Beginners Introduction to the
Assembly Language of
ATMEL-AVR-Microprocessors

by
Gerhard Schmidt

http://www.avr-asm-tutorial.net

February 2011

History:

Added page on assembler concept in February 2011
Added chapter on code structures in April 2009
Additional corrections and updates as of January 2008
Corrected version as of July 2006

Original version as of December 2003

http://www.avr-asm-tutorial.net/

Avr-Asm-Tutorial 1 http://www.avr-asm-tutorial.net

Content
1 Why learning ASSEMDIEI?.........cc.ooiuiiiiiiiieeii ettt ettt et sttt e st eebee st e e e nteeeenees 1
2 The concept behind the language assembler in Micro-CoNtrollers..........coeevueriereenieriienieenieenieeneene 2
2.1 The hardware of MIiCTO-CONIOLIETS.c..covuiiiiiriiriiiiieiert ettt 2
2.2 HOW the CPU WOTKS...c..coitiiiiiiieiieieeeseee ettt et sttt ettt et sbe et s atesaeeenbeeens 2
2.3 INStructions N @SSEMDIET.......cccuiitiiiiiiiiitieieete ettt ettt et sttt et sb et eebeeennee e e 3
2.4 Difference to high-1evel langUagES.........cccviiriiiiiieiiiiciieieeeeeeeee e sbaae e 3
2.5 Assembler is not machine [an@UAZE...........c..ceeviiiiiiiiriiie e e e e e e 3
2.6 Interpreting and aSSEMDLET...........oiiuiiiiiie et ee e st ee et e e e a e e enbeeesaaeeanaeens 4
2.7 High level languages and ASSEMDIET.............cocvuiieiiieiiiiiciic et e e e 4
2.8 What is really easier in aSSEMDIET?..........ccoeiiieiiieeiieeecie et et ereeeee e taeesinrr e e e e e ensaaeaeeeennnnns 5
3 Hardware for AVR-Assembler-Programming.............cooceeiiiiiiiiiiiinieiiieie e 6
3.1 The ISP Interface of the AVR processor family...........cccceeveeriiiiniiniininiiniccnccececeeeee 6
3.2 Programmer for the PC-Parallel-Port.............cocooiiiiiiiiiiiiiiiiiececeeeeee e 6
3.3 EXPerimental DOATMS.cc.eoeiiiiiiiiiieiieeie ettt ettt ettt et e st e snbeeteeeennes 7
3.3.1 Experimental board with an ATHNY13......ccocoiiiiiiiiieie et 7
3.3.2 Experimental board with an AT90S2313/ATmega2313.......cccoeviieiiiiiieiieieeceee e 8
3.4 Ready-to-use commercial programming boards for the AVR-family...........cccocvvviiniiiininnnnnn.. 9
34T STK200. ...ttt ettt ettt et s e et e e st e e a e et e e et e s bt e bt enteebe et e entesheebeeneeenee 9
342 STKS00. ..ottt ettt ettt et et e s et et e e st e es e et e ea s e ssee st eneeebeenbeeneeeneenneeneeenee 9
3.4.3 AVR DIQZON...cc ittt ettt e et e e et e e st e e ssteeessbee e sseeenssaeenssaeansneesnsneaeeennssnes 10
4 Tools for AVR assembly programming.............ccececueeeiieeeiireeiieeeiieesieeeereeesseeessseesssseesssssseeessssssnees 11
N I N 1 T T U110 SO PSRURUSRURPPP 11
4.1.1 A SIMPIE EYPEWIILET...c.vvieeiiieeiieeeieeeetee et e et e e aeeeateeestaeestaeesssaeessseeesssssseeeessssseeeeeennsenes 11
4.1.2 Structuring assembIEr COAE.......co.eiriiriimiiiiiiiiieeeee et 12
4.2 THE @SSEIMDICT.cueitiiiiiiieieeet ettt st ettt e b e et sbe et st e st e e es 15
4.3 Programming the ChiPS.........cocuiiiiieiiiiie ettt et et e e s 16
4.4 SIMulation i the STUAIO.......eiiiiiiiiiieee ettt st 16
5 WHRALE IS @ TEZISTEI?...eeiiieiieeiieeiie ettt ettt et e e ee st e e bt e e abeesbeessbeesseessseeasaessseesseassseenseessseenseasssesasssaennns 21
5.1 DIfFETENE T@ZISLEIS. ...ecuvieiiiiiiieeiieeteerite ettt e et esieeeteestteesbeestaeesbeetaeesbeensaesnseesseeasseessaesnseesnsseesansns 22
5.2 POTNECT-TE@ISTEIS. ... veeeutieeeieeeeiieesteeertee ettt e ettt e etteeeteeesaseeesaseeeasseessseesnsseesnsseeansaeesnseeensseeensseesnnns 22
5.2.1 Accessing memory 10cations With POINEETS.........cecueieriieeiiieeriee e e e 22
5.2.2 Reading program flash memory with the Z pointer............ccceeevvveeiiieeiiieeieecee e, 22
5.2.3 Tables in the program flash MEMOTY.........ccccviiriiiiriiiece e e 23
5.2.4 Accessing re@isters With POINLETS.ieeciieeiiieeiie et e e e e e e e e e eaaaaeeees 23
5.3 Recommendation for the Use Of TE@IStEIS.......cccuiiiiiiiiiiiiicciie et e e e e 24
(X0 203 o £ P PPUUPPPRN 25
6.1 WRAt 1 @ POTt? ..ottt sttt sttt e st e e st e e eaeeeas 25
6.2 WIILE QCCESS 1O POTS..ueiiuiiiiieeiieniieetieriteettestteeteetteeateeseessbeeseesaseeseessseenseesnseenseessseeseennseenseeans 25
6.3 REAA ACCESS 10 POTLS....uuiieiiiiiieiieeiie et et e ettt e ettt etteetteeteestaeesbeessaeesseessbeenseessseenseesssesnseensnennseens 26
6.4 Read-Modify-WTite aCCESS 10 POTLS.....eeruiiiieriieitieeieeite st eteeeteesteeeteeteeebeenseesnseesseessseesnnseeaans 26
6.5 Memory MAPPEA POTE ACCESS. ...ccuvierrrerieeriierriertieeteesteeeteessteeseesseeasseessaesseesseesseesseessssseesssssesenns 26
6.6 Details of relevant ports in the AVRcoooiiiiiiiiiiicece e 26
6.7 The status register as the MOSt USEA POTL......ccueieriiieiiieeiiieeeeeeeeee e e e eraeee e 27
6.8 POTt dETALLS. ...ttt ettt ettt b et e et eea 28
) 2N A OO SPRRUSRPSRPR 29
7.1 WRAt 1S SRAM? ...ttt ettt ettt et e et e st e et e e aee st enseestesseessseensseesnseesnseesnneeans 29
7.2 For what purposes can [us€ SRAM? ..ottt e e e e ebaeeaeeenes 29
7.3 HOW 10 USE SRAMY ...ttt e e ettt e e ettt e e e e taa e e e esnebaeeeennsseeeesnssaeeesanssaeeeannnns 29
7.3.1 DIT€Ct ddrESSINE.eevieeiiieiieeiie ettt ettt ettt e st e et e e st e e abeessteenbeeeentbeeeennaeeeennees 29
7.3.2 POINLET QAAIESSING. ...c..vieiieeiieiieeieeriee ettt te ettt e et e st eesteeeate e bt e esbeeseesnseeseesnseenseesnseesnns 30
7.3.3 PoINter With OffSet.....cc.eoiuiiiiiiiiiee e 30
7.4 USE Of SRAM @S STACK.cuieutiiieitieieeieetet ettt sttt sttt st sbe et et sbe e b eanenaees 30
7.4.1 Defining SRAM 8S STACK........iiiiiiiiiiiiecieeeeee ettt et eaee e 30
7.4.2 USE OF the STACK....c..iiiiiiiie et 31
7.4.3 Common bugs with the stack Operation.............cceeeeiiiiriiiiiiiiecie e 31
8 Jumping and DIranCRING........ccuieeiuiiiiiiie et e e e e ta e e e teeestaeessnnnaeeeeeesnnsseaeens 33
8.1 Controlling sequential execution of the Program............ccccceeeeeiieriiieeiieecee e 33
8.2 Linear program execution and branches............cccoecvieiiiiieiiiicie et 34
8.3 Timing during Program EXECULION.ceeuuierueereieriieeteertteeteesteeeseesseeebeesaeeabeesseesseesseeeseesnneeesans 35
8.4 Macros and Program EXECULION.ceueerureeteeriteertiesiteeteeseteeteesaeeeseesseeeseesnseeseessseeeanseeeesnseeesnnsns 35

8.0 SUDTOULINES. ..o, 35

Avr-Asm-Tutorial 2 http://www.avr-asm-tutorial.net

8.6 Interrupts and Program EXECULION.ccuveeuierieriierireeteestteereeseeeseesseeeseessaeesseesseesseesssesssseeens 37
O CALCUIALIONS. ...ttt ettt ettt et e e e s bt et e e et e eb e et e e et e bt et e e nt e bt en b e eaee bt enbeeneenteenteeen 39
9.1 Number SyStems 1N @SSEMDIET.........cceiuiiiiiieeiiieeiieeeiteeeiee et e eereeeaeeeaaeeeeraeessaeeeesesnsseeaseennnns 39
9.1.1 Positive whole numbers (bytes, WOTdS, €1C.).....cccvuiieriieeiiieeiiieeiie et e e e 39
9.1.2 Signed NUMDETS (INTEEETS).....uveeeiureeerieeeiieeeieeeeieeeeereeesiteeesateesseeessaeessseeessseeesssnssseeaesensssnes 39
9.1.3 Binary Coded Digits, BCD........ccciiiiiiiiiie ettt e e e e e e e 39
0.1.4 PaCKEd BOUDS.......oiiiiiieeiiieeee ettt ettt et tae e et e e st e e s tbaeessbeeessbaeessseeensseesnnsssaeeeeennnns 40
9.1.5 Numbers in ASCII-fOIMAL...........cceoiiieiiieciieee ettt e e e e raaa e e e e eenreeas 40
0.2 Bit MANIPULALIONS.teiiiiieiieeiieiie ettt ettt et et e et e st e et e e s steeteesateenseeesnbeeesnbeeesanseeennes 40
9.3 Shift ANd TOTALE.c.eeriiiiiiieiitee ettt ettt st e s bt e e s atee st eeeaaeeaas 41
9.4 Adding, subtracting and COMPATING...........ccueerieeiieriierieeriieeieeteesteeteeseeeseessaeeseesseesseessnesseens 42
9.4.1 Adding and subtracting 16-bit NUMDETS..........ccceeviiiiiiriieiiecie et 42
0.4.2 Comparing 16-bDit NUMDETS.........cccuiiiiiiiieiieiie ettt eereesiaeebeesebeeeesbeeeenes 42
9.4.3 Comparing With CONSTANTS..........cccuiiriieiiieiieeie ettt ettt ettt e esreeseeeebeesebeeeessbaeesnsaeeeennns 42
9.4.4 Packed BCD Math..........cooiiiiiiiii et 43
9.5 Format conversion fOr MUMDETS.ciiuiiiuiiiiiiiiieieeeie ettt sttt e s 43
9.5.1 Conversion of packed BCDs to BCDs, ASCII or Binaries..........ccccceevveeeiieeeiieeniieencieeeenes 43
9.5.2 Conversion of Binaries t0 BCD.........ccooiiiiiiiiiiiieceeecee ettt 44
0.6 MIUILIPIICALION.teeeiiee ettt ettt e et e et e e et e e e taeeetaeesataeesssaeessseeessseeasseessseeeesnsssseeeeanns 44
9.6.1 Decimal MUItIPIICAtION.eotiiiiieiieie ettt e et e e e e e 44
9.6.2 Binary mMultipliCatiON.ccouiiiiiiiieiie ettt ettt e e e e 44
9.6.3 AVR aSSEMDICT PIOZIAIMN.ceiuiiiiiieiieeiieiieeieeite ettt et e e saeesbeesateebeeesnbeeeenseeesnnseeesnnnes 45
0.6.4 BINAIY TOTATION.eieiiieiieeieeiie et estteetteesteeetteeteessteeteessseesseessseenseensseenseessseenseenssseesnnsseesnnses 46
9.6.5 Multiplication in the STUAIO..........cocuieiiieriieiiecie ettt ettt re e e e e sanesbaesaaeens 46
9.7 Hardware mMUItIPIICALION.c.eeiuiieiieriieeiieeie ettt ettt et etee e te et ebeebeessbeetaeesseenseessseesssseeenns 48
9.7.1 Hardware multiplication of 8-by-8-bit DINaries..........cccccveviieriieriieiiecie e 48
9.7.2 Hardware multiplication of a 16- by an 8-bit-binary...........cccceevvieriiieniiieniieeeiieee e, 49
9.7.3 Hardware multiplication of a 16- by a 16-bit-binary..........cccceevvieeiiiinciieeiieeeieee e, 50
9.7.4 Hardware multiplication of a 16- by a 24-bit-binary..........ccccceeevvieiciieniieeeiie e 52
LR B A4 1) 10) s FO SRR UPURR 53
0.8.1 DECIMAL AIVISION. ...ccciuiiieiiieiiiieeitieeeieeeeieeeetee ettt e esaaeeesabeeessaeeeaaeessaaesssaeesssseessseaessseeeseasnnns 53
0.8.2 BINATIY QIVISION. ...eeuutieutieiiiieiie ettt ettt et ee ettt e st e b ee s et e bt e sab e e bt e enseebeesabeeseesnneeseeenns 54
9.8.3 Program steps during diVISION..........cc.eeruieriierieeitiesie ettt et site ettt et e e e eeee e enaee e 54
9.8.4 Division in the SIMULALOT........cc.citiiiiiiiiiiee et st e e 55
0.9 INUMDET CONVETSION. ...c.uteiieniieiieetieste et ette st et et e st et sete st e et e estesteeabesbeesbeesbesatensbeensbeesateesabeesnneenns 56
9.10 Decimal FTACTIONS.eiutetieiieriieieeiiesitet ettt ettt ettt ettt e bt et e it e sbeete st e saeebeeneesaeeneees 57
0.10.1 LANEAT CONVETSIONS. 1...teutetrertienteauienteetesttenteentesttenteenseseeeseentesseesesnsesseenseeseesseensesneessseesnneens 57
9.10.2 Example 1: 8-bit-AD-converter with fixed decimal output..........c.cceevvevviieniieciienieeieeens 58
9.10.3 Example 2: 10-bit-AD-converter with fixed decimal output............ccceevevvieriiiiniirenieeenns 59

10 ProjeCt PLANMING.eiiitieeiiieeeiie ettt ettt ee et e et e e et e e e taeesataeesssaaesssaeesssaeessssseeesaansnsaeaeeennnsssees 60
10.1 How to plan an AVR project in ass€mbIET............cccouiiiiiiieiiieeiieee et e e 60
10.2 Hardware CONSIACTALIONS.cuueeeeuiieeitiieeiiieeieeeeteeesteeesreeesaseeesaseesssseessseessseessssasesasssssseeasannns 60
10.3 Considerations on iNterrupPt OPETAtION.eeecvueeriurreerieeerreesrreesreeesreeassreesssseesssseeeesssssseeaesanns 60
10.3.1 Basic requirements of interrupt-driven Operation.............eccueeueereeeriieenieeniienieeieesinee e 61
10.3.2 Example for an interrupt-driven assembler program............ccoeeeeeveeneeeieneenensieneeeneeeennnes 61
10.4 Considerations ON TIMINE.cc.eeeuteruierieertieeieertteeteenteesteesseeeseesseesnseesseeenseesseesnseesseesnseesssesnsens 63
L1 ATINIEX ettt et h e et h e e b e h et et e e bt e bt nae e bt e et et e e nreeens 64
11.1 Instructions SOrted DY fUNCHON.cciiiiiieiiieiecie ettt et e e e e e enaaeee e 64
11.2 Directives and Instruction lists in alphabetic order............coveveiieiieriieiieniieieeieeeeee e 66
11.2.1 Assembler directives in alphabetic Order............cccviveiiiiiieiiieiieeie e 66
11.2.2 Instructions in alphabetic OTAET..........cooviiiiiiiiiiie et 67
T1.3 POTt AELATLS. ...ttt ettt e bt e sttt e st e e bt e s abe e eateeeeas 69
11.3.1 Status-Register, Accumulator flags..........cceevuiieiiiieiiieeieece e e e 69

L TR ¥ To] 14 010 1 L1 USSR 69
11.3.3 SRAM and External Interrupt CONtrol...........ccoeeviieiiieiiiieciieecie e 69
11.3.4 External Interrupt COntrol.........cc.ooiiiiiiiiiiiiiiieieieeieneseee et 70
11.3.5 Timer Interrupt CONtIOL........cc.eiiiiiiiiiiieie ettt ettt e et e e e e enbeee e 70
11.3.6 TIMEI/COUNLET 0....uveiiiiieiieiiieiiete ettt ettt et sttt sb e sb e et sae et e et e sbeenees 71
11.3.7 TIMEI/COUNLET L..ciuiiiiiiiiiiiiiieiteeteet ettt sttt ettt ettt e b 72
11.3.8 WatChdO@-TIMET.......eeiiiiiiiiieeiieiie ettt ettt ettt e et e e teebeessbeeseesaaeenseesnsaaeenns 73
T1.3.9 EEPROM....oiiiiieee ettt et sttt et st e ettt e snteesnnees 73
11.3.10 Serial Peripheral Interface SPL............ccciioiiiiiiiiiiiiicieee e 74

L3 TT UART ..ot st s e s e e 75

Avr-Asm-Tutorial 3 http://www.avr-asm-tutorial.net

11.3.12 ANAlOZ COMPATALOT........uiiieiieeiiieeeiie ettt eeteeeritee et e et e e etbeesteeesaeeesnnsaeeeesennnsaeeeesennssnes 75
L1313 T/ POTES..cneeieeeieee ettt ettt et ettt et e bt e st e e st et e entesaeebeenseeenneas 76
11.4 Ports, alphabetiC OTAET........ccccuiieiiieeiiie ettt e et e e etaee e enneraeeeeeas 76

1 1.5 LISt Of @DDTEVIATIONS. ... e eeeeeeeee e e et e e e e e e e e e e e e e e e e e eaeeeeeeeaaaaaeeeeneeerannas 77

Avr-Asm-Tutorial 1 http://www.avr-asm-tutorial.net

1 Why learning Assembler?

Assembler or other languages, that is the question. Why should | learn another language, if | already learned other
programming languages? The best argument: while you live in France you are able to get through by speaking English, but
you will never feel at home then, and life remains complicated. You can get through with this, but it is rather
inappropriate. If things need a hurry, you should use the country's language.

Many people that are deeper into programming AVRs and use higher-level languages in their daily work recommend that
beginners start with learning assembly language. The reason is that sometimes, namely in the following cases:

® if bugs have to be analyzed,

o if the program executes different than designed and expected,

@ if the higher-level language doesn't support the use of certain hardware features,
® if time-critical in line routines require assembly language portions,

it is necessary to understand assembly language, e. g. to understand what the higher-level language compiler produced.
Without understanding assembly language you do not have a chance to proceed further in these cases.

Short and easy

Assembler instructions translate one by one to executed machine instructions. The processor needs only to execute what
you want it to do and what is necessary to perform the task. No extra loops and unnecessary features blow up the
generated code. If your program storage is short and limited and you have to optimize your program to fit into memory,
assembler is choice 1. Shorter programs are easier to debug, every step makes sense.

Fast and quick

Because only necessary code steps are executed, assembly programs are as fast as possible. The duration of every step is
known. Time critical applications, like time measurements without a hardware timer, that should perform excellent, must
be written in assembler. If you have more time and don't mind if your chip remains 99% in a wait state type of operation,
you can choose any language you want.

