

Low Power QDI Asynchronous FFT

Benjamin Z. Tang, Frank Lane Qualcomm Research May 10, 2016

Motivation

- Extreme long battery life is crucial for M2M communication
- Must push innovation in low-power communication
- FFT is a common IP block that is computationally and memory intensive

FFT

• DFT:
$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi k}{N}n}, \quad k = 0, 1, ..., N-1$$

- FFT: O(N log(N))
- Implementation options:
 - Algorithm level: Radix, DIT/DIF, number representation
 - Circuit level: Twiddle multiplication, CORDIC rotation, multi-rate clocking, etc
- Reference sync version:
 - Radix 2³
 - Decimation in frequency (DIF)
 - 16-bit real, 16-bit imaginary
 - Twiddle multiplication: (a+bj)*(c+dj) = (ac-bd) + (ad+bc)j

Async FFT

- QDI
- Micro-architecture optimizations highlights:
- Token ring memory controls
- CORDIC twiddle multiplication

Token-Ring Controls 16-point FFT

1st stage example

- 2 passes, need 2-D ring
- 1st pass: store 8, read 8, once
- 2nd pass: store 1, read 1, 8 times
- Token ring keeps track of pattern

Token-Ring Controls 128-point FFT

1st stage example

- 3 passes, need 3-D ring, with 8 groups of 8
- 1st pass: store 64, read 64, once
- 2nd pass: store 8, read 8, 8 times
- 3rd pass: store 1, read 1, 64 times

Token rings provide controls for memory read/write, automatic back-pressure, counting and addressing

CORDIC Rotation Intro

- Twiddle (e^{-j(2πkn/N)}) multiplication = rotation by angle -(2πkn/N)
- Pipelined vs iterative
- Performance, area, clock cycles

Chose iterative architecture

$$x_{i+1} = x_i - y_i \times d_i \times 2^{-i}$$

$$y_{i+1} = y_i + x_i \times d_i \times 2^{-i}$$

$$z_{i+1} = z_i - d_i \times \arctan 2^{-i}$$

$$d_i = \begin{cases} -1, z_i < 0 \\ 1, z_i \ge 0 \end{cases}$$

$$x_0 = x_{in}$$

$$y_0 = y_{in}$$

$$z_0 = rotation angle$$

Asynchronous CORDIC Engine

- 6 iterations
- Bypass CORDIC for 0 degrees
- About 37% of the time in 128-point FFT
- Increased performance, reduced power

Results - FFT Plot

- CHP → production rules → transistor-level (Spice) netlist
- Sinusoid input, negligible difference compared to result from Matlab's native FFT function

Results - Spice Waveforms

Results - Power

- 65nm technology
- Vdd=1V
- 10 MHz data rate

Subsystems	Energy (nJ)
Memories, controls, butterflies, others	3.1
CORDIC	2.8
Total	5.9

Results - Comparison

	This Work	Sync (Chip)*	[1]	[2]
Tech	65 nm	65 nm	65 nm	0.35 μm
Voltage	1.0 V	1.0 V	0.3 V	1.1 V
N-point	128	128	128	128
Data rate	10 MHz	10 MHz	-	16 kHz
Energy	5.9 nJ	205 nJ	31 nJ	120 nJ

* Normalized to same data rate and FFT length

[1] K.-S. Chong, J. Chang, I. Ebong, Y. Yilmaz, and P. Mazumder, "Comparison of FFT/IFFT Designs Utilizing Different Low Power Techniques," in Electronic System Design (ISED), 2012 International Symposium.

[2] K.-S. Chong, B.-H. Gwee, and J. S. Chang, "Energy-Efficient Synchronous-Logic and Asynchronous-Logic FFT/IFFT Processors,", IEEE Journal of Solid-State Circuits, 2007.

Summary

- Low power clockless FFT design
 - Same design concepts can be extended to high performance systems
 - Can lower supply voltage further for near-threshold computing
- Simple, fast token rings memory controls
- Small, fast CORDIC engine

Acknowledgment

• Rajit Manohar for async CAD tools

Thank you

Follow us on: **f f in t** For more information, visit us at: www.gualcomm.com & www.gualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2016 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.