
DDiiggiilleenntt PPoorrtt CCoommmmuunniiccaattiioonnss
PPrrooggrraammmmeerrss RReeffeerreennccee MMaannuuaall

TM

www.dig i lent inc.com

 Revision: 06/03/05 215 E Main SuiteD | Pullman, WA 99163
(509) 334 6306 Voice and Fax

© Digilent, Inc. Doc: 576-000

Introduction

The DPCUTIL Dynamic Link Library (DLL)
provides an Applications Programming
Interface (API), allowing Digilent system
boards to communicate with applications
software running under Microsoft Windows on
a host computer.

When using DPCUTIL DLL a Digilent
Communication Module is requred to create a
communications channel between the host PC
and a system board. Digilent currently provides
communications modules supporting Ethernet,
USB 2.0, and Serial RS-232 communication
protocols.

The DPCUTIL API has functions for controlling
and communicating with the scan chain of
JTAG devices connected to a Digilent board.
The DPCUTIL API can also send and recieve
data to and from the user logic configured into
the gate array on a connected Digilent board.

The JTAG scan chain manipulation functions
are primarily for configuration of the
programmable logic devices in the scan chain.
The JTAG scan chain manipulation functions
can also be used to access to the boundary
scan registers in the device scan chain for
loading of test vectors, the read back of test
results, and other manipulations of the JTAG
scan chain supported by the attached devices.

The DPCUTIL data transfer functions require
that the gate array configuration contain a
parallel port interface compatible with the
Digilent Parallel Interface Module specification
and reference design, available on the Digilent
web site, at www.digilentinc.com. This
interface allows the user to define a set of
addressable registers that can be accessed by
the DPCUTIL data transfer API functions. The
data transfer API functions allow for writing or
reading a single register, writing or reading
sets of registers, or reading or writing a stream
of data into or out of a single register.

The DPCUTIL DLL was created and compiled
using the Microsoft C++ compiler in Visual
Studio 6. The API is defined as a set of C
callable functions, and can be used with
programs written in either C or C++. It is also
possible to write programs using Microsoft
Visual BASIC to access the DPCUTIL API
functions, but Digilent does not provide
technical support for this use.

Overview

The Components
In order to use any of the DPCUTIL API
functions, a program source module must
include the following header files in this order:
#include <windows.h>
#include “dpcdefs.h”
#include “dpcutil.h”

These header files should be placed in a
directory visible to the compiler. The files
should include a path for the development
environment that causes the compiler to
search the appropriate directory at compilation
time.

The program must be linked with the dpcutil.lib
library. This establishes the dynamic link
references between the application program
and the DPCUTIL dynamic link library. This
library file should be placed in a directory
visible to the linker and the linker library search
path set in the development environment to
cause the linker to search the appropriate
directory at program link time.

The DPCUTIL Dynamic Link Library
(dpcutil.dll) must be in a directory that is
searched by the operating system at program
run time. The DLL file should either be placed
in the same directory as the application
program, or in a directory that is listed on the
operating system PATH environment variable.
When a program is executed, the operating
system will look for dynamic link libraries in the

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 2 of 14

directory where the program executable
resides or in any directory listed on the system
PATH environment variable.

DPCUTIL API functions

Most DPCUTIL API calls are formed into
transactions. These transactions are put into a
queue and processed on a first-in-first-out
basis (FIFO). A function can either return upon
completion (blocking) or return immediately
and be processed on another thread (non-
blocking). A transaction entered into the
queue is assigned a TRID (Transaction ID), a
value used to distinguish between
transactions.

DPCUTIL API functions that require an
established connection with a communications
device must be passed a HIF (interface
handle) to specify the connection to use. This
handle is acquired by calling DpcOpenJtag or
DpcOpenData.

Most DPCUTIL API functions require a pointer
to an error code of type ERC. This variable will
hold the error code for a completed
transaction.

Most JTAG and Data Transfer functions have a
pointer of type TRID as a parameter. If this
parameter is set to NULL, the function will
block and not return until the transaction has
completed. Otherwise, if a non-null TRID
pointer is sent, the function will return
immediately and the transaction will be
processed on a different thread. Since none of
the data sent to DPCUTIL is copied, all data
sent to a non-blocking API call must remain
intact and unchanged until the transaction is
complete. Calling the DpcWaitForTransaction
function and sending it the TRID of a particular
transaction will allow an application to wait for
the completion of the transaction. Sending a
TRID of NULL to DpcWaitForTransaction will
force a wait on all transactions in the queue.

