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Problem: Power Supply Noise

Chip

Package

Board

Figure courtesy: http://www.theregister.co.uk/2012/05/18/inside_nvidia_kepler2_gk110_gpu_tesla/
http://www.ansys.com/Products/Electronics/Option-SIwave-PSI-Solver
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Problem: Power Supply Noise
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Parasitics è power supply noise !!!
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§ Resistive component è IR drop
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Problem: Power Supply Noise

Image courtesy: http://www.soccentral.com/results.asp?EntryID=19453

§ Reactive component è LdI/dt droop
First, second, third droop . . . 
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Problem: Power Supply Noise

Supply noise è timing errors è performance degradation. 
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remains same

Operate at frequency that can handle worst-case noise !!!
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§ Adaptive clocking [1][2]
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Existing Solution: Traditional Adaptive Clocking

Frequency tracks voltage !!!
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§ Fixed clocking vs. Adaptive clock
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Existing Solution: Traditional Adaptive Clocking

Voltage rail
Fmax-adaptive clock

Fmax-fixed clock

Adaptive clock

Fixed clock Tolerates worst-case noise

Frequency tracks voltage noise
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Metric: Uncompensated Voltage Noise (UVN)

Uncompensated voltage noise UVN = Vmean – Vreq

Vmean : available voltage, averaged over a clock cycle 
Vreq : required voltage (for operation of circuits at required frequency)

When Vmean > Vreq, no problem !!! 
When Vmean < Vreq è additional margin for failure-free operation (UVN)

Lower UVN è lower margin 

Lower UVN is better!!! 



§ Fixed clocking vs. Adaptive clock
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Existing Solution: Traditional Adaptive Clocking
Voltage rail

Fmax-adaptive clock

Fmax-fixed clock

Adaptive clock

Fixed clock Voltage corresponding to fixed 
frequency (Vreq)

Voltage droops: voltage available 
(Vmean) 

UVN = Vmean – Vreq

UVN = 0 (expected) 
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Voltage rail
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Adaptive clocking is a great solution !!!

Voltage droops: voltage available 
(Vmean) 

Voltage corresponding to adaptive 
frequency (Vreq) 
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Drawbacks: Traditional Adaptive Clocking
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Clock domains

§ Large chips with a few clock domains
§ But each clock domain is still many mm2
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Drawbacks: Traditional Adaptive Clocking
Drawback #1: Effect of Clock-tree Insertion Delay
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Drawbacks: Traditional Adaptive Clocking
Drawback #1: Effect of Clock-tree Insertion Delay
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Δt time for the stretched pulses 
to reach the load (~ 1 -2 ns) 

Higher UVN: additional margin for failure-free operation !!!
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Drawbacks: Traditional Adaptive Clocking
Drawback #2: Effect of Spatial Workload Variations

Current variations across chip è Variations in voltage 
fluctuation across chip 
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Higher UVN, additional margin for failure-free operation !!!

Clock-tree
Insertion delay Δt

Adaptive Clock 
generator Load

 Δt

Clock

Voltage spike in clock generator region Voltage droop in load region

Voltage

Clock – root

Clock-tree
Insertion delay Δt

Adaptive Clock 
generator Load

 Δt

Clock

Voltage spike in clock generator region Voltage droop in load region

Voltage

Clock – leaf



17

Drawbacks: Traditional Adaptive Clocking

25 mm 
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m 

§ Higher clock domain area
§ Effect of clock-tree insertion delay is higher 
§ Spatial difference in voltage fluctuations is higher
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Proposed Solution: Fine-grained GALS 
Adaptive Clock 

Traditional adaptive clock
Clock domain many mm2

Fine-grained GALS adaptive clock
Clock domain as small as a mm2
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Proposed Solution: Fine-grained GALS 
Adaptive Clock 

A) Asynchronous boundary 
crossing: 
§ B. Keller et. al 
§ Pausible bisynchronous 

FIFO design 
§ Easily integrated to 

standard tool flows
§ Average latency 1.34 

cycles
B) Myriad local clocks
§ Ring oscillators: mW range 

power 
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Proposed Solution: Fine-grained GALS 
Adaptive Clock 
§ Lower clock domain area 