Assembler is easy to learn

It is not true that assembly language is more complicated or not as easy to understand than other languages. Learning
assembly language for whatever hardware type brings you to understand the basic concepts of any other assembly
language dialects. Adding other dialects later is easy. As some features are hardware-dependent optimal code requires
some familiarity with the hardware concept and the dialect. What makes assembler sometimes look complicated is that it
requires an understanding of the controller's hardware functions. Consider this an advantage: by learning assembly
language you simultaneously learn more about the hardware. Higher level languages often do not allow you to use special
hardware features and so hide these functions.

The first assembly code does not look very attractive, with every 100 additional lines programmed it looks better. Perfect
programs require some thousand lines of code of exercise, and optimization requires lots of work. The first steps are hard
in any language. After some weeks of programming you will laugh if you go through your first code. Some assembler
instructions need some months of experience.

AVRs are ideal for learning assembler

Assembler programs are a little bit silly: the chip executes anything you tell it to do, and does not ask you if you are sure
overwriting this and that. All protection features must be programmed by you, the chip does exactly anything like it is told,
even if it doesn't make any sense. No window warns you, unless you programmed it before.

To correct typing errors is as easy or complicated as in any other language. Basic design errors, the more tricky type of
errors, are also as complicated to debug like in any other computer language. But: testing programs on ATMEL chips is very
easy. If it does not do what you expect it to do, you can easily add some diagnostic lines to the code, reprogram the chip
and test it. Bye, bye to you EPROM programmers, to the UV lamps used to erase your test program, to you pins that don't
fit into the socket after having them removed some dozen times.

Changes are now programmed fast, compiled in no time, and either simulated in the studio or checked in-circuit. No pin is
removed, and no UV lamp gives up just in the moment when you had your excellent idea about that bug.

Test it!

Be patient doing your first steps! If you are familiar with another (high-level) language: forget it for the first time. Behind
every assembler language there is a certain hardware concept. Most of the special features of other computer languages
don't make any sense in assembler.

The first five instructions are not easy to learn, after that your learning speed rises fast. After you had your first lines: grab
the instruction set list and lay back in the bathtub, wondering what all the other instructions are like.

Serious warning: Don't try to program a mega-machine to start with. This does not make sense in any computer language,
and just produces frustration. Start with the small ,Hello world“-like examples, e. g. turning some LEDs on and off for a
certain time, then explore the hardware features a bit deeper.

Recommendation: Comment your subroutines and store them in a special directory, if debugged: you will need them again
in a short time.

Have success!

Avr-Asm-Tutorial 2 http://www.avr-asm-tutorial.net

2 The concept behind the language
assembler in micro-controllers

Attention! These pages are on programming micro-controllers, not on PCs with Linux- or Windows operating systems and
similar elephants, but on a small mice. It is not on programming Ethernet mega-machines, but on the question why a
beginner should start with assembler and not with a complex high-level language.

This page shows the concept behind assembler, what those familiar with high-level languages have to give up to learn
assembler and why assembler is not machine language.

2.1 The hardware of micro-controllers

What has the hardware to do with assembler? Much, as can be seen from the following.

The concept behind assembler is to make the hardware resources of the processor accessible. Resources means all
hardware components, like

* the central processing unit (CPU) and its math servant, the arithmetic and logic unit (ALU),
* the diverse storage units (internal and external RAM, EEPROM storage),
* the ports that control characteristics of port-bits, timers, AD converters, and other devices.

Accessible means directly accessible and not via drivers or other interfaces, that an operating system provides. That
means, you control the serial interface or the AD converter, not some other layer between you and the hardware. As
award for your efforts, the complete hardware is at your command, not only the part that the compiler designer and the
operating system programmer provides for you.

2.2 How the CPU works

Most important for understanding assembler is to understand how the CPU works. The CPU reads instructions (instruction
fetch) from the program storage (the flash), translates those into executable steps and executes those. In AVRs, those
instructions are written as 16 bit numbers to the flash storage, and are read from there (first step). The number read then
translates (second step) e. g. to transporting the content of the two registers RO and R1 to the ALU (third step), to add
those (fourth step) and to write the result into the register RO (fifth step). Registers are simple 8 bit wide storages that can
directly be tied to the ALU to be read from and to be written to.

The coding of instructions is demonstrated by some examples.

CPU operation Code (binary) Code (hex)
Send CPU to sleep 1001.0101.1000.1000 9588
Add register R1 to register RO 0000.1100.0000.0001 0co1
Subtract register R1 from register RO 0001.1000.0000.0001 1801
Werite constant 170 to register R16 1110.1010.0000.1010 EAOA

Multiply register R3 with register R2 and write the result to registers R1 (MSB) and | 1001.1100.0011.0010 9C32
RO (LSB)

So, if the CPU reads hex 9588 from the flash storage, it stops its operation and does not fetch instructions any more. Don't
be afraid, there is another mechanism necessary before the CPU executes this. And you can wake up the CPU from that.

Executing instructions

If the CPU reads hex 0C01, RO and R1 is added and the result is written to register RO. This is executed like demonstrated in
the picture.

First the
Flash Add Register RO and Register A1 instruction
1 2 3 word (16 bit)
is read from

the flash and
translated to
executable
steps (1).

Fetch

0CO1 1

Write
result
to

The next step
connects the

Register
Ro registers to
the ALU
inputs, and

adds their content (2).

Next, the result is written to the register (3).

Avr-Asm-Tutorial 3 http://www.avr-asm-tutorial.net

If the CPU reads hex 9C23 from the flash, the registers R3 and R2 are muliplied and the result is written to R1 (upper 8 bits)
and RO (lower 8 bits). If the ALU is not equipped with hardware for multiplication (e. g. in an ATtiny13), the 9C23 does
nothing at all. It doesn't even open an error window (the tiny13 doesn't have that hardware)!

In principle the CPU can execute 65,536 (16-bit) different instructions. But because not only 170 should be written to a
specific register, but values between 0 and 255 to any register between R16 and R31, this load instruction requires 256*16
= 4,096 of the 65,536 theoretically possible instructions. The direct load instruction for the constant c (c7..c0) and registers
r (r3..r0, r4 is always 1 and not encoded) is coded like this:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LDIR,C 1 1 1 0 c7 c6 c5 c4 r3 r2 ri r0 c3 c2 cl c0

Why those bits are placed like this in the instruction word remains ATMEL's secret.

Addition and subtraction require 32*32 = 1,024 combinations and the target registers R0..R31 (t4..t0) and source registers
RO..R31 (s4..s0) are coded like this:

Bit 15 14 | 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD Rt,Rs 0 0 0 0 1 1 s4 t4 t3 12 tl t0 s3 s2 sl SO
SUB Rt,Rs 0 0 0 1 1 0 s4 t4 t3 t2 tl t0 s3 s2 sl sO

Please, do not learn these bit placements, you will not need them later. Just understand how an instruction word is coded
and executed.

2.3 Instructions in assembler

There is no need to learn 16-bit numbers and the crazy placement of bits within those, because in assembler you'll use
human-readable abbreviations for that, so-called mnemonics, an aid to memory. The assembler representation for hex
9588 is simply the abbreviation "SLEEP". In contrast to 9588, SLEEP is easy to remember. Even for someone like me that
has difficulties in remembering its own phone number.

Adding simply is "ADD". For naming the two registers, that are to be added, they are written as parameters. (No, not in
brackets. C programmers, forget those brackets. You don't need those in assembler.) Simply type "ADD RO,R1". The line
translates to a single 16 bit word, 0CO1. The translation is done by the assembler.

The CPU only understands 0CO1. The assembler translates the line to this 16 bit word, which is written to the flash storage,
read from the CPU from there and executed. Each instruction that the CPU understands has such a mnemonic. And vice
versa: each mnemonic has exactly one corresponding CPU instruction with a certain course of actions. The ability of the
CPU determines the extent of instructions that are available in assembler. The language of the CPU is the base, the
mnemonics only represent the abilities of the CPU itself.

2.4 Difference to high-level languages

Here some hints for high-level programmers. In high-level languages the constructions are not depending from the
hardware or the abilities of a CPU. Those constructions work on very different processors, if there is a compiler for that
language and for the processor family available. The compiler translates those language constructions to the processor's
binary language. A GOTO in Basic looks like a JMP in assembler, but there is a difference in the whole concept between
those two.

A transfer of program code to another processor hardware does only work if the hardware is able to do the same. If a
processor CPU doesn't have access to a 16 bit timer, the compiler for a high-level language has to simulate one, using an 8-
bit timer and some time-consuming code. If three timers are available, and the compiler is written for only two or a single
timer, the available hardware remains unused. So you totally depend on the compiler's abilities, not on the CPU's abilities.

Another example with the above shown instruction "MUL". In assembler, the target processor determines if you can use
this instruction or if you have to write a multiplication routine. If, in a high-level language, you use a multiplication the
compiler inserts a math library that multiplies every kind of numbers, even if you have only 8-by-8-bit numbers and MUL
alone would do it. The lib offers an integer, a long-word and some other routines for multiplications that you don't need. A
whole package of things you don't really need. So you run out of flash in a small tiny AVR, and you change to a mega with
35 unused port pins. Or an xmega, just to get your elefant lib with superfluous routines into the flash. That is what you get
from a simple "*", without even being asked.

2.5 Assembler is not machine language

Because assembler is closer to the hardware than any other language, it is often called machine language. This is not exact
because the CPU only understands 16 bit instruction words in binary form. The string "ADD RO,R1" cannot be executed.
And assembler is much simpler than machine language. Similarities between machine language and assembler are a
feature, not a bug.

Avr-Asm-Tutorial 4 http://www.avr-asm-tutorial.net

2.6 Interpreting and assembler

With an interpreter the CPU first translates the human-readable code into binary words that can be executed then. The
interpreter would

* first read the text stream "A = A + B" (nine characters of one byte each),

* strip the four blanks from the text,

* locate the variables A and B (location in registers or in SRAM, precision/length, etc.),

* identify the plus sign as operator,

* prepare a machine executable sequence that is equivalent to the formulation in the text.

In the consequence, probably a simple machine code like "ADD RO,R1" (in Assembler) would result. But most probably the
resulting machine code would be multiple words long (read and write variables from/to SRAM, 16-bit-integer adding,
register saving/restoring on stack, etc., etc.).

The difference between the interpreter and the assembling is that, after assembling, the CPU gets its favored meal,
executable words, directly. When interpreting the CPU is, during most of the time, performing the translation task.
Translation probably requires 20 or 200 CPU steps, before the three or four words can be executed. Execution speed so is
more than lame. While this is no problem if one uses a fast clock speed, it is inappropriate in time critical situations, where
fast response to an event is required. No one knows what the CPU is just doing and how long this requires.

Not having to think about timing issues leads to the inability of the human programmer to resolve timing issues, and
missing information on timing keeps him unable to do those things, if required.

2.7 High level languages and Assembler

High level languages insert additional nontransparent separation levels between the CPU and the source code. An example
for such an nontransparent concept are variables. These variables are storages that can store a number, a text string or a
single Boolean value. In the source code, a variable name represents a place where the variable is located, and, by
declaring variables, the type (numbers and their format, strings and their length, etc.).

For learning assembler, just forget the high level language concept of variables. Assembler only knows bits, bytes, registers
and SRAM bytes. The term "variable" has no meaning in assembler. Also, related terms like "type" are useless and do not
make any sense here.

High level languages require you to declare variables prior to their first use in the source code, e. g. as Byte (8-bit), double
word (16-bit), integer (15-bit plus 1 sign bit). Compilers for that language place such declared variables somewhere in the
available storage space, including the 32 registers. If this placement is selected rather blind by the compiler or if there is
some priority rule used, like the assembler programmer carefully does it, is depending more from the price of the
compiler. The programmer can only try to understand what the compiler "thought" when he placed the variable. The
power to decide has been given to the compiler. That "relieves" the programmer from the trouble of that decision, but
makes him a slave of the compiler.

The instruction "A = A + B" is now type-proofed: if A is defined as a character and B a number (e. g. = 2), the formulation
isn't accepted because character codes cannot be added with numbers. Programmers in high level languages believe that
this type check prevents them from programming nonsense. The protection, that the compiler provides in this case by
prohibiting your type error, is rather useless: adding 2 to the character "F" of course should yield a "H" as result, what
else? Assembler allows you to do that, but not a compiler.

Assembler allows you to add numbers like 7 or 48 to add and subtract to every byte storage, no matter what type of thing
is in the byte storage. What is in that storage, is a matter of decision by the programmer, not by a compiler. If an operation
with that content makes sense is a matter of decision by the programmer, not by the compiler. If four registers represent a
32-bit-value or four ASCII characters, if those four bytes are placed low-to-high, high-to-low or completely mixed, is just up
to the programmer. He is the master of placement, no one else. Types are unknown, all consists of bits and bytes
somewhere in the available storage place. The programmer has the task of organizing, but also the chance of optimizing.

Of a similar effect are all the other rules, that the high level programmer is limited to. It is always claimed that it is saver
and of a better overview to program anything in subroutines, to not jump around in the code, to hand over variables as
parameters, and to give back results from functions. Forget most of those rules in assembler, they don't make much sense.
Good assembler programming requires some rules, too, but very different ones. And, what's the best: most of them have
to be created by yourself to help yourself. So: welcome in the world of freedom to do what you want, not what the
compiler decides for you or what theoretical professors think would be good programming rules.

High level programmers are addicted to a number of concepts that stand in the way of learning assembler: separation in
different access levels, in hardware, drivers and other interfaces. In assembler this separation is complete nonsense,
separation would urge you to numerous workarounds, if you want to solve your problem in an optimal way.

Because most of the high level programming rules don't make sense, and because even puristic high level programmers
break their own rules, whenever appropriate, see those rules as a nice cage, preventing you from being creative. Those
questions don't play a role here. Everything is direct access, every storage is available at any time, nothing prevents your
access to hardware, anything can be changed - and even can be corrupted. Responsibility remains by the programmer
only, that has to use his brain to avoid conflicts when accessing hardware.

The other side of missing protection mechanisms is the freedom to do everything at any time. So, smash your ties away to
start learning assembler. You will develop your own ties later on to prevent yourself from running into errors.

Avr-Asm-Tutorial 5 http://www.avr-asm-tutorial.net

2.8 What is really easier in assembler?

All words and concepts that the assembler programmer needs is in the datasheet of the processor: the instruction and the
port table. Done! With the words found there anything can be constructed. No other documents necessary. How the timer
is started (is writing "Timer.Start(8)" somehow easier to understand than "LDI R16,0x02” and “OUT TCCRO,R16"?), how the
timer is restarted at zero ("CLR R16” and “OUT TCCRO,R16"), it is all in the data sheet. No need to consult a more or less
good documentation on how a compiler defines this or that. No special, compiler-designed words and concepts to be
learned here, all is in the datasheet. If you want to use a certain timer in the processor for a certain purpose in a certain
mode of the 15 different possible modes, nothing is in the way to access the timer, to stop and start it, etc.

What is in a high level language easier to write "A = A + B" instead of "MUL R16,R17"? Not much. If A and B aren't defined
as bytes or if the processor type is tiny and doesn't understand MUL, the simple MUL has to be exchanged with some
other source code, as designed by the assembler programmer or copy/pasted and adapted to the needs. No reason to
import an nontransparent library instead, just because you're to lazy to start your brain and learn.

Assembler teaches you directly how the processor works. Because no compiler takes over your tasks, you are completely
the master of the processor. The reward for doing this work, you are granted full access to everything. If you want, you can
program a baud-rate of 45.45 bps on the UART. A speed setting that no Windows PC allows, because the operating system
allows only multiples of 75 (Why? Because some historic mechanical teletype writers had those special mechanical gear
boxes, allowing quick selection of either 75 or 300 bps.). If, in addition, you want 1 and a half stop bytes instead of either 1
or 2, why not programming your own serial device with assembler software. No reason to give things up.

Who is able to program in assembler has a feeling for what the processor allows. Who changes from assembler to a higher
level language later on, e. g. in case of very complex tasks, has made the decision to select that on a rational basis. If
someone skips learning assembler he has to do what he can, sticks to the available libraries and programs creative
workarounds for things that the compiler doesn't allow, and in a way that assembler programmers would laugh at loud.
The whole world of the processor is at the assembler programmer's command, so why do complicated and highly sensitive
workarounds on something you can formulate in a nice, lean, esthetic way?

Avr-Asm-Tutorial 6 http://www.avr-asm-tutorial.net

3 Hardware for AVR-Assembler-
Programming

Learning assembler requires some simple hardware equipment to test your programs, and see if it works in practice.

This section shows two easy schematics that enable you to home brew the required hardware and gives you the necessary
hints on the required background. This hardware really is easy to build. | know nothing easier than that to test your first
software steps. If you like to make more experiments, leave some more space for future extensions on your experimental
board.

If you don't like the smell of soldering, you can buy a ready-to-use board, too. The available boards are characterized in
this section below.

3.1 The ISP Interface of the AVR processor family

Before going into practice, we have to learn a few essentials on the serial programming mode of the AVR family. No, you
don't need three different voltages to program and read an AVR flash memory. No, you don't need another pre-
programmed microprocessor to program the AVRs. No, you don't need 10 I/O lines to tell the chip what you like it to do.
And you don't even have to remove the AVR from the socket on your your experimental board, before programming it. It's
even easier than that.

All this is done by a build-in interface in the AVR chips, that enable you to write and read the content of the program flash
and the built-in-EEPROM. This interface works serially and needs only three signal lines:

» SCK: A clock signal that shifts the bits to be written to the memory into an internal shift register, and that
shifts out the bits to be read from another internal shift register,

« MOSI: The data signal that sends the bits to be written to the AVR,
« MISO: The data signal that receives the bits read from the AVR.

1 2 These three signal pins are internally connected to the programming machine only if you change
the RESET (sometimes also called RST or restart) pin to zero. Otherwise, during normal operation
HMISO O O VTG fthe AVR, these pins are programmable 1/O lines like all the others.

SCKO OH()SI If you like to use these pins for other purposes during normal operation, and for in-system-
programming, you'll have to take care, that these two purposes do not conflict. Usually you then
EST O OGND decouple these by resistors or by use of a multiplexer. What is necessary in your case, depends
from your use of the pins in the normal operation mode. You're lucky, if you can use them for in-

ISPBPIN system-programming exclusively.

1 3 Not necessary, but recommendable for in-system-programming is, that you supply the
programming hardware out of the supply voltage of your system. That makes it easy, and
HOSI O OHTG requires two additional lines between the programmer and the AVR board. GND is the common
round or negative pole of the supply voltage, VTG (target voltage) the supply voltage (usuall
LEDO OGHD g 8 p e supply g (targ ge) pply ge (y
+5.0 volts). This adds up to 6 lines between the programmer hardware and the AVR board. The
resulting ISP6 connection, as defined by ATMEL, is shown on the left.
rsT{) (cup & Y

Standards always have alternative standards, that were used earlier. This is the technical basis
SCKO OGHD that constitutes the adapter industry. In our case the alternative standard was designed as
ISP10 and was used on the STK200 board, sometimes also called CANDA interface. It's still a very
MI S0 O OGH'D widespread standard, and even the more recent STK500 board is equipped with it. ISP10 has an
additional signal to drive a red LED. This LED signals that the programmer is doing his job. A
ISP10PIN
good idea. Just connect the LED to a resistor and clamp it the positive supply voltage.

3.2 Programmer for the PC-Parallel-Port

Now, heat up your soldering iron and build up your programmer. It is a quite easy schematic and works with standard
parts from your well-sorted experiments box.

Yes, that's all you need to program an AVR. The 25-pin plug goes into the parallel port of your PC, the 10-pin ISP goes to
your AVR experimental board. If your box doesn't have a 74LS245, you can also use a 74HC245 (with no hardware
changes) or a 74L5244/74HC244 (by changing some pins and signals). If you use HC, don't forget to tie unused inputs
either to GND or the supply voltage, otherwise the buffers might produce extra noise by capacitive switching.

The necessary program algorithm is done by the ISP software. Be aware that this parallel port interface is not supported by
ATMEL's studio software any more. So, if you want to program your AVR directly from within the studio, use different
programmers. The Internet provides several solutions.

