Finding Glitches Using Formal Methods J

Yan Peng' lan W. Jones® Mark R. Greenstreet!

TUniversity of British Columbia, Vancouver, BC, Canada
2Qracle Labs, Redwood City, California, USA

May 9th 2016

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 1/12

Outline

RTL

Boolean—equivalent
Synthesis

).). =)

)

€ Warming up

Logic Optimization

» A Small Example
» Glitch Detection Using Ternary Simulation

® QOur Glitch Hunting Tool
® Experimental Results

® Conclusion

Peng, Jones, Greenstreet

Glitch Hunting

I 1
-

netlist

May 9th 2016

2/12

Is the netlist equivalent to the RTL?

sw =1 1
; L)

clk1

N S_N1_VALID =0
'y zz=1
A

3
clk1
N1=0 RTL
x >
S_OUT = S_N1_VALID ? N1: §1;
clk2 N_OUT = N2;
W
s1
synthesized 1 s.out
N1
N2=0 N2_bar N_OUT =0
> > al— N2 N_ouT
S_N1_VALID
clk2 clk2

® YES! When using standard logical-equivalence checking

® | ogical equivalence formulation:
“For every input from {T, F}, the netlist produces the same output as the RTL.”

® Signal naming:

» S —signals Synchronous to output clock domain
» N —signals Non-synchronous to output clock domain

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 3/12

Glitches caused by non-synchronous signals

B A [S

&
clk1

N S_N1_VALID =0
j , z=1
A

clk1

ﬁl —>o Do—

clk2 vy
synthesized 1

N2_bar

N_OUT=0

al—

N2 =1 {>C {>O

clk2

clk2

RTL

S_OUT = S_N1_VALID ? N1:S1;

N_OUT = N2;
S1

N1

N2
S_N1_VALID

S_ouT

N_OUT

® Standard logical-equivalence is not enough, e.g., when

S_N1_VALID s O:

» RTL: permits only s1 to pass to the MUX output, s_oUT

» netlist: allows a glitch to propagate from N1 to S_0OUT

Peng, Jones, Greenstreet Glitch Hunting

May 9th 2016

4/12

Using ternary simulation to detect glitch

B R) S

clk1

N S_N1_VALID =0
. zz=1
A

¥
clk1

clk2

N_OUT =0

D o

¥
clk2 clk2

RTL

S_OUT = S_N1_VALID ? N1: S1;
N_OUT = N2;

S1

N1

N2
S_N1_VALID

S_OouT

N_ouT

® Ternary logic values {T, F, X} facilitate detection of glitch paths

Peng, Jones, Greenstreet Glitch Hunting

May 9th 2016 5/12

Our Formal Methods Glitch Hunting Tool

ACL2
Verilog
RTL — Theorem
VL prover
netlist __|interface
SAT interface

* SAT solver: automatic reasoning about logic formulas

SAT solver

® Warming up
€¢ A Formal Methods Glitch Hunting Tool using ACL2

» Tool Architecture and Work Flow
» The Formal Definition

® Experimental Results
® Conclusion

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016

6/12

The Formal Definition

netlist

® For a state-bit, g, let S; denote the synchronous inputs to the
combinational logic for the next-state of q, and N denote the
non-synchronous inputs. Let B = {0, 1}, and BX = {0,1,X}

glitchFree(q) = VS, € B*. VA, € BX".

(nextq,net(Sq, Ng) = X) = (nextq rrL(Sq, Ng) = X)

Peng, Jones, Greenstreet

Glitch Hunting

May 9th 2016

(1)

7/12

Outline

RTL

® Warming up

Boolean—equivalent
Synthesis

). .

Logic Optimization

® QOur Glitch Hunting Tool
€¢ Experimental Results

» Real Designs
» Performance

® Conclusion

Peng, Jones, Greenstreet

Glitch Hunting

)

netlist

May 9th 2016

8/12

Experimental Results: Real Designs

Module A Module B
Description control module interface module
RTL file size 0.7M 2.5M
netlist file size 8.2M 5.4M
state-bits 22473 4439
state-bits w N' 1253 (5.6%) 957 (21.6%)
Glitches found 0 148

® Modules have multiple clock domains
® Found all previously known glitches

® Discovered glitch paths that were benign due to unstated
assumptions in the RTL

N stands for non-synchronous input

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016

9/12

Some remarks about performance

Performance

N

S~

g3

E
2
1 --
0

Preprocessing Theorem checking

B Module A ® Module B
® Theorem checking is compute intensive, but each fan-in tree can be run
in parallel

® Preprocessing overhead expected to grow linearly with size of netlist and
RTL Verilog

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 10/12

Conclusion and future work

® |mplemented a tool using SAT solving and theorem proving to
detect synthesis inserted glitches

® Provide a formal definition of the required glitch-free property
® Successfully demonstrated our tool on real industrial designs
® Future work:

» Automatically generate simulation scripts for glitch found

» Larger designs
» Integrate the method into chip design flow

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 11/12

Finding Glitches Using Formal Methods

Thank You! Questions?

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 12/12

Glitches caused by non-synchronous signals

nz-1r

clk2
yy= LI
synthesized 1
N2 =" N2_bar N_OUT
o [>o o a—
clk2 clk2

® RTL: N2 is specified to generate only N_OUT

RTL

S_OUT = S_N1_VALID 2 N1: §1;
N_OUT = N2;

st

s_out

N1

N2 N_ouT
S_N1_VALID

® netlist: even when s N1_VALID is 0, a posedge on N2 can cause
a glitch to propagate to s_oUT

Peng, Jones, Greenstreet

Glitch Hunting

May 9th 2016 13/12

Glitch Demonstration - Glitch Path Extraction

s1=1 4
A ,.' > !

clk1
N S_N1_VALID=0
'y zz=1
A
clk1
N1 =X RTL
D Q ~{>C W
S_OUT = S_N1_VALID ? N1 : S1;
N_OUT = N2;
clk2 vy
S1
synthesized 1 S_ouT
N1
N2 =1 N2_bar N_OUT=0
oa [>o [>o o ol N2 N_ouT
3 S_N1_VALID
clk2 clk2

® Combinational logic fan-in trees often have 100+ inputs
® Challenge:
» succinctly present glitch path results

Peng, Jones, Greenstreet Glitch Hunting May 9th 2016 14/12

	Appendix

