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 Ground bounce  Voltage fluctuations in the substrate (substrate noise) 

 

 

 

 

 

 

 

 

 Direct coupling through substrate contacts  dominant coupling mechanism 

 This noise further propagates to the outputs of analog circuits, impacting the performance 
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 A single gate doesn’t produce a lot of ground bounce… 
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 A single gate doesn’t produce a lot of ground bounce… 

 … but the system has a huge number of simultaneously switching gates 
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 A single gate doesn’t produce a lot of ground bounce… 

 … but the system has a huge number of simultaneously switching gates 

 

 

 

 

 

 

 

 

 

 

 

 Noise generation is, to a large extent, a system level effect, and thus can be addressed 
at system level 
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 The goal of this work:  

 Provide a corresponding methodology for substrate noise suppression 

[10] Xin Fan, Oliver Schrape, Miroslav Marinkovic, Peter Dähnert, Milos Krstic, and Eckhard Grass, “GALS design for spectral peak attenuation of switching 
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 Switching current spectrum (𝑭{𝒊𝒔𝒘}): 

 Fundamental is the dominant component  targeted by power balancing [10] 
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 Substrate noise spectrum (𝑭{𝒗𝒔𝒖𝒃}): 

 

 

 

 

 

 

 

 

 𝑯 usually pass-band  dominant components at higher frequency 

𝑯𝒑 – package & PDN transfer function (from switching current to ground bounce) 

𝑯𝒔𝒖𝒃 – substrate transfer function (from aggressor substrate contacts to the victim) 

𝑯 – total package & PDN and substrate transfer function 
(from switching current to the victim) 

𝑭{𝒗𝒈𝒃} – ground bounce spectrum 

𝑭{𝒊𝒔𝒘} – switching current spectrum 
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 VCO: 

 Low frequency harmonics can form intermodulation products with an oscillator frequency and form 
spures in output spectrum  low frequencies are critical 

 LNA: 

 Mostly the in-band noise corrupts the performance  high frequencies are critical 

 

 Usually more than one type of analog modules on the chip 

 

 Requirements: 

 Noise suppression at higher frequencies 

 Possibility of frequency selective noise suppression covering multiple frequency bands 
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 Why plesiochronous? 

 Maintains the processing capability of each of the LSMs 

 Predictability 

 Substrate transfer function 𝑯 has different values at different frequencies 

 For close frequencies, the difference is values of 𝑯 is negligible 

𝑭𝒏 𝒗𝒔𝒖𝒃𝒎 = 𝑯𝒏𝒎 𝑭𝒏{𝒊𝒎}     ,     𝑭𝒏 𝒗𝒔𝒖𝒃 = 𝑯𝒏 𝑭𝒏{𝒊} 
 
same power domain for all the partitions + plesiochronous desing  
 𝑯𝒏𝟏 ≈ 𝑯𝒏𝟐 ≈ ⋯ ≈ 𝑯𝒏𝒎 ≈ 𝑯𝒏 
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 Maintains the processing capability of each of the LSMs 

 Predictability 

 Substrate transfer function 𝑯 has different values at different frequencies 

 For close frequencies, the difference is values of 𝑯 is negligible 

 switching current peak attenuation = substrate noise peak attenuation 
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𝑺𝑷𝑨𝒅𝑩 = 𝟐𝟎 𝐥𝐨𝐠
𝑭𝒏{𝒗𝒔𝒖𝒃}

𝐦𝐚𝐱{ 𝑭𝒏{𝒗𝒔𝒖𝒃𝒎} }
≈ 𝟐𝟎 𝒍𝒐𝒈

𝑭𝒏{𝒊}

𝐦𝐚𝐱{ 𝑭𝒏{𝒊𝒎} }
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 Spectral peak attenuation: 
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 For a synchronous system: 

𝑺𝑷𝑨𝒅𝑩 ≈ 𝟐𝟎 𝒍𝒐𝒈
𝑭𝒏{𝒊}

𝐦𝐚𝐱{ 𝑭𝒏{𝒊𝒎} }
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𝑴

𝒎=𝟏

 𝑭𝒏 𝒊 =  𝑭𝒏{𝒊𝒎}

𝑴

𝒎=𝟏
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 Also approximately valid for a plesiochronous system 

 

 Optimal partitioning: 

 Group the blocks into partitions so that the harmonics aimed for reduction be the same for 
each of the partitions 
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𝑭𝒏 𝒊𝟏 = 𝑭𝒏 𝒊𝟐 = ⋯ = 𝑭𝒏 𝒊𝑴 =
𝑭𝒏{𝒊}
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 𝐦𝐚𝐱 𝑺𝑷𝑨𝒅𝑩 = 𝟐𝟎 𝐥𝐨𝐠 𝑴 
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 The result was obtained by applying an approximation that the differences between the 
synchronous system frequency and the plesiochronous frequencies are negligible 