Avr-Asm-Tutorial 7 http://www.avr-asm-tutorial.net

2

o—®

Ho I
el

‘f‘LI)UUAU“

oy
=

If you already have a programming board, you will not need to build this programmer, because you'll find the ISP interface
on some pins. Consult your handbook to locate these.

3.3 Experimental boards

You probably want to do your first programming steps with a self-made AVR board. Here are two versions offered:
® Averysmall one with an ATtiny13, or

® a more complicated one with an AT90S2313 or ATmega2313, including a serial RS232 interface.

3.3.1 Experimental board with an ATtiny13
This is a very small board that allows experiments with the ATtiny13's internal hardware. The picture shows
® the ISP10 programming interface on the left, with a programming LED attached via a resistor of 390 Ohms,
® the ATtiny13 with a pull-up of 10k on its RESET pin (pin 1),

® the supply part with a bridge rectifier, to be supplied with 9..15V from an AC or DC source, and a small 5V

regulator.
. 4
ISP10-
Programming-—
Interface oo PB2 PE1 PBO
+5v SCK MISO MOST
=0 O aDC1 AIN1 AIND
10 9 TO oc0B ocoa 78L0S
O O PCINT2 INTO PCINTO oUT IN + ~ _O
PCINT1 i |q.,,0
+ B B40
o _ GND o100 9..15V
O ATMEL ATtinyl3 T l _O
@ 20 Cl PCINT5
RESET DPCINT3
ADCO CLKI PCINT4
dw aDC3 aDc2
PB5 PB3 PB4 GND
g
by
10k 4

(BOO

The ATtiny13 requires no external XTAL or clock generator, because it works with its internal 9.6 MHz RC generator and, by
default, with a clock divider of 8 (clock frequency 1.2 MHz).

The hardware can be build on a small board like the one shown in the picture. All pins of the tiny13 are accessible, and
external hardware components, like the LED shown, can be easily plugged in.

Avr-Asm-Tutorial 8 http://www.avr-asm-tutorial.net

This board allows the use of the
ATtiny13's hardware components like
I/O-ports, timers, AD converters, etc.

3.3.2 Experimental board with an AT90S2313/ATmega2313

For test purposes, were more I/O-pins or a serial communication interface is necessary, we can use a AT9052313 or
ATmega2313 on an experimental board. The schematic shows

« asmall voltage supply for connection to an AC transformer and a voltage regulator 5V/1A,

« a XTAL clock generator (here with a 10 MHz XTAL, all other frequencies below the maximum for the 2313 will
also work),

» the necessary parts for a safe reset during supply voltage switching,
« the ISP-Programming-Interface (here with a ISP10PIN-connector).

So that's what you need to start with. Connect other peripheral add-ons to the numerous free 1/0 pins of the 2313.

i Experimental 2313 board (C}2001 DGAFAC i
: 18pk 18pk E
: m = 5
: 2% 7z nk. [k <Tal :
5 zkz zkz[|[]exe Lﬂ??; :r +ﬁ 0 L B I O [T |
! 16] hs 8l % ReD 2 !
: PDO :
: DSR e 13 1z | LogpJiNgrmal 3 & |NTD®_® DCF77- |
: (zy I 01 O -0 -0 PO PDZ) Clock
i TD 14 11 Data 7 INT1 i
! 3 oz Iz PD3 !
: — o MAXZ32 o3 LOOO-p JZNgmal 16 :
: ®_I D4 14 Control :
' (Male) RTs 14 '
: r 1L|le 4L|!j PBZ :
i bl el AT9052313 i
: | 18ppg :
E @ ®M|SO | L] PE7 E
E 7 SCK 17 PBE E
- RESET RESET -
: @) @ LEp ¥EP ik 1 1n4148 E
i e [P l i
: &—2) (TMOS! S o B :
' 47k '
: Wil :
| 4% 1Ma001 |
' o :
| q . 15% 330pK. |
: ~ (@ e [e :
: <ot os = :
<1 v HT
: = :
E To PC Mullmodem-cable To Board E
! TSR !
TD D)
| RD |
: (23 =(nTs !
H >< TT, 3 TS H
; @ (& ;
: DTE @ :
: OND (5) “ums :
: (Female) |

The easiest output device can be a LED, connected via a resistor to the positive supply voltage. With that, you can start
writing your first assembler program switching the LED on and off.

If you

@ do not need the serial communication interface, just skip the hardware connected to pins 2/3 and 14/16,

Avr-Asm-Tutorial 9 http://www.avr-asm-tutorial.net

® do not need hardware handshake signals, skip the hardware on the pins 14/16 and connect RTS on the 9-pin-
connector over a 2.2k resistor to +9V.

If you use an ATmega2313 instead of an AT90S2313, the
following changes are resulting:

® the external XTAL is not necessary, as the ATmega has
an internal RC clock generator, so just skip all

- AmEL. 0122 TP connections to pins 4 and 5,
AT9052313-10PI ;-
A Em s RS s = ® if you want to use the external XTAL instead of the

build-in RC as clock source, you will have to program
the fuses of the ATmega accordingly.

3.4 Ready-to-use commercial programming boards for the AVR-
family

If you do not like home-brewed hardware, and if have some extra money left that you don't know what to do with, you
can buy a commercial programming board. Depending from the amount of extra money you'd like to spend, you can select
between more or less costly versions. For the amateur the following selection criteria should be looked at:

® price,

® PCinterface (preferably USB, less convenient or durable: 9-pin RS232, requiring additional software: interfaces for
the parallel port of the PC),

® support reliability for newer devices (updates are required from time to time, otherwise you sit on a nearly dead
horse),

® hardware features (depends on your foreseeable requirements in the next five years).

The following section describes the three standard boards of ATMEL, the STK200, the STK500 and the Dragon. The
selection is based on my own experiences and is not a recommendation.

3.4.1 STK200

The STK200 from ATMEL is a historic board. If you grab a used one you'll get

® a board with some sockets (for 8, 20, 28 and 40 pin devices),

® eight keys and LEDs, hard connected to port D and B,

® an LCD standard 14-pin interface,

® an option for attaching a 28-pin SRAM,

® a RS232 interface for communication,

® acable interface for a PC parallel port on one side and a 10-pin ISP on the other side.
High voltage programming is not supported.

The board cannot be programmed from within the Studio, the programming software is no longer maintained, and you
must use external programs capable of driving the PC parallel port.

If someone offers you such a board, take it only for free and if you're used to operate software of the necessary kind.

3.4.2 STK500

Easy to get is the STK500 (e. g. from ATMEL). It has the following hardware:

» Sockets for programming most of the AVR types (e. g. 14-pin devices or TQFP packages require additional
hardware),

 serial and parallel programming in normal mode or with high voltage (HV programming brings devices back to
life even if their RESET pin has been fuse-programmed to be normal port input),

* ISP6PIN- and ISP10PIN-connection for external In-System-Programming,
« programmable oscillator frequency and supply voltages,

* plug-in switches and LEDs,

» aplugged RS232C-connector (UART),

« aserial Flash-EEPROM (only older boards have this),

« access to all port pins via 10-pin connectors.

A major disadvantage of the board is that, before programming a device, several connections have to be made manually

Avr-Asm-Tutorial 10 http://www.avr-asm-tutorial.net

with the delivered cables.

The board is connected to the PC using a serial port (COMX). If your laptop doesn't have a serial interface, you can use one
of the common USB-to-Serial-Interface cables with a software driver. In that case the driver must be adjusted to use
between COM1 and COMS8 and a baud rate of 115k to be automatically detected by the Studio software.

Programming is performed and controlled by recent versions of AVR studio, which is available for free from ATMEL's web
page after registration. Updates of the device list and programming algorithm are provided with the Studio versions, so
the support for newer devices is more likely than with other boards and programming software.

Experiments can start with the also supplied AVR (older versions: AT90S8515, newer boards versions include different
types). This covers all hardware requirements that the beginner might have.

3.4.3 AVR Dragon

The AVR dragon is a very small board. It has an USB interface, which also supplies the board and the 6-pin-ISP interface.
The 6-pin-ISP-Interface is accompanied by a 20-pin HV programming interface. The board is prepared for adding some
sockets on board, but doesn't have sockets for target devices and other hardware on board.

The dragon is supported by the Studio software and is a updated automatically.

Its price and design makes it a nice gift for an AVR amateur. The box fits nicely in a row with other precious and carefully
designed boxes.

Avr-Asm-Tutorial 11 http://www.avr-asm-tutorial.net

4 Tools for AVR assembly programming

Four basic programs are necessary for assembly programming. These tools are:
+ the editor,
« the assembler program,
« the chip programing interface, and
+ the simulator.
Two different basic routes are possible:
1. anything necessary in one package,
2. each task is performed with a specific program, the results are stored as specific files.

Usually route #1 is chosen. But because this is a tutorial, and you are to understand the underlying mechanism first, we
start with the description of route #2 first. This shows the way from a text file to instruction words in the flash memory

4.1 The editor
4.1.1 A simple typewriter

Assembler programs are written with an editor. The editor just has to be able to create and edit ASCII text files. So,
basically, any simple editor does it.

Some features of the editor can have positive effects:

® Errors, that the assembler later detects, are reported along with the line number in the text file. Line numbers are
also a powerful invention of the computer-age when it comes to discussions on your code with someone else.

® Typing errors are largely reduced, if those errors are marked with colors. It is a nice feature of an editor to
highlight the components of a line in different colors. More or less intelligent recognition of errors ease typing.
But this is a feature that | don't really miss.

@ If your editor allows the selection of fonts, chose a font with fixed spacing, like Courier. Headers look nicer with
that.

® Your editor should be capable of recognizing line ends with any combination of characters (carriage returns, line
feeds, both) without producing unacceptable screens. Another item on the wish list for Widows 2013.

If you prefer shooting with cannons to kill sparrows, you can use a mighty word processing software to write assembler
programs. It might look nicer, with large bold headings, gray comments, red warnings, changes marked, and reminders on
To-Do's in extra bubble fields. Some disadvantages here: you have to convert your text to plain text at the end, losing all
your nice design work, and your resulting text file should not have a single control byte left. Otherwise this single byte will
cause an error message, when you assemble the text. And remember: Line numbers here are only correct on page one of
your source code.

E_L;wawasm !El

File Edt Search Assemble Options.. Window Help SO, Whatever text program you Chose, Itls up
Fd et EEY[E] . . H
A] fal to you. The following examples are written in
e — !E' wavrasm, an editor provided by ATMEL in
:NOLIST —I

earlier days.
:il:gg%UDE "8515def . inc"
leer kRommt eine einfache Schleife In th.e plaln ed|t0r fIEIdwe type in Our
fcop: directives and assembly instructions. It is

RIHE 1emp highly recommended that lines come
together with some comments (starting
with ;). Later understanding of what we've
planned here will be helpful in later

debugging.

Now store the program text, named to
something.asm into a dedicated directory,
using the file menu. The assembly program is

= complete now.
i B P
[[Ln1z | Colt | Y]

If you'd like to see what syntax-highlighting means, | have a snapshot of such an AVR editor here.

The editor recognizes instructions automatically and uses different colors (syntax highlighting) to signal user constants and
typing errors in those instructions (in black). Storing the code in an .asm file provides nearly the same text file, colors are
not stored in the file.

Avr-Asm-Tutorial 12 http://www.avr-asm-tutorial.net

= AVR Editor - [E:\avrasmiwavrasmiTest asm] H=1E3 Don't tl"y to find this editor or its
@ Flle Edt Proiect Window Help =#IXI| aythor; the editor is history and no
e == = e e [S longer maintained.

|;: Das ist ein Testprogramm =

:NDLIST

-IHCLUDE "C:‘avrtoolsiappnotesi8515def._inc™

LIST

; Hier kommt eine einfache Schleife
loop:

RJHP loop

AWR Editor for Windows 95/98/MT 4

@ Tan Sillikzaar 1939

£%F Editar iz a freeware program

Mote: "AWR" iz a trademark, of Atmel Corp.

Version 1.2.200
tan@sillik saar. ee

sy s
e

1:1 [

4.1.2 Structuring assembler code

This page shows the basic structure of an assembler program. These structures are typical for AVR
assembler. This text discusses

N comments,

* header informations,

e code at program start and

* the general structure of programs.

Comments

The most helpful things in assembler programs are comments. If you need to understand older code that you wrote,
sometimes years after, you will be happy about having some or more hints what is going on in that line. If you like to keep
your ideas secret, and to hide them against yourself and others: don't use comments. A comment starts with a semicolon.
All that follows behind on the same line will be ignored by the compiler. If you need to write a comment over multiple
lines, start each line with a semicolon. So each assembler program should start like that:

Click.asm, Program to switch a relais on and off each two seconds
; Written by G.Schmidt, last change: 7.10.2001

’

Put comments around all parts of the program, be it a complete subroutine or a table. Within the comment mention the
special nature of the routine, pre-conditions necessary to call or run the routine. Also mention the results of the
subroutine in case you later will have to find errors or to extend the routine later. Single line comments are defined by
adding a semicolon behind the command on the line. Like this:

LDI R16,0x0A ; Here something is loaded
MOV R17,R16 ; and copied somewhere else

Things to be written on top

Purpose and function of the program, the author, version information and other comments on top of the program should
be followed by the processor type that the program is written for, and by relevant constants and by a list with the register
names. The processor type is especially important. Programs do not run on other chip types without changes. The
instructions are not completely understood by all types, each type has typical amounts of EEPROM and internal SRAM. All
these special features are included in a header file that is named xxxxdef.inc, with xxxx being the chip type, e. g. 2313,
tn2323, or m8515. These files are available by ATMEL. It is good style to include this file at the beginning of each program.
This is done like that:

.NOLIST ; Don't list the following in the list file
.INCLUDE "m8515def.inc" ; Import of the file
.LIST ; Switch list on again

The path, where this file can be found, is only necessary if you don't work with ATMEL's Studio. Of course you have to
include the correct path to fit to your place where these files are located. During assembling, the output of a list file listing
the results is switched on by default. Having listing ob might result in very long list file (*.Ist) if you include the header file.
The directive .NOLIST turns off this listing for a while, LIST turns it on again. Let's have a short look at the header file. First
these files define the processor type:

.DEVICE ATMEGA8515 ; The target device type

The directive .DEVICE advices the assembler to check all instructions if these are available for that AVR type. It results in an
error message, if you use code sequences that are not defined for this type of processor. You don't need to define this
within your program as this is already defined within the header file. The header file also defines the registers XH, XL, YH,
YL, ZH and ZL. These are needed if you use the 16-bit-pointers X, Y or Z to access the higher or lower byte of the pointer
separately. All port locations are also defined in the header file, so PORTB translates to a hex number where this port is

Avr-Asm-Tutorial 13 http://www.avr-asm-tutorial.net

located on the defined device. The port's names are defined with the same names that are used in the data sheets for the
respective processor type. This also applies to single bits in the ports. Read access to port B, Bit 3, can be done using its bit
name PINB3, as defined in the data sheet. In other words: if you forget to include the header file you will run into a lot of
error messages during assembly. The resulting error messages are in some cases not necessarily related to the missing
header file. Others things that should be on top of your programs are the register definitions you work with, e. g.:

.DEF mpr = R16 ; Define a new name for register R16

This has the advantage of having a complete list of registers, and to see which registers are still available and unused.
Renaming registers avoids conflicts in the use of these registers and the names are easier to remember. Further on we
define the constants on top of the source file, especially those that have a relevant role in different parts of the program.
Such a constant would, e. g., be the Xtal frequency that the program is adjusted for, if you use the serial interface on
board. With

.EQU fq = 4000000 ; XTal frequency definition

at the beginning of the source code you immediately see for which clock you wrote the program. Very much easier than
searching for this information within 1482 lines of source code.

Things that should be done at program start

After you have done the header, the program code should start. At the beginning of the code the reset- and interrupt-
vectors (their function see in the JUMP section) are placed. As these require relative jumps, we should place the respective
interrupt service routines right behind. In case of ATmega types with larger flash memory JUMP instructions can be used
here, so be careful here. There is some space left then for other subroutines, before we place the main program. The main
program always starts with initialization of the stack pointer, setting registers to default values, and the init of the
hardware components used. The following code is specific for the program.

Tool for structuring of program code

The described standardized structure is included in a program written for Windows Operating Systems, which can be
downloaded at http://www.avr-asm-download.de/avr_head.zip.

Header-File
Azm-Header-File: |[[RIEEEEEEE]

Unzip the executable file, and
simply run it. It shows this: Here
you can choose ATtiny by
clicking on it, and then select
ATtiny13 in the dropdown field

l £ R-Type characteristice
Type Prezelection

(" ATwmega O ATmega ¢ ATtiny ¢ ATOOCAN ATS0USE ¢ ATSERF ¢ ATI0S % Ay tupe AVR-Type,
AR-Type: |[Select] | Intg? Register name to use: [mp Register|R16 = ¥ program uses intermupts .
e T You are now asked to navigate
[~ A0 A1 A2[&3 A4 AS[AG[&7 | | [BOI BI[B2 B3l B4 BS5[BE EB7 to its respective include-file

tn13def.inc. Show the program
the way where the header file is
located.

Here you can enter your desired
multi purpose register, the
output configuration on ports A
and B, if available, and if you
want to use interrupts.

Click Update to fill the window
with your code frame.

Click CopyToClipboard, if you
want to paste this code into
I your code editor, or
WriteToFile to write this to an
assembler code file instead.

|l If you don't know what it is for
and what to do, press the Help
- ||| button.

This produces the following

;
Update Help mel Cloze i code:

xxxxxxxxxxxxx

; * [Add Project title here] *
; * [Add more info on software version here] *
; ¥ (C)20xx by [Add Copyright Info here] *

; Included header file for target AVR type
.NOLIST

http://www.avr-asm-download.de/avr_head.zip

Avr-Asm-Tutorial 14

.INCLUDE "tn13def.inc" ; Header for ATTINY13
.LIST

; HARDWARE INFORMATION

; [Add all hardware information here]

- PORTS AND PINS

; [Add names for hardware ports and pins here]
; Format: .EQU Controlportout = PORTA

; .EQU Controlportin = PINA

; .EQU LedOutputPin = PORTA2

CONSTANTS TO CHANGE

; [Add all constants here that can be subject
; to change by the user]
; Format: .EQU const = $ABCD

’

; FIX+DERIVED CONSTANTS

[Add all constants here that are not subject

; to change or calculated from constants]
; Format: .EQU const = $ABCD

’

REGISTER DEFINITIONS

; [Add all register names here, include info on
; all used registers without specific names]

; Format: .DEF rmp = R16

.DEF rmp = R16 ; Multipurpose register

SRAM DEFINITIONS

.DSEG
.ORG 0X0060
; Format: Label: .BYTE N ; reserve N Bytes from Label:

; RESET AND INT VECTORS

.CSEG

.ORG $0000
rjimp Main ; Reset vector
reti ; Int vector 1
reti ; Int vector 2
reti ; Int vector 3
reti ; Int vector 4
reti ; Int vector 5
reti ; Int vector 6
reti ; Int vector 7
reti ; Int vector 8
reti ; Int vector 9

INTERRUPT SERVICES

[Add all interrupt service routines here]

MAIN PROGRAM INIT

http://www.avr-asm-tutorial.net

Avr-Asm-Tutorial 15

Main:

; Init stack
Idi rmp, LOW(RAMEND) ; Init LSB stack
out SPL,rmp

; Init Port B

http://www.avr-asm-tutorial.net

Idi rmp,(1<<DDB2)|(1<<DDB1)|(1<<DDB0) ; Direction of Port B

out DDRB,rmp

; [Add all other init routines here]
Idi rmp,1<<SE ; enable sleep
out MCUCR,rmp
sei

; PROGRAM LOOP

’

Loop:
sleep ; go to sleep
nop ; dummy for wake up
rimp loop ; go back to loop

; End of source code

4.2 The assembler

Now we have a text file, with blank ASCII characters. The next step is to translate this code to a machine-oriented form

well understood by the AVR chip. Doing this is called assembling, w

hich means , put together the right instruction words”.

The program that reads the text file and produces some kind of output files is called Assembler. In the easiest form this is a
instruction-line program that, when called, expects the address of the text file and some optional switches, and then starts

assembling the instructions found in the text file.

