashed processes and only them. Unfortunately, such a failure
detector cannot be implemented in FLL. So, the authors investigated another class of implementable
failure detectors capable of providing quiescent communication protocols. They called it the class
of heartbeat failure detectors.

5.2 A Heartbeat Failure Detector

A heartbeat failure detector outputs at each process pi an array HBi[1..n] of non-decreasing coun-
ters satisfying the following properties:

• HB-completeness: If pj crashes, then HBi[j] stops increasing.

ACM SIGACT News 62 March 2005 Vol. 36, No. 1



• HB-accuracy: If pj is correct, then HBi[j] never stops increasing.

As we can see, heartbeat failure detectors can be implemented, but their implementation is not
quiescent. In that sense these failure detectors allow the non-quiescent part of a communication
protocol to be isolated. Moreover, the use of a heartbeat failure detector favors design modularity
and eases correctness proofs. Additionally, a single heartbeat failure detector “service” can be used
by several upper layer applications.

5.3 A Quiescent Implementation

Figure 4 presents a quiescent protocol providing a reliable link in an FLL system model equipped
with a heartbeat failure detector. The protocol on the sender side provides an implementation of the
send() primitive invoked by the upper layer application. To that end, it uses the send() primitive
provided by the underlying communication layer. Similarly, on the receiver side, receive() notifies
the upper layer that a new message has arrived, while receive() is used to receive a message from
the underlying communication layer. The protocol is particularly simple and self-explanatory. The
seqi variable (initialized to 0) is used by the sender as a sequence number generator. It is easy to
see that, after some unknown but finite time, pi either receives ack(m) (due to the fairness of the
underlying channel) or stops retransmitting as HBi[j] no longer increases (when pj has crashed).

This protocol shows an important difference between a quiescent protocol and a terminating
protocol. The protocol described in Figure 4 is quiescent as for each message m sent by pi to
pj , there is a time after which no more protocol messages are exchanged. However this protocol
is not terminating. This is because, until it receives ack(m), pi has no means to know if it has
to retransmit m: if pj crashes and all ack(m) it sent before are lost, pi will never terminate the
task repeat send (m, seqi). The reader can observe that this is the best that can be done. This
important difference is discussed in detail in [36].

Sender pi:
when send(m) to pj is invoked:

seqi ← seqi + 1;
fork task repeat send (m, seqi)

task repeat send (m, seqi):
prev hb ← −1;
repeat periodically hb ← HBi[j];

if (prev hb < hb) then send msg(m, seq) to pj ;
prev hb ← hb

endif
until (ack(m, seq) is received)

Receiver pj :
when msg(m, seq) is received from pi:

if (first reception of msg(m, seq)) then m is received endif;
send ack(m, seq) to pi

Figure 4: A Quiescent Implementation of a Reliable Link [2]

ACM SIGACT News 63 March 2005 Vol. 36, No. 1



6 Failure Detectors in Synchronous Systems

While atomic broadcast, consensus, NBAC, etc. cannot be solved in the FLP computation model,
they can be solved in synchronous systems, i.e., in systems where there are bounds on processing
time and message transfer delay. So, failure detectors are useless in these systems from a decid-
ability point of view: they add no computational power. Nevertheless, failure detectors suited to
synchronous systems have recently been introduced. Their aim is to help design more efficient
protocols, i.e., protocols with a “best case” time complexity that can not be attained in pure syn-
chronous systems. To illustrate this idea, we show here, how fast failure detectors can be used to
expedite consensus in synchronous systems [6].

6.1 Synchronous System Model

As previously mentioned, a synchronous systems is characterized by the existence of a bound on
the time it takes to receive and process a message, and the fact that this bound is known by the
processes. In order to simplify the presentation and without loss of generality, we assume in the
following that local computations take no time and transfer delays are upper bounded by D. Thus,
a message sent at time t is not received after t + D (D-timeliness). The links are reliable (no
creation, duplication or loss). Moreover, processes have access to a common clock.

The combination of D-timeliness and no-loss properties with the possibility of process crashes,
makes possible the following behaviors when, at time t, a process pi sends a message m to processes
pj and pk. If pi does not crash at time t, both pj and pk receive m by time t + D. However, if
p crashes at time t, different scenarios are possible. Namely, it is possible that neither pj nor pk

receives m, or that only one of them receives m (by time t + D) while the other does not receive
it, or that both of them receive m (by time t + D).