 

 Analysis of the impact of that approximation: 

 Switching current modeled as a periodic triangular pulse 

 Spectrum calculated by applying a nominal frequency, and a frequency with a small offset 

error in dB, 1% frequency offset 

error in dB, 3% frequency offset 

error in dB, 5% frequency offset 

switching current spectrum envelope 
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 Analysis of the impact of plesiochronous approximation - continuation: 

 Harmonic balancing applied at all frequencies, attenuation calculated 

synchronous system – 
- spectrum envelope 

attenuation calculated by applying 
the plesiochronous approximation 

attenuation calculated without applying 
the plesiochronous approximation 
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possible that the perfect harmonic balancing among 

partitions can’t be achieved 
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 Finite granularity of the initial synchronous design 

 Design consists of a finite number of blocks 

 Partitioning = Assigning the blocks to partitions 

 Even if suppression at only one harmonic is targeted, 

possible that the perfect harmonic balancing among 

partitions can’t be achieved 

 

 It usually happens that perfect balancing of peaks at different harmonics at the same 
time is not possible 

 

 

 

 

 

 Find the partitioning which is the closest to the perfect harmonic balancing 

Example: 
   - three blocks 
   - two partitions 
   - one harmonic 

Example: 
   - three blocks 
   - two partitions 
   - two harmonics, 
   pth and qth 

pth qth pth qth 
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a b c a b c bc a bc a 
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 For searching through combinations, the simulated annealing algorithm was used 

 Chose initial combination Example: blocks:     a b c d e f g h 
   initial combination:                 {a c f h}   {b d e g} 
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 If the new combination is better – take it 

 If the new combination is worse – take it only with some probability, which gets smaller with the 
number of iterations 

 

 Cost function to decide whether the combination is better or worse 

 Least total harmonics power 

 Least mean square difference to the theoretically „perfect partitioning“ 

 Least power of the strongest harmonic 
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 For searching through combinations, the simulated annealing algorithm was used 

 Chose initial combination 

 Pick a random „neighboring combination“ 

 

 If the new combination is better – take it 

 If the new combination is worse – take it only with some probability, which gets smaller with the 
number of iterations 

 

 Cost function to decide whether the combination is better or worse 

 Least total harmonics power 

 Least mean square difference to the theoretically „perfect partitioning“ 

 Least power of the strongest harmonic 

 

 Calculate the cost function only for the frequency band(s) targeted for optimization 

  Frequency selective attenuation 

 

Example: blocks:     a b c d e f g h 
   initial combination:                 {a c f h}   {b d e g} 
   neighboring combination:       {a c h}     {b d e f g} 
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initial partitioning, 
cost function: 𝑐𝑜𝑙𝑑 

neighboring partitioning, 
cost function: 𝑐𝑛𝑒𝑤 

𝑐𝑛𝑒𝑤 < 𝑐𝑜𝑙𝑑 

𝑎𝑝 = e
−
𝑐𝑛𝑒𝑤−𝑐𝑜𝑙𝑑
𝑇  𝑎𝑝 = 1 

𝑎𝑝 ≥ rand 

assign the new partitioning 
𝑜𝑙𝑑 ← 𝑛𝑒𝑤 

𝑇 =  𝛼𝑇 

convergence? 

finish 

NO YES 

NO 

YES 

Notes: 
   𝑎𝑝 – acceptance probability of the 

new partitioning 
   𝑇 – “temperature”, a parameter 
which gets reduced at each iteration 
   0 ≤ rand ≤ 1 
   𝛼 < 1  

NO 

current profiles of blocks 

YES 
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 Block waveforms: periodic triangular pulses 

 Random rise times (range: 0-20% Tsclk) and fall times (range: 0-80% Tsclk) 

 Random current peak (range: 0 - 1 mA) 

 40 blocks, 5 partitions (theoretically maximum attenuation: 13.98 dB) 

 Frequency offsets for the partitions: -4%, -2%, 1%, 3%, 5% 
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 Block waveforms: periodic triangular pulses 

 Random rise times (range: 0-20% Tsclk) and fall times (range: 0-80% Tsclk) 

 Random current peak (range: 0 - 1 mA) 

 40 blocks, 5 partitions (theoretically maximum attenuation: 13.98 dB) 

 Frequency offsets for the partitions: -4%, -2%, 1%, 3%, 5% 

 

