A multi-layer architedure for high avail able Enterprise JavaBeans*

Marcia Pasin' Taisy Silva Weber' Michel Riveill *
! Universidade Federal do Rio Grande do Sul ? Université de Nice— Sopha Antipalis
Instituto de Informética Ecole Supérieure en Sciences Informatiques/
Av. Bento Gongadves, 9500— CampusdoVae 930route des Colles— BP 145
CEP 91501970Caixa Postal 15064 06903Sophia Antipalis Cedex — France

Porto Alegre — RS — Braal

Abstraa

EJB (Enterprise JavaBeans) spec does not describe high avail ability as one of its properties. If
the gplication server fails, the service remains unavailable while it recvers. Some EJB
server vendars claim to provide this desirable property implementing server replicas through
centralized protocols. Unfortunately, these protocols could lead to an uravailable service if
the wordinator server crashes. We ae presenting a new architedure aming high available
EJB servers based on dstributed concepts. Our replicas are modeled as gate madines
synchronized by goup communicaion pimitives. We adieve high availability to EJB
appli cation servers runnng stateful and statelesssesgon beans.

Keywords — high avail ability, replication, goup communicaion, Enterprise JavaBeans.

1 Introduction

The EJB (Enterprise JavaBeans) spec|[9] describes a comporent system architedure based on
a multi-tier framework. This architedure mainly comprises the dient, the EJB application
server and the database server. Programmers build EJB applicaions in a transparent and
adaptable way. They devdop their applicaions (the enterprise service or functional
requirements) withou worry with non-functional properties (as persistency, seaurity,
transadion management and scaability), and deploy their applications using a deployment
tod. The deployment tod automaticdly includes non-functional properties.

EJB applicaions can be transaction-aware. A transadion could aggregate operations on
multiple objeds. It is a sequence of methods encgpsulated by a begin operation and a commit
operation. If at least one method inside agiven transadion canna be completed dwe to a
system failure, al updates generated by this transadion will be undore. The transadion
exeaution will be aéorted and an exception will be thrown.

Objeds from the EJB architedure ae cdled beans. EJB applicaion servers host and
manage beans througha cmporent cdled container. Clients could request operations (read
or updkte astate) to any bean just running an EJB applicaion. The main kinds of beans are
sesson kean and entity beans.

A sesson bean just retains date during a dient-server sesson. When the sesson
terminates, its date is lost. The sesgon bean state is volatile and urique to ead client (one
individual threal is used to ead client). Sesgon beans are not sharable. Otherwise, entity
beans maintain their persistent states through a database @nredion and could be sharable
between dfferent clients. This work provides high availability to sesson keans. High
avail able persistent states will be treaed in afuture work.

* This work was suppated by the French Ministry of Research through pojed RNTL Arcad and bythe
Brazli an Ministry of Educaion throughCNPq contrads 14280898-9 and 20059400-1.

The EJB spec asaures a safe state to beans despite fail ures. However it does nat guarantee
high avail ability. If the EJB server goes down, its srvice will be unavailable: the state of a
sesson bkean is volatile and will be lost. High availability requires replicaion and
synchronizaion protocols. Group communicaion hes proven to be a onvenient abstradion
for implementing dstributed systems requirements, particularly for synchronizing replicas
[4]. Implementing goup communicaion concepts in transadional systems, as the EJB
architedure, isquite different [11].

We ae etending the EJB specto allow building replicaed beans withou changing the
way that users develop and deploy their EJB applicaions. Users do nd have to worry with
replica management. They can huild their EJB applications in the usual (non—replicated) way
and, ogionally, could spedfy which servicewill be replicaed using the deployment tod. Our
repli cated service eploits groupcommunicationto minimize @mmunication costs.

High avail ability is archived through a multi-ayer architedure that comprises a group
communicaion layer, a replicaion layer and a conwventional EJB layer. An open EJB
applicaion server implementation [5] provides the EJB layer. The replication layer provides
consistency to the replicated EJB applicaion servers. Consistency is adhieved through a
synchronizaion protocol following the state machine approach [7]. A group communicaion
system [2] provides siitable services to the replication layer. These services assure group
membership, fail ure detedion and reli able multi cast primitives even in presence of fail ures.

The paper follows presenting the sedion 2 with high available sesson beans
requirements. The sedion 3 describes the distributed system model with the state madiine
approach. The sedion 4 describes our system design. The sedion 5 describes the replicaed
system implementation. The sedion 6 describes our preliminary results. The sedion 7
presents ome related works. The paper ends with concluding remarks.

