
Moti Medina

Joint work with Christoph Lenzen

Max Planck Institute For Informatics, Saarbrucken, Germany

ASYNC 2016

Efficient
Metastability-Containing

Gray Code 2-sort

• Physics
• Analog world (voltage) to 0-1 non 0-1

equilibria = Metastability (Ms).

• [Marino 81] Ms cannot be avoided,
detected, or resolved.

• ↑ clock rate ↑ Pr. Metastability.

• ↑ clock rate ↑ #cc until metastability
resolves.

• ↑ #transistors ↑ Pr. Metastability.

• Common solution: Wait!

In The Beginning there was Metastability

• Crossing clock domains
• Signal arrives out of FF critical

segment Ms.

• We want to eliminate this
reason of Ms.

Idea: Clock Synchronization
1st shot: a naïve “solution”

• 2 clocks

• Master-Slave approach.

• Slave clock measures Master’s clock.
• Analog to Digital conversion = a TDC.

• Slave clock: Unary to Bin trans and update slave’s clock.

• Problem: Marino Metastability.

• Conversion Arbitrary clock update.

• Problem: Clock synch. fails.

2nd shot & Metastability-Containing

• “If you can’t beat them, join them”
 Contain metastability

• Unary string analog correction of
the oscillator.
• We didn’t lose any precision due to Ms

= metastable containing (Ms-C)

• Master-slave approach nice
property: bounded phase shift
crossing clock domains doesn’t incur
metastability.

• Problem: the master clock fails
lost availability of a clock, i.e., not a
fault tolerant system.

Our Goal

•Can we design a system which is
• fault-tolerant, and
• No loss of precision due to metastability?

• i.e., Containing metastability

Yes to Fault-Tolerance!
The Lynch-Welch [88] Algorithm

• #number of faulty clocks: 𝑓

• #number of clocks: 𝑛 = 3𝑓 + 1

• Example: 𝑓 = 2, 𝑛 = 7

• Algorithm’s idea (animation):

Implementation:

• In each clock (repeat forever)
• Measure phase diff. from all the

other clocks using TDCs.

• Sort these measurements.

• Adjust self clock to
𝑑𝑖𝑓𝑓[𝑓+1]+𝑑𝑖𝑓𝑓[𝑛−𝑓]

2
.0 8 12 27 32 33 37𝒅𝒊𝒇𝒇:

𝑡

The System

• Each clock has a 𝑛 − 1 TDCs.

• Each clock has a sorting network.

Next slideAnalog
domain

Our focus Analog
domain

Our Time to Digital Converter (TDC)
[Fuegger, Lenzen, Polzer 2016]
• (Ideal) TDC Specification:

• Input: analog signals 𝑎 𝑡1 , 𝑏 𝑡2 , 𝑡2 > 𝑡1
• Output: Gray code representation of 𝑡2 − 𝑡1

• Corollary [Marino]: There is no ideal TDC!

• [FLP2016] : TDC s.t. output contains 𝟏MS bit,
• i.e., in unary 𝟏∗𝟎∗ ∪ 𝟏∗𝑴𝟎∗,
• Mapping to Gray-code in the next slide.

• Our question revisited: Can we implement the LW algorithm? We
cannot wait…

Gray code & Valid (input/output) strings

g[1] g[2] g[3]

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

5 1 1 1

6 1 0 1

7 1 0 0

• 3-bit Reflected Binary Gray Code • Valid (input/output) strings

g[1] g[2] g[3]

0 0 M

0 M 1

0 1 M

M 1 0

1 1 M

1 M 1

1 0 M

• Valid Unary to Valid Gray code is
1-2-1 & one bit is MS in both.

• 𝑔[1] = 𝑀 𝑔[2: 3] is the “biggest” number
in two bits Gray code

Our Question

• We need to sort!

• [LW88] does not solve the Ms-C issue.

• Sorting in a Ms-C manner + unary strings = exp. size circuits
• Trivial min/max

• Who is bigger? 100 or M00 ? 1M0 or 100?

• Challenge: Find Ms-C Polynomial size circuits.

Metastability (Ms) model

• Worst case metastability gate
propagation.

• Logical masking:
• AND

• OR

Cost and Dealy of Combinational
circ.:

• Standard definitions.

• Cost = sum of basic gates’ costs

• Delay = heaviest path from an
input to an output.