Initializing DPCUTIL

Before any of the DPCUTIL API functions can
be used, the DpcInit function must be called. If
it returns false, an error occurred while
attaching and initializing the DLL. The
application must not call any other DPCUTIL
API functions if DpcInit returns false.

The following is a simple list of all DPCUTIL API functions (with return types) available for public use:
BOOL DpcInit BOOL DpcPutTmsTdiBits
VOID DpcTerm BOOL DpcGetTdoBits
BOOL DpcGetDpcVersion BOOL DpcOpenData
BOOL DpcStartNotify BOOL DpcCloseData
BOOL DpcEndNotify BOOL DpcPutReg
BOOL DpcQueryConfigStatus BOOL DpcGetReg
BOOL DpcPendingTransactions BOOL DpcPutRegSet
BOOL DpcAbortConfigTransaction BOOL DpcGetRegSet
BOOL DpcClearConfigStatus BOOL DpcPutRegRepeat
BOOL DpcWaitForTransaction BOOL DpcGetRegRepeat
ERC DpcGetFirstError VOID DvmgStartConfigureDevices
BOOL DpcOpenJtag int DvmgGetDevCount
BOOL DpcCloseJtag BOOL DvmgGetDevName
BOOL DpcEnableJtag BOOL DvmgGetDevType
BOOL DpcDisableJtag int DvmgGetDefaultDev
BOOL DpcSetTmsTdiTck int DvmgGetHDVC
BOOL DpcPutTdiBits

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 3 of 14

The Device Table

All communication modules accessed through
DPCUTIL are kept in a table called the device
table. All details needed to connect to a device
are stored in this table. Each device in the
table is assigned a name and DPCUTIL uses
this name (and not the index) to access the
device. The device table can only be modified
through a dialog box included in the DPCUTIL
DLL. Calling the DvmgStartConfigureDevices
function will open this dialog box.

To get the total number of devices in the
device table, call the DvmgGetDevCount
function. To get the name of a device with a
given index, call the DvmgGetDevName
function. A device table always has a default
device in it. The index of this device can be
obtained by calling DvmgGetDefaultDev. If
there are no devices in the device table,
DvmgGetDefaultDev will return –1.

Using the DPCUTIL Data Transfer
functions

The data transfer functions in DPCUTIL rely on
the logic loaded into the FPGA. This logic
must reserve byte-sized registers used for
reading and/or writing. Through these
registers, the DPCUTIL data transfer functions
will communicate with the FPGA through a
connected communications module. As
mentioned before, the data transfer functions
allow for:

1. a register be written to or read from
2. many registers can be written to or

read from as a single transaction.
3. a stream of bytes to be sequentially

written to or read from a single
register

In this way, an application can communicate
with an FPGA through DPCUTIL. For a more
detailed explanation of the interface between
the FPGA and communications module, see
Digilent Parallel Interface Module Reference
Manual.

Before using any data transfer functions, the
application must connect to a communication
device using DpcOpenData. The first
parameter is a pointer to an interface handle
(hif). If the function returns successfully, this
handle will be used to connect to the device in
all proceeding data transfer calls. The device
is specified by its assigned name in the device
table and passed as the second parameter in
the DpcOpenData function.

After this API function is called, any of the data
transfer functions can be used. When finished,
close the device using DpcCloseData.

About JTAG

Most logic memory devices are programmable.
Many chip manufacturers accomplish this by
conforming these devices to a standard
specified in IEEE 1149.1. This is the Joint Test
Action Group, or JTAG. A device is said to be
JTAG compliant if it contains a JTAG TAP
controller and the following pins: TDI, TDO,
TMS, and TCK.

TDI inputs data into the JTAG TAP controller,
and TDO provides outputs. TMS is used to set
the JTAG TAP controller to a specified state,
and TCK is used to clock bits into and out of
the JTAG TAP controller. After being set to the
proper state by TMS, bits are shifted into the
TAP controller on TDI while bits are shifted out
on TDO. Any FPGA, CPLD, or PROM that is
JTAG compliant can be erased, programmed,
and verified using this standard.

