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WHY SYNCHRONIZERS?
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THE FIRST SYNCHRONIZERS

§ Circuits that detect metastability, and pause 
or stretch the clock until it is resolved
• Pros: No chance of a metastability error
• Cons: Unbounded Latency

§ Predictive synchronizers
§ Synchronizers that exploit known 

relationships



HOW OFTEN DOES THIS HAPPEN?

§ Rate of Entering Metastability:
R	=	FDFCTw

§ If FD = 50MHz, FC = 1GHz, Tw = 50ps, then 
metastability is encountered 2,500,000 times 
per second!



SYNCHRONIZERS IN SYSTEMS (MOTIVATION)
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§ Flip-Flop 
Synchronizers

Receiver Sender 

!S !R 

req 

ack 

Figure 2.1: A classic two-flop synchronizer �R is the receiver clock and �S is the
sender clock. Two sets of flip-flops are needed for complete synchronization
between the two clocked environments. One set for the req signal and one for
the ack signal.

both directions. The big draw back to this type of synchronizer is the latency

and throughput. Optimized designs of this synchronizer type have often led

to incorrect operation [30]. Clever modifications, primarily to the surround-

ing circuitry, avoid increasing the failure rate while improving the latency and

throughput [25]. The simple four-phase synchronizer resembles the synchro-

nizer in figure 2.1. The circuitry of the fast four-phase synchronizer succeeds

in reducing latency by changing the logic to remove extra flip-flops while min-

imally altering the path of the synchronizing request and acknowledge signals.

Additional latency reduction can be achieved by changing to a two-phase hand-

shake as in the fast two-phase synchronizer.
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SYNCHRONIZERS IN SYSTEMS (MOTIVATION)
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§ FIFO based synchronizers 
860 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

Fig. 3. Two architectures for mixed-timing FIFOs. (a) Synchronous–synchronous FIFO and (b) asynchronous–asynchronous FIFO.

Since the asynchronous interfaces are not synchronized to a
clock signal, they are somewhat different. The asynchronous put
interface [Fig. 2(b)], much like the synchronous put interface,
has two inputs: which controls requests, and ,
the bus for data items. However, this interface does not have
a full output; instead, the interface simply withholds
until the FIFO becomes non-full. The asynchronous get inter-
face [Fig. 2(b)] has only as input, which controls the
requests for data, and two outputs: , the bus for data
items, and , which indicates the completion of the get op-
eration. This interface does not have an empty output; instead,
the interface simply withholds until the FIFO becomes
non-empty.

B. Basic Architecture

Fig. 3 gives a simple overview of the two basic FIFO ar-
chitectures. Similar architectures can be defined for the asyn-
chronous–synchronous and synchronous–asynchronous FIFOs:
the synchronous–asynchronous put/get parts can be freely com-
bined to obtain these mixed asynchronous–synchronous FIFOs.

There are a number of similarities. Each FIFO is constructed
as a circular array of identical cells, communicating with the
two external interfaces (put and get) on common data buses.
The control logic for each operation is distributed among the
cells, and allows concurrency between the two interfaces. An
important feature of all the circular FIFOs architectures is that
data is immobile: once enqueued, it is not moved and is simply
dequeued in place.

Two tokens control the input and output behavior of the FIFO:
a put token is used to enqueue data items, and a get token is used
to dequeue data items. The cell with the put token is the tail of
the queue, while the cell with the get token is its head. Once a
cell has used a token for a data operation the token is passed to

the next cell. In normal operation, the get token is never ahead
of the put token; however, in some special cases, the get token
may briefly overtake the put one.

There are several advantages that are common to the proposed
architectures. Since data is not passed between the cells from
input to output, the FIFOs have a potential for low latency, and as
soon as a data item is enqueued, it is also available for dequeuing
(see Section VII). Second, the FIFOs offer the potential for low-
power and data items are immobile while in the FIFO. Finally,
these architectures are highly scalable; the capacity of the FIFO
and the width of the data item can be changed with very few
design modifications.