2 High avail able sesson beans

There ae two kinds of sesson keans: stateful and stateless Sateful beans retain state on
behalf of an individual client. Satelessbeans are nat aware of any client history. Remvery a
server with stateless gsson beans is draightforward becaise there is no information abou
the bean state stored in the server side. It requires the dient reissie the request to another EJB
server —it means failover.

Achieving hgh avail ability to stateful sesson beans requires repli cate the bean state held
during a bean method exeaution. Here we multicast this date to a replicaion goup sing
group communicaion concepts. Implementing failover and maintaining the exactly—once
semarntic despite failures are dso required. In the exadly—once semantic, the dient makes a
request and is guaranteed by the reply that the request has been exeauted.

3 Distributed system model

Our distributed system model is compased by clients and servers (EJB applicaion servers).
Clients could request read and updite operations to oljeds (beans) placed in servers. Servers
compaose areplication goup, and follow the state machine approach [7]. Here the state
madhine gproach uses group communicaion gimitives to achieve onsistency to al group
members. Initially the dient request is exeauted locdly at one server (the primary) and then
the new state is multi cast to all group members.

The state machine approach defines a cnsistent behavior to a wlledion o distributed
objeds. These objeds run identical state madines (here, the EJB application servers) and
perform the same sequence of operations, prodwcing the same sequence of outputs and
transitioning throughthe same sequence of states.

The behavior of the replicaed oljeds is indistingushable from that of a single high
avail able objed. Eadh client knows only the primary addressand isaues the request diredly to
it. The primary exeautes the service locdly and then forwards its new state to the badkups
using a multi cast primitive [4]. This primitive aaures that all objeds in the system (the objed
group — or, in ou case the replicaion goup recave messages (state updktes) in the same
order, so that all objeds perform the same sequence of state updates.

When a dient wants to use high available service it first contads a name service to
receve aunique primary server address The other servers in the replicaion goup work as
backups. Then the dient isaues requests to this unique primary server. A request could be a
read or an updite operationto an oljed state (or bean state).

A server could work as primary server to a dient and as backup to another becaise the
name service could provide different primary addresses to dfferent clients. This approach
allows having multiple primaries simultaneously and avoids battleneds, a typicd drawbadk
of primary—badkup approad.

Faulty badkups are transparent to clients. Faulty primaries are nat transparent to its cli ents
and require the dients sleding a new primary and reisaie the last request. The new primary
discards the dready dore operations related to the issuied request. Clients deted faulty
primaries using timeouts.

We a@aume an asynchronows distributed system where neither messge delays nor
computing speeds can be perfedly bounad. Messges between dfferent servers canna be
lost because an underneah group communication system provides reliable messages as well
group membership. Group members can be sssumed as fault—suspeded, becaise there is no
way to dstingue between owverloaded and faulty members. The group communication system
also provides a failure detedor to remove fault—suspeded state macdines from the objed
group. A fault—suspeded state machine could be (repaired and) restarted and regjoins the
objed group bymeans of state transfer from surviving members.

4 System design througha multi—ayer architecure

The high available service is provided by a multi-ayer architedure (figure 1). Each server
(primary or badkup) has a group communicaion layer, a replicaion layer and an application
layer. These layers are previously used by Amir et al. [1]. Here the goplicaion layer is played
by the JOnAS EJB server [5]. The JavaGroups communicaion system [2] provides suppat to
the group communication layer. These systems are open source and implemented using Java
language. As bath systems are implemented as comporent abstradions, its integration was
straightforward.

4.1 Applicaion server layer

The @plicaion server layer follows the EJB spec and manages the beans through a
comporent cadled container. The ntainer provides al non-functional properties (as
persistency, seaurity, transadion management and scadability). The bean comporents [9] are
the remote interface, the home interface, the bean classand the deployment descriptor. These
comporents are developed by the programmer. The remote interfaceis the dient view of the
bean. It contains the signatures of all bean methods (functional properties). The home
interface contains the signatures of al methods for the bean life gycle (credion, suppresson)
and for instances retrieval (finding ore or several beans) used by the dient. The bean class
implements the functional properties, and all methods all owing the bean to be managed in the
EJB applicaion server. The deployment descriptor contains the bean properties that may be
edited at configuration time. The beans properties could identify, for example, if a bean is
stateful or stateless

User layer i EIB server 1

B . |
EIB Fver E -

RMETIOR $

Feplication layet v
Replicated server | i 1

Griug !
Cororrmnication | GC server
layer ; l

L — TOCAET + membership--- ---------------m-- oo

Figure 1 — The multi-ayer architecure
4.2 Replicaion layer

The replication layer implements an interface between the EJB applicaion server and the
group communicdion layers. Whenever a locd server recaves a request from a dient to
exeaute an upcite method in a stateful bean, and after exeauting this method, it signals the
replicaion layer. The replication layer generates a message antaining the new bean state and
forwards it to the group communication layer, which multicast this message to the group
members using the TOCAST (total-order multicast) primitive [4]. Each group member
receves the message in its locd group communicaion layer and celivers it to the replication
layer. By delivering the same set of messages using the TOCAST primitive, the dgorithm
guarantees that al servers hold the same bean state to a given client. If one gplication server
in the groupfail s, clients are guaranteed accessto the same state throughthe badkups.

