Simulation of a Distributed Connectivity
Algorithm for General Topology Networks

Elias Procépio Duarte Jr.
Andréa Weber

Federal Unwversity of Parand, Dept. Informatics
P.O. Box 19081 Curitiba 81531-990 PR Brazil
e-mail: {elias,andrea} Qinf.ufpr.br

Abstract

The Distributed Network Connectivity algorithm allows every node in a general topology network to
determine to which portions of the network it is connected, and which portions are unreachable. The
algorithm consists of three phases: test, dissemination, and connectivity computation. During the testing
phase each fault-free node tests all its neighbors at each testing interval. Upon the detection of a new
fault event, the tester starts the dissemination phase, in which a reliable broadcast algorithm is employed
to inform the other connected nodes about the event. At any time, any working node may run the
third phase, in which a graph connectivity algorithm shows the complete network connectivity. Extensive
simulation results are presented, considering various topologies such as the hypercube and random graphs.
Results are compared to those of other algorithms.

Keywords: Distributed Diagnosis, Network Connectivity, Reliable Broadcast,
Distributed Algorithms.

1 Introduction

Organizations and individuals increasingly depend on the correct behavior of network
systems. Given the topology, it is important to determine at any instant of time which
portions of the network are connected and which portions are unreachable. In this work
we present a new algorithm for computing Distributed Network Connectivity (DNC).
This algorithm is based on previously published results in System-Level Diagnosis of
General Topology Networks [4].

The first model of a diagnosable system is known as the PMC model [2]. This model
considers a fully connected system which can be represented by a complete graph. The
vertices represent system units, also called nodes in this work, which are capable of
executing tests on any other unit. An edge represents a communication channel, also
called link, between two units. In this model, a node may assume one of two states:
faulty or fault-free, and links are always fault-free.

The main assumption of the PMC model is that a fault-free node is reliable in the
sense that whenever such a node executes a test on another node, it correctly determines
the state of the tested node. Furthermore the tester is also capable of correctly reporting
test outcomes. Based on the test reports sent by all nodes, a central monitor performs
the diagnosis itself, determining which nodes are faulty and which are fault-free.

Distributed diagnosis eliminates the need for a central observer [6]. The nodes that
execute the tests also perform the diagnosis. Adaptive diagnosis is another approach that
allows testers to determine which tests should be executed in the next testing interval
based on the results of the tests executed in the previous interval [7]. A number of
algorithms for fully connected networks are at the same time distributed and adaptive
[5].

Local Area Networks (LAN’s) are usually modeled as fully connected systems, while
Wide Area Networks (WAN’s) have general topologies. In a general topology network
there is not necessarily a communication channel between every two nodes. Both nodes
and links may be either faulty or fault-free at a given instant of time. In this way, a
fault may partition the network. Consider a pair of nodes connected by a link. If the
tests executed on one of those nodes by the other results in a time-out, it is impossible
to determine whether the tested node or the link is faulty. In this way, faults in a general
topology network are said to be ambiguous [3].

In [6] Bagchi and Hakimi introduced an algorithm for system-level diagnosis of networks
of general topology. The algorithm is executed off-line. In [7] Bianchini et.al. introduced
and evaluated through simulation the Adapt algorithm. The Adapt algorithm can be
executed on-line: when a given node becomes faulty, a new phase begins in which other
nodes reconnect the testing graph. The algorithm employs a distributed procedure that
requires massive amounts of large diagnostic messages.

Rangarajan et.al. [8] introduced the RDZ algorithm for system-level diagnosis for
networks of arbitrary topology that can be executed on-line. The algorithm builds a
testing graph that guarantees the optimal number of tests, i.e., each node has one tester.
Furthermore it presents the best possible diagnosis latency by using a parallel dissemi-
nation strategy. Whenever a node detects an event, it sends diagnostic information to
all its neighbors, which in turn send the information to all its neighbors, and so on.
Although the RDZ algorithm presents the best possible diagnosis latency, and the best
possible number of testers per node, it does not diagnose a fault configuration called by
the authors jellyfish faulty node configuration.