C. Empty/Full Detectors and External Controllers

The synchronous interfaces have two additional types of com-
ponents: detectors, which compute the current state of the FIFO,
and external controllers, which conditionally pass requests for
data operations to the cell array. The full and empty detectors
observe the state of all cells and compute the global state of the
FIFO: full or empty. The output of the full detector is passed to
the put interface, while that of the empty detector is passed to
the get interface. The put and get controllers filter data-opera-
tion requests to the FIFO. Thus, the put controller usually passes
put requests, but disables them when the FIFO is full. The get
controller normally forwards the get requests, but blocks them
when the FIFO is empty.

The asynchronous interfaces do not need such external detec-
tors and controllers. A data operation on a synchronous inter-
face completes within a clock cycle; therefore, the environment
does not need an explicit acknowledge. However, if the FIFO
becomes full (empty), the environment may need to be stopped
from communicating on the put (get) interface. The role of the
detectors and controllers is to: a) detect the exception cases and
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Figure 2.2: Each stage of the pipeline synchronizer increases the synchronicity
of the signal.
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Figure 2.3: An asynchronous-to-synchronous pipeline synchronizer with k
stages and two-phase non-overlapping clocks.

The pipeline synchronizer adjusts the asynchronous signal further toward

the synchronous end of this spectrum with each stage. This is accomplished by

using a synchronizing (SYNC) block and an asynchronous FIFO element in each

stage as shown in figure 2.3. The stages are cascaded to form the full pipeline.

The SYNC blocks are built from mutual exclusion (ME) elements [58]. Syn-

chronization circuits that synchronize the rising transition of a signal (figure

2.4a) or the falling transition of a signal (figure 2.4b) can be built from the ME

elements simply by attaching one input to the clock. The aforementioned syn-

chronizers are suitable if a four-phase signaling protocol is in use because the

synchronizer only needs to synchronize one transition, since two transitions oc-

cur on the signal per event In order to work with to a two-phase signaling pro-
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GRADUAL SYNCHRONIZATION
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4-PHASE ATOS GRADUAL SYNCHRONIZER
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Figure 3.14: An asynchronous-to-synchronous gradual synchronizer using four-
phase FIFO elements.

�S + �RiRo < T/2

�AoRo < T/2

�AR < T/2

�AoAi < T/2

�d + �S iRo < T/2 (new)

�S + �RiAi + �AoRo < T

�S + �RiAi + �AR < T

�RA + �AoRo < T

�d + �S iAi + �AoRo < T (new)

�d + �S iRi + �AR < T (new)

(3.44)

Note that in the equations above the various FIFO delays encompass both

rising and falling transitions, so
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FIFO BLOCK
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Figure 3.13: A 4-phase FIFO element with S i signal for computation safety.

pulls Ro low and proceeds to wait for the final acknowledge high event on Ao at

which point the handshake starts over again.

The signal S i is still a copy of Ro coming from the previous stage passed

through a delay instead of the synchronizer but in this case the delay only needs

to be present on the initial part of the handshake. When Ro from the previous

stage is logical 0 it is immediately forwarded to S i of the FIFO bypassing �d so

that S i does not delay the rest of the handshake. The synchronizer block in this

case synchronizes only the up-going transition of Ro. A down going transition of

Ro is not blocked. The four-phase asynchronous-to-synchronous synchronizer

structure is shown in figure 3.14.

The proof of this case is located in section A.2 of Appendix A. The require-

ments that must be met to ensure correct operation are:
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4-PHASE STOA GRADUAL SYNCHRONIZER
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PROOF CONCEPTS

§ 𝑃"
#$% ≤ 𝑃"

#$% 𝑅# +
𝑃"

#$% 𝐴* + 𝑃"
#$% 𝑆#



PROBABILITY OF FAILURE DUE TO SI
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4-PHASE REQUIREMENTS

Synchronous to Asynchronous
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Figure 3.16: A four-phase protocol synchronous to asynchronous gradual syn-
chronizer.

to know that the synchronization must occur on the up-going transition of Ao as

this is the only time the FIFO is waiting for transitions on both inputs. The re-

quest must bypass the computational delay block if its value is logical zero and

the acknowledge is simply passed through the synchronizer when it transitions

to logical zero. The resulting gradual synchronizer is shown in figure 3.16.

The proof of this case is presented in section A.3 to enhance the flow of this

thesis for the reader. The union of all the requirements for this synchronizer is:

�S + �AoAi < T/2

�RiAi + �d < T/2

�RA < T/2

�RiRo + �d < T/2

�S + �AoRo + �RiAi + �d < T

�S + �AoRo + �RA < T

�AR + �RiAi + �d < T,

(3.49)

where,
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Asynchronous to 
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Figure 3.14: An asynchronous-to-synchronous gradual synchronizer using four-
phase FIFO elements.