The TDI and TDO pins of several JTAG
devices can be connected together to form a
chain. This is called a JTAG scan chain. In
order to program a device in the JTAG scan
chain, all other devices are first set to
BYPASS, meaning that they are ignored and
not to be configured. Then a series of bits are
shifted into the scan chain through TDI to
configure the device.

For more information on JTAG functionality
and programming, read the IEEE 1149.1

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 4 of 14

HWND user specified window handle
MSG WM_COMMAND
WPARAM
 low order word
 high order word

user specified identifier.
0

LPARAM 0

specification and Xilinx app notes on device
programming.

Using the DPCUTIL JTAG functions

Before using any JTAG functions,
DpcOpenJtag must be called to connect to a
communication device. The first parameter is
a HANDLE pointer. If the function returns
successfully, this handle will be used to
connect to the device in all proceeding JTAG
calls. The device is specified by name and
passed as the second parameter in the
DpcOpenJtag function.

DpcEnableJtag must be called directly after
DpcOpenJtag. This enables the driving of
JTAG signals on the communication device.

After these two API functions are called, any of
the JTAG functions can be used. When
finished, disable the JTAG interface and close

the device using DpcDisableJtag and
DpcCloseJtag.

Multiple Instances of DPCUTIL (for
Win32 applications)

More than one application can use the
DPCUTIL.DLL at once. This presents the
possibility of the device table being changed
leaving other instances with outdated
information about it. To remedy this, an
application should register itself with the
DpcStartNotify function. Whenever a
modification is made to the device table, a
registered application will be notified of the
change via a message sent to the provided
window handle. The application can then
reload all needed information about the device
table. The following is a description of the
message parameters to the window procedure:

To stop notification messages, an application
should call the DpcEndNotify function.

Description of Data
TypesTRID
16 bit data type that holds the ID of a
transaction (used for non-blocking calls)

ERC
32 bit (signed) data type. Holds error code for
a finished transaction

TRT
32 bit (signed) data type. Holds code for
transaction type

STS
32 bit (signed) data type. Holds code for
transaction status

DVCT
32 bit (signed) data type. Holds code for
communications interface type.
TRS
Structure that contains the following
information about a transaction:

Typedef struct tagTRS {
TRT trt; /* transaction type */
TRID trid; /* transaction ID */
STS sts; /* status of transaction */
ERC erc; /* error code for transaction */
}TRS;

Description of API calls

API Startup/Cleanup calls

BOOL DpcInit(ERC * perc)

Parameters
perc - pointer to store
error code

Return Values
Returns true if DLL instance is properly
initialized

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 5 of 14

Description
This function performs startup
initialization of the DLL. It must be
called before any of the other API calls
can be used.

void DpcTerm()

Parameters
none

Return Values
none

Description
This function must be called to clean up
resources when the application is done
using the DLL.

API Transaction and Utility calls

BOOL DpcStartNotify (HWND hwnd, WORD
idNotify, ERC *perc)

Parameters
hwnd - handle of window
that is to be sent notification messages
idNotify - message
identifier to be sent upon device table
change
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Used to register a window handle for
being notified of device table changes.
When a change (deletion, addition, or
modification) occurs in the device table,
all registered windows are sent their
specified messages.

BOOL DpcEndNotify (HWND hwnd, ERC
*perc)

Parameters
hwnd - handle of window
that is to no longer be sent notification
messages

perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
De-registers a specified window handle
from being notified of device table
changes

BOOL DpcPendingTransactions(HANDLE hif,
int * pctran, ERC *perc)

Parameters
hif - handle to JTAG
interface
pctran - pointer to store
number of pending transactions
perc - pointer to store
error code

Return Values
Returns true if any non-blocking
transactions are pending.

Description
Used to check if non-blocking
transactions are still pending. If the
function returns true, the number of
non-blocking, pending transactions is
returned by reference in pctran.

BOOL DpcQueryConfigStatus(HANDLE hif,
TRID trid, TRS * ptrs, ERC * perc)

Parameters
hif - handle to JTAG
interface
trid - transaction ID to
query. If 0, then the status of the oldest
transaction is

queried.
ptrs - pointer to store
information about transaction
perc - pointer to store
error code

Return Values
Returns true if transaction ID is found.
Returns false otherwise.