The Distributed Network Connectivity (DNC) algorithm introduced in this paper is
based on the Non-Broadcast Network Diagnosis (NBND) algorithm [3, 4, 9]. The al-
gorithm is structured in three phases: test, dissemination and diagnosis. Nodes test
adjacent links every testing interval. Upon the detection of a new event, information is
disseminated to all nodes through a distributed breadth-first tree, instead of using flood-
ing such as in NBND. Based on that information each fault-free node may compute the
network connectivity. The algorithm allows dynamic events, i.e. during the dissemina-
tion phase new events may occur and dissemination remains guaranteed. This is done by
means of a reliable broadcast algorithm [10] for event dissemination. The proposed strat-
egy is compared with two other approaches: dissemination based on flooding [12] and a
sequential strategy based on a distributed Chinese Agent [13]. The strategy employed
by DNC is nearly always better than the other two.

The rest of the paper is organized as follows. In section 2 the DNC algorithm is
specified. In section 3 simulation results are presented, comparing the cost of the dis-
semination phase in three algorithms: DNC, Chinese Agent and Flooding. Section 4
concludes the paper.

2 The DNC Algorithm

In this section, we introduce a new distributed connectivity algorithm for general topology
networks. The algorithm has three phases: testing, dissemination of new event informa-
tion, and local connectivity computation. The algorithm considers a synchronous system
and crash faults. Both nodes and links may be either faulty or fault-free. However, if
there is no reply to a given test over a link, the tester is not able to determine whether it
is the tested link or the tested node connected by that link that is faulty. If there is no
reply to tests executed over all links to a given node, then the node is unreachable. Thus
links may be in one of two states fault-free or unresponsive and nodes may be fault-free
or unreachable.

Every link is tested every testing interval. There is one tester per link. The algorithm
thus requires the minimum number of tests for any network topology. The algorithm
employs a token-based testing strategy [9]. The two nodes connected by a link execute
tests over that link at alternating intervals. The tests employed are also said to be two-
way tests, in the sense that when one node executes a test over a link, not only the tester
determines the state of the tested node, but also the tested node determines the state of
the tester.

Each node keeps a timestamp which is a state counter for each link in the system, which
is initially zero, and is incremented at each new event information received for that link.
This permits a node to identify redundant messages. A redundant message when it is
not the firt one about an event. After a new event is discovered, the tester propagates
event information to its neighbors. Every node keeps the complete network topology.
The parallel dissemination strategy employed is based on a distributed breadth-first tree.
Each diagnostic message carries the following information (1) the tester identifier (2)
the tested node identifier (3) the timestamp for the tested link. Each node running the
algorithm keeps a link table indexed by link identifier, containing the timestamp for the
link. An even timestamp indicates a fault-free link; an odd timestamp indicates a faulty
link.

Whenever a node is a leaf, after receiving the message from its parent it sends back
an acknowledgement called hence forth ack. After receiving acks from all its children, a
node sends an acknowledgement to its parent in the tree. The dissemination completes
when the root receives acknowledgements from all its children.

When link a-b becomes faulty, the dissemination proceeds in the following way. Con-
sider that node a is the first to detect the event. Node a starts a dissemination tree,
informing the event on link a—b. After this dissemination message reaches node b, this
node will determine that link b-a is faulty. Node b gives up the previous dissemination,
appending the previous message to the new one, and takes its role in the second dissem-
ination tree. Whenever a node that has a pending dissemination receives a message that
contains information about the pending dissemination plus new information, it gives up
the first dissemination, and takes its role in the second dissemination.

At any given time a fault-free node running the algorithm may compute the local
network connectivity after removing the links that are in the unresponsive state, i.e.
have an odd timestamp, from the network topology.

2.1 An Example Execution

Consider the example topology in figure 1. This subsection contains a description of
the execution of the algorithm, considering a fault event on one link, and subsequent
dissemination of new event information.

A fault event on link 1-3 is considered to happen at instant of time #;. In the next
testing interval after the event occurs, consider that node 1 is the tester, and thus detects
the fault. Then node 1 starts the dissemination phase in order to communicate the event
information to all other reachable nodes. It does so by building a breadth-first traversal
tree rooted at itself, yet considering the fault event. The tree is illustrated in figure 2.

Figure 1: An example topology. Link 1-3 becomes faulty.

