
 

A multi–layer architecture for high available Enterprise JavaBeans*  
 

 

Marcia Pasin1   Taisy Silva Weber1   Michel Riveill 2 
 

1 Universidade Federal do Rio Grande do Sul  
Instituto de Informática  

Av. Bento Gonçalves, 9500 – Campus do Vale  
CEP 91501–970 Caixa Postal 15064  

Porto Alegre – RS – Brazil  

2 Université de Nice – Sophia Antipolis 
Ecole Supérieure en Sciences Informatiques/  

930 route des Colles – BP 145 
06903 Sophia Antipolis Cedex –– France 

 

Abstract 

EJB (Enterprise JavaBeans) spec does not describe high availabilit y as one of its properties. If 
the application server fails, the service remains unavailable while it recovers. Some EJB 
server vendors claim to provide this desirable property implementing server replicas through 
centralized protocols. Unfortunately, these protocols could lead to an unavailable service if 
the coordinator server crashes. We are presenting a new architecture aiming high available 
EJB servers based on distributed concepts. Our replicas are modeled as state machines 
synchronized by group communication primitives. We achieve high availabilit y to EJB 
application servers running stateful and stateless session beans.  

Keywords – high availabilit y, replication, group communication, Enterprise JavaBeans. 
 

1 Introduction 

The EJB (Enterprise JavaBeans) spec [9] describes a component system architecture based on 
a multi–tier framework. This architecture mainly comprises the client, the EJB application 
server and the database server. Programmers build EJB applications in a transparent and 
adaptable way. They develop their applications (the enterprise service or functional 
requirements) without worry with non–functional properties (as persistency, security, 
transaction management and scalabilit y), and deploy their applications using a deployment 
tool. The deployment tool automatically includes non–functional properties. 

EJB applications can be transaction–aware. A transaction could aggregate operations on 
multiple objects. It is a sequence of methods encapsulated by a begin operation and a commit 
operation. If at least one method inside a given transaction cannot be completed due to a 
system failure, all updates generated by this transaction will be undone. The transaction 
execution will be aborted and an exception will be thrown. 

Objects from the EJB architecture are called beans. EJB application servers host and 
manage beans through a component called container. Clients could request operations (read 
or update a state) to any bean just running an EJB application. The main kinds of beans are 
session bean and entity beans. 

A session bean just retains state during a client-server session. When the session 
terminates, its state is lost. The session bean state is volatile and unique to each client (one 
individual thread is used to each client). Session beans are not sharable. Otherwise, entity 
beans maintain their persistent states through a database connection and could be sharable 
between different clients. This work provides high availabilit y to session beans. High 
available persistent states will be treated in a future work. 
______________________ 

* This work was supported by the French Ministry of Research through project RNTL Arcad and by the 
Brazili an Ministry of Education through CNPq contracts 142808/98–9 and 200594/00–1. 



 

The EJB spec assures a safe state to beans despite failures. However it does not guarantee 
high availabilit y. If the EJB server goes down, its service will be unavailable: the state of a 
session bean is volatile and will be lost. High availabilit y requires replication and 
synchronization protocols. Group communication has proven to be a convenient abstraction 
for implementing distributed systems requirements, particularly for synchronizing replicas 
[4]. Implementing group communication concepts in transactional systems, as the EJB 
architecture, is quite different [11]. 

We are extending the EJB spec to allow building replicated beans without changing the 
way that users develop and deploy their EJB applications. Users do not have to worry with 
replica management. They can build their EJB applications in the usual (non–replicated) way 
and, optionally, could specify which service will be replicated using the deployment tool. Our 
replicated service exploits group communication to minimize communication costs. 

High availabilit y is archived through a multi–layer architecture that comprises a group 
communication layer, a replication layer and a conventional EJB layer. An open EJB 
application server implementation [5] provides the EJB layer. The replication layer provides 
consistency to the replicated EJB application servers. Consistency is achieved through a 
synchronization protocol following the state machine approach [7]. A group communication 
system [2] provides suitable services to the replication layer. These services assure group 
membership, failure detection and reliable multicast primitives even in presence of failures. 

The paper follows presenting the section 2 with high available session beans 
requirements. The section 3 describes the distributed system model with the state machine 
approach. The section 4 describes our system design. The section 5 describes the replicated 
system implementation. The section 6 describes our preliminary results. The section 7 
presents some related works. The paper ends with concluding remarks. 
 