To minimize ommunicaion costs, orly new states are multicast to badkups. The
replication layer could be ale to dstingush updites from simple reads to beans, either
identifying the exeauted method @ comparing the new signaing state with the stored
previous one. Examining the bean code in pre-compiling time, it is possble to identify the
methods that could pdentially chancethe bean state.

Update propagation and transadional attributes

Update propagation is an important drawbadk of distributed replicated systems because it can
dedde the system performance There ae two dfferent strategies to propagate updates:
deferred updde and imnediate updae. The deferred updite strategy processes al transadions
locdly at one server (the primary one) and forwards the last fina result to the others at
commit time. Immediate upcdete synchronizes every updcate acossall servers.

Although dferred upchte has advantages over immediate update, as reducing the number
of distributed states, it requires exeauting the service from the last committed transadion
when a fail ure happens. Both strategies could be implemented to analyzetheir efficiency in a
comparative study.

The EJB spec suppats both transaction-aware and non-transaction-aware beans. Non—
transaction-aware beans requires using immediate update whenever. Transaction-aware
beans require analyzing the transadional attribute available in the bean deployment
descriptor. The Not Suppor t ed andNever transadiona attributes ever require immediate
update. Requi red, Requi resNew, Mandatory and Supports attributes suppat
both immediate update and deferred updite. The Requi r esNew attribute suppats both

immediate and deferred updiate. Both exeaution eff eds are the same because it requires a new
transadion per ead remote methodinvocation.

4.3 Groupcommunication layer

The group communicaion layer is implemented by the JavaGroups group communication
system [2]. The group communication system uses avail able protocol layers resporsible for
adiieving goup membership, total ordering d messages, and dher properties as building
blocks with which the high-evel state madhine repli catiion semantics are obtained.

5 Implementation

This sdion describes the implementation o the replicaion layer. The implementation
addresss the server—side and client—side, and bdh kinds of session beans (stateless and
stateful). At the dient—side, failover enables sleding a new server to provide accss to
stateless and stateful session beans. At the server—side, the replication layer overloads a non-
replicated JOnAS server to multi cast distributed state from stateful session beans.

5.1Falover

In the EJB spec, before anew bean instance is creaed, the dient exeautes a lookup operation
using a JNDI (Java Naming and Diredory Interface server to contads the name service The
JNDI server provides an application server addressthat can be used by the dient to creae a
bean instance in the EJB server using the home interface. Then the dient could accessthe
bean methods using the remote interface. To finali ze, the dient destroys the bean instance.

Implementing a high available service requires locaing the bean in a badkup when a
failure occurs — it means failover. The lookup operation is reexeauted by the dient to locae
another bean copy in the badkup server. Then a new bean instance is creaed in this badkup.
Sateful beans require state update from the last state receved by the multi cast message.

We implement falover redireding faulty requests in the dient—side. Hooks could be
transparently included in the dient—side by a pre-compiler. A hook is a mncept borrowed
from the EMACS editor, which allows exeauting arbitrary commands before performing
some operation. We change Java exceptions to bah lookup and create bean operations by
new operations to all ow fail over. This rviceis transparent to the programmer.

5.2 Replicaed servers

Aswe saw, ou replicaed server implements a new replication layer between JavaGroups and
JONnAS. This layer is resporsible to manage the replication goup.Thisis dore by owerloading
classes of the non—eplicaed JONAS server to include the TOCAST primitive and introducing
hooks in the bean class. Replicaed servers join the groupand wse this primitive to setting the
distributed state to stateful session beans. Sateful and stateless session beans are
distingushed by means of code inspedion using the bean deployment descriptor.

Codeinspedionisaso required to dstingush read from update methods. It could be dore
observing by introspedion the method signature in the bean remote interface. A non-void
classcould be interpreted as an updite operation. Classes with void as return parameter could
be asumed as a real operation. Optionally, the user could spedfy which methods will be
replicaed using the deployment todl.