�S + �RiRo < T/2

�AoRo < T/2

�AR < T/2

�AoAi < T/2

�d + �S iRo < T/2 (new)

�S + �RiAi + �AoRo < T

�S + �RiAi + �AR < T

�RA + �AoRo < T

�d + �S iAi + �AoRo < T (new)

�d + �S iRi + �AR < T (new)

(3.44)

Note that in the equations above the various FIFO delays encompass both

rising and falling transitions, so
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2-PHASE GRADUAL SYNCHRONIZER
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Figure 3.5: An asynchronous to synchronous gradual synchronizer with k
stages.

by the presence of the receiver clock. In addition the presence of a fixed time for

computation ensures the probability of failure remains low and only affects the

circuit operation if the gradual synchronizer is not in the steady state. The fixed

delay also allows more computation time to be reclaimed than employing the

use of completion trees. The signal that feeds into the fixed delay is the same

request that is already issued from the previous stage’s FIFO. That request is

split and passed to both the fixed delay and the SYNC block as shown in figure

3.5. The FIFO block is modified so that both versions of the request are present

before acknowledging the request and issuing its own request to the next stage

as shown in figure 3.6. The control signals for a two-phase protocol FIFO now

follow the specification:

�[[Ri ⇥ S i]; Ai,Ro; [Ao]] (3.7)

The brackets ([]) around signal names indicate that the FIFO is waiting for the

signal(s) named inside them. A semi-colon (;) separates events that must occur

in sequential order and the (,) creates a list of events that can occur at the same

time. The asterisk followed by brackets (*[])surrounding the whole sequence

means to repeat the sequence forever. So, the FIFO waits for Ri and S i, after
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SIMULATIONS

§ HSIM, 90nm process, 1.2 V
§ Two Synchronous Environments
§ Synchronizer Types
• Simple Four-Phase Flip-Flop
• Fast Four-Phase Flip-Flop
• Fast Two-Phase Flip-Flop
• Dual Clock FIFO
• 2-Phase and 4-Phase Pipeline Synchronizer
• 2-Phase and 4-Phase Gradual Synchronizer



LATENCY
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Figure 4.7: Worst case forward latency comparison of the synchronizers.

throughput results in terms of tx cycles and words per tx cycle because no mat-

ter what the top clock frequency is the latency and throughput trends remain the

same when reported in this manner, therefore it is unnecessary to show results

for multiple clock speeds. It is important to note that the latency of the gradual

synchronizer does not include the cycles that would be saved by merging com-

putation from the surrounding circuitry into the synchronizer. We refer to this

as the raw latency of the gradual synchronizer. The raw latency is reported here

both because it is hard to quantify the total latency savings without picking the

functionality of the system and also because our aim in this section is to show

that the gradual synchronizer does not result in longer raw latencies than the

pipeline synchronizer or dual-clock FIFO. For estimates of the reduced system

latency and time available for computation please refer to section 4.3.

The flip-flop synchronizers have the shortest latency. Their forward latency

is purely based on the delay the request signal experiences through the two flip-

flops used as a synchronizer on the receiving end. The simple 4-phase version

66



THROUGHPUT
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Figure 4.8: Througput comparison of the synchronizers.

of this synchronizer takes the longest because its synchronizer is two flip-flops

placed before the flip-flop on the border of the receiving end. This means the

control signal actually has to pass through three flip-flops. The fast 4-phase and

fast 2-phase versions use the receiving flip-flop as one of the flip-flops in the

synchronizer, allowing the request control signal to pass through one less flip-

flop, hence reducing the forward latency. The disadvantage of these methods

is the throughput as shown in figure 4.8. Only one data item can be synchro-

nized at a time, the acknowledge cannot begin its return to the sender until the

clock cycle in which the receiver locks that data. Then the acknowledge sig-

nal returns to the sender through its own set of synchronizing flip-flops. Since

the simple and fast 4-phase synchronizers use a four-phase handshake both the

receive and send side synchronizers must be passed through twice before the

next data item can be injected into the synchronizer. The fast two-phase has

the highest throughput of the flip-flop synchronizers since each synchronizer is
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MTBF IS IMPORTANT
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Figure 4.4: Comparison of the MTBF of several synchronizer configurations.
The flip-flop synchronizers shown are for N=2 meaning about one clock cycle is
allotted for metastability resolution.
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DETERMINING COMPUTATION