Ms-C 2 − 𝑠𝑜𝑟𝑡 - Specification

• For 𝑢, 𝑣 unary strings
• max
𝑢𝑛
𝑢, 𝑣 = 𝑢 + 𝑣

• min
𝑢𝑛
𝑢, 𝑣 = 𝑢 ⋅ 𝑣

• Ms-C

• For 𝑢, 𝑣 valid Gray code inputs
• Let 𝑢 ← 𝑢𝑛 𝑢 , 𝑣 ← 𝑢𝑛(𝑣)

• max𝑟𝑔 𝑢, 𝑣 = 𝑟𝑔 max
𝑢𝑛
 𝑢, 𝑣

• min𝑟𝑔 𝑢, 𝑣 = 𝑟𝑔 min
𝑢𝑛
 𝑢, 𝑣

• Ms-C

A MS-C Gray code 2 − 𝑠𝑜𝑟𝑡(𝐵)
combinational circuit is defined as
follows:

• Input: 𝐵 bit valid gray code strings
𝑔, ℎ

• Output: 𝐵 bit valid gray code
strings 𝑔′, ℎ′

• Functionality:
• 𝑔′ ≜ max𝑟𝑔 𝑔, ℎ

• ℎ′ ≜ min𝑟𝑔 𝑔, ℎ

+= 𝑂𝑅
⋅= 𝐴𝑁𝐷

Our main result

We propose an Ms-C circuit of

•Polynomial cost 𝑂 𝐵2 , and

• Linear depth 𝑂(𝐵)

• that computes the 2 − 𝑠𝑜𝑟𝑡(𝐵) of two 𝐵-bit Gray
code valid inputs.

Ms-C Multiplexers
• (2: 1)-CMUX

• Problem: output is Ms even if there
is no ``choice’’.

• Solution: keep invariant s.t. if 𝑎 = 𝑏
then we ``don’t care’’ about 𝑠

• (2𝑘: 1)-CMUX
• The recursive extension keeps the invariant.

𝟏𝟏

𝑴

𝟏

𝟏

𝟏

𝟏

𝟏

𝑴

𝑴

2 − 𝑠𝑜𝑟𝑡(𝐵) Efficient & Ms-C Design:
High Level Idea
• Recursive scheme.

• Directly operates on the Gray
code representation.

• Simply branching on the first bit
of the code not Ms-C.

• Observation
• 1st bit Ms stable bits are the

max number.

• Observation + Ms-C Mux
• both branching options are the

same

• no additional Ms bits!

• Base case: 𝐵 = 1, 𝑢, 𝑣 ∈ {0,1}
• max𝑟𝑔 𝑢, 𝑣 = 𝑢 + 𝑣

• min𝑟𝑔 𝑢, 𝑣 = 𝑢 ⋅ 𝑣

+= 𝑂𝑅
⋅= 𝐴𝑁𝐷

g[1]

h[1]

g[1]

h[1]

h’[1]

g’[1]

𝑴

𝟏

2 − 𝑠𝑜𝑟𝑡(𝐵) Design & Proof (by example)

g[1:2]

h[1:2]

g[1]

h[1]

g[1]

h[1]

h’[1]

g’[1]

0

1

2

3

CMUX

g[1], h[1]

g[2]⋅h[2]

g[2]+h[2]

g[2]

h[2]
g’[2]

0

1

2

3

CMUX

g[1], h[1]

g[2]+h[2]

g[2]⋅h[2]

h[2]

g[2]
h’[2]

max
𝑟𝑔
𝑔, ℎ =g'[1:2]

min
𝑟𝑔
{𝑔, ℎ}=h'[1:2]

g[1] g[2]

0 0

1 0

1 0

+= 𝑂𝑅
⋅= 𝐴𝑁𝐷

h[1] h[2]

1 1

M 1

1 M

𝑴

𝑴

𝟏
𝟎

𝟎

𝟏

𝟎

𝟏

g’[1] g’[2]

1 1

1 0

1 0

h'[1] h'[2]

0 0

M 1

1 M

00
01
11
10

=

>

<

=

𝑴

𝟏

𝟏

Conclusion

• Allowing for computations to take place before metastability
is resolved.

• Analog measurement precision is kept.

• Building an asynchronous system without synchronizers.
• By implementing the LW algorithm

Further research & Open questions

• More efficient 2 − 𝑠𝑜𝑟𝑡(𝐵) .
• log 𝐵 delay 𝐵log𝐵 cost!

• Design a 2 − 𝑠𝑜𝑟𝑡(𝐵) that operates on Redundant Binary
encoding .

• Super linear delay lower bound for Ms-C combinational
circuits?

• Replace “Waiting” with Ms-C circuits.