 Optimization on all the harmonics: 

 spectrum envelopes: 
   red dotted – synchronous 
   red – GALS, “perfect” partitioning 
   green – GALS 

spectral peak attenuation 
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 Optimization in [1.5 GHz – 2.5 GHz] frequency band: 

 

spectrum envelopes: 
   red dotted – synchronous 
   red – GALS, “perfect” partitioning 
   green – GALS 

spectral peak attenuation 
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 Optimization in [5 GHz – 5.5 GHz] frequency band: 

 

spectrum envelopes: 
   red dotted – synchronous 
   red – GALS, “perfect” partitioning 
   green – GALS 

spectral peak attenuation 



www.ihp-microelectronics.com    © 2016 - All rights reserved 

Numerical evaluation of the methodology 
in MATLAB 

May 10, 2016 ASYNC 2016 24/30 

 Optimization in [1.5 GHz – 2.5 GHz] and [5 GHz – 5.5 GHz] frequency bands: 

 

spectrum envelopes: 
   red dotted – synchronous 
   red – GALS, “perfect” partitioning 
   green – GALS 

spectral peak attenuation 
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2 
Switching current spectrum optimization requirements 
for substrate noise reduction 

3 Harmonic balanced partitioning 

4 GALS partitioning algorithm for substrate noise reduction 

5 Methodology for GALS partitioning 

6 Conclusions and future work 
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 Intended for use as a part of wireless sensor network 

 LEON2 32-bit microprocessor and three accelerator cores for cryptographic operations 
(SHA-1, AES and ECC) 

 Hierarchical netlist: 21 block 

 Optimization bands: 

 The first harmonic (50 MHz) and GSM-850 band (800 MHz, 850 MHz, 900 MHz) 

 5 LSMs, frequency offsets: 2.56%, 1.26%, 0%, -1.24% and -2.44% 
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 Intended for use as a part of wireless sensor network 

 LEON2 32-bit microprocessor and three accelerator cores for cryptographic operations 
(SHA-1, AES and ECC) 

 Hierarchical netlist: 21 block 

 Optimization bands: 

 The first harmonic (50 MHz) and GSM-850 band (800 MHz, 850 MHz, 900 MHz) 

 5 LSMs, frequency offsets: 2.56%, 1.26%, 0%, -1.24% and -2.44% 

 

 Attenuation achieved: 

 ~7 dB for the strongest components, less for the weaker components 

synchronous system 
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 Intended for use as a part of wireless sensor network 

 LEON2 32-bit microprocessor and three accelerator cores for cryptographic operations 
(SHA-1, AES and ECC) 

 Hierarchical netlist: 21 block 

 Optimization bands: 

 The first harmonic (50 MHz) and GSM-850 band (800 MHz, 850 MHz, 900 MHz) 

 5 LSMs, frequency offsets: 2.56%, 1.26%, 0%, -1.24% and -2.44% 

 

 Attenuation achieved: 

 ~7 dB for the strongest components, less for the weaker components 

GALS system 
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 A GALS methodology for substrate noise reduction presented, based on harmonic balanced 
partitioning scheme 

 Use switching current profiles of design subcomponents 

 Calculate the spectra 

 Assign the design subcomponents to partitions such that all harmonics in the targeted frequency band are as 
equal as possible among the partitions 

 

 Theoretical maximum for spectral peak attenuation: 

 20 log𝑀 for 𝑀 partitions 
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 A GALS methodology for substrate noise reduction presented, based on harmonic balanced 
partitioning scheme 

 Use switching current profiles of design subcomponents 

 Calculate the spectra 

 Assign the design subcomponents to partitions such that all harmonics in the targeted frequency band are as 
equal as possible among the partitions 

 

 Theoretical maximum for spectral peak attenuation: 

 20 log𝑀 for 𝑀 partitions 

 

 Future work 

 Further automatization of the implemented low noise methodology 

  Automate the asynchronous wrapper integration phase 

 Fabricate a test chip to demonstrate the methodology 



IHP – Innovations for High Performance Microelectronics 
Im Technologiepark 25 
15236 Frankfurt (Oder) 
Germany 

www.ihp-microelectronics.com 

Phone: +49 (0) 335 5625 
Fax:  +49 (0) 335 5625 
Email: 

Thank you for your attention! 
Babić, Milan 

725 
671 

babic@ihp-microelectronics.com 

A
1

1
B

 



www.ihp-microelectronics.com    © 2016 - All rights reserved 

Appendix 1: Partitioning of the design example  

May 10, 2016 ASYNC 2016 A1/1 



www.ihp-microelectronics.com    © 2016 - All rights reserved 

Appendix 1: Partitioning of the design example  

May 10, 2016 ASYNC 2016 A1/1 



www.ihp-microelectronics.com    © 2016 - All rights reserved 

 Ground bounce  Voltage fluctuations in the substrate (substrate noise) 