If your editor allows calling external programs, this is an easy task. If not (another item on the wish list for the editor in

Widows 2010), it is more convenient to write a short batch file (ag
like this:

PathToAssembler\Assembler.exe -options PathToTextfile\T

ain using an editor). That batch file should have a line

extfile.asm

E_K_ wavrasm =1

Fie Edit Seach Assemble DOplions.. ‘Window Help

e K B[

Clicking on the editor's external program caller
or on the batch file starts the command line
assembler. That piece of software reports the

W TEST.ASM 9 [=]E3 . .
v re— = complete translation process (in the smaller
MOLTST = window), here with no errors. If errors occur
INCLUDE “C: 1 8515def .4 " .ps . . .
T1sT revrieslshappnotesiabiddst ins these are notified, along with their type and line
e —————)| [number. Assembling resulted in one word of
loop: SVEESH A as enb e rera T on T ey T E ST i i i
e oot e ko code which resulted from the RIMP instruction
Creating 'TEST EEP' that we used. Assembling our single asm text
C i ‘TEST .HEX' . .
Croating 'TEST 0OBI" file now has produced four other files (not all
Creating 'TEST.LST"
As=sembling 'TEST. ASH' apply here)'
Including 'C:~avrtoolssapprnotes~8515def inc'
Progrem memcry usage: The first of these four new files, TEST.EEP, holds
Cods 1 d: .
Constants (dvsdb) U vords the content that should be written to the
Tnused 0 words
Total 1 words EEPROM of the AVR. This is not very interesting
BoToiby SOMELEI SRR ne SEreTS. in our case, because we didn't program any
- - content for the EEPROM. The assembler has
I o therefore deleted this file when he completed
L AU the assembly run, because it is empty.

Bl Test hex - Editor | _ |O] =]

Dater Bearbeten Suchen 7

|- 02 p0BRBBFFCF30 =]
:080080B1FF

A P

The second file, TEST.HEX, is more relevant because
this file holds the instructions later programmed
into the AVR chip. This file looks like this.

The hex numbers are written in a special ASCIl form,
together with address information and a check-sum
for each line. This form is called Intel-hex-format,
and is very old and stems from the early world of
computing. The form is well understood by the
programing software.

Avr-Asm-Tutorial

16

B Testobj

oooooooo
ooooooio
oooooozo
0ooooon30
oooooo40

BABS
0002
7B72
5C38

6374
0054
746F
3531

2046
4553
6FBC
3564

696C
54Z2E
735C
6566

6500
4153
6170
2ER9

oooo
4000
706E
6EG3

5220

4Fe2 ... #

00CF FFOO ject File.......

4334 5Ch1

6F74
oooo

6573

.. TEST.AGM.C:~a
vrtoolshappnotes
~8515def .inc. .

http://www.avr-asm-tutorial.net

The third file, TEST.OBJ, will be introduced
later, this file is needed to simulate an AVR.
Its format is hexadecimal and defined by
ATMEL. Using a hex-editor its content looks

like this. Attention: This file format is not

other assemblers.

Bl Test.lst - Editor [_ O] =]
Datei Bearbeiten Suchen i

AURASHM ver. 1.328

Das ist ein Testprogramm

-HOLIST

oop:

1
0000008 cfff RJHMP loop

Assembly complete with no errors.

i

TEST .ASHM Sun Jun 18 81:46:-13 2801

Hier kommt eine einfache Schleife

4.3 Programming the chips

To program our hex code, as coded in text form in the .HEX-file, to the AVR a programmer software is necessary. This
software reads the .HEX-file and transfers its content, either bit-by-bit (serial programming) or byte-by-byte (parallel
programming) to the AVR's flash memory. We start the programmer software and load the hex file that we just generated.

Test - ATMEL AVR ISP H[=] E3

Praoject File Buffer

Programn Options Window Help

compatible with the programmer software,

don't use this file to program the AVR (a
very common error when starting). OBJ files are only produced by certain ATMEL assemblers, don't expect these files with

e EEEREIEIEEEEE

Data EEPROM M x|

FF FF FF FF FF FF FF FF FE FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF_FF FF_FF FF FF FF FF FF FF FF FF FF FF FF FF

Project Manager

Title:
Project 1D:

Comments:

ITesl

[oo01

Dies ist das Testprogramm

M anager

Device

Secuity and Fuses

AlLout ATMEL AVR ISP [<]

AIMEL

ATMEL AR ISP
“ersion 2.65
Copyright (e} 1998-1999 Kanda Systems Lid.

|Fnr Help. press F1

The fourth file, TEST.LST, is a text file. Display its content with a
=j| simple editor. The following results.

The program with all its addresses, instructions and error
messages are displayed in a readable form. You will need that
file in some cases to debug errors.

Listfiles are generated only if the appropriate option is selected
on the command line options and if the .NOLIST directive
doesn't suppress listing.

In an example that looks like
this. Please note: the displayed
window stems from ISP.exe, a
historic program no longer
distributed by ATMEL. Other

programmer software looks
similar.
The software will burn our

code in the chip's program
store. There are a number of
preconditions necessary for
this step and several reasons

possible, if this step fails.
Consult your programmer
software help, if problems
occur.

Programming hardware and

appropriate software alternatives for different PC operating systems are available on the Internet. As an example for
programming over the PC's parallel or serial communication port, PonyProg2000 should be mentioned here.

4.4 Simulation in the studio

In some cases self-written assembly code, even assembled without errors, does not exactly do what it should do when
burned into the chip. Testing the software on the chip could be complicated, esp. if you have a minimum hardware and no
opportunity to display interim results or debugging signals. In these cases the Studio software package from ATMEL
provides ideal opportunities for debugging. Testing the software or parts of it is possible, the program code could be

tested step-by-step displaying results.

The pictures shown here are taken from Version 4 of the Studio, that is available for free on ATMEL's website. Older
versions looks different, but do nearly the same. The Studio is a software that has all you need to develop, debug, simulate
and burn your assembler programs into the AVR type of your choice. The studio is started and looks like this.

Avr-Asm-Tutorial 17 http://www.avr-asm-tutorial.net

® AVR Studio e w—— - E
! File Project Build View Tools Debug Help il
DR Hdd v ¥ afmcda ™ 2Eh:dh 6% %% Pp @ [Elg @ L o O el
: [Trace Disabled RN R R R
Welcome to AVR Studio 4 [
é Mew Project ‘
N
Recent projects | td odified | |
L C:ilzarsh, . AdeviBWR\tests\testsprmitestspm. aps 23-Dec-2008 15:03:43
’ C:AUzersh. . \akkuload\Cunrentversionakkuload. aps A0-Mow-2008 18:23:04
& ChUsersh Amult_16_24%mult_16_24.aps 28-5ep-2008 16:23.058 i
] C:AUzersh.. Mimer_intstimer_intsimer_int. aps 04-Aug-2008 11:17.09
& ChUsersh. Astandard_tnl Bhetandard_tn3.aps 26-Jul-2008 171819
[] C:hUzersh. AdeviaWRMests\test_inchcount_up.aps 20-Jul-2008 131013
[] C:Azersh, AExamplesiCount_Uphcount_up.aps O7-Jul-2008 1417.37
L Coilzarsh, . AdeviaWR\tests\test_inchtest-start aps 29-Jun-2008 20:51:44
& CAUzersh, . deviaWRitests\test_inchtest_inc.aps 28-Jun-2008 16:55:38 Bits
& CUsersh ADelay16_500ms\Delayl 5_500ms. aps 2R-tay-2008 14:47:14
|
Loaded plugin 5T|
gee plug-in: Mo WinAlll yer 415623 W
< Back Mest 55 i l
]
[
L
L F—T— !
i =l Build ﬂ Message I% Find in Files |faBreakpoints and Tracepoints :
i & CAP NUM OVR
i - —— - ——

The first dialog asks whether an existing project should be opened or a new project is to be started. In case of a newly
installed Studio “New Project” is the correct answer. The Button “Next>>" brings you to the settings dialog of your new
project.

— Create new project

Project type: Project name;

trnel A4H . Itesﬂ

¥ Create initial file W Create folder

Iritial file:

Itest'l .asm
Location:
IE:\Users\g.schmidt\D ocumentshdew W AVE Stestsh |

I Wer 4.15.623

<< Back | Mest 2 I Firigh LCancel Help

Here you select “Atmel AVR Assembler” as your project type, give that project a name (here “testl”) and let the Studio
crate an initial (empty) file for your source code, let it create a folder and select a location for that project, where you have
write access to.

The button “Next>>" opens the platform and device selection dialog:

Avr-Asm-Tutorial 18 http://www.avr-asm-tutorial.net
-
Welcome to AVR Studio 4 As debug platform
select either “AVR
Select debug platform and device simulator” or “AVR
Drebug platform: Device: simulator 2”. As
&R Dragon &TmegadaP - Device select your
&%F OME! AT megabd AVR type, here an
AR Simulator ATmegak40 ATmega8 was
AR Simulator 2 ATmegabdd
selected. If our
ICE200 ATmegabddP desired . y d
ICE40 ATmega45 i esired type is graye
ICES0 AT megab450 = out, select another
JTAG ICE &Tmegab4d simulator platform.
JTAGICE mil| AT megab430 Close this window
- e with the “Finish”
rmega -
s button. Now a large
r window pops up,
which has lots of
different sub-
Wer 415623 windows.
¢ Back | | Finish LCancel Help
|-
i — ¥ * —|s=] é
"h AVR Studio C.'\Users\g.schmlE.It\Documents\dev\AVR\tests\testl\testl.asm -» S ™
File Project Build Edit Wiew Tools Debug Window Help
DEH@ 0 s anag - B0 dhe %A% bl oa o 52l = @ 0 s g
Trace Disabled R =T L o . 4
Eb testl C:\Users\g.schmidt\Docu... [= |[=& |[=5] 2 Y .
Ea Sl : Testl demonstrates Studio *| Name Value -
testl.asm : AT AD_CONVERTER o
I 423 Included Files nolist = =
g - .include "m8def . inc" /Ty ANALOG_COMPARA. .
E abels list +Bcru
423 Output .
.53 Object Fil Regi=ter definitions + [E)EEFROM
Jeet e : 4 S EXTERNAL_INTERR...
= d=f rmp = Rlb ﬂgPORTB
: . + 2 PORTC
ldi rmp.0b11111111 ~
out DDEE, rmp ﬂgPORTD b
labell: PERER
ldi rmp,.0b0O1010101
out FORTE. ruip TIMER_COUNTER_D
1di rmp, 0610101010 () TIMER_COUNTER_1 |
out PORTE. rmp b "
! rinp labell MName Address Value Bits
1] _'lJ
| b C:\Users\g.schmidt\Documents\dev\AVll\' 4k
estlitestl.asm(5): Including file 'C:\Program Files\Atmel‘\AVR chls\AvrAsst_l
egtli\testl.asm(l0): error: syntax error, unexpected ',', expecting '=' L
< | 1 | 2
=l Build ﬂl‘ﬂessage -ﬂFindinFiIes jBreaIr.p-:uintsandTracep-:uints
I ATmegad AVR Simulator Auto . Ln 20, Col 1 CAP NUM OVR

On the left, the project window allows you to manipulate and view all your project files. In the middle, the editor window,
allows you to write your source code (try typing its content to your editor window, don't care about the colors — these are
added by the editor — remember syntax-highlighting?). On the left bottom is a “Build” section, where all your error
messages go to. On the right side is a strange 1/O view and below a rather white field, we'll come to that later on.

AVRASM: AVE macro assembler 2.1.30 (build 592 Nov 7
Copyright (C) 1995-2008 ATMEL Corporation

2008 12:38:17)

:\Users\g.schmidt\Documenta\dev\AVR\tests\testl\testl.asm(5):
:\Users\g.achmidt\Documents\dev\AVR\teats\testl\testl.asm(20) : No EEPROM data,

ATmegal memory use summary [bytes]:

Segment Begin End Code Data Tsed Size TUsel
[.cseqg] 0x000000 0x00000e 14 1] 14 8192 0.2%
[.dseg] 0x000060 0x000060 a [u] 1024 0.0%
[.eseg] 0x000000 0x000000 a 0 a 512 0.0%
Assembly complete, 0 errors. 0 warnings

Including f£ile 'C:\Program Files\Atmel\AVR Tcols\AvrAssembler2‘\Appnotes\m8def.inc'
deleting C:\Users\g.schmidt'Documents'\dev'\AVR\teats\teatl\testl.eep

=l suila | ¥ Message | 5 Find in Files | (@ Breakpoints and Tracepoints

All window portions can be made larger and smaller and even can be shifted around on the screen. Try mixing these
windows! The next pictures show some differently looking windows, but they are all the same as here.

Avr-Asm-Tutorial 19 http://www.avr-asm-tutorial.net

After typing the source code shown above to your source file in the editor completely, push the menu “Build” and its sub-
menu “Build”. If you typed correctly, the result shows up in your “Build” window.

Make sure, you read all window content once for the first time, because it gives you a lot more info besides the small
green circle. All that should be fine, otherwise you typed errors into the code and the circle is red.

You can now push the menu item “Debug” and some windows change their content, size and position. If you also push the
menu item “View”, “Toolbars” and “Processor” and shift around windows, it should look like this:

~ The former editor window has a

Testl demdhstrates Studic Processor X[.
. yellow arrow now. This arrow
‘nolist _ Name Value 211l points to the next instruction that
'ﬁgtude LE R TS Program Counter (000000 will be executed (not really
: Stack Pointer (0000 executed, but rather “simulated”).
Fegister definitions X poirter (0000
: Y poirter O 0000 The processor window shows the
.def rmp = Rlo .
: Z pointer (0000 current program counter value
o 1di rmp.0b11111111 Cycle Counter 0 (yes, the program starts at
lab Tlllt LDEE. rmp Frequency 4.0000 MHz address 0), the stack pointer (no
=lalSkeh o Stop Watch 0.00 us . .
1di rmp.0bO1010101 matter what that might be — wait
out PORTE. rup SREG DOEENEE0 for that later in the course), a
ldi rmp,0b1l0101010 -| Registers !
out PORTE. rmp ROD 00 cycle counter and a stop watch. If
rimnp labell RO 00 you push on the small “+” left to
ROZ 00 ~ |l the word “Registers”, the content
J‘—l—l RO3 101] | of the 32 registers is displayed
C:\Users\g.schmidt\Documents\deviAVR\tes RO4 (<00 (yes, they are all empty when you
RO3 k00 start the processor simulation).
RDG DD
AVRASM: RAVR macro assembler 2.1.3(RO7 00 Now let us proceed with the first
Copyright (C) 19395-2008 ATMEL Corj RO& (0D instruction. Menu item “Debug”
_ | RO9 1201] and “Step into” or simply F11
C:\aerang. Scm%dtmccumems\dev\‘_‘ R10 (00 executes the first instruction.
C:\Usershg.schmidt\Documents\dev'l
R11 DD
R12 (00 ~| L

ATmeaaf memnry nae summary [hvtes’

1 m F‘r-:u'ect Processar
=] Build ﬂMessage —Tﬂ,Findin Files jBreakp-:uints and Tracepoints

The instruction “Idi rmp,0b11111111” loads

Testl demonstrates Studio Processor = . .
; the binary value 1111.1111 to register R16. An
.noli=t MName Value = . . .
Uinclude "m3def inc” Progrom Counter 5000007 instruction we will learn more about later on
list Stack Poirter 0000 in the course.
; Register definitions X pointer (000D
5 Y point Cec0D00
'def rmp = RIL6 Zgz:m:: g The yellow arrow now has advanced one
1di rmp,0bi1111111 Cycle Counter 1 instruction down, is now at the OUT
I::>Il N |J:-|1ft, LDRE. rnp Frequency 4.0000 MHz instruction.
SESS : Stop Watch 0.25us
1di rmp.0b0O1010101 = = 3
out PORTE, rmp SREG MDEEDEEC In the processor window, the program counter
1di rmp,0bl0101010 =| Registers
cut PORTE, rmp RO0 0D and the cycle counter are both at 1 now.
rimp labell RO1 00
ROZ (e And register 16, down the list of registers, is
b . . .
J_I_l) JlE) Ll red now and shows OxFF, which is hexadecimal
Ch\Usershg.schmidt\Documents\deviAVR\tes RO4 0D R
RO5 00 for binary 1111.1111.
ROG 0D
Amsmhﬁﬂi Tazggsaszzmb;};;-l-fﬂ RO7 000 To learn about another simulator window just
Copvyright (C -2008 Corg s . .
Egi tgg advance simulation one step further to
C:\Users\g.schmidc\Documentsldevil R10 (00 execute the OUT instruction (e. g. by pushing
C:\Users\g.schmidc\Document s\ dewvil
il Lo the key F11.
R12 el
AT aaf VI : = r Thutes
71 | meaTa TR T I]:[P |1IMMA T wtes R13 [kDD
R14 0D
=l build | € Message | S Find in Files | @ 6n R15 00
¥ R16 OcFF

—Tr— D || I 000 =

Avr-Asm-Tutorial 20

http://www.avr-asm-tutorial.net

Testl demonstrates Studic Processor X j % - ANALOG_COMPARATOR =
" r_1|:|l ist . M ke = MName Value -
: irilgiude médef . inc Program ;oumer 00002 4 T)AD_CONVERTER =
: Hac Ede LelLLy T ANALOG_COMPARA. .
: Register definitions X pointer 0000
: ¥ paint (0000 = Bceu
.def rmp = R16 z Dﬂimz (0000 @) EEPROM
: P . +) S EXTERNAL_INTERR...
1di rmp.0b11111111 Cycle Courter 2 |2 PORTE
T i g:eqﬁ”;"h ‘;'QEDD MHz Port B Data Register 300 =
| 1di rmp.0bO01010101 Siflilct LS Port B Data Directio... (xFF
cut PORTE, rmp SHED (OEEIMMHEC] Port E Input Pins 00
1di rmp.0bl0101010 ~I| Registers .
out PORTE. rmp RO0 00 4 ﬁ ggg?;
. + | —
rimp labell ROT b0 J _|t L ﬂ
4 RO2 (00 MName Address Value Bits
a : RO3 000 | ¢ DDRB 7237 ofFf AEEEEEN
. CAUsers\g.schmidi\Documents\deviAVR\tes RO4 00 g PINE 16 (D3E) D0 DDDDDDDD
RO5 000 =8 FORTE 1838 00 OJOO0O0O0O0O0O
RO6 00

The instruction “Out DDRB,rmp” writes OxFF to a port named DDRB. Now the action is on the I/O view window. If you push
on PORTB and the small “+” left of it, this window displays the value OxFF in the port DDRB in two different forms: as OxFF

in the upper window portion and as 8 black squares in the lower window section.

To make it even more black, we push F11 two times and write 0x55 to the port PORTB.

Testl demnonstrates Studic :‘ 5 v ANALOG_COMPARATOR =
‘nolist
cinclude "midef | inc” s LT
li=t + ¥ AD_CONVERTER
o i‘DANALO f‘ﬂHJDﬂ.Dﬂ. - -
Fegister definitions il ECPU C]Em Fenster oder den Schreibtisch erfassenh
‘def rmp = R16 -+ E) EEFROM
: | ‘:,Z@ EXTERMWAL_IMTERR...
ldi rmp.0b11111111 _|=® PORTE
out DDEE. rmp _I|'h - | .
labell - Fort B Data Register (x55
1di rmp,0b01010101 Port B Data Directio... [=FF
out PORTE, rnp Part B Input Pins (00
=) 1di rmp.0bl0101010 + =8 PORTC
out PORTE. rmp —Iﬁ
rimp labell 4 = PORTD
c LIJ Name Address Walue Bits
=) ¥ DDRB 01737 off IHEREEEE
. ChUsersyg.schmidtyDocuments\devi Al <] b g PINE 016 (236) =00 OOO0O00O00
=2 PORTE 18 (38 &5 OECOEORCE
_ Testl demonstrates Studinj bt , ANALOG_COMPARATOR ~
‘nolist
cinclude "mBdef | inc” plome Ao
list 4T }AD_CONVERTER
5 # T ANALOG_COMPARA. ..
Fegizter definitions ﬂ@CPU
def rmp = Ri6 +/ E)EEPROM
: + '(.\gb; EXTERMNAL_INTERR. .
1di Ip. Qbk11111111 a iPOHTB
out DDEE, rmp _||"' Fort B Data Redi | W
labell - ort ata Register AR
ldi rmp,0b01010101 Port B Data Directio... xFF
?gt PORTEB{EE‘DIDID Port B Input Pins 55
i rmp, —a
out PORTE, rmp ﬂﬁPOHTC
) | rimnp lab=l1l 4 == PORTD
Ll_l Ll_‘ Mame Address Walue Bits
- ¥ DDRB 17 (x37) oFF A AEEEEEE
ChUsers\g.schmidt\DocumentsiydeviAl <] g PINE (16 (36) eim ml [ml [m |
=8 PORTE b8 (:38) Cets INCIECINCOIEC

check this, just press F11 several times and you see that this is correct.