6.2 Fast Failure Detectors

Such failure detectors have been introduced in [6]. A fast perfect failure detector provides the
processes pi with sets suspectedi that satisfy the following properties (where d < D):

• d-Timely completeness. If a process pj crashes at time t, then, by time t + d, every alive
process suspects it permanently.

• Strong accuracy. No process is suspected before it crashes.

Let us observe that, if a process crashes between times t and t + d then some, but not necessarily
all, processes may suspect it at t + d.

As indicated in [6], fast failure detectors can be implemented with specialized hardware (with
provides d << D). From a user point of view (the one in which we are interested here) they can be
used to attain time complexity lower bounds that are better than what can be attained in a pure
synchronous system.

To illustrate this, let us consider the fast failure detector-based synchronous consensus protocol
described in Figure 5 [6]. This protocol enjoys the following early deciding property: started at
time T = 0, it allows the processes to decide by time D + fd (let us remind that f is the actual
number of process crashes). Thus, its time complexity is D + fd which is much better than the
best that can be done without using failure detectors, namely, min(f + 2, t + 1)D.

Let us now describe in detail the behavior of a process pi. Let us first observe that, during the
time period [0, (i − 1)d), pi can only receive messages. Then, at time (i − 1)d, if pi suspects all
the processes with a smaller id, it sends its current estimate of the decision value (esti) to all the

ACM SIGACT News 64 March 2005 Vol. 36, No. 1



Function Consensus(vi)

init esti ← vi; maxi ← 0

when (est, j) is received:
if (j > maxi) then esti ← est; maxi ← j endif

at time (i − 1)d do
if ({p1, p2, . . . , pi−1} ⊆ suspectedi) then broadcast (esti, i) endif

at time (j − 1)d + D for every 1 ≤ j ≤ n do

if
(
(pj /∈ suspectedi) ∧ (pi has not yet decided)

)
then return (esti) endif

Figure 5: Synchronous Consensus with a Fast Failure Detector [6]

processes. When a process pi receives an estimate value (est), it updates its own estimate (esti)
only if it is coming from a process whose id is larger than maxi (a local variable initialized to a
value smaller than any id). In that way, the successive values of esti are coming from processes
with increasing ids. Finally, at times (j − 1)d + D, for j = 1, . . . , n, pi decides if it trusts the
corresponding process pj . A proof of the protocol can be found in [6]. It is easy to see that the
processes decide by D time units when the process p1 does not crash (in that case they decide the
value v1 proposed by p1). If p1 crashes while p2 does not, they decide by time d + D; according to
the failure pattern, the decided value is the value v1 proposed by p1 or the value v2 proposed by p2

(it is the value v1 proposed by p1, if p1 succeeded in sending v1 to p2). Etc.

7 Additional Remarks

Other problems In addition to the previous distributed computing problems that we have
shortly visited, the failure detector approach has been used to circumvent other impossibility re-
sults. We list here two of them.

The first is the construction of a reliable atomic register in the FLP model. It has been shown
that such a construction is possible if and only if t < n/2. Intuitively, the majority of correct
processes assumption can be used to ensure that the last value8 of the register can always be
accessed [9]. A natural question is then: “Which is the weakest failure detector to implement an
atomic register in the FLP model when n/2 ≤ t < n (i.e., when any number of processes can
crash)?” This question is answered in [18] with the failure detector, denoted Px, defined by the
following properties:

• Strong Completeness: Eventually, every process that crashes is permanently suspected by
every correct process.

• x-Accuracy: At any time, a process falsely suspects at most n − x − 1 alive processes.

A Pt-based algorithm building an atomic register is described in [18]. (Interestingly, Pt can be
built in the FLP model when t < n/2. This is not at all surprising as the atomic register problem
can be solved in the same context without the help of a failure detector.) For the interested reader,
let us mention that a protocol solving the consensus problem despite up to t < n crashes, in the

8“Last” refers here to physical time, as the consistency criterion considered for the register is atomicity.

ACM SIGACT News 65 March 2005 Vol. 36, No. 1



FLP model enriched with both Pt and �S is described in [24].