§ Lower insertion delay (few 100 ps). 
§ Lower variation in voltage fluctuation. 
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Experimental Setup 
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Vreg

Clock-tree
Insertion delay Δt

Adaptive Clock 
generator Load

 Δt

Voltage

Clock

Clock-tree
Insertion delay Δt

Adaptive Clock 
generator Load

 Δt

Voltage

Clock
Power Distribution Network PCB, Package, On-chip

Adaptive Clock 
generator

Clock tree
Load

Lreg

Lbulk

Rbulk

Cbulk

Lmb

Lhf

Rhf

Chf

Lpkg

Lpkg_p

Rpkg_p

Cpkg

Lbump

Ldie

Rdie

Cdie

Regulator Board Package Die

Load

VDD

Vreg

Rpkg RbumpRmbRreg

GND



25

Experimental Setup 
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Experimental Setup 
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Experimental Setup 
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Traditional Adaptive Clocking
§ Long clock-tree è upto 2 ns
§ Set PDN area to many mm2

Fine-grained GALS Adaptive Clocking
§ Short clock-tree è low as 300 ps
§ Set PDN area to just a mm2
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Details: Experimental Setup 
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Power Distribution Network 
Simple lumped PDN model 

§ Cannot model spatial voltage variations
§ Need distributed PDN – Voltspot [3]
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Power Distribution Network 

Distributed PDN model using Voltspot
• Total chip area 
• PDN divided into an array
(47 x 47) 

Ω

PCB + 
Package 

resistance

Vreg

Gnd

Distributed on-chip 
grid + C4 pads

Distributed 
load + decaps

Distributed package 
inductace



31

Details: Experimental Setup 
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Adaptive Clock Generator 
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§ Verilog-A model 
§ Voltage averaged over a 

cycle : Vmean 

§ Voltage vs. frequency (VF) 
curve

	

How is VF curve generated?
§ Critical path: longest circuit path on an SoC
§ Emulate critical path using 45 nm PDK kit
§ Simulate for max frequency vs. voltage  è VF curve
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Details: Experimental Setup 
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Clock-tree 

34

§ Global and local clock distribution 
§ Insertion delay vs. voltage

Curve fit polynomial used 
in Verilog-A model
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Details: Experimental Setup 
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Workload 

36

§ Current switching activity è voltage rail fluctuation 
§ Resonating current profile have worst effect of supply noise 

§ Frequency of interest : 10 – 40 MHz (Resonance at 30 MHz) 
§ Current slew rate: 10 A to 90 A over 10 clock cycles 
§ System frequency : 850 MHz, supply voltage = 1 V 
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Simulation Results 
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A. Effect of Clock-tree Insertion Delay
§ Uniform current distribution throughout PDN area
§ Sweep workload frequency: 10 - 40 MHz, insertion delay: 0.3 -1.5 ns



Simulation Results 
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B. Effect of Spatial Workload Variations
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Simulation Results 
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B. Effect of Spatial Workload Variations
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Simulation Results 
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B. Effect of Spatial Workload Variations: 
• Lower half : 80% of power (top half: 20%)
• Workload frequency: 30 MHz



Simulation Results 
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Traditional Adaptive 
Clocking
Uncompensated voltage 
noise = 111 mV 

Fine-grained GALS 
Adaptive Clocking
Uncompensated voltage 
noise = 33 mV 



§ Model and analyze power supply noise tolerance
§ Traditional adaptive clocking
§ Fine-grained GALS adaptive clocking

§ Effects of clock-tree insertion delay, spatial workload variations.
§ UVN savings of ~78 mV
§ Equivalent to power saving of ~15% for same performance (@1

V)
§ Overheads

§ Myriad local clocks
§ Good candidates are digitally-controlled / ring oscillators
§ Only a few mWs of power (<1%).

§ Future work
§ Overall savings dependent on the GALS partition size.
§ Account for domain crossing, clocking overhead in model.
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Summary
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