As expected, the
port PORTB changes
its content and has
four black and four
white squares now.

Another two F11,
writing OxAA to
PORTB, changes the
black and white
squares to the
opposite color.

All what has been
expected, but what
happened to port
PINB? We didn't
write something to
PINB, but it has the
opposite colors than
PORTB, just like the
colors before in
PORTB.

PINB is an input
port for external
pins. Because the
direction ports in
DDRB are set to be
outputs, PINB
follows the pin
status of PORTB,
just one cycle later.
Nothing wrong
here. If you like to

That is our short trip through the simulator software world. The simulator is capable to much more, so it should be applied
extensively in cases of design errors. Visit the different menu items, there is much more than can be shown here. In the
mean time, instead of playing with the simulator, some basic things have to learned about assembler language, so put the

Studio aside for a while.

Avr-Asm-Tutorial 21 http://www.avr-asm-tutorial.net

5 What is a register?

Registers are special storages with 8 bits capacity and they look like this:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Note the numeration of these bits: the least significant bit starts with zero (mathematically: 2° = 1).

A register can either store numbers from 0 to 255 (positive number, no negative values), or numbers from -128 to +127
(whole number with a sign bit, located in bit 7), or a value representing an ASCll-coded character (e. g. 'A"), or just eight
single bits that do not have something to do with each other (e. g. for eight single flags, used to signal eight different
yes/no decisions).

The special character of registers, compared to other storage sites, is that
« they are connected directly to the central processing unit called the accumulator,

« they can be used directly in assembler instructions, either as target register for the result or as read register
for a calculation or transfer,

« operations with their content require only a single instruction word.

There are 32 registers in an AVR. They are originally named RO to R31, but you can choose to name them to more
meaningful ones using a so-called assembler directive. An example:

.DEF MyPreferredRegister = R16

Assembler directives always start with a dot. Instructions or labels do NEVER start with a dot. Note that assembler
directives like this are only meaningful for the assembler but do not produce any code that is executable in the AVR target
chip. The name “MyPreferredRegister” will not show up in the assembled hex code, and therefore this name cannot be
derived from that hex code.

Instead of using the register name R16 we can now use our own name “MyPreferredRegister”, if we want to use R16
within an instruction. So we write a little bit more text each time we use this register, but we have an association what
might be the content of this register.

Using the instruction line

LDI MyPreferredRegister, 150

which means: load the number 150 immediately to the register R16, LoaD Immediate. This loads a fixed value or a
constant to that register. Following the assembly, or translation of this code into binary or hex, the program storage
written to the AVR chip looks like this:

000000 E906

This will show up in the listing, a file called *.Ist produced by the assembler software, which is a simple text file. All
numbers are in hex format: The first hex number is the address (000000), where the instruction is written to in the
program flash memory of the AVR, the second is the instruction code (E906). E906 tells the processor three different
things in one word, even if you don't see this directly:

® a basic load instruction code, that stands for LDI,
® the target register (R16) where the value 150 is to be written to,
® the value of the constant (150).

Don't be afraid: you don't have to remember this coding because the assembler knows how to translate all this to finally
yield E906 and the AVR executes it.

Within one instruction two different registers can play a role. The easiest instruction of this type is the copy instruction,
MOV. The naming of this instruction MOV deserves a price for the most confusing definition, because the content of a
register cannot be moved (what would be left in a register, if you MOVE its content to somewhere else?). It should better
be named COPY, because it copies the content of one register to another register. Like this:

.DEF MyPreferredRegister = R16
.DEF AnotherRegister = R15
LDI MyPreferredRegister, 150
MOV AnotherRegister, MyPreferredRegister

The first two lines of this monster program are directives that define the new names of the registers R16 and R15 for the
assembler. Again, these lines do not produce any code for the AVR. The instruction lines with LDl and MOV produce code:

000000 E906
000001 2F01

The instruction write the value 150 into register R16 and copy its content to the target register R15. Very IMPORTANT
NOTICE:

Avr-Asm-Tutorial 22 http://www.avr-asm-tutorial.net

The first register is always the target register where the result is written to!

(This is unfortunately different from what one expects or from how we speak, think and write — left to right. It is a simple
convention, probably inspired by some Asian languages where writing is from right to left. That was once defined that way
to confuse the beginners learning assembler. That is why assembly language is that complicated.)

5.1 Different registers

The beginner might want to write the above instructions like this:

.DEF AnotherRegister = R15
LDI AnotherRegister, 150

And: you lost. Only the registers from R16 to R31 load a constant immediately with the LDI instruction, RO to R15 don't do
that. This restriction is not very fine, but could not be avoided during construction of the instruction set for the AVRs.

There is one exception from that rule: setting a register to Zero. This instruction
CLR MyPreferredRegister
is valid for all registers.
Besides the LDI instruction you will find this register class restriction with the following additional instructions:
« ANDI Rx,K ; Bit-And of register Rx with a constant value K,
» CBR Rx,M; Clear all bits in register Rx that are set to one within the constant mask value M,
» CPIRx,K; Compare the content of the register Rx with a constant value K,

« SBCI Rx,K ; Subtract the constant K and the current value of the carry flag from the content of register Rx and
store the result in register Rx,

« SBR Rx,M ; Set all bits in register Rx to one, that are one in the constant mask M,
« SER Rx; Set all bits in register Rx to one (equal to LDI Rx,255),
« SUBI Rx,K ; Subtract the constant K from the content of register Rx and store the result in register Rx.

In all these instructions the register must be between R16 and R31! If you plan to use these instructions you should select
one of these registers for that operation. It is shorter and easier to program. This is an additional reason why you should
use the directive to define a register's name, because you can easier change the registers location later on, if required.

5.2 Pointer-registers

A very special extra role is defined for the register pairs R27:R26, R29:R28 and R31:R32. The role is so important that these
pairs have extra short names in AVR assembler: X, Y and Z. These short names are understood by the assembler. These
pairs are 16-bit pointer registers, able to point to addresses with max. 16 bit length, e. g. into SRAM locations (X, Y or Z) or
into locations in program memory (Z).

5.2.1 Accessing memory locations with pointers

The lower byte of the 16-bit-address is located in the lower register, the higher byte in the upper register. Both parts have
their own names, e. g. the higher byte of Z is named ZH (=R31), the lower Byte is ZL (=R30). These names are defined
within the assembler. Dividing a 16-bit-word constant into its two different bytes and writing these bytes to a pointer
register is done like follows:

.EQU address = RAMEND ; RAMEND is the highest 16-bit address in SRAM, defined in the *def.inc header file,
LDI YH,HIGH(address) ; Load the MSB of address
LDI YL,LOW(address) ; Load the LSB of address

Accesses via pointer registers are programmed with specially designed instructions. Read access is named LD (LoaD), write
access named ST (STore), e. g. with the X-pointer:

Similarly you can use Y and Z for that purpose.

Pointer Sequence Examples
X Read/Write from address X, don't change the pointer LD R1,X or ST X,R1
X+ Read/Write from/to address X, and increment the pointer afterwards by one LD R1,X+ or ST X+,R1
-X First decrement the pointer by one and read/write from/to the new address LD R1,-X or ST -X,R1

afterwards

5.2.2 Reading program flash memory with the Z pointer

There is only one instruction for the read access to the program storage space. It is defined for the pointer pair Z and it is
named LPM (Load from Program Memory). The instruction copies the byte at program flash address Z to the register RO.

Avr-Asm-Tutorial 23 http://www.avr-asm-tutorial.net

As the program memory is organized word-wise (one instruction on one address consists of 16 bits or two bytes or one
word) the least significant bit selects the lower or upper byte (O=lower byte, 1= upper byte). Because of this the original
address must be multiplied by 2 and access is limited to 15-bit or 32 kB program memory. Like this:

LDI ZH,HIGH(2*address)
LDI ZL,L OW(2*address)
LPM

Following this instruction the address must be incremented to point to the next byte in program memory. As this is used
very often a special pointer incrementation instruction has been defined to do this:

ADIW ZL,1
LPM

ADIW means ADd Immediate Word and a maximum of 63 can be added this way. Note that the assembler expects the
lower of the pointer register pair ZL as first parameter. This is somewhat confusing as addition is done as 16-bit- operation.

The complement instruction, subtracting a constant value of between 0 and 63 from a 16-bit pointer register is named
SBIW, Subtract Immediate Word. (SuBtract Immediate Word). ADIW and SBIW are possible for the pointer register pairs X,
Y and Z and for the register pair R25:R24, that does not have an extra name and does not allow access to SRAM or
program memory locations. R25:R24 is ideal for handling 16-bit values.

As incrementation after reading is very often needed, newer AVR types have the instruction
LPM R,Z+

This allows to transport the byte read to any location R, and auto-increments the pointer register.

5.2.3 Tables in the program flash memory

Now that you know how to read from flash memory you might wish to place a list of constants or a string of text to the
flash and read these. How to insert that table of values in the program memory? This is done with the assembler directives
.DB and .DW. With that you can insert byte wise or word wise lists of values. Byte wise organized lists look like this:

.DB 123,45,67,89 ; a list of four bytes, written in decimal form
.DB "This is a text. " ; a list of byte characters, written as text

You should always place an even number of bytes on each single line. Otherwise the assembler will add a zero byte at the
end, which might be unwanted.

The similar list of words looks like this:

.DW 12345,6789 ; a list of two word constants

Instead of constants you can also place labels (e. g. jump targets) on that list, like that:

Labell:

[... here are some instructions ... |
Label2:

[... here are some more instructions ... |
Table:

.DW Label1,Label2 ; a word wise list of labels

Labels should start in column 1, but have to be ending with a “:”. Note that reading the labels from that table with LPM
(and subsequent incrementation of the pointer) first yields the lower byte of the word, then the upper byte.

5.2.4 Accessing registers with pointers

A very special application for the pointer registers is the access to the registers themselves. The registers are located in the
first 32 bytes of the chip's address space (at address 0x0000 to 0x001F). This access is only meaningful if you have to copy
the register's content to SRAM or EEPROM or read these values from there back into the registers. More common for the
use of pointers is the access to tables with fixed values in the program memory space. Here is, as an example, a table with
10 different 16-bit values, where the fifth table value is read to R25:R24:

MyTable:
.DW 0x1234,0x2345,0x3456,0x4568,0x5678 ; The table values, word wise
.DW 0x6789,0x789A,0x89AB,0x9ABC,0xABCD ; organized
Read5: LDI ZH,HIGH(MyTable*2) ; address of table to pointer Z
LDI ZL,L OW(MyTable*2) ; multiplied by 2 for bytewise access
ADIW ZL,10 ; Point to fifth value in table
LPM ; Read least significant byte from program memory
MOV R24,R0 ; Copy LSB to 16-bit register
ADIW ZL,1 ; Point to MSB in program memory
LPM ; Read MSB of table value
MOV R25,R0 ; Copy MSB to 16-bit register

This is only an example. You can calculate the table address in Z from some input value, leading to the respective table
values. Tables can be organized byte- or character-wise, too.

Avr-Asm-Tutorial 24 http://www.avr-asm-tutorial.net

5.3 Recommendation for the use of registers

The following recommendations, if followed, decide if you are an effective assembler programmer:

Define names for registers with the .DEF directive, never use them with their direct name Rx.

If you need pointer access reserve R26 to R31 for that purpose.

A 16-bit-counter is best located in R25:R24.

If you need to read from the program memory, e. g. fixed tables, reserve Z (R31:R30) and RO for that purpose.

If you plan to have access to single bits within certain registers (e. g. for testing flags), use R16 to R23 for that
purpose.

Registers necessary for math are best placed to R1 to R15.
If you have more than enough registers available, place all your variables in registers.

If you get short in registers, place as many variables as necessary to SRAM.

Avr-Asm-Tutorial 25 http://www.avr-asm-tutorial.net

6 Ports

6.1 Whatis a Port?

Ports in the AVR are gates from the central processing unit to internal and external hard- and software components. The
CPU communicates with these components, reads from them or writes to them, e. g. to the timers or the parallel ports.
The most used port is the flag register, where flags from previous operations are written to and branching conditions are
read from.

There are 64 different ports, which are not physically available in all different AVR types. Depending on the storage space
and other internal hardware the different ports are either available and accessible or not. Which of the ports can be used
in a certain AVR type is listed in the data sheets for the processor type. Larger ATmega and ATXmega have more than 64
ports, access to the ports beyond #63 is different then (see below).

Ports have a fixed address, over which the CPU communicates. The address is independent from the type of AVR. So e. g.
the port address of port B is always 0x18 (Ox stands for hexadecimal notation, 0x18 is decimal 24). You don't have to
remember these port addresses, they have convenient aliases. These names are defined in the include files (header files)
for the different AVR types, that are provided from the producer. The include files have a line defining port B's address as
follows:

.EQU PORTB, 0x18
So we just have to remember the name of port B, not its location in the 1/O space of the chip. The include file 8515def.inc
is involved by the assembler directive

.INCLUDE "C:\Somewhere\8515def.inc"

and the registers of the 8515 are all defined there and easily accessible.

Ports usually are organized as 8-bit numbers, but can also hold up to 8 single bits that don't have much to do with each
other. If these single bits have a meaning they have their own name associated in the include file, e. g. to enable the
manipulation of a single bit. Due to that name convention you don't have to remember these bit positions. These names
are defined in the data sheets and are given in the include file, too. They are provided here in the port tables.

6.2 Write access to ports

As an example the MCU General Control Register, called MCUCR, consists of a number of single control bits that control
the general property of the chip. Here are the details of port MCUCR in the AT90S8515, taken from the device data book.
Other ports look similar.

Bit 7 5] 5 4 3 2 1 0

$35 ($55) I SRE SRW SE SM ISC11 ISC10 1ISCO1 ISCO00 I MCUCR
Read/Write RIW R/W R/W R/W R/W R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

It is a port, fully packed with 8 control bits with their own names (ISC00, ISC01, ...). Those who want to send their AVR to a
deep sleep need to know from the data sheet how to set the respective bits. Like this:

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, 0b00100000
OUT MCUCR, MyPreferredRegister
SLEEP

The Out instruction brings the content of my preferred register, a Sleep-Enable-Bit called SE, to the port MCUCR. SE
enables the AVR to go to sleep, whenever the SLEEP instruction shows up in the code. As all the other bits of MCUCR are
also set by the above instructions and the Sleep Mode bit SM was set to zero, a mode called half-sleep will result: no
further instruction execution will be performed but the chip still reacts to timer and other hardware interrupts. These
external events interrupt the big sleep of the CPU if they feel they should notify the CPU.

The above formulation is not very transparent, because “0b00100000” is not easy to remember, and no one sees easily
what bit exactly has been set to one by this instruction. So it is a good idea to formulate the LDl instruction as follows:

LDI MyPreferredRegister, 1<<SE
This formulation tells the assembler to
e takeaone (“1"),

® to read the bit position of the Sleep Enable bit (“SE”) from the symbol list, as defined in the header file
8515def.inc, which yields a value of “5” in that case,

® to shift (“<<”) the “1” five times left (“1<<5”), in steps:

1. initial: 0000.0001,

Avr-Asm-Tutorial 26 http://www.avr-asm-tutorial.net

2. first shift left: 0000.0010,
3. second shift left: 0000.0100, and so on until
4. fifth shift left: 0010.0000.
® to associate this value to MyPreferredRegister and to insert this LDI instruction into the code.

To make it clear again: This shifting is done by the assembler software only, not within the code in the AVR. It is pure
convention to increase the readability of the assembler source text.

How does this change, if you want to set the Sleep Mode bit (“SM”) and the Sleep Enable bit (“SE”) within the same LDI
instruction? SM=1 and SE=1 enables your AVR to react to a SLEEP instruction by going to a big sleep, so only do this if you
understand what the consequences are. The formulation is like this:

LDI MyPreferredRegister, (1<<SM) | (1<<SE)

Now, the assembler first calculates the value of the first bracket, (1<<SM), a “1” shifted four times left (because SM is 4)
and that yields 0001.0000, then calculates the second bracket, (1<<SE), a “1” shifted five times left (because SE is 5). The
“|” between the two brackets means BIT-OR the first and the second value, each bit one by one. The result of doing this
with 0001.0000 and 0010.0000 in that case is 0011.0000, and that is our desired value for the LDl instruction. Even though
the formulation

(1<<SM) | (1<<SE)
might, on the first look, not be more transparent than the resulting value
0011.0000

for a beginner, it is easier to understand which bits of MCUCR are intended to be manipulated in this LDI instruction.
Especially if you have to read and understand your code some months later, SM and SE are a better hint that the Sleep
Mode and Enable bits are targeted here. Otherwise you would have to consult the device's data book much more often.

6.3 Read access to ports

Reading a port's content is in most cases possible using the IN instruction. The following sequence

.DEF MyPreferredRegister = R16
IN MyPreferredRegister, MCUCR

reads the bits in port MCUCR to the register named MyPreferredRegister. As many ports have undefined and unused bits
in certain ports, these bits always read back as zeros.

More often than reading all 8 bits of a port one must react to a certain status bit within a port. In that case we don't need
to read the whole port and isolate the relevant bit. Certain instructions provide an opportunity to execute instructions
depending on the level of a certain bit of a port (see the JUMP section).

6.4 Read-Modify-Write access to ports

Setting or clearing certain bits of a port, without changing the other port bits, is also possible without reading and writing
the other bits in the port. The two instructions are SBI (Set Bit I/0) and CBI (Clear Bit I/0). Execution is like this:

.EQU ActiveBit=0 ; The bit that is to be changed
SBI PortB, ActiveBit ; The bit “ActiveBit” will be set to one
CBI PortB, Activebit ; The bit “ActiveBit” will be cleared to zero

These two instructions have a limitation: only ports with an address smaller than 0x20 can be handled, ports above cannot
be accessed that way. Because MCUCR in the above examples is at hex address $38, the sleep mode and enable bits can't
be set or cleared that way. But all the port bits controlling external pins (PORTx, DDRx, PINx) are accessible that way.

6.5 Memory mapped port access

For the more exotic programmer and the “elephant-like” ATmega and ATXmega (where ATMEL ran out of accessible port
addresses): the ports can also be accessed using SRAM access instructions, e. g. ST and LD. Just add 0x20 to the port's
address (remember: the first 32 addresses are associated to the registers!) and access the port that way. Like
demonstrated here:

.DEF MyPreferredRegister = R16
LDI ZH,HIGH(PORTB+32)
LDI ZL,LOW(PORTB+32)
LD MyPreferredRegister,Z

That only makes sense in certain cases, because it requires more instructions, execution time and assembler lines, but it is
possible. It is also the reason why the first address location of the SRAM is 0x60 or 0x100 in some larger AVR types.

6.6 Details of relevant ports in the AVR

The following table holds the most used ports in a “small” AT90S8515. Not all ports are listed here, some of the MEGA and
AT90S4434/8535 types are skipped. If in doubt see the original reference.