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 6 of 14

Description
Used to check a specified transaction’s
status. If the transaction is complete, it
will be removed from the status queue
and subsequent calls to
DpcQueryConfigStatus with the same
trid will fail. If the transaction is not
complete, its information will be
returned by reference in a TRS
structure.

BOOL DpcAbortConfigTransaction(HANDLE
hif, TRID trid, ERC * perc)

Parameters
hif - handle to JTAG
interface
trid - transaction ID to
abort. If 0, then abort ALL transactions
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Aborts a specified transaction or all
transactions. After a transaction is
aborted, it will remain in the status
queue until read out with
DpcQueryConfigStatus or
DpcClearConfigStatus. Not all
transactions will abort immediately, so
DpcQuery ConfigStatus should be
called afterward to make sure that the
transaction has been terminated.

BOOL DpcClearConfigStatus(HANDLE hif,
TRID trid, ERC * perc)

Parameters
hif - handle to JTAG
interface
trid - transaction ID to
clear from status queue. If 0, then clear
all completed

transactions.
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Clears completed transactions from the
status queue. If the trid of a specific
transaction is sent, then that
transaction will be cleared if completed.
If the trid is set as 0, then all completed
transactions will be cleared.

BOOL DpcWaitForTransaction(HANDLE hif,
TRID trid, ERC * perc)

Parameters
hif - handle to JTAG
interface
trid - transaction ID to
wait on. If 0, then wait for all
transactions to complete.
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Wait indefinitely on a transaction if its
trid is specified. Wait for all
transactions to complete if trid is 0.
This indefinite block can be broken if
the transaction being waited on is
aborted.

ERC DpcGetFirstError(HANDLE hif)

Parameters
hif - handle to JTAG
interface

Return Values
Returns the first error code
encountered in the status queue.

Description
Searches through the status queue for
the first transaction with an error code
set. Returns the error code ercNoError
if no error codes are found.

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 7 of 14

BOOL DpcGetDpcVersion (char * szVersion,
ERC *perc)

Parameters
szVersion - string that will
store the current version of dpcutil.dll
perc - pointer to store
error code

Return Values
Returns true if the version string is
successfully retrieved. Returns false
otherwise.

Description
Stores the version string of dpcutil.dll
into the given szVersion pointer.

API JTAG manipulation calls

BOOL DpcOpenJtag(HANDLE * phif, char *
szdvc, ERC * perc, TRID * ptrid)

Parameters
phif - pointer to store
opened interface handle
szdvc - name of device
to open
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Opens the JTAG interface for access.
No other JTAG configuration
transactions can be used until a
communications device has been
opened and enabled (enabling a JTAG
interface is performed by calling the
DpcEnableJtag API function. The
communications device is specified by
the name assigned to it in the device
table and this name is placed in szdvc.

The handle to the JTAG interface is
returned by reference in phif.

BOOL DpcCloseJtag(HANDLE hif, ERC * perc)

Parameters
hif - handle to JTAG
interface
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Releases the JTAG interface specified
by hif and closes the communications
module.

BOOL DpcEnableJtag(HANDLE hif, ERC *
perc, TRID * ptrid)

Parameters
hif - handle to JTAG
interface
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Enables the driving of JTAG signals.
Must be called after FOpenJtag is
called. After the JTAG signals have
been enabled on the communications
module, the JTAG manipulation
functions in DPCUTIL can be used.

BOOL DpcDisableJtag(HANDLE hif, ERC *
perc, TRID * ptrid)

Parameters
hif - handle to JTAG
interface

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 8 of 14

rgbSend[0]
TDI 8 TDI 7 TDI 6 TDI 5 TDI 4 TDI 3 TDI 2 TDI 1

rgbSend[1]
TDI 16 TDI 15 TDI 14 TDI 13 TDI 12 TDI 11 TDI 10 TDI 9

perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Disables driving of JTAG signals. Must
be called before FCloseJtag is called.

BOOL DpcSetTmsTdiTck(HANDLE hif, BOOL
fTms, BOOL fTdi, BOOL fTck, ERC * perc,
TRID * ptrid)

Parameters
hif - handle to JTAG
interface
fTms - value of TMS pin
(true = 1, false = 0)
fTdi - value of TDI pin
(true = 1, false = 0)
fTck - value of TCK pin
(true = 1, false = 0)
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Sets the JTAG lines TMS, TDI, and
TCK to a specified state.