The second problem we mention here is related to communication, namely the design of a
uniform reliable broadcast primitive. This primitive allows the processes to broadcast messages,
and ensures that (1) at least the messages broadcast by the correct processes are delivered to all
the correct processes, and (2) if a process (correct or faulty) delivers a message m then all correct
processes deliver m. So, this primitive ensures that no message from a correct process is “lost”,
and that no message delivered by a process is missed by a correct processes: the correct processes
deliver the same set of messages, and a faulty process delivers a subset of it.

As previously, this problem can be easily solved in the FLP model when t < n/2 and requires
additional assumptions when n/2 ≤ t < n. The main difficulty lies in ensuring item (2). The
interested reader will find in [8] an appropriate (optimal) failure detector and a uniform reliable
broadcast protocol based on such a failure detector. For the interested reader, a uniform reliable
broadcast protocol that additionally satisfies the quiescence property is described in [41, 55].

Other failure detectors Other failure detectors have been proposed. One of the most well-
known provides the processes with a function leader satisfying the following properties:

• Validity: Each invocation of leader returns a process name.

• Eventual Leadership: There is a time t and a correct process p such that, after t, every
invocation of leader by a correct process returns p.

The oracles that satisfy this property define the class of failure detector oracles denoted Ω [12].
A failure detector of this class actually provides the processes with an eventual leader election
capability. But, let us notice that there is no knowledge of when the leader is elected. This means
that several leaders can coexist during an arbitrarily long period of time, and there is no way for
the processes to learn when this “confusing” period is over.

Ω-based consensus protocols are described in [29, 48]. The requirement t < n/2 is a necessary
for such protocols [13]. Moreover, it has been shown that Ω and �S have the same computational
power [12, 16]: no one allows the solution of a problem that could be solved without the other.

On the methodology Since the implementation of some failure detectors (e.g., eventually ac-
curate failure detectors such as �S) can be only approximate during some periods (when the
underlying system is unstable), it is interesting to use a failure detector only in “extreme” cases,
which means that the use of a failure detector has to be avoided whenever possible.

Considering the atomic broadcast problem, several papers [3, 47, 52] have provided atomic
broadcast implementations that use a failure detector-based consensus black box only in extreme
cases. Such protocols are said to be thrifty (or non-trivial) with respect to the underlying oracle.

A few references The reader interested in the implementation of failure detectors should consult
the following references [4, 11, 14, 22, 30, 38, 41, 42, 57]. Protocols implementing failure detectors of
the class Ω can be found in [4, 5, 39, 49]. The reader interested in the the classification of distributed
computing problems in presence of failures can consult [19, 25, 31]. The reader interested in the
weakest failure detector classes to solve some fundamental distributed computing problems can
consult [12, 20].

Random oracles have also been investigated to solve distributed computing problems in presence
of crash failures [10, 54]. Combination of random oracles with failure detectors is addressed in
[7, 43, 50].

ACM SIGACT News 66 March 2005 Vol. 36, No. 1



The condition-based approach to solve agreement problems consists in characterizing the largest
set of input vectors for which it is possible to solve the problem [44]. As a “trivial” example we
can consider the case where we know that more than a majority of processes do propose the same
value. It is easy to solve consensus for such input vectors despite one process crash. Roughly
speaking, a condition-based protocol solves the corresponding agreement problem each time the
input vector belongs to the condition (or when there are no failures), and does its best to terminate
when the input vector does not belong to the condition and there are failures. Very recently, has
been proposed a new class of failure detectors that allows combining the power of conditions with
the information on failures required to solve agreement problems [45].

8 Conclusion

The failure detector approach was introduced by Sam Toueg. Initially designed for asynchronous
systems, it allows a statement, of the weakest assumptions that have to be added to these systems
in order to solve problems that otherwise could not be solved. So, in this type of system, they
allow the barrier separating impossibility and decidability to be crossed. From a more practical
software engineering point of view, they strongly favor a modular approach. Failure detectors have
then been extended to synchronous systems. In these systems, they allow the attainment of time
complexity lower bounds that could not be attained in purely synchronous systems.

Acknowledgments

I would like to thank David Powell (from LAAS) for interesting discussions, constructive remarks
and useful comments that helped improve the paper.

References

[1] Attiya H., Bar-Noy A. and Dolev D., Sharing Memory Robustly in Message Passing Systems. Journal
of the ACM, 42(1):121-132, 1995.