Avr-Asm-Tutorial

27 http://www.avr-asm-tutorial.net

Component Port name Port-Register
Accumulator SREG Status Register
Stack SPL/SPH Stackpointer
External SRAM/External Interrupt MCUCR MCU General Control Register
External Interrupts GIMSK Interrupt Mask Register
GIFR Interrupt Flag Register
Timer Interrupts TIMSK Timer Interrupt Mask Register
TIFR Timer Interrupt Flag Register
8-bit Timer 0 TCCRO Timer/Counter 0 Control Register
TCNTO Timer/Counter O
16-bit Timer 1 TCCR1A Timer/Counter Control Register 1 A
TCCR1B Timer/Counter Control Register 1 B
TCNT1 Timer/Counter 1
OCR1A Output Compare Register 1 A
OCR1B Output Compare Register 1 B
ICR1L/H Input Capture Register
Watchdog Timer WDTCR Watchdog Timer Control Register
EEPROM Access EEAR EEPROM address Register
EEDR EEPROM Data Register
EECR EEPROM Control Register
Serial Peripheral Interface SPI SPCR Serial Peripheral Control Register
SPSR Serial Peripheral Status Register
SPDR Serial Peripheral Data Register
Serial Communication UART UDR UART Data Register
USR UART Status Register
UCR UART Control Register
UBRR UART Baud Rate Register
Analog Comparator ACSR Analog Comparator Control and Status Register
I/O-Ports PORTXx Port Output Register
DDRXx Port Direction Register
PINXx Port Input Register

6.7 The status register as the most used port

By far the most often used port is the status register with its 8 bits. Usually access to this port is only by automatic setting
and clearing bits by the CPU or accumulator, some access is by reading or branching on certain bits in that port, in a few
cases it is possible to manipulate these bits directly (using the assembler instructions SEx or CLx, where x is the bit
abbreviation). Most of these bits are set or cleared by the accumulator through bit-test, compare- or calculation-

operations.

The most used bits are:

® Z:If setto one, the previous instruction yielded a zero result.

® C:If set to one, the previous instruction caused a carry of the most significant bit.

The following list has all assembler instructions that set or clear status bits depending on the result of the previous

instruction execution.

Bit Calculation

Z | ADD, ADC, ADIW, DEC, INC,
SUB, SUBI, SBC, SBCI, SBIW

C | ADD, ADC, ADIW, SUB, SUBI,

SBC, SBCI, SBIW

Logic

AND, ANDI, OR,
ORI, EOR, COM,

NEG, SBR, CBR
COM, NEG

Compare Bits Shift Other

CP, CPC,CPI BCLRZ,BSETZ, ASR,LSL, LSR, CLR
CLZ, SEZ, TST ROL, ROR

CP, CPC,CPI | BCLRC, BSETC, ASR,LSL, LSR, -
CLC, SEC ROL, ROR

Avr-Asm-Tutorial 28 http://www.avr-asm-tutorial.net

Bit Calculation Logic Compare Bits Shift Other
N ADD, ADC, ADIW, DEC, INC, AND, ANDI, OR, CP, CPC, CPI BCLR N, BSETN, ASR, LSL, LSR, CLR
SUB, SUBI, SBC, SBCI, SBIW ORI, EOR, COM, CLN, SEN, TST ROL, ROR
NEG, SBR, CBR
V ADD, ADC, ADIW, DEC, INC, AND, ANDI, OR, CP, CPC,CPI BCLRV,BSETV, ASR,LSL, LSR, CLR
SUB, SUBI, SBC, SBCI, SBIW ORI, EOR, COM, CLV, SEV, TST ROL, ROR
NEG, SBR, CBR
S | SBIW - - BCLRS, BSETS, - -
CLS, SES
H ADD, ADC, SUB, SUBI, SBC, NEG CP, CPC,CPI BCLRH,BSETH, - -
SBCI CLH, SEH
T - - - BCLRT,BSETT, - -
BST, CLT, SET
- - - BCLR I, BSET |, - RETI
CLI, SEI

6.8 Port details

Port details of the most common ports are shown in an extra table (see annex).

Avr-Asm-Tutorial 29 http://www.avr-asm-tutorial.net

7 SRAM

Nearly all AVR-types have static RAM (SRAM) on board (only very few old devices don't). Only very simple assembler
programs can avoid using this memory space by putting all necessary information into registers. If you run out of registers
you should be able to program the SRAM to utilize more space.

7.1 What is SRAM?

SRAM are memories that are not

Recheneinheit Register SRAM directly. accessi-ble bY the .central
. processing unit (Arithmetic and

" EE Logical Unit ALU, sometimes called

1 *—— ! Eg - accumulator) like the registers are.
o If you access these memory

ALU Eg locations you usually use a register
R [Adresae] as interim storage. In the example

displayed here a value in SRAM will

be copied to the register R2 (1st

: instruction), a calculation with the

20 value in R3 is made and the result is

igg written to R3 (second instruction).

After that this value is written back

to the same SRAM location

(instruction 3, not shown here).

So it is clear that operations with values stored in the SRAM are slower to perform than those using registers alone. On the
other hand: even the smallest AVR types have 128 bytes of SRAM available, much more than the 32 registers can hold.

The types from the old AT90S8515 upwards offer the additional opportunity to connect additional external RAM,
expanding the internal 512 bytes. From the assembler point-of-view, external SRAM is accessed like internal SRAM. No
extra instructions must be learned for accessing that external SRAM.

7.2 For what purposes can | use SRAM?

Besides simple storage of values, SRAM offers additional opportunities for its use. Not only access with fixed addresses is
possible, but also the use of pointers, so that floating access to subsequent locations in SRAM can be programmed. This
way you can build up ring buffers for interim storage of values or calculated (variable) tables. This is not very often used
with registers, because they are too few and prefer fixed access.

Even more relative is the access using an offset to a fixed starting address in one of the pointer registers. In that case a
fixed address is stored in a pointer register, a constant value is added to this address and read/write access is made to that
address with an offset. With that kind of access, tables are very more effective.

But the most relevant use for SRAM is the so-called stack. You can push values (variables) to that stack. Be it the content of
a register, that is temporarily needed for another purpose. Be it a return address prior to calling a subroutine, or the
return address prior to a hardware-triggered interrupt.

7.3 How to use SRAM?

7.3.1 Direct addressing

To copy a value to a memory location in SRAM you have to define the address. The SRAM addresses you can use reach
from the start address (very often 0x0060 in smaller AVRs, 0x0100 in larger ATmega) to the end of the physical SRAM on
the chip (in the AT90S8515 the highest accessible internal SRAM location is 0x025F, see the device data sheet of your AVR
type for more details on this).

With the instruction
STS 0x0060, R1

the content of register R1 is copied to the first SRAM location in address 0x0060. With

LDS R1, 0x0060
the SRAM content at address 0x0060 is copied to the register. This is the direct access with an address that has to be
defined by the programmer.

The symbols defined in the *def.inc include file, SRAM_START and RAMEND, allow to place your variables within the SRAM
space. So it is better to use these definitions to access the 15™ memory byte, like this:

LDS R1,SRAM_START+15

Symbolic names can be used to avoid handling fixed addresses, that require a lot of work, if you later want to change the
structure of your data in the SRAM. These names are easier to handle than hex numbers, so give that address a name like:

Avr-Asm-Tutorial 30 http://www.avr-asm-tutorial.net

.EQU MyPreferredStorageCell = SRAM_START
STS MyPreferredStorageCell, R1

Yes, it isn't shorter, but easier to remember. Use whatever name that you find to be convenient.

7.3.2 Pointer addressing

Another kind of access to SRAM is the use of pointers. You need two registers for that purpose, that hold the 16-bit
address of the location. As we learned in the Pointer-Register-Division, pointer registers are the register pairs X (XH:XL,
R27:R26), Y (YH:YL, R29:R28) and Z (ZH:ZL, R31:R30). They allow access to the location they point to directly (e. g. with ST
X, R1), after prior decrementing the address by one (e. g. ST -X, R1) or with subsequent auto-incrementation of the address
(e. g. ST X+, R1). A complete access to three cells in a row looks like this:

.EQU MyPreferredStorageCell = SRAM_START
.DEF MyPreferredRegister = R1
.DEF AnotherRegister = R2
.DEF AndYetAnotherRegister = R3
LDI XH, HIGH(MyPreferredStorageCell)
LDI XL, LOW(MyPreferredStorageCell)
LD MyPreferredRegister, X+
LD AnotherRegister, X+
LD AndYetAnotherRegister, X

Easy to operate, those pointers. And as easy as in other languages than assembler, that claim to be easier to learn.

7.3.3 Pointer with offset

The third construction is a little bit more exotic and only experienced programmers use this in certain cases. Let's assume
we very often in our program need to access three consecutive SRAM locations. Let's further assume that we have a spare
pointer register pair, so we can afford to use it exclusively for our purpose. If we would use the ST/LD instructions we
always have to change the pointer if we access another location of the three. Not very convenient.

To avoid this, and to confuse the beginner, the access with offset was invented. During that access the register value isn't
changed. The address is calculated by temporarily adding the fixed offset. In the above example the access to location
0x0062 would look like this. First, the pointer register is set to our central location SRAM_START:

.EQU MyPreferredStorageCell = SRAM_START
.DEF MyPreferredRegister = R1
LDI YH, HIGH(MyPreferredStorageCell)
LDI YL, LOW(MyPreferredStorageCell)

Somewhere later in the program I'd like to write to cell 2 above SRAM_START:
STD Y+2, MyPreferredRegister

The corresponding instruction for reading from SRAM with an offset

LDD MyPreferredRegister, Y+2

is also possible.

Note that the 2 is not really added to Y, just temporarily during the execution of this instruction. To confuse you further,
this can only be done with the Y- and Z-register-pair, not with the X-pointer!

Of about 100 cases, the use of this opportunity is more effective in one single case. So don't care if you don't understand
this in detail. It is only for experts, and only necessary in a few cases.

That's it with the SRAM, but wait: the most relevant use as stack is still to be learned.

7.4 Use of SRAM as stack

The most common use of SRAM is its use as stack. The stack is a tower of wooden blocks. Each additional block goes onto
the top of the tower, each recall of a value removes the most upper block from the tower. Removal of blocks from the
base or from any lower portion of the tower is too complicated and confuses your whole tower, so never try this. This
structure is called Last-In-First-Out (LIFO) or easier: the last to go on top will be the first coming down from the top.

7.4.1 Defining SRAM as stack

To use SRAM as stack requires the setting of the stack pointer first. The stack pointer is a 16-bit-pointer, accessible like a
port. The double register is named SPH:SPL. SPH holds the most significant address byte, SPL the least significant. This is
only true, if the AVR type has more than 256 byte SRAM. If not, SPH is not necessary, is undefined, and must not and
cannot be used. We assume we have more than 256 bytes SRAM in the following examples.

To construct the stack, the stack pointer is loaded with the highest available SRAM address. (In our case the tower grows
downwards, towards lower addresses, just for historic reasons and to confuse the beginner!).

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, HIGH(RAMEND) ; Upper byte
OUT SPH,MyPreferredRegister ; to stack pointer
LDI MyPreferredRegister, LOW(RAMEND) ; Lower byte

Avr-Asm-Tutorial 31 http://www.avr-asm-tutorial.net

OUT SPL,MyPreferredRegister ; to stack pointer
The value RAMEND is, of course, specific for the processor type. It is defined in the INCLUDE file for the processor type.
The file 8515def.inc has the line:
.equ RAMEND =$25F ; Last On-Chip SRAM Location

The file 8515def.inc is included with the assembler directive

.INCLUDE "C:\somewhere\8515def.inc"

at the beginning of our assembler source code.

So we defined the stack now, and we don't have to care about the stack pointer any more, because manipulations of that
pointer are mostly automatic.

7.4.2 Use of the stack

Using the stack is easy. The content of registers are pushed onto the stack like this:

PUSH MyPreferredRegister ; Throw that value on top of the stack

Where that value goes to is totally uninteresting. That the stack pointer was decremented after that push, we don't have
to care. If we need the content again, we just add the following instruction:

POP MyPreferredRegister ; Read back the value from the top of the stack

With POP we just get the value that was last pushed on top of the stack. Pushing and popping registers makes sense, if
« the content is again needed some lines of the code later,
« all registers are in use, and if
* no other opportunity exists to store that value somewhere else.

If these conditions are not given, the use of the stack for saving registers is useless and just wastes processor time.

More sense makes the use of the stack in subroutines, where you have to return to the program location that called the
routine. In that case the calling program code pushes the return address (the current program counter value) onto the
stack and temporarily jumps to the subroutine. After its execution the subroutine pops the return address from the stack
and loads it back into the program counter. Program execution is continued exactly one instruction behind the instruction,
where the call happened:

RCALL Somewhat ; Jump to the label “somewhat:”
[...] here we will later continue with the program.

Here the jump to the label “somewhat:” somewhere in the program code,

Somewhat: ; this is the jump address

[...] Here we do something

[...] and we are finished and want to jump back to the calling location:
RET

During execution of the RCALL instruction the already incremented program counter, a 16-bit-address, is pushed onto the
stack, using two pushes (the LSB and the MSB). By reaching the RET instruction, the content of the previous program
counter is reloaded with two pops and execution continues there.

You don't need to care about the address of the stack, where the counter is loaded to. This address is automatically
generated. Even if you call a subroutine within that subroutine the stack function is fine. This just packs two return
addresses on top of the stack, the nested subroutine removes the first one, the calling subroutine the remaining one. As
long as there is enough SRAM, everything is fine.

Servicing hardware interrupts isn't possible without the stack. Interrupts stop the normal execution of the program,
wherever the program currently is. After execution of a specific service routine as a reaction to that interrupt program
execution must return to the previous location, to before the interrupt occurred. This would not be possible if the stack is
not able to store the return address.

The enormous advances of having a stack for interrupts are the reason, why even the smallest AVRs without having SRAM
have at least a very small hardware stack.

7.4.3 Common bugs with the stack operation
For the beginner there are a lot of possible bugs, if you first learn to use stack.

Very clever is the use of the stack without first setting the stack pointer. Because this pointer is set to zero at program
start, the pointer points to the location 0x0000, where register RO is located. Pushing a byte results in a write to that
register, overwriting its previous content. An additional push to the stack writes to OxFFFF, an undefined position (if you
don't have external SRAM there). A RCALL and RET will return to a strange address in program memory. Be sure: there is
no warning, like a window popping up saying something like ,Illegal access to memory location xxxx"“.

Another opportunity to construct bugs is to forget to pop a previously pushed value, or popping a value without pushing
one first.

Avr-Asm-Tutorial 32 http://www.avr-asm-tutorial.net

In a very few cases the stack overflows to below the first SRAM location. This happens in case of a never-ending recursive
call. After reaching the lowest SRAM location the next pushes write to the ports (0x005F down to 0x0020), then to the

registers (0x001F to 0x0000). Funny and unpredictable things happen with the chip hardware, if this goes on. Avoid this
bug, it can even destroy your external hardware!

Avr-Asm-Tutorial 33 http://www.avr-asm-tutorial.net

8 Jumping and branching

Here we discuss all instructions that control the sequential execution of a program. It starts with the starting sequence on
power-up of the processor, continues with jumps, interrupts, etc.

8.1 Controlling sequential execution of the program

What happens during a reset?

When the power supply voltage of an AVR rises and the processor starts its work, the hardware triggers a reset sequence.
The ports are set to their initial values, as defined in the device data sheet. The counter for the program steps will be set to
zero. At this address the execution always starts. Here we have to have our first word of code. But not only during power-
up this address is activated:

« During an external reset on the reset pin of the device a restart is executed.

» If the Watchdog counter reaches its maximum count, a reset is initiated. A watchdog timer is an internal clock
that must be reseted from time to time by the program, otherwise it restarts the processor.

* You can call reset by a direct jump to that address (see the jump section below).

The third case is not a real reset, because the automatic resetting of register- and port-values to a well-defined default
value is not executed. So, forget that for now.

The second option, the watchdog reset, must first be enabled by the program. It is disabled by default. Enabling requires
write instructions to the watchdog's port. Setting the watchdog counter back to zero requires the execution of the
instruction

WDR

to avoid a reset.

After execution of a reset, with setting registers and ports to default values, the code at address 0000 is word wise read to
the execution part of the processor and is executed. During that execution the program counter is already incremented by
one and the next word of code is already read to the code fetch buffer (Fetch during Execution). If the executed
instruction does not require a jump to another location in the program the next instruction is executed immediately. That
is why the AVRs execute extremely fast, each clock cycle executes one instruction (if no jumps occur).

The first instruction of an executable is always located at address 0000. To tell the compiler (assembler program) that our
source code starts now and here, a special directive can be placed at the beginning, before the first code in the source is
written:

.CSEG
.ORG 0000

The first directive, .CSEG, lets the compiler switch his output to the code section. All following is translated as code and is
later written to the program flash memory section of the processor. Another target segment would be the EEPROM
section of the chip, where you also can write bytes or words to.

.ESEG

The third segment is the SRAM section of the chip.
.DSEG

Other than with EEPROM content, where content is really going to the EEPROM during programming of the chip, the DSEG
segment content is not programmed to the chip. There is no opportunity to burn any SRAM content. So the .DSEG is only
used for correct label calculation during the assembly process. An example:

.DSEG ; The following are label definitions within the SRAM segment
MyfFirstVariablelsAByte:

.BYTE 1, the DSEG-Pointer moves one byte upwards
MySecondVariablelsAWord:

.BYTE 2 ; the DSEG-Pointer moves two bytes upwards
MyThirdVariablelsAFieldForABuffer:

.BYTE 32; the DSEG-Pointer moves 32 bytes upwards

So, only three labels are defined within the assembler, no content is produced.

The ORG directive within the code segment, .ORG, above stands for the word “origin” and manipulates the address within
the code segment, where assembled words go to. As our program always starts at 0x0000 the CSEG/ORG directives are
trivial, you can skip these without getting into an error. We could start at 0x0100, but that makes no real sense as the
processor starts execution at 0000. If you want to place a table exactly to a certain location of the code segment, you can
use ORG. But be careful with that: Only jump forward with .ORG, never backwards. And be aware that the flash memory
space that you skipped in between your current code location and the one you forced with .ORG is always filled with the
instruction word OxFFFF. This instruction does nothing, just goes to the next instruction. So be sure your execution never
jumps into such undefined space in between.

If on the beginning of your code section you want to set a clear sign within your code, after first defining a lot of other
things with .DEF- and .EQU-directives, use the CSEG/ORG sequence as a signal for yourself, even though it might not be

Avr-Asm-Tutorial 34 http://www.avr-asm-tutorial.net

necessary to do that.

As the first code word is always at address zero, this location is also called the reset vector. Following the reset vector the
next positions in the program space, addresses 0x0001, 0x0002 etc., are interrupt vectors. These are the positions where
the execution jumps to if an external or internal interrupt has been enabled and occurs. These positions called vectors are
specific for each processor type and depend on the internal hardware available (see below). The instructions to react to
such an interrupt have to be placed to the proper vector location. If you use interrupts, the first code, at the reset vector,
must be a jump instruction, to jump over the other vectors. Each interrupt vector, that is planned to be enabled, must
hold a jump instruction to the respective interrupt service routine. If the vector is not used, a dummy instruction like RETI
(RETurn from Interrupt) is best placed here. The typical program sequence at the beginning is like follows:

.CSEG
.ORG 0000
RJMP Start ; the reset vector
RJMP IntServRout1 ; the interrupt service routine for the first interrupt
RETI ; a dummy for an unused interrupt
RJMP IntServRout3 ; the interrupt service routine for the third interrupt
[...] here we place all the other interrupt vector instructions

[...] and here is a good place for the interrupt service routines themselves
IntServRout1:
[...] Code of the first int service routine
RETI ; end of service routine 1
IntServRout2:
[...] Code of the third int service routine
RETI ; end of service routine 2
[...] other code
Start: ; This here is the program start
[...] Here we place our main program

The instruction “RIMP Start” results in a jump to the label Start:, located some lines below. Remember, labels always end
with a “:”. Labels, that don't fulfill these conditions are not taken for serious, but interpreted as instructions. Missing labels
result in an error message ("Undefined label"), and compilation is interrupted.