BOOL DpcPutTdiBits(HANDLE hif, int cbit,

BYTE * rgbSnd, BOOL bitTms, BOOL
fReturnTdo,
BYTE * rgbRcv, ERC * perc, TRID * ptrid)

Parameters
hif - handle to JTAG
interface
cbit - number of TDI
bits to clock into the JTAG TAP
controller
rgbSnd - buffer that holds
TDI values. Bits are shifted in
sequentially starting at the first element
in the BYTE array, from LSB to MSB.
bitTms - value the TMS
pin will be held at while the rgbSnd bits
are shifted in (true = 1, false = 0)
fReturnTdo - specifies if bits
from TDO should be returned
rgbRcv - (optional) holds
TDO bits. Only used if fReturnTdo is
true.
perc - pointer to store
error code

ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Shifts a specified number of bits into
TDI and (optionally) returns bits shifted
out TDO. RgbSend holds TDI bits.
Each bit is shifted in sequentially,
starting at the first element in the array,
from least significant bit to most
significant bit Below is an example of
how the TDI bits are placed in each
byte of rgbSend.

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 9 of 14

rgbSend[0]
TMS 4 TDI 4 TMS 3 TDI 3 TMS 2 TDI 2 TMS 1 TDI 1

rgbSend[1]

MS 8 TDI 8 TMS 7 TDI 7 TMS 6 TDI 6 TMS 5 TDI 5

If fReturnTdo is set to true, all bits
shifted out are stored in rgbRcv Tdo.
Each bit is shifted out sequentially
starting at the first element in the
rgbRcv, from lowest significant bit to
most significant bit. TMS is held at the
value specified by bitTms while bits are
being shifted into TDI.

BOOL DpcPutTmsTdiBits(HANDLE hif, int cbit,
BYTE * rgbSnd, BOOL fReturnTdo, BYTE *
rgbRcv, ERC * perc, TRID * ptrid)

Parameters
hif - handle to JTAG
interface
cbit - number of TMS
and TDI bit pairs sent.

rgbSnd - buffer that holds
TMS and TDI bit pairs.
fReturnTdo - specifies if bits
from TDO should be returned
rgbRcv - (optional) holds
shifted out TDO bits. Only used if
fReturnTdo is true.
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.
Description
Shifts a specified number of bits into
TMS and TDI and (optionally) returns
bits shifted out of TDO. RgbSend holds
TMS and TDI bit pairs. Each bit pair is
shifted in sequentially; starting at the
first element in the array, from least

significant bit pair to most significant bit
pair. In each pair, the TMS value is the
MSB and the TDI value is the LSB.
Below is an example of how the
TMS/TDI bit pairs are placed in each
byte of rgbSend.

If fReturnTdo is set to true, all bits
shifted out are stored in rgbRcv Tdo.
Each bit is shifted out sequentially
starting at the first element in the
rgbRcv, from lowest significant bit to
most significant bit.

BOOL DpcGetTdoBits(HANDLE hif, int cbits,
BOOL bitTdi, BOOL bitTms, BYTE *rgbRcv,
ERC *perc, TRID *ptrid)

Parameters
hif - handle to JTAG
interface
cbit - number of TMS
and TDI bits to push onto the JTAG
TAP controller
bitTdi - value TDI pin will
be held at (true = 1, false = 0)
bitTms - value TMS pin
will be held at (true = 1, false = 0)
rgbRcv - holds shifted out
TDO bits.
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 10 of 14

rgbRcv [0]
TDO 8 TDO 7 TDO 6 TDO 5 TDO 4 TDO 3 TDO 2 TDO 1

rgbRcv [1]
TDO 16 TDO

15
TDO
14

TDO
13

TDO
12

TDO
11

TDO
10

TDO 9

Shifts out and returns a specified
number of bits from TDO. Each bit is
shifted out sequentially starting at the
first element in the rgbRcv, from lowest
significant bit to most significant bit.
Below is an example of how the TDO
bits are placed in each byte of rgbSend.

TDI and TMS are held at the values
specified in bitTdi and bitTms while bits
are shifted out of TDO.