To the programmer, high avail able beans are built in a transparent way, by wsing a pre—
compiler. This pre-compiler changes the bean code to include hooks that enable the high

avail able service takes place This approad is also used by the GenlC compiler from JOnAS
[5], which includes non-functional properties using the bean interfaces.

Distributed state

A distributed state contains information abou adive stateful beans in the replicaion goup.
Eadh dstributed state holds information about the last bean state, the dient who is using this
bean and the primary server whois proving accessto the bean methods.

The EJB spec enables one or more create methods to a bean. These aeae methods can
differ by the parameters ent to ead method. To implement the repli cated service, we wuld
overload al crede methods with a new parameter cdled failover. Having the parameter
fail over as true value means that the new bean instance shoud be update with the value stored
in the last distributed state, because the bean exeaution was fail over. Once the serviceis dore
and the dient disconreds, a particular bean instance is destroyed. Then al group members
remove dl distributed states from this cli ent—server sesson.

Remote invocation in the presence of fail ures

The arrent EJB spec suppats transadiona services over non~eliable infrastructures. It
implements the best—effort exeation semantic. In the best—effort semantic, the dient sends
the message, and the dient and infrastructure do nd attempt retransmissons. High avail able
services require a more sophisticaed approach despite failures. Five different classes of
failures [10] can occur in remote procedure all systems. These same failures could aso
occur in remote method invocation systems. They are required be treaed by our replicaed
system because the EJB architecture is based onremote methodinvocation.

The first one, the dient is unalle to locate the server, here is treaed providing fail over.
Sateless ®sgon bkeans require the at-east-once semartic: the dient makes a request and
retries the request urtil it receves the resporse. If afailure occurs, the dient is enable try all
group member candidates, which are spedfied in alist by the system administrator. If noreis
available, in the worst case, the dient finally throws an exception. Duplicate message pro-
cessng by the dient is nat aproblem, becaise the bean state is not retained in the server—side.

Sateful sesson bkeans require the at-most—once or the exactly-once semartics. In the
exactly—once semartic, the dient makes a request and is guaranteed by the reply that the
request has been exeauted. An approach to asare exactly-once semantic in replicaed
transadiona systems is $rowed in Frolund et al [3]. The at—-most—once builds on the at—
least—once scenario. The dient retries the request urtil it gets a resporse. A mechanism like
message identifiers allows the server to suppressany dugicae requests, insuring the request
isnot exeauted multi ple times. We foll ow this approacd.

The second ore, the request message to the dient to the server is logt, is treged using
timeout in the dient—side, foll owing the EJB spec The third ore, the resporse from the server
to the dient is lost, is treaed using timeout in the dient—side. In this case the dient reissues
the request to the same server. The message identifiers alow the server to suppress any
dugicae requests. The forth ore, the server crashes after recaving arequest, we dso trea
using message identifiers to asaure the at-most-once semartic. Finaly, the fifth ore, the dient
crashes after sending arequest, could pdentialy generate orphan lean instances. The EJB
spec treas orphan lean instances through the cntainer. It periodicdly removes all bean
instances from the server memory if they are not current used. We need extend this approach
to remove dl corresponcent distributed state establi shed to that client.

6 Preliminary results

Initially our implementing effort was focused in changing the GenlC compiler provided by
the JONAS EJB server. The programmer builds its beans and uses the GenlC compiler to
mainly generate the mntainer classes. However, the GenlC ads over the home and the remote
interface We neead ads over the bean classthat adualy hdds the bean state. So we need
include hodks in the bean classnat in the home and remote interface as Genl C does.

Presently, we ae testing ou implementation for automatic re—routing d clients' requests
(client side) and the gproadh to establishing the distributed state to stateful sesson beans
(server side). A performance study will take into acourt diff erent replica number and fail ure
scenarios. We exped that replication daes not considerably disturbs the goplication resporse
time, when compared with non-replicaed application servers, by alowing requests to be
handed by several nodes rather than ore besides eliminating a single point—of—fail ure.

7 Related works

Some EJB applicdion server providers implement high availability to sesson beans. They
mainly use the in-memory replication technique. In-memory replicaion hes two dfferent
variations. The first approadh writes information to a centralized server (al servers in the
cluster use the same centralized server). In the second approach, eat server chooses an
arbitrary badup. The BEA WebLogic 6.0 wses this last approach and the HP Bluestone
Total—e—server uses the first one. However, these and aher solutions [6] are implemented
using cluster concepts. We ae using a more non—estrictive model. Our system runs over a
locd network and could suppat asynchronous communication.