8.2 Linear program execution and branches

Program execution is always linear, if nothing changes the sequential execution. These changes are the execution of an
interrupt or of branching instructions.

Branching

Branching is very often depending on some condition, called conditional branching. As an example we assume we want to
construct a 32-bit-counter using the registers R1 to R4. The least significant byte in R1 is incremented by one. If the
register overflows during that operation (255 + 1 = 0), we have to increment R2 similarly. If R2 overflows, we have to
increment R3, and so on.

Incrementation by one is done with the instruction INC. If an overflow occurs during that execution of INC R1, the zero bit
in the status register is set to one (the result of the operation is zero). The carry bit in the status register, as usually set
when something overflows, is not changed during an INC. This is not to confuse the beginner, but carry can be used for
other purposes instead. The Zero-Bit or Zero-flag in this case is enough to detect an overflow. If no overflow occurs we can
just leave the counting sequence.

If the Zero-bit is set, we must execute additional incrementation of the next upper register. To confuse the beginner the
branching instruction, that we have to use, is not named BRNZ but BRNE (BRanch if Not Equal). A matter of taste ...

The whole count sequence of the 32-bit-counter should then look like this:

INC R1 ; increase content of register R1
BRNE GoOn32 ; if not zero, branch to GoOn32:
INC R2 ; increase content of register R2
BRNE GoOn32
INC R3
BRNE GoOn32
INC R4
GoOn32:

So that's about it. An easy thing. The opposite condition to BRNE is BREQ or BRanch EQual.

Which of the status bits, also called processor flags, are changed during execution of an instruction is listed in instruction
code tables, see the List of Instructions. Similarly to the Zero-bit you can use the other status bits like that:

BRCC label/BRCS label; Carry-flag 0 (BRCC) or 1 (BRCS)
BRSH label; Equal or greater

BRLO label; Smaller

BRMI label; Minus

BRPL label; Plus

BRGE label; Greater or equal (with sign bit)

BRLT label; Smaller (with sign bit)

BRHC label/BRHS label; Half overflow flag 0 or 1
BRTC label/BRTS label; T-Bit 0 or 1

BRVC label/BRVS label; Two's complement flag 0 or 1
BRIE label/BRID label; Interrupt enabled or disabled

Avr-Asm-Tutorial 35 http://www.avr-asm-tutorial.net

to react to the different conditions. Branching always occurs if the condition is met. Don't be afraid, most of these
instructions are rarely used. For the beginner only Zero and Carry are relevant.

8.3 Timing during program execution

Like mentioned above the required time to execute one instruction is equal to the processor's clock cycle. If the processor
runs on a 4 MHz clock frequency then one instruction requires 1/4 us or 250 ns, at 10 MHz clock only 100 ns. The required
time is as exact as the internal or external or Xtal clock is. If you need exact timing an AVR is the optimal solution for your
problem. Note that there are a few instructions that require two or more cycles, e. g. the branching instructions (if
branching occurs) or the SRAM read/write sequence. See the instruction table for details.

To define exact timing there must be an opportunity that does nothing else than delay program execution. You might use
other instructions that do nothing, but more clever is the use of the no-operation instruction NOP. This is the most useless
instruction:

NOP

This instruction does nothing but wasting processor time. At 4 MHz clock we need just four of these instructions to waste
1 ps. No other hidden meanings here on the NOP instruction. For a signal generator with 1 kHz we don't need to add 4000
such instructions to our source code, but we use a software counter and some branching instructions. With these we
construct a loop that executes for a certain number of times and are exactly delayed. A counter could be a 8-bit-register
that is decremented with the DEC instruction, e. g. like this:

CLR R1 ; one clock cycle
Count:
DEC R1 ; one clock cycle
BRNE Count ; two for branching, one for not branching

This sequence wastes (1) + (255*2) + (1*3) = 514 clock cycles or 128.5 ps at 4 MHz.

16-bit counting can also be used to delay exactly, like this

LDI ZH,HIGH(65535) ; one clock cycle
LDI ZL,L OW(65535) ; one clock cycle
Count:
SBIW ZL,1 ; two clock cycles
BRNE Count ; two for branching, one for not branching

This sequence wastes (1+1) + (65534*4) + (1*3) = 262,141 clock cycles or 65,535.25 ps at 4 MHz.

If you use more registers to construct nested counters you can reach any delay. And the delay is as exact as your clock
source is, even without a hardware timer.

8.4 Macros and program execution

Very often you have to write identical or similar code sequences on different occasions in your source code. If you don't
want to write it once and jump to it via a subroutine call you can use a macro to avoid getting tired writing the same
sequence several times. Macros are code sequences, designed and tested once, and inserted into the code by its macro
name. As an example we assume we need to delay program execution several times by 1 ps at 4 MHz clock. Then we
define a macro somewhere in the source:

.MACRO Delay1
NOP
NOP
NOP
NOP

.ENDMACRO

This definition of the macro does not yet produce any code, it is silent. Code is produced only if you call that macro by its
name:

[...] somewhere in the source code
Delay1
[...] code goes on here

This results in four NOP instructions inserted to the code at that location. An additional “Delayl” inserts additional four
NOP instructions.

If your macro has longer code sequences, or if you are short in code storage space, you should avoid the use of macros
and use subroutines instead.

By calling a macro by its name you can add some parameters to manipulate the produced code. But this is more than a
beginner has to know about macros.

8.5 Subroutines

In contrary to macros a subroutine does save program storage space. The respective sequence is only once stored in the
code and is called from whatever part of the code. To ensure continued execution of the sequence following the

Avr-Asm-Tutorial 36 http://www.avr-asm-tutorial.net

subroutine call you need to return to the caller. For a delay of 10 cycles you need to write this subroutine:

Delay10: ; the call of the subroutine requires some cycles
NOP ; delay one cycle
NOP ; delay one cycle
NORP ; delay one cycle
RET ; return to the caller

Subroutines always start with a label, otherwise you would not be able to jump to it, here named “Delay10:”. Three NOPs
follow and a RET instruction. If you count the necessary cycles you just find 7 cycles (3 for the NOPs, 4 for the RET). The
missing 3 are for calling that routine:

[...] somewhere in the source code:
RCALL Delay10
[...] further on with the source code

RCALL is a relative call. The call is coded as relative jump, the relative distance from the calling routine to the subroutine is
calculated by the compiler. The RET instruction jumps back to the calling routine. Note that before you use subroutine
calls you must set the stack pointer (see Stack), because the return address must be packed on top of the stack during the
RCALL instruction.

If you want to jump directly to somewhere else in the code you have to use the jump instruction:

[...] somewhere in the source code
RJMP Delay10

Return:

[...] further on with source code

Note that RIJMP is also a relative jump instruction with limited distance. Only ATmega AVRs have a JMP instruction
allowing jumps over the complete flash memory space, but these instructions require two words and more instruction
time than RIMP, so avoid it if possible.

The routine that you jumped to can not use the RET instruction in that case, because RIMP does not place the current
execution address to the stack. To return back to the calling location in the source requires to add another label and the
called routine to jump back to this label. Jumping like this is not like calling a subroutine because you can't call this routine
from different locations in the code.

RCALL and RJMP are unconditioned branches. To jump to another location, depending on some condition, you have to
combine these with branching instructions. Conditioned calling of a subroutine can best be done with the following
(confusing) instructions. If you want to call a subroutine depending on a certain bit in a register use the following
sequence:

SBRC R1,7 ; Skip the next instruction if bit 7 in register 1 is 0
RCALL UpLabel ; Call that subroutine

SBRC reads ,,Skip next instruction if Bit 7 in Register R1 is Clear (=Zero)“. The RCALL instruction to “UplLabel:” is only
executed if bit 7 in register R1 is 1, because the next instruction is skipped if it would be 0. If you like to call the subroutine
in case this bit is 0 then you use the corresponding instruction SBRS. The instruction following SBRS/SBRC can be a single
word or double word instruction, the processor knows how far he has to jump over it. Note that execution times are
different then. To jump over more than one following instruction these instructions cannot be used.

If you have to skip an instruction in case two registers have the same value you can use the following exotic instruction:
CPSE R1,R2 ; Compare R1 and R2, skip next instruction if equal
RCALL SomeSubroutine ; Call SomeSubroutine

A rarely used instruction, forget it for the beginning. If you like to skip the following instruction depending on a certain bit
in a port use the following instructions SBIC and SBIS. That reads “Skip if the Bit in I/o space is Clear (or Set)”, like this:

SBIC PINB,O ; Skip next instruction if Bit 0 on input port B is 0
RJMP ATarget ; Jump to the label ATarget

The RIMP-instruction is only executed if bit 0 in port B is high. This is something confusing for the beginner. The access to
the port bits is limited to the lower half of ports, the upper 32 ports are not usable here.

Now, another exotic application for the expert. Skip this if you are a beginner. Assume we have a bit switch with 4
switches connected to port B. Depending on the state of these 4 bits we would like to jump to 16 different locations in the
code. Now we can read the port and use several branching instructions to find out, where we have to jump to today. As
alternative you can write a table holding the 16 addresses, like this:

MyTab:
RJMP Routine1
RJMP Routine2

[-]
RJMP Routine16

In our code we copy that address of the table to the Z pointer register:

LDI ZH,HIGH(MyTab)
LDI ZL,LOW(MyTab)

and add the current state of the port B (in R16) to this address.

ADD ZL,R16
BRCC NoOverflow

Avr-Asm-Tutorial 37 http://www.avr-asm-tutorial.net

INC ZH
NoOverflow:

Now we can jump to this location in the table, either for calling a subroutine:

ICALL ; call the subroutine which address is in Z

or as a jump with no way back:

IJMP ; jump to address in Z

The processor loads the content of the Z register pair into its program counter and continues operation there. More clever
than branching over and over?

8.6 Interrupts and program execution

Very often we have to react on hardware conditions or other events. An example is a change on an input pin. You can
program such a reaction by writing a loop, asking whether a change on the pin has occurred. This method is called polling,
its like a bee running around in circles searching for new flowers. If there are no other things to do and reaction time does
not matter, you can do this with the processor. If you have to detect short pulses of less than a ps duration this method is
useless. In that case you need to program an interrupt.

An interrupt is triggered by some hardware conditions. All hardware interrupts are disabled at reset time by default, so the
condition has to be enabled first. The respective port bits enabling the component's interrupt ability are set first. The
processor has a bit in its status register enabling him to respond to the interrupt of all components, the Interrupt Enable
Flag. Enabling the general response to interrupts requires the following instruction:

SEl ; Set Int Enable Bit

Each single interrupt requires additional port manipulation to be enabled.

If the interrupting condition occurs, e. g. a change on the port bit, the processor pushes the actual program counter to the
stack (which must be enabled first! See initiation of the stackpointer in the Stack section of the SRAM description).
Without that, the processor wouldn't be able to return back to the location, where the interrupt occurred (which could be
any time and anywhere within program execution). After that, processing jumps to the predefined location, the interrupt
vector, and executes the instructions there. Usually the instruction there is a JUMP instruction to the interrupt service
routine, located somewhere in the code. The interrupt vector is a processor-specific location and depending from the
hardware component and the condition that leads to the interrupt. The more hardware components and the more
conditions, the more vectors. The different vectors for some older AVR types are listed in the following table. (The first
vector isn't an interrupt but the reset vector, performing no stack operation!)

Name Interrupt Vector Address Triggered by
2313 2323 8515

RESET 0000 0000 0000 Hardware Reset, Power-On-Reset, Watchdog Reset
INTO 0001 0001 0001 Level change on the external INTO pin
INT1 0002 - 0002 Level change on the external INT1 pin
TIMER1CAPT 0003 - 0003 Capture event on Timer/Counter 1
TIMER1COMPA - - 0004 Timer/Counter 1 = Compare value A
TIMER1 COMPB - - 0005 Timer/Counter 1 = Compare value B
TIMER1 COMP1 0004 - - Timer/Counter 1 = Compare value 1
TIMER1 OVF 0005 - 0006 Timer/Counter 1 Overflow
TIMERO OVF 0006 0002 0007 Timer/Counter 0 Overflow
SPISTC - - 0008 Serial Transmit Complete
UART TX 0007 - 0009 UART char in receive buffer available
UART UDRE 0008 - 000A UART transmitter ran empty
UART TX 0009 - 000B UART All Sent
ANA_COMP - - 0oocC Analog Comparator

Note that the capability to react to events is very different for the different types. The addresses are sequential, but not
identical for different types. Consult the data sheet for each AVR type.

The higher a vector in the list the higher is its priority. If two or more components have an interrupt condition pending at
the same time, the up most vector with the lower vector address wins. The lower int has to wait until the upper int was
served. To disable lower ints from interrupting during the execution of its service routine the first executed int disables the
processor's |-flag. The service routine must re-enable this flag after it is done with its job.

For re-setting the | status bit there are two ways. The service routine can end with the instruction:

RETI

Avr-Asm-Tutorial 38 http://www.avr-asm-tutorial.net

This return from the int routine restores the I-bit after the return address has been loaded to the program counter.
The second way is to enable the I-bit by the instruction

SEI ; Set Interrupt Enabled
RET ; Return

This is not the same as the RETI, because subsequent interrupts are already enabled before the program counter is re-
loaded with the return address. If another int is pending, its execution is already starting before the return address is
popped from the stack. Two or more nested addresses remain on the stack. No bug is to be expected, but it is an
unnecessary risk doing that. So just use the RETI instruction to avoid this unnecessary flow to the stack.

An Int-vector can only hold a relative jump instruction to the service routine. If a certain interrupt is not used or undefined
we can just put a RETI instruction there, in case an erroneously enabled int happens before we wrote an interrupt service
routine. In a few cases it is absolutely necessary to react to these false ints. That is the case if the execution of the
respective service routine does not automatically reset the interrupt condition flag of the peripheral. In that case a simple
RETI would reset the otherwise never-ending interrupts. This is the case with some of the UART interrupts.

Note that larger devices have a two-word organization of the vector table. In this case the JMP instruction has to be used
instead of RIMP. And RETI instructions must be followed by an NOP to point to the next vector table address.

As, after an interrupt is under service, further execution of lower-priority interrupts are blocked, all int service routines
should be as short as possible. If you need to have a longer routine to serve the int, use one of the two following methods.
The first is to allow ints by SEI within the service routine, whenever you're done with the most urgent tasks. This is not very
clever. More convenient is to perform the urgent tasks, setting a flag somewhere in a register for the slower reaction
portions and return from the int immediately.

A very serious rule for int service routines is:
The first instruction is always to save the processor status flags in a register or on the stack.

Do this before you use instructions that might change flags in the status flag register. The reason is that the interrupted
main program might just be in a state using the flag for a branch decision, and the int would just change that flag to
another state. Funny things would happen from time to time. The last instruction before the RETI therefore is to copy the
saved flags from the register back to status port or to pop the status register content from the stack and restore its original
content. The following shows examples how to do that:

Saving in a register: Saving on the stack:
Isr: Isr:
IN R15,SREG ; save flags PUSH R15 ; save register on stack
[... more instructions...] IN R15, SREG
[...more instructions...]
OUT SREG,R15 ; restore flags OUT SREG,R15 ; restore flags
POP R15
RETI ; return from interrupt RETI ; return from interrupt

The method on the right is slower, the method on the left requires a register exclusively for that purpose.

Generally: All used registers in a service routine should either be exclusively reserved for that purpose or saved on stack
and restored at the end of the service routine. Never change the content of a register within an int service routine that is
used somewhere else in the normal program without restoring it.

Because of these basic requirements a more sophisticated example for an interrupt service routine here.

.CSEG ; Code-Segment starts here
.ORG 0000 ; Address is zero
RJMP Start ; The reset-vector on Address 0000
RJMP [Service ; 0001: first Int-Vector, INTO service routine
[...] here other vectors
Start: ; Here the main program starts
[...] here is enough space for defining the stack and other things

IService: ; Here we start with the Interrupt-Service-Routine
PUSH R16 ; save a register to stack
IN R16,SREG ; read status register
PUSH R16 ; and put on stack

[...] Here the Int-Service-Routine does something and uses R16
POP R16 ; get previous flag register from stack
OUT SREG,R16 ; restore old status
POP R16 ; get previous content of R16 from the stack
RETI ; and return from int

Looks a little bit complicated, but is a prerequisite for using ints without producing serious bugs. Skip PUSH R16 and POP
R16 if you can afford reserving the register for exclusive use within the service routine. As an interrupt service routine
cannot be interrupted (unless you allow interrupts within the routine), all different int service routines can use the same
register.

You understand now, why allowing interrupts within an interrupt service routine, and not at its end with RETI, is not a
good idea?

That's it for the beginner. There are some other things with ints, but this is enough to start with, and not to confuse you.

Avr-Asm-Tutorial 39 http://www.avr-asm-tutorial.net

9 Calculations

Here we discuss all necessary instructions for calculating in AVR assembler language. This includes number systems, setting
and clearing bits, shift and rotate, and adding/subtracting/comparing and the format conversion of numbers.

9.1 Number systems in assembler

The following formats of numbers are common in assembler:
» Positive whole numbers (Bytes, Words, Longwords, etc.),
« Signed whole numbers (Shortints, Integers, Longlnts, etc.),
« Binary Coded Digits (BCD),
« Packed BCDs,
» ASClI-formatted numbers.

If you come from a high-level language: forget pre-defined number formats. Assembler doesn't have that concept nor its
(sometimes frustating) limitations. What you earn is: you are the master of your own format!

9.1.1 Positive whole numbers (bytes, words, etc.)

The smallest whole number to be handled in assembler is a byte with eight bits. This codes numbers between 0 and 255.
Such bytes fit exactly into one register of the MCU. All larger numbers must be based on this basic format, using more than
one register. Two bytes yield a word (range from 0 .. 65,535), three bytes form a longer word (range from 0 .. 16,777,215)
and four bytes form a double word (range from 0 .. 4,294,967,295).

The single bytes of a word or a double word can be stored in whatever register you prefer. Operations with these single
bytes are programmed byte by byte, so you don't have to put them in a row. In order to form a row for a double word we
could store it like this:

.DEF r16 = dw0
.DEF r17 = dw1
.DEF r18 = dw2
.DEF r19 = dw3

Registers dwO to dw3 are in a row, but don't need to be. If we need to initiate this double word at the beginning of an
application (e. g. to 4,000,000), this should look like this:

.EQU dwi = 4000000 ; define the constant
LDI dwO,LOW(dwi) ; The lowest 8 bits to R16
LDI dw1,BYTE2(dwi) ; bits 8.. 15to R17
LDI dw2,BYTE3(dwi) ; bits 16 .. 23 to R18
LDI dw3,BYTE4(dwi) ; bits 24 .. 31 to R19

So we have splitted this decimal number, called dwi, to its binary portions BYTE4 to BYTE1 and packed them into the four
byte packages. Now you can calculate with this double word.

9.1.2 Signed numbers (integers)

Sometimes, but in rare cases, you need negative numbers to calculate with. A negative number is defined by interpreting
the most significant bit of a byte as sign bit. If it is 0 the number is positive. If it is 1 the number is negative. If the number
is negative we usually do not store the rest of the number as is, but we use its inverted value. Inverted means that -1 as a
byte integer is not written as 1000.0001 but as 1111.1111 instead. That means: subtract 1 from 0 (and forget the
overflow). The first bit is the sign bit, signaling that this is a negative number. Why this different format (subtracting the
number from 0) is used is easy to understand: adding -1 (1111.1111) and +1 (0000.0001) yields exactly zero, if you forget
the overflow that occurs during that operation (to the ninth bit).

In one byte the largest integer number to be handled is +127 (binary 01111111), the smallest one is -128 (binary
1,0000000). In other computer languages this number format is called short integer. If you need a bigger range of values
you can add another byte to form a larger integer value, ranging from +32,767 .. -32,768), four bytes provide a range from
+2,147,483,647 .. -2,147,483,648, in other languages called a LongInt or Doubleint.