API Data Transfer calls

BOOL DpcOpenData(HANDLE * phif, char *
szdvc, ERC * perc, TRID * ptrid)

Parameters
phif - pointer to store
handle to Data interface
szdvc - name of device
to open
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Opens the data transfer interface for
access. No other data transfer
functions can be used until a
communications device has been
opened. The communications device is
specified by the name assigned to it in
the device table and this name is
placed in szdvc. The handle to the

data transfer interface is returned by
reference in phif.

BOOL DpcCloseData(HANDLE hif, ERC *
perc)

Parameters

hif - handle to Data

interface
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Releases the data transfer interface
specified by hif and closes the
communications module.

BOOL DpcPutReg(HANDLE hif, BYTE bAddr,
BYTE bData, ERC * perc, TRID * ptrid)

Parameters
hif -handle to Data interface
bAddr -address of register to send data
byte
bData -data byte to send to address
perc- pointer to store error code
ptrid- pointer to store transaction ID.
If ptrid is NULL, this function will be
blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Sends a single data byte to a register
specified by its address.

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 11 of 14

BOOL DpcGetReg(HANDLE hif, BYTE
bAddr, BYTE * pbData, ERC * perc, TRID *
ptrid)

Parameters
hif - handle to Data
interface
bAddr - address of
register to read Data byte
pbData - pointer to store
data byte read
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Gets a single data byte from a register
specified by its address.

BOOL DpcPutRegSet(HANDLE hif, BYTE *
rgbAddr, BYTE * rgbData, int cbData, ERC *
perc,
TRID * ptrid)

Parameters
Hif - handle to
Data interface
rgbAddr - addresses of
registers to write Data bytes
rgbData - buffer with data
bytes to be sent
cbData - number of bytes
to be sent
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description

Sends many data bytes to many
specified addresses. RgbAddr is a
buffer containing addresses of
registers. RgbData is a buffer
containing data that will be sent to the
corresponding addresses. Each
element in the rgbData buffer is written
to the corresponding address in the
rgbAddr buffer. For example, the data
byte in rgbData[0] is written to the
register address in rgbAddr[0], the data
byte in rgbData[1] is written to the
register address in rgbAddr[1], etc.

BOOL DpcGetRegSet(HANDLE hif, BYTE *
rgbAddr, BYTE * rgbData, int cbData, ERC *
perc,
TRID * ptrid)

Parameters
hif - handle to Data
interface
rgbAddr - addresses of
registers to read Data bytes
rgbData - buffer to store
data bytes read
cbData - number of bytes
to be sent
perc - pointer to store
error code
ptrid - pointer to store
transaction ID. If ptrid is NULL, this
function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Gets many data bytes from many
specified addresses. RgbAddr is a
buffer containing addresses of
registers. RgbData is a buffer that will
contain data recieved from the registers
specified by the addresses in rgbAddr.
Each element in the rgbData buffer is
read from the corresponding address in
the rgbAddr buffer. For example, the
data byte in the register specified by
the address in rgbAddr[0] is written to

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 12 of 14

rgbData[0], the data byte in the register
specified by the address in rgbAddr[1]
is written to rgbData[1], etc.

BOOL DpcPutRegRepeat(HANDLE hif, BYTE
bAddr, BYTE * rgbData, int cbData, ERC *
perc,
TRID * ptrid)

Parameters
hif - handle to Data
interface
bAddr - address of
register to send stream of data bytes
rgbData - buffer with data
bytes to be sent to address
cbData - number of bytes
to be sent
perc - pointer to
store error code
ptrid - pointer to
store transaction ID. If ptrid is NULL,
this function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Sends a stream of data bytes to a
single, specified register address.
BAddr is a register address that will be
sent many bytes one at a time in
sequential order. RgbData is a buffer
containing the data that will be sent to
bAddr. The will be sent as quickly as
the Digilent Communications Interface
Module will allow. The number of bytes
to be sent to bAddr is specified in
cbData.

BOOL DpcGetRegRepeat (HANDLE hif, BYTE
bAddr, BYTE * rgbData, int cbData, ERC *
perc,
TRID * ptrid)

Parameters
hif - handle to Data
interface
bAddr - address of
register to send stream of data bytes

rgbData - buffer to store
data bytes from address
cbData - number of
bytes to be received from address
perc - pointer to
store error code
ptrid - pointer to
store transaction ID. If ptrid is NULL,
this function will be

blocking.