[2] Aguilera M.K., Chen W. and Toueg S., On Quiescent Reliable Communication. SIAM Journal of
Computing, 29(6):2040-2073, 2000.

[3] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Thrifty Generic Broadcast. Proc. 14th
Symposium on Distributed Computing (DISC’00), Springer-Verlag LNCS #1914, pp. 268-282, 2000.

[4] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., On Implementing Ω with Weak Relia-
bility and Synchrony Assumptions. Proc. 22th ACM Symposium on Principles of Distributed Computing
(PODC’03), ACM Press, pp. 306-314, Boston (MA), 2003.

[5] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Communication-Efficient Leader Elec-
tion and Consensus with Limited Link Synchrony. Proc. 23th ACM Symposium on Principles of Dis-
tributed Computing (PODC’04), ACM Press, pp. 328-337, St-John’s (Newfoundland, Canada), 2004.

[6] Aguilera M.K., Le Lann G. and Toueg S., On the Impact of Fast failure Detectors on Real-Time Fault-
Tolerant Systems. Proc. 16th Symposium on Distributed Computing (DISC’02), Springer-Verlag LNCS
#2508, pp. 354-369, 2002.

[7] Aguilera M.K. and Toueg S., Aguilera M.K. and Toueg S., Failure Detection and Randomization: a
Hybrid Approach to Solve Consensus. SIAM Journal of Computing, 28(3):890-903, 1998.

[8] Aguilera M.K., Toueg S. and Deianov B., Revisiting the Weakest Failure Detector for Uniform Reliable
Broadcast. Proc. 13th Int. Symposium on DIStributed Computing (DISC’99), Springer-Verlag LNCS
#1693, pp. 21-34, 1999.

ACM SIGACT News 67 March 2005 Vol. 36, No. 1



[9] Attiya H. and Welch J. Distributed Computing: Fundamentals, Simulations and Advanced Topics.
McGraw-Hill, 451 pages, 1988.

[10] Ben-Or M., Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. 2nd
ACM Symposium on Principles of Distributed Computing, (PODC’83), Montréal (CA), pp. 27-30, 1983.

[11] Bertier M., Marin O. and Sens P., Implementation and Performance Evaluation of an Adaptable Failure
Detector. Proc. Int. IEEE Conference on Dependable Systems and Networks (DSN’02), IEEE Computer
Society Press, pp. 354-363, Washington D.C., 2002.

[12] Chandra T.D., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus.
Journal of the ACM, 43(4):685-722, 1996.

[13] Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of
the ACM, 43(2):225-267, 1996. (First version published in the proceedings of the 10th ACM Symposium
on Principles of Distributed Computing, 1991.)

[14] Chen W., Toueg S. and Aguilera M.K., On the Quality of Service of Failure Detectors. IEEE Transac-
tions on Computers, 51(5):561-580, 2002.

[15] Chor M., and Dwork C., Randomization in Byzantine Agreement. Adv. in Comp. Research, 5:443-497,
1989.

[16] Chu F., Reducing Ω to �W. Information Processing Letters, 76(6):293-298, 1998.

[17] Delporte-Gallet C., Fauconnier H. and Guerraoui R., A Realistic Look at Failure Detectors. Proc. IEEE
Inter. Conference on Dependable Systems and Networks (DSN’02), IEEE Computer Society Press, pp.
345-352, Washington D.C., 2002.

[18] Delporte-Gallet C., Fauconnier H. and Guerraoui R., Failure Detection Lower Bounds on Registers and
Consensus. Proc. 16th Symposium on Distributed Computing (DISC’02), Springer-Verlag LNCS #2508,
pp. 237-251, 2002.

[19] Delporte-Gallet C., Fauconnier H. and Guerraoui R., Shared memory vs Message Passing. Tech Report
IC/2003/77, EPFL, Lausanne, December 2003.

[20] Delporte-Gallet C., Fauconnier H. and Guerraoui R., Hadzilacos V., Kouznetsov P. and Toueg S., The
Weakest Failure Detetors to Solve Certain Fundamental Problems in Distributed Computing. Proc.
23h ACM Symposium on Principles of Distributed Computing (PODC’04), ACM Press, pp. 338-346,
St-John’s (Newfoundland, Canada), July 2004.