§ Two Factors:
• Remember those requirements, which one leads to 

the smallest tau_d
• Re-locatable computation available



POTENTIAL CYCLES TO MERGE
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SYSTEM LATENCY ESTIMATE
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GSYNC IN NOC
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FLIP-FLOP SYNCHRONIZER SEND NI
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Figure 5.3: Outgoing message network interface using a fast four-phase flip-flop
synchronizer.

is set high and the data is locked in DataReg and snt is set high indicating to

the core that it can inject new data. The earliest point it would do this would

be the next cycle (two clock cycles after the first injection). Req high initiates

a handshake with the buffer stage, the ack transitions must be synchronized

before interacting with synchronous signals. An asynchronous reset on regv

eliminates an extra clock cycle in the handshake. The buffer stage forwards

body flits, tail flits and the first flit of a header message flit pair directly to the

network. At the same time if the data contains a header flit pair the second flit

is saved into a buffer. If the second flit buffer becomes full then control of the

NI-network handshake is transferred to the second flit buffer after the first flit

has been transferred.

The receive portion of the fast four-phase (F4PH) NI, figure 5.4, requires the

request be synchronized to the receiving clock before unpacking the incoming

flits into the message format required by the core. This is because vo must be
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GRADUAL SYNCHRONIZER SEND NI
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Figure 5.5: Outgoing message network interface using a gradual synchronizer.

The GS NI receive interface is implemented with three stages as shown in

figure 5.6. Note that since there is so little computation involved in unpacking

the message the first stage does not contain computation.. The second stage

checks each bit in the destination bit field of the message against the bits in the

current node ID. Information needed exclusively for the routers in the NoC (sl

and vc) is stripped off of the incoming flit and the message start and end bits get

reconstructed. The third stage then checks that each destination bit was a match

and flags whether there was a routing error.

The synchronous core consumes one message per clock cycle. If the core is

ready when Ro in the last stage rises, valid will rise as well. Once valid rises

ready gets pulled low and by default so does Ao, allowing the last FIFO stage to

continue the handshake with the core. When Ro falls, valid is kept high waiting

for the clock edge. When the clock edge arrives the message data will be locked
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FLIP-FLOP SYNCHRONIZER RECEIVE NI

!"                

!
"
#$
"
#%
$!

&#
%

'(
)
*+

&!
)
!
"
'%
*!

&,
%

#
#

#
#

#$%&#
#

%
%
'()(####
&*+#

%
%
%

,-./%,#

0*1                

(23                

45                

0*(67                

8)(0)!

4(9:6 

6()(         

)-./012%34.-1567-%8)39%

;*88(+*#
<=>(23#

%
%
%
%
%
#,-#

.&#
#

#
#

#,-##
#

#
#

#
#

,-###
#

*=6!

?(9:6#
@A;#

B(:)!0*(67#
2(92#

C*(6                

)(:9                

%
%
%
%,)%

*0050!

%
%
%
%,)%

48                

!D                

Figure 5.4: Incoming message network interface using a fast four-phase flip-flop
synchronizer.

stable for processing to occur. If an attempt is made to process R2 with the

incoming data, we would introduce the possibility of metastability at the input

to the data register. A flit that enters this interface passes through the fast-four

phase synchronizer and then once synchronized, flit processing begins. If the

flit is a header flit the FSM will squash the flit without forwarding it to the

core. (Alternatively, the flit data could be forwarded to the core in order to

save the routing path in case of an error, but it would still not be marked as

the start of the message.) The next flit it receives becomes the header flit and

the destination is checked against the current node to ensure the message was

routed to the correct place. If not, the NI flags an error as it passes the header

to the core. In order to keep the NI small, we assume the core handles any

errors. Since we want to evaluate the effect of the synchronizers on latency

through the NI we assume that the core is always ready for new data. This
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Figure 5.6: Incoming message network interface using a gradual synchronizer.

in the core and ready rises, allowing valid to fall and the last FIFO stage to service

the next flit.