Return Values
Returns true if successful. Returns
false otherwise.

Description
Gets a stream of data bytes from a
single, specified register address.
RgbData is a buffer that will contain
data read out of the register at address
bAddr. The data is read as quickly as
the Digilent Communications Interface
Module will allow. The number of bytes
to be read out of bAddr is specified in
cbData.

API Device Manager calls

void DvmgStartConfigureDevices(HWND
hwnd, ERC *perc)

Parameters
hwnd - handle to parent
window
perc - pointer to store
error code

Return Values
none
Description
Opens the Device Table dialog box.
This dialog box is used to add, remove,
or modify communication modules in
the device table.

int DvmgGetDevCount(ERC *perc)

Parameters
perc - pointer to store
error code

Return Values

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 13 of 14

Returns number of devices in the
device table

Description
Gets the total number of devices in the
device table.

BOOL DvmgGetDevName(int idvc, char *
szdvcTemp, ERC*perc)

Parameters
idvc - index of
device to query
szdvcTemp - string to store
device name
perc - pointer to
store error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Gets the name of a device from its
index into the device table

BOOL DvmgGetDevType(int idvc, DVCT *
dvtp, ERC* perc)

Parameters
idvc - index of device to
query
dvtp - pointer to store
device type
perc - pointer to store
error code

Return Values
Returns true if successful. Returns
false otherwise.

Description
Gets the type of a particular device,
given its index in the device table. The
device type is returned by reference in
dvtp.

int DvmgGetDefaultDev(ERC *perc)

Parameters
perc - pointer to store
error code

Return Values
Returns index of default device in table

Description
Gets the index of the default device in
the device table

int DvmgGetHDVC (char* szdvc, ERC *perc)

Parameters
Szdvc - name of device
perc - pointer to store
error code

Return Values
Returns index of default device in table

Description
Gets the index of a device given its
name. If no device is found, the
returned index is –1, and an error code
is set in perc.

Digilent, Inc TM
DPCUTIL Programmer’s Manual

 www.digilentinc.com

© Digilent, Inc. Page 14 of 14

The following are error codes of type ERC and used to specify transaction errors in DPCUTIL.

Error Code Value Description
ercNoError 0 No error occurred in transaction
ercInvParam 3004 Invalid parameter sent in API call
ercInvCmd 3005 Internal error. Please report occurrence as a bug
ercUnknown 3006 Internal error. Please report occurrence as a bug
ercNoMem 3009 Not enough memory to carry out transaction
ercNotInit 3102 Communication device not initialized
ercCantConnect 3103 Can’t connect to communication module
ercAlreadyConnect 3104 Already connected to communication device
ercSendError 3105 Error occurred while sending data to communication device
ercRcvError 3106 Error occurred while receiving data from communication device
ercAbort 3107 Error occurred while trying to abort transaction(s)
ercOutOfOrder 3109 Completion out of order
ercExtraData 3110 Too much data received from communication device
ercMissingData 3111 Nothing to send or data/address mismatched pairs
ercTridNotFound 3201 Unable to find matching TRID in transaction queue
ercNotComplete 3202 Transaction being cleared is not complete
ercNotConnected 3203 Not connected to communication device
ercWrongMode 3204 Connected in wrong mode (JTAG or data transfer)
ercWrongVersion 3205 Internal error. Please report occurrence as a bug
ercDvctableDne 3301 Device table doesn’t exist (an empty one has been created)
ercDvctableCorrupt 3302 All or part of the device table is corrupted
ercDvcDne 3303 Device does not exist in device table
ercDpcutilInitFail 3304 DpcInit API call failed
ercDvcTableOpen 3306 Communications devices dialog box already open.
ercRegError 3307 Error occurred while accessing the registry

STS

The following are status codes of type STS and used to specify the status of a transaction
stsNew 1 Transaction has not been processed
stsComplete 2 Transaction is complete

DVCT

The following are ID codes of type DVCT and used to specify types of communications devices
dvctEthernet 0 Ethernet device type
dvctUSB 1 USB device type
dvctSerial 2 Serial device type

Type/Error Codes

ERC

