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Is the netlist equivalent to the RTL?
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® YES! When using standard logical-equivalence checking

® | ogical equivalence formulation:
“For every input from {T, F}, the netlist produces the same output as the RTL.”

® Signal naming:

» S —signals Synchronous to output clock domain
» N —signals Non-synchronous to output clock domain
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Glitches caused by non-synchronous signals
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® Standard logical-equivalence is not enough, e.g., when

S_N1_VALID s O:

» RTL: permits only s1 to pass to the MUX output, s_oUT

» netlist: allows a glitch to propagate from N1 to S_0OUT

Peng, Jones, Greenstreet Glitch Hunting

May 9th 2016

4/12



Using ternary simulation to detect glitch
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® Ternary logic values {T, F, X} facilitate detection of glitch paths
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Our Formal Methods Glitch Hunting Tool
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The Formal Definition

netlist

® For a state-bit, g, let S; denote the synchronous inputs to the
combinational logic for the next-state of q, and N denote the
non-synchronous inputs. Let B = {0, 1}, and BX = {0,1,X}

glitchFree(q) = VS, € B*. VA, € BX".

(nextq,net(Sq, Ng) = X) = (nextq rrL(Sq, Ng) = X)
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Experimental Results: Real Designs

Module A Module B
Description control module interface module
RTL file size 0.7M 2.5M
netlist file size 8.2M 5.4M
# state-bits 22473 4439
# state-bits w N' 1253 (5.6%) 957 (21.6%)
# Glitches found 0 148

® Modules have multiple clock domains
® Found all previously known glitches

® Discovered glitch paths that were benign due to unstated
assumptions in the RTL

N stands for non-synchronous input
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Some remarks about performance

Performance
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Preprocessing Theorem checking

B Module A ® Module B
® Theorem checking is compute intensive, but each fan-in tree can be run
in parallel

® Preprocessing overhead expected to grow linearly with size of netlist and
RTL Verilog
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Conclusion and future work

® |mplemented a tool using SAT solving and theorem proving to
detect synthesis inserted glitches

® Provide a formal definition of the required glitch-free property
® Successfully demonstrated our tool on real industrial designs
® Future work:

» Automatically generate simulation scripts for glitch found

» Larger designs
» Integrate the method into chip design flow
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Finding Glitches Using Formal Methods

Thank You! Questions?
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Glitches caused by non-synchronous signals
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® RTL: N2 is specified to generate only N_OUT
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® netlist: even when s N1_VALID is 0, a posedge on N2 can cause
a glitch to propagate to s_oUT
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Glitch Demonstration - Glitch Path Extraction
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® Combinational logic fan-in trees often have 100+ inputs
® Challenge:
» succinctly present glitch path results
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