The dissemination tree has node 2, node 4 and node 5 at the second level. At the third
level, node 4 has two children: node 3 and node 6; node 5 has one child: node 7. Its
one time unit for a node to process a dissemination message and for this message to be
received by this node’s children. So, one time unit after the sending of the dissemination
message by node 1 it reaches nodes 2, 4 and 5 simultaneously.

Ry AN

Figure 2: The dissemination trees built by node 1 (A) and node 3 (B).

In this example dissemination, node 2 is a leaf in the dissemination tree, so the message
it receives is acknowledged in the next time unit. Nodes 4 and 5 disseminate the infor-
mation for its children the next time unit, so that when the acknowledgement of node 2
reaches node 1, dissemination messages reach nodes 3, 6 and 7 at the bottom of the tree.
Nodes 6 and 7 are ordinary leaves, thus they acknowledge the receipt of the message to
nodes 4 and 5, respectively. Node 3, although, once informed about the fault on link 1-3
tests its adjacent links, and realizes that link 3-1 is “also” faulty. Thus, this information
must be disseminated. For this to be done, node 3 builds another dissemination tree, as
is illustrated in figure 2.

At this point there are two simultaneous dissemination trees. The first dissemination
tree was started by node 1, and disseminates information about the fault event on link

1-3, which is called first dissemination message. The first dissemination tree is gradually
being abandoned, as the second dissemination tree, which was started by node 3, has
complete information about both events (link 1-3 is faulty, link 3-1 is faulty, called the
second dissemination message), takes its place.

As the simulation continues, at the same time the acknowledgement messages from
nodes 6 and 7 reach nodes 4 and 5 of the first dissemination tree, new information
messages are sent by node 3 in the second dissemination tree. Nodes 4 and 6 receive
this messages. Node 4 sends the dissemination message to nodes 1 and 5. When node
6 receives the second dissemination message, it has already completed its task in the
first dissemination tree. So, it sends the second dissemination message to node 7, its
child in the second tree. This happens simultaneously with the sending of the second
dissemination message to nodes 1 and 5 by node 4.

At the third level of the second dissemination tree, nodes 1 and 7 are leaves which
acknowledge the received messages to its parent nodes. At the same time these acknowl-
edgements move up one level in the tree, node 5 sends the second message to node 2, its
child in the second dissemination tree, which sends an acknowledgement after its receipt.
At the same time node 5 receives the acknowledgement message from node 2, the root of
the tree receives the acknowledgement message from node 6. The next time unit, node
5 acknowledges the message from node 2, and node 4 does the same after receiving the
acknowledgement from node 5. After that the root at node 3 receives the last acknowl-
edgement and considers the dissemination as finished. Once begun at the first root at
node 1, the whole dissemination is completed in 8 time units.

3 Experimental Results

In this section, experimental results are presented and a comparison is made with results
of two other approaches: a parallel algorithm based on flooding [12] and a sequential
algorithm based on the Chinese Agent [13]. Various network topologies were considered:
initially results were obtained for the example graph shown in figure 1. Next, results were
obtained for hypercubes with 16, 64 and 128 nodes; then the algorithm was simulated
on a 50-node random graph, the D, 5 graph with 9 nodes, and a subset of the topology
of the Brazilian National Research Network: RNP (Rede Nacional de Pesquisa).

Simulations were built using SMPL SiMulation Programming Language [11], a discrete
event simulation library. For each simulation experiment, one communication link fault
event was scheduled. Testing intervals of 30 time units, and dissemination intervals of 1
time unit between nodes connected by one link were employed.

3.1 An Example Topology

For the 7-node example topology shown in figure 1, results of the algorithm execution of
a fault event on link 1-3 such as described in the previous section are shown in table 1.

Total of Messages | Redundant Messages | Latency
DNC 12 0 9
Flooding 28 16 7
Chinese Agent 7 1 7

Table 1: Results for an example topology.

3.2 Graph D,

For the D, » graph topology [8], a fault event was scheduled for link 6-8. Node 6 starts
the dissemination building a four-level breadth-first tree rooted at itself. In this way, it
takes 2 time units for the dissemination to reach node 8. At that time, node 8 builds
another dissemination tree and begins disseminating information about the event on link
6-8 plus the information of the fault event on link 8-6. For this dissemination, another
four-level tree is built. Thus, it takes three time units for the information to reach the
leaves of that tree, and three time units more for confirmations to reach node 8 at the
root. Comparative results with the other mentioned algorithms are shown in table 2.