2 High available session beans 

There are two kinds of session beans: stateful and stateless. Stateful beans retain state on 
behalf of an individual client. Stateless beans are not aware of any client history. Recovery a 
server with stateless session beans is straightforward because there is no information about 
the bean state stored in the server side. It requires the client reissue the request to another EJB 
server – it means failover.  

Achieving high availabilit y to stateful session beans requires replicate the bean state held 
during a bean method execution. Here we multicast this state to a replication group using 
group communication concepts. Implementing failover and maintaining the exactly–once 
semantic despite failures are also required. In the exactly–once semantic, the client makes a 
request and is guaranteed by the reply that the request has been executed. 
 

3 Distributed system model 

Our distributed system model is composed by clients and servers (EJB application servers). 
Clients could request read and update operations to objects (beans) placed in servers. Servers 
compose a replication group, and follow the state machine approach [7]. Here the state 
machine approach uses group communication primitives to achieve consistency to all group 
members. Initially the client request is executed locally at one server (the primary) and then 
the new state is multicast to all group members. 

The state machine approach defines a consistent behavior to a collection of distributed 
objects. These objects run identical state machines (here, the EJB application servers) and 
perform the same sequence of operations, producing the same sequence of outputs and 
transitioning through the same sequence of states.  



 

The behavior of the replicated objects is indistinguishable from that of a single high 
available object. Each client knows only the primary address and issues the request directly to 
it. The primary executes the service locally and then forwards its new state to the backups 
using a multicast primitive [4]. This primitive assures that all objects in the system (the object 
group – or, in our case the replication group) receive messages (state updates) in the same 
order, so that all objects perform the same sequence of state updates.  

When a client wants to use high available service, it first contacts a name service to 
receive a unique primary server address. The other servers in the replication group work as 
backups. Then the client issues requests to this unique primary server. A request could be a 
read or an update operation to an object state (or bean state).  

A server could work as primary server to a client and as backup to another because the 
name service could provide different primary addresses to different clients. This approach 
allows having multiple primaries simultaneously and avoids bottlenecks, a typical drawback 
of primary–backup approach. 

Faulty backups are transparent to clients. Faulty primaries are not transparent to its clients 
and require the clients selecting a new primary and reissue the last request. The new primary 
discards the already done operations related to the issued request. Clients detect faulty 
primaries using timeouts. 

We assume an asynchronous distributed system where neither message delays nor 
computing speeds can be perfectly bounded. Messages between different servers cannot be 
lost because an underneath group communication system provides reliable messages as well 
group membership. Group members can be assumed as fault–suspected, because there is no 
way to distingue between overloaded and faulty members. The group communication system 
also provides a failure detector to remove fault–suspected state machines from the object 
group. A fault–suspected state machine could be (repaired and) restarted and rejoins the 
object group by means of state transfer from surviving members. 
 

4 System design through a multi–layer architecture 

The high available service is provided by a multi–layer architecture (figure 1). Each server 
(primary or backup) has a group communication layer, a replication layer and an application 
layer. These layers are previously used by Amir et al. [1]. Here the application layer is played 
by the JOnAS EJB server [5]. The JavaGroups communication system [2] provides support to 
the group communication layer. These systems are open source and implemented using Java 
language. As both systems are implemented as component abstractions, its integration was 
straightforward.  
 

4.1 Application server layer 

The application server layer follows the EJB spec and manages the beans through a 
component called container. The container provides all non–functional properties (as 
persistency, security, transaction management and scalabilit y). The bean components [9] are 
the remote interface, the home interface, the bean class and the deployment descriptor. These 
components are developed by the programmer. The remote interface is the client view of the 
bean. It contains the signatures of all bean methods (functional properties). The home 
interface contains the signatures of all methods for the bean li fe cycle (creation, suppression) 
and for instances retrieval (finding one or several beans) used by the client. The bean class 
implements the functional properties, and all methods allowing the bean to be managed in the 
EJB application server. The deployment descriptor contains the bean properties that may be 
edited at configuration time. The beans properties could identify, for example, if a bean is 
stateful or stateless. 