[21] Delporte-Gallet C., Fauconnier H., Helary J.-M. and Raynal M. Early Stopping in Global Data Com-
putation. IEEE Transactions on Parallel and Distributed Systems, 14(9):909-921, 2003.

[22] Fetzer C., Raynal M. and Tronel F., An Adaptive Failure Detection Protocol. Proc. 8th IEEE Pacific
Rim Int. Symposium on Dependable Computing (PRDC’01), IEEE Computer Society Press, pp. 146-
153, Seoul (Korea), 2001.

[23] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM, 32(2):374-382, 1985.

[24] Friedman R., Mostefaoui A. and Raynal M., A Weakest Failure Detector-Based Asynchronous Consen-
sus Protocol for f < n. Information Procesing Letters, 90(1):39-46, 2004.

[25] Fromentin E., Raynal M. and Tronel F. On Classes of Problems in Asynchronous Distributed Systems
with Process Crashes. 19th IEEE Int. Conf. on Distributed Computing Systems (ICDCS’99), Austin,
TX, pp. 470-477, 1999.

ACM SIGACT News 68 March 2005 Vol. 36, No. 1



[26] Guerraoui R., Indulgent Algorithms. Proc. 19th ACM Symposium on Principles of Distributed Com-
puting, (PODC’00), ACM Press, pp. 289-298,Portland (OR), 2000.

[27] Guerraoui R., Non-Blocking Atomic Commit in Asynchronous Distributed Systems with Failure De-
tectors. Distributed Computing, 15:17-25, 2002.

[28] Guerraoui R. and Kouznetsov P., On the Weakest Failure Detector for Non-Blocking Atomic Commit.
Proc. 2nd Int. IFIP Conference on Theoretical Computer Science (TCS’02), pp. 461-473, Montréal
(Canada), August 2002.

[29] Guerraoui R. and Raynal M., The Information Structure of Indulgent Consensus. IEEE Transactions
on Computers. 53(4), 53(4):453-466, April 2004.

[30] Gupta I., Chandra T.D. and Goldszmidt G.S., On Scalable and Efficient Distributed Failure Detectors.
Proc. 20th ACM Symposium on Principles of Distributed Computing (PODC’01), ACM Press, pp.
170-179, Newport (RI), 2001.

[31] Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed Systems, acm
Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

[32] Hélary J.-M., Hurfin M., Mostefaoui A., Raynal M. and Tronel F., Computing Global Functions in Asyn-
chronous Distributed Systems with Process Crashes. IEEE Transactions on Parallel and Distributed
Systems, 11(9):897-909, 2000.

[33] Hopcroft J.E. and Ullman J.D. Introduction to Automata Theory, Languages and Computation. Addison
Wesley, Reading, Mass., 418 pages, 1979.

[34] Hurfin M., Mostefaoui A. and Raynal M., A Versatile Family of Consensus Protocols Based on Chandra-
Toueg’s Unreliable Failure Detectors. IEEE Transactions on Computers, 51(4):395-408, 2002.

[35] Hurfin M. and Raynal M., A simple and Fast Asynchronous Consensus Protocol Based on a Weak
Failure Detector. Distributed Computing, 12(4):209-223, 1999.

[36] Koo R. and Toueg S., Effects of Message Loss on the Termination of Distributed Protocols. Information
Processing Letters, 27:181-188, 1987.

[37] Lamport L., Proving the Correctness of Multiprocess Programs. IEEE Transactions on Software Engi-
neering, SE-3(2):125-143, 1977.

[38] Larrea M., Arèvalo S. and Fernández A., Efficient Algorithms to Implement Unreliable Failure Detec-
tors in Partially Synchronous Systems. Proc. 13th Symposium on Distributed Computing (DISC’99),
Bratislava (Slovakia), Springer Verlag LNCS #1693, pp. 34-48, 1999.

[39] Larrea M., Fernández A. and Arèvalo S., Optimal Implementation of the Weakest Failure Detector for
Solving Consensus. Proc. 19th Symposium on Reliable Distributed Systems (SRDS’00), IEEE Computer
Society Press, pp. 52-60, Nuremberg (Germany), 2000.

[40] Mostefaoui A., Mourgaya E. and Raynal M., An Introduction to Oracles for Asynchronous Distributed
Systems. Future Generation Computer Systems, 18(6):757-767, 2002.