Total of Messages | Redundant Messages | Latency
DNC 16 0 9
Flooding 52 36 7
Chinese Agent 13 5 13

Table 2: Results for the 9-node D 5.

3.3 Hypercubes

Results were obtained and are described below for hypercubes with 16, 64, and 128
nodes. For the 16-node hypercube a fault event on link 5-7 was scheduled. Node 5
detects the event and begins the dissemination. A five-level tree is built, with node 7 at
the fourth level. Three time units after the beginning, node 7 is informed of the event on
link 5-7 and starts the dissemination of the event on link 7-5. This dissemination takes
another five-level tree, so that four time units after node 7 initiates the dissemination,
the information reaches the bottom of the tree. Four time units after that the last
acknowledgement message reaches the top. Results for the other approaches are shown
in table 3.

Total of Messages | Redundant Messages | Latency
DNC (16 nodes) 30 0 12
Flooding (16 nodes) 94 64 9
Chinese Agent (16 nodes) 28 14 28
DNC (64 nodes) 126 0 24
Flooding (64 nodes) 478 352 15
Chinese Agent (64 nodes) 156 93 156
DNC (128 nodes) 254 0 36
Flooding (128 nodes) 990 736 23
Chinese Agent (128 nodes) 348 221 348

Table 3: Results for the 16, 64 and 128 nodes hypercubes.

Considering the 64-node hypercube with a fault event detected on link 5-7 by node 7,
the dissemination was performed with 126 messages in 24 time units. Considering the
128-node hypercube topology, with a fault event at link 13-21, the dissemination begins
at node 13 and takes 254 messages and 36 time units to complete. Comparative results
are shown in table 3.

3.4 A Random Graph

For this simulation a random graph was built with a probability of ten percent that a
link exists between any pair of nodes. The number of nodes is equal to 50. The graph,
nevertheless, consists of one connected component.

For such a graph, an event on link 30-31 was scheduled and the dissemination began
on node 31. This node employed a five-level breadth-first traversal tree, with node 30 at
the fourth level. Thus, three time units after the beginning, the dissemination reaches
node 30. At this time, node 30 builds another five-level tree and begins disseminating
the information of the fault event on link 30-31 together with the received information
of the event on link 31-30. Four time units after this dissemination starts, it reaches the
leave nodes, and other four time units after that are required for the acknowledgement
messages to reach node 30 on the root. Comparative results are shown in table 4.

Total of Messages | Redundant Messages | Latency
DNC 143 0 14
Flooding 418 320 8
Chinese Agent 109 60 109

Table 4: Results for a random graph.

3.5 A Subset of The Brazilian RNP

The RNP topology employed for the simulations was that available at http://www.rnp.br
in February, 2001. That was a 28-node topology, and a fault event was scheduled for the
Sao Paulo—Brasilia link.

Once the fault is detected, the Brasilia node starts the dissemination phase employing a
four-level breadth-first traversal tree. Two levels below on the tree is the Sao Paulo node,
that receives the information two time units after the beginning of the dissemination.
Once that happens, the Sao Paulo node starts another dissemination for informing the
Sao Paulo—Brasilia fault event and does so by building another four-level breadth-first
tree rooted at itself. Three time units after the second dissemination is started it reaches
the leaves. Three time units after that, the acknowledgement messages arrive the top of
the tree, completing the dissemination. Comparative results are shown in table 5.

Total of Messages | Redundant Messages | Latency
DNC 54 0 9
Flooding 94 40 6
Chinese Agent 55 27 55

Table 5: Results for a subset of the Brazilian RNP.

4 Conclusion

The Distributed Network Connectivity algorithm described in this paper allows any node
of a general topology network to compute to which portions of the network it is connected,
and which portions are disconnected. Links are tested continually, at a testing interval,
disseminating fault event information through a distributed breadth-first tree.

A link fault, and subsequent dissemination was simulated for a number of different
topologies: an example network; the D, graph; 16, 64, and 128-node hypercubes; a
random graph, and a subset of the Brazilian RNP. Results were compared with those of
other two algorithms: Flooding and the Chinese Agent.