 

 

Figure 1 – The multi–layer architecture 

4.2 Replication layer 

The replication layer implements an interface between the EJB application server and the 
group communication layers. Whenever a local server receives a request from a client to 
execute an update method in a stateful bean, and after executing this method, it signals the 
replication layer. The replication layer generates a message containing the new bean state and 
forwards it to the group communication layer, which multicast this message to the group 
members using the TOCAST (total–order multicast) primitive [4]. Each group member 
receives the message in its local group communication layer and delivers it to the replication 
layer. By delivering the same set of messages using the TOCAST primitive, the algorithm 
guarantees that all servers hold the same bean state to a given client. If one application server 
in the group fails, clients are guaranteed access to the same state through the backups. 

To minimize communication costs, only new states are multicast to backups. The 
replication layer could be able to distinguish updates from simple reads to beans, either 
identifying the executed method or comparing the new signaling state with the stored 
previous one. Examining the bean code in pre–compili ng time, it is possible to identify the 
methods that could potentially chance the bean state. 
 

Update propagation and transactional attributes 

Update propagation is an important drawback of distributed replicated systems because it can 
decide the system performance. There are two different strategies to propagate updates: 
deferred update and immediate update. The deferred update strategy processes all transactions 
locally at one server (the primary one) and forwards the last final result to the others at 
commit time. Immediate update synchronizes every update across all servers. 

Although deferred update has advantages over immediate update, as reducing the number 
of distributed states, it requires executing the service from the last committed transaction 
when a failure happens. Both strategies could be implemented to analyze their eff iciency in a 
comparative study. 

The EJB spec supports both transaction–aware and non–transaction–aware beans. Non–
transaction–aware beans requires using immediate update whenever. Transaction–aware 
beans require analyzing the transactional attribute available in the bean deployment 
descriptor. The NotSupported and Never transactional attributes ever require immediate 
update. Required, RequiresNew, Mandatory and Supports attributes support 
both immediate update and deferred update. The RequiresNew attribute supports both 



 

immediate and deferred update. Both execution effects are the same because it requires a new 
transaction per each remote method invocation. 
 

4.3 Group communication layer 

The group communication layer is implemented by the JavaGroups group communication 
system [2]. The group communication system uses available protocol layers responsible for 
achieving group membership, total ordering of messages, and other properties as building 
blocks with which the high–level state machine replication semantics are obtained. 
 

5 Implementation 

This section describes the implementation of the replication layer. The implementation 
addresses the server–side and client–side, and both kinds of session beans (stateless and 
stateful). At the client–side, failover enables selecting a new server to provide access to 
stateless and stateful session beans. At the server–side, the replication layer overloads a non–
replicated JOnAS server to multicast distributed state from stateful session beans.  
 

5.1 Failover  

In the EJB spec, before a new bean instance is created, the client executes a lookup operation 
using a JNDI (Java Naming and Directory Interface) server to contacts the name service. The 
JNDI server provides an application server address that can be used by the client to create a 
bean instance in the EJB server using the home interface. Then the client could access the 
bean methods using the remote interface. To finalize, the client destroys the bean instance.  

Implementing a high available service requires locating the bean in a backup when a 
failure occurs – it means failover. The lookup operation is reexecuted by the client to locate 
another bean copy in the backup server. Then a new bean instance is created in this backup. 
Stateful beans require state update from the last state received by the multicast message. 

We implement failover redirecting faulty requests in the client–side. Hooks could be 
transparently included in the client–side by a pre–compiler. A hook is a concept borrowed 
from the EMACS editor, which allows executing arbitrary commands before performing 
some operation. We change Java exceptions to both lookup and create bean operations by 
new operations to allow failover. This service is transparent to the programmer. 
 
5.2 Replicated servers 
 
As we saw, our replicated server implements a new replication layer between JavaGroups and 
JOnAS. This layer is responsible to manage the replication group. This is done by overloading 
classes of the non–replicated JOnAS server to include the TOCAST primitive and introducing 
hooks in the bean class. Replicated servers join the group and use this primitive to setting the 
distributed state to stateful session beans. Stateful and stateless session beans are 
distinguished by means of code inspection using the bean deployment descriptor. 

Code inspection is also required to distinguish read from update methods. It could be done 
observing by introspection the method signature in the bean remote interface. A non–void 
class could be interpreted as an update operation. Classes with void as return parameter could 
be assumed as a read operation. Optionally, the user could specify which methods will be 
replicated using the deployment tool. 

To the programmer, high available beans are built i n a transparent way, by using a pre–
compiler. This pre–compiler changes the bean code to include hooks that enable the high 



 

available service takes place. This approach is also used by the GenIC compiler from JOnAS 
[5], which includes non–functional properties using the bean interfaces. 
 