There is no acarate information avail able @ou how state propagation is applied in ather
high available EJB servers. The mgjority of the implementations are proprietary solutions.
However, these implementations san forwarding dstributed states using centralized
approadhes as n—phase wmnit protocols. Two—phase cmmit protocols are mainly used to
asure @nsistent states in dstributed transadional systems. In these protocols, a process
cdled coordinator applies distributed state to all replicas. They could accet human
intervention to solve @namal behavior because they may block if the mordinator crashes.
Three-phase commit protocols provide higher avail ability, bu they assume arestricted fail—
stop model. Group communicaion abstradions allow non-blocking protocols and suppat a
wider failure model. It has proven to be a o©nvenient abstradion to improve distributed
applicaion avail ability.

Some related work is $owed in de Sowsa [8]. That work aso dffers from our work
mainly becaise we use agroup communicaion system to provide reliable coommunication
through EJB servers. It asaures that our multicast protocols are drealy extensively validate
avoiding implementing ou own protocols and minimizing programming errors. The solution
described in de Sowsa [8] does nat mention several aspeds as enabling multiple primaries
simultaneously to avoid bdtlenedks. Replicaion (and high avail ability — our aim) is not the
main aim of that work: its main aim is explore the reflexive feaures of the EJB architedure.

Our work aso dffers from CORBA solutions implemented around bah the CosNam ng
service and a centralized JNDI tree The Sybase Enterprise Applicaion Server uses this
approach in a duster. Name servers house the centralized JNDI treefor the duster and keep
tradk of which servers are orHine. If thereis afailure in between EJB methodinvocaion, the
CORBA stub retrieves another home or remote interface from an aternate server returned
from the name server. The name server is the drawbadk of this lution kecause it needs to
remain adive in ore noce d least. If all nodes that hold JNDI servers instances are down, the
system will be unavailable. Finally, centralized JNDI tree dusters suffer from an increased
time to convergence (the time the duster takes to knaw al its grver adive instances) as the

cluster grows in size. That is, scding requires adding more name servers. Our solution daes
not require time to convergence becaise we ae using the independent INDI tree gproac.

8 Concluding remarks

Transadiona systems could benefit from group communicaion to adhieve availability [11].
Nevertheless group communicaion introduces the membership management overheal that
can be reduced using suitable design dedsions. Here, these dedsions include excluding
clients from the replicaion goup (to avoid frequent membership changing) and propagating
to badkups only updates or committed results. It all ows eliminating additional communicaion
rounds and improves performance We dso expeding reducing the overheal generated by the
replication protocol enabling severa servers working as primary servers.

References

[1] Amir, Y.; Dolev, D.; Médlia—Smith, P. M.; Moser, L. E. Robust and efficient replication
using goup comnunication. Tedchnicd Report CS9420, Institute of Computer Science,
Hebrew University of Jerusalem, Nov. 1994,

[2] Ban, B. JavaGroups user's guide. Department of Computer Science, Cornell University.
August 1999. 73p.

[3] Frolund, S. and Gueraoui, R.; Implementing e-transactions with asynchronows
replication. Proceedings of the International Conference on Dependable Systems and
Networks 2000,New York, IEEE, June 2000.

[4] Guerraoui, R.; Schiper, A. Fault tolerance by replication in dstributed systems. In Proc.
Conference on Reliable Software Techndogies (invited paper), p. 3857. Springer Verlag,
LNCS 1088,June 1996.

[5] JONAS— Java Open Application Srver — http://www.oljedweb.org/~jonas

[6] Kang, Abraham. J2EE clustering, Part 1. Clustering techndogy is crucial to good
Website design; do you know the basics? JavaWorld. Feb. 2001. ktp://www.javaworld.com/
javaworld/jw—02-2001jw—-0223-extremescd e.html

[7] Schreider, F. B. Replication managment using the state machine approach. In:
Mullender, Sape (Ed.). Distributed Systems. 2. ed., New York: ACM Press 1993 p. 169-198.
[8] de Sousa, C.V.P.B.; Mazero, Carlos Alberto. Uma abadagem reflexiva para replicacdo
de comporentes srvidores da dataforma Java para corporacdes. WTF 2000.Curitiba— PR,
pp.106-111.

[9] Sun Microsystems, Inc. EJB spedfication 2.0.

[10] Tanembaum. A.S. Comrmunication in dstributed systems. In: Modern Operating
Systems. Prentice Hall, New Jersey 1992. pp.395462.

[11] Wiesmann, M.; Pedore, F.; Schiper, A.; Kemme, B. and Alonso, G. Understandng
replication in daabases and dstributed systems. Proc. ICDCS 2000, pp.264274, Taipei,
Taiwan, R.O.C., April 2000.