Flooding always completes the dissemination in the shortest possible interval of time.
However it always employs a larger number of messages, with many redundant messages.
The number of messages employed by the Chinese Agent is always much lower than
the number of messages employed by Flooding. The Chinese Agent presents the lowest

impact on the network as at most one message is being disseminated at a given instant
of time. The number of messages employed by DNC is similar to the number employed
by the Chinese Agent, while DNC’s latency is similar to Flooding’s. So DNC has good
latency at a low impact on the network. Beyond that, both Flooding and the Chinese
Agent employ redundant messages, while DNC does not.

Future work includes developing a new strategy that allows the algorithm to work in
the presence of multiple concurrent fault and repair events. A practical tool based on
the Internet management protocol, SNMP (Simple Network Management Protocol) is
currently being developed. This tool should present a Web-based interface that allows
any user to obtain network connectivity information from any network node. Effective
testing strategies for WAN links must be developed, possibly using artificial intelligence
tools.

References

[1] G. Masson, D. Blough, and G. Sullivan, “System Diagnosis,” in Fault-Tolerant Computer System
Design, ed. D.K. Pradhan, Prentice-Hall, 1996.

[2] F. Preparata, G. Metze, and R.T. Chien, “On The Connection Assignment Problem of Diagnosable
Systems,” IEEE Transactions on Electronic Computers, Vol. 16, pp. 848-854, 1968.

[3] E.P. Duarte Jr., G. Mansfield, T. Nanya, and S. Noguchi, “Non-Broadcast Network Fault Monitoring
Based on System-Level Diagnosis,” Proc. IEEE/IFIP IM’97, pp.597-609, San Diego, May 1997.

[4] E.P. Duarte Jr., “Um algoritmo para Diagndstico de Redes de Topologia Arbitriria,” in portuguese,
In Proceedings of the 1st SBC' Workshop on and Fault Tolerance, SBC-WTF’1, pp. 50-55, Porto
Alegre, Brazil, 1998.

[5] E. P. Duarte Jr., and T. Nanya, “A Hierarchical Adaptive Distributed System-Level Diagnosis
Algorithm,” IEEE Transactions on Computers, Vol. 47, pp. 34-45, No. 1, Jan 1998.

[6] A.Bagchi, and S.L. Hakimi, ‘An Optimal Algorithm for Distributed System-Level Diagnosis,” Proc.
215t Foult Tolerant Computing Symp., June, 1991.

[7] M. Stahl, R. Buskens, and R. Bianchini, “Simulation of the Adapt On-Line Diagnosis Algorithm for
General Topology Networks,” Proc. IEEE 11" Symp. Reliable Distributed Systems, October 1992.

[8] S.Rangarajan, A.T. Dahbura, and E.A. Ziegler, ‘A Distributed System-Level Diagnosis Algorithm
for Arbitrary Network Topologies,” IEEE Transactions on Computers, Vol.44, pp. 312-333, 1995.

[9] J. L Siqueira, E. Fabris, E. P. Duarte Jr., “A Token Based Testing Strategy for Non-Broadcast
Network Diagnosis”, 1st IEEE Latin American Test Workshop, pp. 166-171, Rio de Janeiro, 2000.

[10] P. Jalote, Fault Tolerance in Distributed Systems, Prentice Hall, 1994.

[11] M.H. MacDougall, Simulating Computer Systems: Techniques and Tools, The MIT Press, Cam-
bridge, MA, 1987.

[12] E.P. Duarte Jr., and G.O. Mattos, “Diagnéstico em Redes de Topologia Arbitraria: Um Algoritmo
Baseado em Inundacdo de Mensagens”, in portuguese, In Proceedings of the 2nd SBC Workshop on
Test and Fault Tolerance, SBC-WTF’2, pp. 82-87, Curitiba, Brazil, 2000.

[13] E.P. Duarte Jr., and J.M.A.P. Cestari, “O Agente Chines para Diagnstico de Redes de Topologia
Arbitraria” in portuguese, In Proceedings of the 2nd SBC Workshop on Test and Fault Tolerance,
SBC-WTEF’2, pp. 88-93, Curitiba, Brazil, 2000.