Distributed state 

A distributed state contains information about active stateful beans in the replication group. 
Each distributed state holds information about the last bean state, the client who is using this 
bean and the primary server who is proving access to the bean methods.  

The EJB spec enables one or more create methods to a bean. These create methods can 
differ by the parameters sent to each method. To implement the replicated service, we could 
overload all create methods with a new parameter called failover. Having the parameter 
failover as true value means that the new bean instance should be update with the value stored 
in the last distributed state, because the bean execution was failover. Once the service is done 
and the client disconnects, a particular bean instance is destroyed. Then all group members 
remove all distributed states from this client–server session. 
 

Remote invocation in the presence of failures 

The current EJB spec supports transactional services over non–reliable infrastructures. It 
implements the best–effort execution semantic. In the best–effort semantic, the client sends 
the message, and the client and infrastructure do not attempt retransmissions. High available 
services require a more sophisticated approach despite failures. Five different classes of 
failures [10] can occur in remote procedure call systems. These same failures could also 
occur in remote method invocation systems. They are required be treated by our replicated 
system because the EJB architecture is based on remote method invocation. 

The first one, the client is unable to locate the server, here is treated providing failover. 
Stateless session beans require the at–least–once semantic: the client makes a request and 
retries the request until it receives the response. If a failure occurs, the client is enable try all 
group member candidates, which are specified in a list by the system administrator. If none is 
available, in the worst case, the client finally throws an exception. Duplicate message pro-
cessing by the client is not a problem, because the bean state is not retained in the server–side. 

Stateful session beans require the at–most–once or the exactly-once semantics. In the 
exactly–once semantic, the client makes a request and is guaranteed by the reply that the 
request has been executed. An approach to assure exactly-once semantic in replicated 
transactional systems is showed in Frolund et al [3]. The at–most–once builds on the at–
least–once scenario. The client retries the request until it gets a response. A mechanism like 
message identifiers allows the server to suppress any duplicate requests, insuring the request 
is not executed multiple times. We follow this approach. 

The second one, the request message to the client to the server is lost, is treated using 
timeout in the client–side, following the EJB spec. The third one, the response from the server 
to the client is lost, is treated using timeout in the client–side. In this case the client reissues 
the request to the same server. The message identifiers allow the server to suppress any 
duplicate requests. The forth one, the server crashes after receiving a request, we also treat 
using message identifiers to assure the at-most-once semantic. Finally, the fifth one, the client 
crashes after sending a request, could potentially generate orphan bean instances. The EJB 
spec treats orphan bean instances through the container. It periodically removes all bean 
instances from the server memory if they are not current used. We need extend this approach 
to remove all correspondent distributed state established to that client. 
 



 

6 Preliminary results 

Initially our implementing effort was focused in changing the GenIC compiler provided by 
the JOnAS EJB server. The programmer builds its beans and uses the GenIC compiler to 
mainly generate the container classes. However, the GenIC acts over the home and the remote 
interface. We need acts over the bean class that actually holds the bean state. So we need 
include hooks in the bean class not in the home and remote interface as GenIC does. 

Presently, we are testing our implementation for automatic re–routing of clients' requests 
(client side) and the approach to establishing the distributed state to stateful session beans 
(server side). A performance study will t ake into account different replica number and failure 
scenarios. We expect that replication does not considerably disturbs the application response 
time, when compared with non–replicated application servers, by allowing requests to be 
handled by several nodes rather than one besides eliminating a single point–of–failure.  
 

7 Related works 

Some EJB application server providers implement high availabilit y to session beans. They 
mainly use the in–memory replication technique. In–memory replication has two different 
variations. The first approach writes information to a centralized server (all servers in the 
cluster use the same centralized server). In the second approach, each server chooses an 
arbitrary backup. The BEA WebLogic 6.0 uses this last approach and the HP Bluestone 
Total–e–server uses the first one. However, these and other solutions [6] are implemented 
using cluster concepts. We are using a more non–restrictive model. Our system runs over a 
local network and could support asynchronous communication. 