5.2.4 Performance

The network interfaces described in the previous sections have been simulated

with HSIM using 90nm technology files. The simulations focus on the function

and performance of the network interface only.

Core to Network

The output portion of the NI assumes that the network is always ready to accept

new flits, preventing throttling of the NI by network stalls. Ideally, we’d also
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SEND INTERFACE SIMULATION RESULTS

Sync Type
TX Clock Network MTBF Latency (ns) Throughput

(MHz) (MHz) (years) Header Body or Tail (ppc)
min max min max min max

Fast 4-Phase
400 272 1.84x1040 5.897 8.454 2.473 5.027 0.33
600 397 4.12x1019 4.221 5.906 1.632 3.313 0.33
800 531 2.05x109 4.732 8.475 2.525 6.277 0.33

Gradual
400 400 2.04x1051 2.625 2.656 1.549 1.586 1
600 600 6.20x1020 2.839 6.654 1.759 2.254 0.78 1
800 800 2.47x1012 2.997 7.971 1.973 4.836 0.63 0.78

Table 5.4: Outgoing Message NI Simulation Results.

is injected into the NI to when the flit(s) appears at the NI output. Throughput

is shown measured in packets per clock cycle.

Looking at the F4PH results we can see the effect design changes can have

on results. For instance, speeding up the clock to 800MHz causes relocation of

some flit preparation into an additional stage in the F4PH NI before synchro-

nization. This leads to increased latency because the throughput bottleneck of

this method can cause a packet to get stalled in the first stage of the NI if another

packet is already in the synchronizer stage. At 600 MHz all flit preparation logic

fits in one clock cycle, this frequency prevents the need for extra synchronous

pipeline stages and also prevents wasting any portion of the clock cycle because

there is no work left to be done even in the worst case. At 400 MHz there is time

in the computation stage of the F4PH NI where no computation is left, but the

F4PH NI cannot move the flit forward until the end of the clock cycle.

As expected the throughput of the fast 4-phase synchronizer is slow, per-

mitting one message every three cycles. In contrast the Gradual Synchronizer

is capable of sustaining one message per cycle until the network side becomes

slower than the clock. At 600 MHz transmitting long messages allows contin-

ued high throughput, however if the core is transmitting a lot of headers the net-

work side becomes slower as it transmits two flits for every one header packet.
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RECEIVE INTERFACE SIMULATION RESULTS

Sync Type
RX Clock Network MTBF Latency (ns) Throughput

(MHz) (MHz) (years) min max (fpc)

Fast 4-Phase
400 271 1.14x1040 5.12 7.01 0.33
600 395 3.93x1019 4.51 5.096 0.33
800 527 1.95x109 3.26 3.64 0.33

Gradual
400 400 3.98x1051 2.56 6.53 1
600 600 1.22x1021 2.54 3.31 1
800 800 6.02x1012 2.65 3.06 1

Table 5.5: Incoming Message NI Simulation Results.

Table 5.5 shows the results of simulating the receive interfaces described

above. Recall that computation needed to unpack flits into messages is much

less complex than the packaging of messages, it fits into one clock cycle even at

800 MHz, therefore the latency of the Fast 4-phase NI scales as expected with

frequency increases. The Gradual Synchronizer NI uses a 3-stage design for

400MHz and 600MHz, adding a 4th stage for 800MHz to meet our requirement

that the MTBF of the GS NI be the same as or higher than the F4PH NI. This

results in little decrease in the latency of the GS NI when increasing the clock

speed from 600MHz to 800MHz. Minimum latencies for the GS NI are generally

lower, however for both NI types these latencies are seen at the first message

when the NI is empty and waiting for a new flit. The common case is closer

to the maximum latencies. The GS NI can push a flit through faster primarily

because of the parallel computation/synchronization.

In the receive case the throughput is consistent, the Fast 4-Phase NI can han-

dle one flit every three cycles and the GS NI one every cycle. We know there are

at least two flits for every incoming message,therefore throughput capability

causes the GS NI to beat the F4PH NI in full message latency in all cases.
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SUMMARY

§ Gradual Synchronization
• Computation ready FIFO
• Low latency
• Maximum throughput

§ Application (NI)
• Merge realistic computation
• Full system latency reduction
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