 

 

 

 

 

 

Appendix 2: Substrate noise 
generating mechanisms 

May 10, 2016 ASYNC 2016 A2/1 



www.ihp-microelectronics.com    © 2016 - All rights reserved 

 Ground bounce  Voltage fluctuations in the substrate (substrate noise) 

 

 

 

 

 

 

 

 

 

 Direct coupling through substrate contacts 

 

 

 

 

 

 

 

Appendix 2: Substrate noise 
generating and injecting mechanisms 

May 10, 2016 ASYNC 2016 A2/1 



www.ihp-microelectronics.com    © 2016 - All rights reserved 

 Ground bounce  Voltage fluctuations in the substrate (substrate noise) 

 

 

 

 

 

 

 

 

 

 Direct coupling through substrate contacts 

 Other substrate noise sources: 

 Capacitive coupling through S/D junction capacitances 
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 Ground bounce  Voltage fluctuations in the substrate (substrate noise) 

 

 

 

 

 

 

 

 

 

 Direct coupling through substrate contacts  dominant coupling mechanism 

 Other substrate noise sources: 

 Capacitive coupling through S/D junction capacitances 

 Impact ionization in the channel 

 Coupling from the NWell 
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 Ground bounce  Voltage fluctuations in the substrate (substrate noise) 

 

 

 

 

 

 

 

 Injection to analog circuits 

 Direct injection through substrate contacts 

 Body effect 

 Capacitive coupling through S/D junction capacitances 

 This noise further propagates to the outputs of analog circuits, impacting the performance 
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Probabilistic – doesn’t allways output the same 
combinations, especially if many combinations have 
a similar value of cost function 

Notes: 
   𝑎𝑝 – acceptance probability of the 

new partitioning 
   𝑇 – “temperature”, a parameter 
which gets reduced at each iteration 
   0 ≤ rand ≤ 1 
   𝛼 < 1  

initial partitioning, 
cost function: 𝑐𝑜𝑙𝑑 

neighboring partitioning, 
cost function: 𝑐𝑛𝑒𝑤 

𝑐𝑛𝑒𝑤 < 𝑐𝑜𝑙𝑑 

𝑎𝑝 = e
−
𝑐𝑛𝑒𝑤−𝑐𝑜𝑙𝑑
𝑇  𝑎𝑝 = 1 

𝑎𝑝 ≥ 𝐫𝐚𝐧𝐝 

assign the new partitioning 
𝑜𝑙𝑑 ← 𝑛𝑒𝑤 

𝑇 =  𝛼𝑇 

convergence? 

finish 

NO YES 

NO 

YES 

NO 

current profiles of blocks 

YES 
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Appendix 4: Harmonic balanced plesiochronous design 
for substrate noise reduction 

May 10, 2016 ASYNC 2016 A4/1 

 Spectral peak attenuation: 
valid for a synchronous design, 
approximately also valid 
for a plesiochronous design 

𝑭𝒏{𝒊} – nth harmonic of the switching current spectrum 
for the synchronous system 

𝑭𝒏{𝒊𝒎} – nth harmonic of the switching current spectrum 
for the mth partition of the system 
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May 10, 2016 ASYNC 2016 A4/1 

 Spectral peak attenuation: 

valid for a synchronous design, 
approximately also valid 
for a plesiochronous design 

𝑭𝒏{𝒗𝒔𝒖𝒃} – nth harmonic of the substrate noise spectrum 
for the synchronous system 

𝑭𝒏{𝒗𝒔𝒖𝒃𝒎} – nth harmonic of the substrate noise spectrum 
for the mth partition of the system 
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Appendix 4: Harmonic balanced plesiochronous design 
for substrate noise reduction 

May 10, 2016 ASYNC 2016 A4/1 

 Spectral peak attenuation: 

𝑯𝒏 – the value of substrate transfer function at the frequency of 
the synchronous system 

𝑯𝒏𝒎 –  the value of substrate transfer function at the frequency of 
the mth partition of the system 

valid for a synchronous design, 
approximately also valid 
for a plesiochronous design 
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Appendix 4: Harmonic balanced plesiochronous design 
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 Spectral peak attenuation: 

 

 

 

 

 

 

 

 

 

 Optimal partitioning: 

 Group the blocks into partitions so that the harmonics aimed for reduction be the same for 
each of the partitions 

valid for a synchronous design, 
approximately also valid 
for a plesiochronous design 
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