There is no accurate information available about how state propagation is applied in other 
high available EJB servers. The majority of the implementations are proprietary solutions. 
However, these implementations seem forwarding distributed states using centralized 
approaches as n–phase commit protocols. Two–phase commit protocols are mainly used to 
assure consistent states in distributed transactional systems. In these protocols, a process 
called coordinator applies distributed state to all replicas. They could accept human 
intervention to solve abnormal behavior because they may block if the coordinator crashes. 
Three–phase commit protocols provide higher availabilit y, but they assume a restricted fail–
stop model. Group communication abstractions allow non–blocking protocols and support a 
wider failure model. It has proven to be a convenient abstraction to improve distributed 
application availabilit y. 

Some related work is showed in de Sousa [8]. That work also differs from our work 
mainly because we use a group communication system to provide reliable communication 
through EJB servers. It assures that our multicast protocols are already extensively validate 
avoiding implementing our own protocols and minimizing programming errors. The solution 
described in de Sousa [8] does not mention several aspects as enabling multiple primaries 
simultaneously to avoid bottlenecks. Replication (and high availabilit y – our aim) is not the 
main aim of that work: its main aim is explore the reflexive features of the EJB architecture. 

Our work also differs from CORBA solutions implemented around both the CosNaming 
service and a centralized JNDI tree. The Sybase Enterprise Application Server uses this 
approach in a cluster. Name servers house the centralized JNDI tree for the cluster and keep 
track of which servers are on–line. If there is a failure in between EJB method invocation, the 
CORBA stub retrieves another home or remote interface from an alternate server returned 
from the name server. The name server is the drawback of this solution because it needs to 
remain active in one node at least. If all nodes that hold JNDI servers instances are down, the 
system will be unavailable. Finally, centralized JNDI tree clusters suffer from an increased 
time to convergence (the time the cluster takes to know all it s server active instances) as the 



 

cluster grows in size. That is, scaling requires adding more name servers. Our solution does 
not require time to convergence because we are using the independent JNDI tree approach. 
 

8 Concluding remarks 

Transactional systems could benefit from group communication to achieve availabilit y [11]. 
Nevertheless group communication introduces the membership management overhead that 
can be reduced using suitable design decisions. Here, these decisions include excluding 
clients from the replication group (to avoid frequent membership changing) and propagating 
to backups only updates or committed results. It allows eliminating additional communication 
rounds and improves performance. We also expecting reducing the overhead generated by the 
replication protocol enabling several servers working as primary servers. 
 

References 

[1] Amir, Y.; Dolev, D.; Melli ar–Smith, P. M.; Moser, L. E. Robust and efficient replication 
using group communication. Technical Report CS9420, Institute of Computer Science, 
Hebrew University of Jerusalem, Nov. 1994. 
[2] Ban, B. JavaGroups user's guide. Department of Computer Science, Cornell University. 
August 1999. 73p. 
[3] Frolund, S. and Guerraoui, R.; Implementing e–transactions with asynchronous 
replication. Proceedings of the International Conference on Dependable Systems and 
Networks 2000, New York, IEEE, June 2000. 
[4] Guerraoui, R.; Schiper, A. Fault tolerance by replication in distributed systems. In Proc. 
Conference on Reliable Software Technologies (invited paper), p. 38–57. Springer Verlag, 
LNCS 1088, June 1996. 
[5] JOnAS – Java Open Application Server – http://www.objectweb.org/~jonas 
[6] Kang, Abraham. J2EE clustering, Part 1. Clustering technology is crucial to good 
Website design; do you know the basics? JavaWorld. Feb. 2001. http://www.javaworld.com/ 
javaworld/jw–02–2001/jw–0223–extremescale.html 
[7] Schneider, F. B. Replication management using the state machine approach. In: 
Mullender, Sape (Ed.). Distributed Systems. 2. ed., New York: ACM Press, 1993. p. 169–198. 
[8] de Sousa, C.V.P.B.; Maziero, Carlos Alberto. Uma abordagem reflexiva para replicação 
de componentes servidores da plataforma Java para corporações. WTF 2000. Curitiba – PR, 
pp.106–111. 
[9] Sun Microsystems, Inc. EJB specification 2.0.  
[10] Tanembaum. A.S. Communication in distributed systems. In: Modern Operating 
Systems. Prentice Hall , New Jersey 1992. pp.395–462. 
[11] Wiesmann, M.; Pedone, F.; Schiper, A.; Kemme, B. and Alonso, G. Understanding 
replication in databases and distributed systems. Proc. ICDCS 2000, pp.264–274, Taipei, 
Taiwan, R.O.C., April 2000. 