[41] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of Failure Detectors. Proc.
Int. IEEE Conference on Dependable Systems and Networks (DSN’03), IEEE Computer Society Press,
pp. 351-360, San Francisco (CA), 2003.

[42] Mostefaoui A., Powell D., and Raynal M., A Hybrid Approach for Building Eventually Accurate Failure
Detectors. 10th IEEE Pacific Rim Int. Symposium on Dependable Computing (PRDC’2004), IEEE
Computer Society Press, pp. 57-65, Papeete (Tahiti, France), 2004.

ACM SIGACT News 69 March 2005 Vol. 36, No. 1



[43] Mostefaoui A., S. Rajsbaum S. and Raynal M., Versatile and Modular Consensus Protocol. Int.
IEEE/IFIP Conf. on Dependable Systems and Networks (DSN’02), IEEE Computer Society Press,
pp. 364-373, Washington DC, 2002.

[44] Mostefaoui A., Rajsbaum S. and Raynal M., Conditions on Input Vectors for Consensus Solvability in
Asynchronous Distributed Systems. Journal of the ACM, 50(6):922-954, 2003.

[45] Mostefaoui A., S. Rajsbaum S. and Raynal M., The Combined Power of Conditions and Information
on Failures to Solve Asynchronous Set Agreement. Tech Report #1688, IRISA, Université de Rennes
(France), 2005. http://www.irisa.fr/bibli/publi/pi/2005/1688/1688.html

[46] Mostefaoui A. and Raynal M., Solving Consensus Using Chandra-Toueg’s Unreliable Failure Detectors:
a General Quorum-Based Approach. Proc. 13th Symp. on DIStributed Computing (DISC’99), Springer
Verlag LNCS #1693, pp. 49-63, Bratislava (Slovakia), 1999.

[47] Mostefaoui A. and Raynal M., Low-Cost Consensus-Based Atomic Broadcast. 7th IEEE Pacific Rim
Int’l Symposium on Dependable Computing (PRDC’2000), IEEE Computer Society Press, UCLA, Los
Angeles (CA), pp. 45-52, 2000.

[48] Mostefaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters, 11(1):95-107, 2001.

[49] Mostefaoui A., Raynal M. and Travers C., Crash-Resilient Time-free Eventual Leadership. Proc. 23th
IEEE Symposium on Reliable Distributed Systems (SRDS’04), IEEE Computer Society Press, pp. 208-
217, Florianõpolis (Brasil), October 2004.

[50] Mostefaoui A., Raynal M. and Tronel F., The Best of Both Worlds: a Hybrid Approach to Solve
Consensus. Proc. Int. Conference on Dependable Systems and Networks (DSN’00), IEEE Computer
Society Press, pp. 513-522, New-York City, 2000.

[51] Pease L., Shostak R. and Lamport L., Reaching Agreement in Presence of Faults. Journal of the ACM,
27(2):228-234, 1980.

[52] Pedone F. and Schiper A., Handling Message Semantics with Generic Broadcast Protocols. Distributed
Computing, 15(2):97-107, 2002.

[53] Powell D., Failure Mode Assumptions and Assumption Coverage. Proc. of the 22nd Int’l Symposium
on Fault-Tolerant Computing (FTCS-22), Boston, MA, pp.386-395, 1992.

[54] Rabin M., Randomized Byzantine Generals. Proc. 24th IEEE Symposium on Foundations of Computer
Science (FOCS’83), pp. 116-124, Los Alamitos (CA), 1983.

[55] Raynal M., Quiescent Uniform Reliable Broadcast as an Introduction to Failure Detector Oracles. Proc.
6th Int. Conference on Parallel Computing Technologies (PaCT’01), Novosibirsk, Springer Verlag LNCS
#2127, pp. 98-111, 2001.

[56] Raynal M., Detecting Crash Failures in Asynchronous Systems: What? Why? How? Tutorial given at
Proc. Int. Conference on Dependable Systems and Networks (DSN’04), Florence (Italy), 2004.

[57] Raynal M. and Tronel F., Group Membership Failure Detection: a Simple Protocol and its Probabilistic
Analysis. Distributed Systems Engineering Journal, 6(3):95-102, 1999.

[58] Schiper A. Early Consensus in an Asynchronous System with a Weak Failure Detector. Distributed
Computing, 10:149-157, 1997.

ACM SIGACT News 70 March 2005 Vol. 36, No. 1


