Ring Oscillator Clocks and Margins

Jordi Cortadella, Marc Lupon, Alberto Moreno, Antoni Roca and Sachin S. Sapatnekar

> Universitat Politècnica de Catalunya University of Minnesota

Matched delay: is it long enough?

Static Timing Analysis

Static Timing Analysis

Static Timing Analysis: setup constraint

RO Clocks and Margins

Ring Oscillator

Matched delays: setup constraint

Launching path < Capturing path + Delay (Margins?)

Handshaking Ring Oscillators

Understanding variability

Process variability

Dynamic variability

Raj Nair (Anasim Corp.), IC floorplanning and Power Integrity, SOCcentral, Aug 2, 2010. <u>http://www.soccentral.com/results.asp?entryID=31901</u>. From SOCcentral.com, Copyright 2002 - 2014 Tech Pro Communications

Variability during STA

Source: H. Masuda et al. (ICICC 2005)

Timing sign-off

Timing sign-off

$(1+\delta)$ · PathDelay < *Period* - Jitter

typical $\delta \approx 0.05 \dots 0.15$

Async 2016

Timing sign-off with ROs

Timing sign-off with ROs

- Goal: doing *classical timing sign-off* using – conventional STA tools
 - designer's library corners and OCV derating factors
- In the paper you will find
 - A more sophisticated statistical delay model (1st-order Taylor expansions for variability)
- This presentation:
 - A simpler and complementary variability model
 - Similar conclusions as the ones in the paper

Timing sign-off delay model

Timing sign-off delay model with ROs

$$egin{aligned} D_{\scriptscriptstyle CP} &\sim \mathcal{N}(\mu_{\scriptscriptstyle CP}, \sigma_{\scriptscriptstyle CP}^2) \ D_{\scriptscriptstyle RO} &\sim \mathcal{N}(\mu_{\scriptscriptstyle RO}, \sigma_{\scriptscriptstyle RO}^2) \end{aligned}$$

$$D_{\scriptscriptstyle RO} - D_{\scriptscriptstyle CP} \sim \mathcal{N}(\mu_{\scriptscriptstyle RO} - \mu_{\scriptscriptstyle CP}, \sigma_{\scriptscriptstyle RO}^2 + \sigma_{\scriptscriptstyle CP}^2)$$

$$\underbrace{\mu_{RO} - \mu_{CP}}_{\mu} - k \underbrace{\sqrt{\sigma_{RO}^2 + \sigma_{CP}^2}}_{\sigma} > 0$$

RO Clocks and Margins

Async 2016

Timing sign-off model with ROs

Assumption: similar index of dispersion (variance-to-mean ratio)

Timing sign-off model with ROs

Assumption: similar index of dispersion (variance-to-mean ratio)

Apple-to-apple comparison

Apple-to-apple comparison

Variability: PLL vs. Reactive Clock

PLL vs. Ring Oscillator

PLL vs. Ring Oscillator

Synthesis of the Ring Oscillator

Experiment

10 AES modules (65nm)

Every AES module can be activated/deactivated by clock gating Switching activity generated by VCS IR drop (static and dynamic) estimated by PrimeRail

Voltage droop analysis

Nominal voltage: 1V Max voltage droop: 168mV Max voltage difference: 25mV

Max voltage difference

Performance & Energy benefits

Reactive Clocks

J. Cortadella, L. Lavagno, P. López, M. Lupon, A. Moreno, A. Roca and S.S. Sapatnekar *Reactive Clocks with variability-tracking jitter* ICCD 2015.

- Algorithms and EDA scripts for timing analysis:
 - Automatic synthesis of Ring Oscillators
 - Technology independent (any .lib file)
 - Adaptable to different STA and P&R tools
- Ring Oscillators + monitors for *post-silicon calibration*:
 - Non-intrusive monitors automatically synthesized
 - Patented technology

Conclusions

• Moore's law is (economically) over. It's time to exploit what is left in established nodes.

- *Ring Oscillators*: a zero-risk scheme to – boost performance (1.6x speedup) or
 - reduce energy (40%)
- Margins for Ring Oscillators (or matched delays)
 - Use the same library corners
 - Derating factor: $(1 + \delta) \rightarrow (1 + \delta\sqrt{2})$