9.1.3 Binary Coded Digits, BCD

Positive or signed whole numbers in the formats discussed above use the available space most effectively. Another, less
dense number format, but easier to handle and understand is to store decimal numbers in a byte for one digit each. The
decimal digit is stored in its binary form in a byte. Each digit from 0 .. 9 needs four bits (binary values 0000 .. 1001), the
upper four bits of the byte are always zeros, blowing a lot of hot air into one byte. For to handle the value 250 we would
need at least three bytes, e. g.:

Avr-Asm-Tutorial 40 http://www.avr-asm-tutorial.net

Bit value 128 64 32 16 8 4 2 1
R16, Digit 1 =2 0 0 0 0 0 0 1 0
R17, Digit2=5 0 0 0 0 0 1 0 1
R18, Digit 3=0 0 0 0 0 0 0 0 0

;Instructions to use:
LDI R16,2
LDIR17,5
LDI R18,0

You can calculate with these numbers, but this is a bit more complicated in assembler than calculating with binary values.
The advantage of this format is that you can handle as long numbers as you like, as long as you have enough storage
space. The calculations are as precise as you like (if you program AVRs for banking applications), and you can convert them
very easily to character strings.

9.1.4 Packed BCDs

If you pack two decimal digits into one byte you don't loose that much storage space. This method is called packed binary
coded digits. The two parts of a byte are called upper and lower nibble. The upper nibble usually holds the more significant
digit, which has advantages in calculations (special instructions in AVR assembler language). The decimal number 250
would look like this when formatted as a packed BCD:

Byte Digits Value 8 4 2 1 8 4 2 1
2 4&3 02 0 0 0 0 0 0 1 0
1 2&1 50 0 1 0 1 0 0 0 0

; Instructions for setting:
LDI R17,0x02 ; Upper byte
LDI R16,0x50 ; Lower byte

To set this correct you can use the binary notation (0Ob...) or the hexadecimal notation (0x...) to set the proper bits to their
correct nibble position.

Calculating with packed BCDs is a little more complicated compared to the binary form. Format changes to character
strings are nearly as easy as with BCDs. Length of numbers and precision of calculations is only limited by the storage
space.

9.1.5 Numbers in ASCIl-format

Very similar to the unpacked BCD format is to store numbers in ASCII format. The digits O to 9 are stored using their ASCII
(ASCIl = American Standard Code for Information Interchange) representation. ASCIl is a very old format, developed and
optimized for teletype writers, unnecessarily very complicated for computer use (do you know what a char named End Of
Transmission EOT meant when it was invented?), very limited in range for other than US languages (only 7 bits per
character), still used in communications today due to the limited efforts of some operating system programmers to switch
to more effective character systems. This ancient system is only topped by the European 5-bit long teletype character set
called Baudot set or the Morse code, still used by some finger-nervous people.

Within the ASCII code system the decimal digit 0 is represented by the number 48 (hex 0x30, binary 0b0011.0000), digit 9
is 57 decimal (hex 0x39, binary 0b0011.1001). ASCII wasn't designed to have these numbers on the beginning of the code
set as there are already instruction chars like the above mentioned EOT for the teletype. So we still have to add 48 to a
BCD (or set bit 4 and 5 to 1) to convert a BCD to ASCII. ASCIl formatted numbers need the same storage space like BCDs.
Loading 250 to a register set representing that number would look like this:

LDI R18,'2"
LDIR17,'5'
LDI R16,'0"

The ASCII representation of these characters are written to the registers.

9.2 Bit manipulations

To convert a BCD coded digit to its ASCIl representation we need to set bit 4 and 5 to a one. In other words we need to OR
the BCD with a constant value of hex 0x30. In assembler this is done like this:

ORI R16,0x30

If we have a register that is already set to hex 0x30 we can use the OR with this register to convert the BCD:

OR R1,R2

Back from an ASCII character to a BCD is as easy. The instruction

ANDI R16,0x0F

Avr-Asm-Tutorial 41 http://www.avr-asm-tutorial.net

isolates the lower four bits (= the lower nibble). Note that ORI and ANDI are only possible with registers above R15. If you
need to do this, use one of the registers R16 to R31!
If the hex value OxOF is already in register R2, you can AND the ASCII character with this register:

AND R1,R2

The other instructions for manipulating bits in a register are also limited for registers above R15. They would be
formulated like this:

SBR R16,0b00110000 ; Set bits 4 and 5 to one

CBR R16,0b00110000 ; Clear bits 4 and 5 to zero

If one or more bits of a byte have to be inverted you can use the following instruction (which is not possible for use with a
constant):

LDI R16,0b10101010 ; Invert all uneven bits
EOR R1,R16 ; in register R1 and store result in R1
To invert all bits of a byte is called the One's complement:

COM R1

inverts the content in register R1 and replaces zeros by one and vice versa. Different from that is the Two's complement,
which converts a positive signed number to its negative complement (subtracting from zero). This is done with the
instruction

NEG R1

So +1 (decimal: 1) yields -1 (binary 1.1111111), +2 yields -2 (binary 1.1111110), and so on.
Besides the manipulation of the bits in a register, copying a single bit is possible using the so-called T-bit of the status
register. With

BST R1,0

the T-bit is loaded with a copy of bit 0 in register R1. The T-bit can be set or cleared, and its content can be copied to any
bit in any register:

CLT ; clear T-bit, or
SET ; set T-bit, or
BLD R2,2 ; copy T-bit to register R2, bit 2

9.3 Shift and rotate

Shifting and rotating of binary numbers means multiplying and dividing them by 2. Shifting has several sub-instructions.

Multiplication with 2 is easily done by shifting all bits of a byte one binary digit left and writing a zero to the least
significant bit. This is called logical shift left or LSL. The former bit 7 of the byte will be shifted out to the carry bit in the
status register.

LSL R1

The inverse division by 2 is the instruction called logical shift right, LSR.
LSR R1

The former bit 7, now shifted to bit 6, is filled with a 0, while the former bit 0 is shifted into the carry bit of the status
register. This carry bit could be used to round up and down (if set, add one to the result). Example, division by four with
rounding:

LSR R1; division by 2

BRCC Div2 ; Jump if no round up

INC R1 ; round up

Div2:
LSR R1; Once again division by 2
BRCC DivE ; Jump if no round up
INC R1; Round Up

DivE:

So, dividing is easy with binaries as long as you divide by multiples of 2.

If signed integers are used the logical shift right would overwrite the sign-bit in bit 7. The instruction ,arithmetic shift
right” ASR leaves bit 7 untouched and shifts the 7 lower bits, inserting a zero into bit location 6.

ASR R1

Like with logical shifting the former bit 0 goes to the carry bit in the status register.

What about multiplying a 16-bit word by 2? The most significant bit of the lower byte has to be shifted to yield the lowest
bit of the upper byte. In that step a shift would set the lowest bit to zero, but we need to shift the carry bit from the
previous shift of the lower byte into bit 0 of the upper byte. This is called a rotate. During rotation the carry bit in the
status register is shifted to bit 0, the former bit 7 is shifted to the carry during rotation.

Avr-Asm-Tutorial 42 http://www.avr-asm-tutorial.net

LSL R1; Logical Shift Left of the lower byte
ROL R2 ; ROtate Left of the upper byte

The logical shift left in the first instruction shifts bit 7 to carry, the ROL instruction rolls it to bit O of the upper byte.
Following the second instruction the carry bit has the former bit 7 of the upper byte. The carry bit can be used to either
indicate an overflow (if 16-bit-calculation is performed) or to roll it into more upper bytes (if more than 16 bit calculation is
done).

Rolling to the right is also possible, dividing by 2 and shifting carry to bit 7 of the result:

LSR R2; Logical Shift Right, bit O to carry
ROR R1 ; ROtate Right and shift carry in bit 7

It's easy dividing with big numbers. You see that learning assembler is not THAT complicated.

The last instruction that shifts four bits in one step is very often used with packed BCDs. This instruction shifts a whole
nibble from the upper to the lower position and vice versa. In our example we need to shift the upper nibble to the lower
nibble position. Instead of using

ROR R1
ROR R1
ROR R1
ROR R1

we can perform that with a single
SWAP R1

This instruction exchanges the upper and lower nibble. Note that the content of the upper nibble will be different after
applying these two methods.

9.4 Adding, subtracting and comparing

The following calculation operations are too complicated for the beginners and demonstrate that assembler is only for
extreme experts, hi. Read on your own risk!

9.4.1 Adding and subtracting 16-bit numbers

To start complicated we add two 16-bit-numbers in R1:R2 and R3:R4. (In this notation, we mean that the first register is
the most significant byte, the second the least significant).

ADD R2,R4 ; first add the two low-bytes
ADC R1,R3; then the two high-bytes

Instead of a second ADD we use ADC in the second instruction. That means add with carry, which is set or cleared during
the first instruction, depending from the result. Already scared enough by that complicated math? If not: take this!
We subtract R3:R4 from R1:R2.

SUB R2,R4 ; first the low-byte
SBC R1,R3 ; then the high-byte

Again the same trick: during the second instruction we subtract another 1 from the result if the result of the first
instruction had an overflow. Still breathing? If yes, handle the following!

9.4.2 Comparing 16-bit numbers

Now we compare a 16-bit-word in R1:R2 with the one in R3:R4 to evaluate whether it is bigger than the second one.
Instead of SUB we use the compare instruction CP, instead of SBC we use CPC:

CP R2,R4 ; compare lower bytes
CPC R1,R3; compare upper bytes

If the carry flag is set now, R1:R2 is smaller than R3:R4.

9.4.3 Comparing with constants

Now we add some more complicated stuff. We compare the content of R16 with a constant: 0b10101010.

CPI R16,0xAA
If the Zero-bit in the status register is set after that, we know that R16 is equal to OxAA. If the carry-bit is set, we know, it is
smaller. If Carry is not set and the Zero-bit is not set either, we know it is larger.

And now the most complicated test. We evaluate whether R1 is zero or negative:
TSTR1

If the Z-bit is set, the register R1 is zero and we can follow with the instructions BREQ, BRNE, BRMI, BRPL, BRLO, BRSH,
BRGE, BRLT, BRVC or BRVS to branch around a little bit.

Avr-Asm-Tutorial 43 http://www.avr-asm-tutorial.net

9.4.4 Packed BCD math

Still with us? If yes, here is some packed BCD calculations. Adding two packed BCDs can result in two different overflows.
The usual carry shows an overflow, if the higher of the two nibbles overflows to more than 15 decimal. Another overflow,
from the lower to the upper nibble occurs, if the two lower nibbles add to more than 15 decimal.

To take an example we add the packed BCDs 49 (=hex 49) and 99 (=hex 99) to yield 148 (=hex 0x0148). Adding these in
binary math, results in a byte holding hex 0xE2, no byte overflow occurs. The lower of the two nibbles should have an
overflow, because 9+9=18 (more than 9) and the lower nibble can only handle numbers up to 15. The overflow was added
to bit 4, the lowest significant bit of the upper nibble. Which is correct! But the lower nibble should be 8 and is only 2 (18 =
0b0001.0010). We should add 6 to that nibble to yield a correct result. Which is quite logic, because whenever the lower
nibble reaches more than 9 we have to add 6 to correct that nibble.

The upper nibble is totally incorrect, because it is OXE and should be 3 (with a 1 overflowing to the next upper digit of the
packed BCD). If we add 6 to this OXE we get to Ox4 and the carry is set (=0x14). So the trick is to first add these two
numbers and then add 0x66 to correct the 2 digits of the packed BCD. But halt: what if adding the first and the second
number would not result in an overflow to the next nibble? And not result in a digit above 9 in the lower nibble? Adding
0x66 would then result in a totally incorrect result. The lower 6 should only be added if the lower nibble either overflows
to the upper nibble or results in a digit larger than 9. The same with the upper nibble.

How do we know, if an overflow from the lower to the upper nibble has occurred? The MCU sets the H-bit in the status
register, the half-carry bit. The following shows the algorithm for the different cases that are possible after adding two
nibbles and adding hex 0x6 after that.

1. Add the nibbles. If overflow occurs (C for the upper nibbles, or H for the lower nibbles), add 6 to correct, if not, do step
2.

2. Add 6 to the nibble. If overflow occurs (C resp. H), you're done. If not, subtract 6.

To program an example we assume that the two packed BCDs are in R2 and R3, R1 will hold the overflow, and R16 and R17
are available for calculations. R16 is the adding register for adding 0x66 (the register R2 cannot add a constant value), R17
is used to correct the result depending from the different flags. Adding R2 and R3 goes like that:

LDI R16,0x66 ; for adding 0x66 to the result

LDI R17,0x66 ; for later subtracting from the result

ADD R2,R3 ; add the two two-digit-BCDs

BRCC NoCy1 ; jump if no byte overflow occurs

INC R1 ; increment the next higher byte

ANDI R17,0x0F ; don't subtract 6 from the higher nibble
NoCy1:

BRHC NoHc1 ; jump if no half-carry occurred

ANDI R17,0xFO0 ; don't subtract 6 from lower nibble
NoHc1:

ADD R2,R16 ; add 0x66 to result

BRCC NoCy2 ; jump if no carry occurred

INC R1 ; increment the next higher byte

ANDI R17,0x0F ; don't subtract 6 from higher nibble
NoCy2:

BRHC NoHc2 ; jump if no half-carry occurred

ANDI R17,0xFO0 ; don't subtract 6 from lower nibble
NoHc2:

SUB R2,R17 ; subtract correction

A little bit shorter than that:

LDI R16,0x66

ADD R2,R16

ADD R2,R3

BRCC NoCy

INC R1

ANDI R16,0x0F
NoCy:

BRHC NoHc

ANDI R16,0xF0
NoHc:

SUB R2,R16

Question to think about: Why is that equally correct, half as long and less complicated and where is the trick?

9.5 Format conversion for numbers

All number formats can be converted to any other format. The conversion from BCD to ASCIl and vice versa was already
shown above (Bit manipulations).

9.5.1 Conversion of packed BCDs to BCDs, ASCII or Binaries

Conversion of packed BCDs is not very complicated either. First we have to copy the number to another register. With the
copied value we change nibbles using the SWAP instruction to exchange the upper and the lower one. The upper part is
cleared, e. g. by ANDing with 0xOF. Now we have the BCD of the upper nibble and we can either use as is (BCD) or set bit 4
and 5 to convert it to an ASCIl character. After that we copy the byte again and treat the lower nibble without first

Avr-Asm-Tutorial 44 http://www.avr-asm-tutorial.net

SWAPping and get the lower BCD.

A little bit more complicated is the conversion of BCD digits to a binary. Depending on the numbers to be handled we first
clear the necessary bytes that will hold the result of the conversion. We then start with the highest BCD digit. Before
adding this to the result we multiply the result with 10. (Note that in the first step this is not necessary, because the result
is zero either).

In order to do the multiplication by 10, we copy the result to somewhere else. Then we multiply the result by four (two left
shifts resp. rolls). Adding the previously copied number to this yields a multiplication with 5. Now a multiplication with 2
(left shift/roll) yields the 10-fold of the result. Finally we add the BCD and repeat that algorithm until all decimal digits are
converted. If, during one of these operations, there occurs a carry of the result, the BCD is too large to be converted. This
algorithm handles numbers of any length, as long as the result registers are prepared.

9.5.2 Conversion of Binaries to BCD

The conversion of a binary to BCDs is more complicated than that. If we convert a 16-bit-binary we can subtract 10,000
(0x2710), until an overflow occurs, yielding the first digit. Then we repeat that with 1,000 (Ox03E8) to yield the second
digit. And so on with 100 (0x0064) and 10 (0x000A), then the remainder is the last digit. The constants 10,000, 1,000, 100
and 10 can be placed to the program memory storage in a word wise organized table, like this:

DezTab:

.DW 10000, 1000, 100, 10

and can be read word-wise with the LPM instruction from the table.

An alternative is a table that holds the decimal value of each bit in the 16-bit-binary, e. g.

.DB 0,3,2,7,6,8
.DB 0,1,6,3,8,4
.DB 0,0,8,1,9,2
.DB 0,0,4,0,9,6
.DB 0,0,2,0,4,8 ; and so on until
.DB 0,0,0,0,0,1

Then you shift the single bits of the binary left out of the registers to the carry. If it is a one, you add the number in the
table to the result by reading the numbers from the table using LPM. This is more complicated to program and a little bit
slower than the above method.

A third method is to calculate the table value, starting with 000001, by adding this BCD with itself, each time after you
have shifted a bit from the binary to the right, and added to the BCD result.

Many methods, much to optimize here.

9.6 Multiplication

Multiplication of binary numbers is explained here.

9.6.1 Decimal multiplication

In order to multiply two 8-bit-binaries we remind ourselves, how this is done with decimal numbers:

1234 * 567 = ?
1234 * 7 = 8638
+ 1234 * 60 = 74040

In single steps decimal:
« We multiply the first number with the lowest significant digit of the second number and add this to the result.

* We multiply the first number with 10 and then with the next higher digit of the second number and add this
to the result.

* We multiply the first number with 100, then with the third-highest digit, and add this to the result.

9.6.2 Binary multiplication

Now in binary. Multiplication with the single digits is not necessary, because there are only the digits 1 (add the number)
and 0 (don't add the number). Multiplication by 10 in decimal goes to multiplication by 2 in binary mode. Multiplication by
2 is done easily, either by adding the number with itself, or by shifting all bits one position left and writing a 0 to the void
position on the right. You see that binary math is very much easier than decimal. Why didn't mankind use this from the
beginning?

Avr-Asm-Tutorial 45 http://www.avr-asm-tutorial.net

9.6.3 AVR assembler program

The following source code demonstrates realization of multiplication in assembler.

; Mult8.asm multiplies two 8-bit-numbers to yield a 16-bit-result

.NOLIST
.INCLUDE "C:\avrtools\appnotes\8515def.inc"
.LIST

Flow of multiplication

; 1.The binary to be multiplicated with is shifted bitwise into the carry bit. If it is a one, the binary number is added to the
; result, if it is not a one that was shifted out, the number is not added.

; 2.The binary number is multiplied by 2 by rotating it one position left, shifting a 0 into the void position.

; 3.If the binary to be multiplied with is not zero, the multiplication loop is repeated. If it is zero, the multiplication is done.

Used registers

’

.DEF rm1 = RO ; Binary number to be multiplicated (8 Bit)
.DEF rmh = R1 ; Interim storage

.DEF rm2 = R2 ; Binary number to be multiplicated with (8 Bit)
.DEF rel = R3; Result, LSB (16 Bit)

.DEF reh = R4 ; Result, MSB

.DEF rmp = R16 ; Multi purpose register for loading

'CSEG
"ORG 0000

’

rfimp START

START:
Idi rmp,0xAA ; example binary 1010.1010
mov rm1,rmp ; to the first binary register
Idi rmp,0x55 ; example binary 0101.0101
mov rm2,rmp ; to the second binary register

Here we start with the multiplication of the two binaries in rm1 and rm2, the result will go to reh:rel (16 Bit)
MULTS:

; Clear start values
clr rmh ; clear interim storage
cir rel ; clear result registers
clr reh

Here we start with the multiplication loop
MULT8a:

Step 1: Rotate lowest bit of binary number 2 to the carry flag (divide by 2, rotate a zero into bit 7)

, clc ; clear carry bit
ror rm2 ; bit 0 to carry, bit 1 to 7 one position to the right, carry bit to bit 7

Step 2: Branch depending if a 0 or 1 has been rotated to the carry bit

’

brcc MULTS8b ; jump over adding, if carry has a 0

Step 3: Add 16 bits in rmh:rml to the result, with overflow from LSB to MSB

’

add rel,rm1 ; add LSB of rm1 to the result
adc reh,rmh ; add carry and MSB of rm1

MULT8b:

Step 4: Multiply rmh:rm1 by 2 (16 bits, shift left)

clc ; clear carry bit
rol rm1 ; rotate LSB left (multiply by 2)
rol rmh ; rotate carry into MSB and MSB one left

Step 5: Check if there are still one's in binary 2, if yes, go on multiplicating
" tstrm2; all bits zero?

brne MULT8a ; if not, go on in the loop
End of the multiplication, result in reh:rel

Endless loop

LOOP:
rjmp loop

Avr-Asm-Tutorial

http://www.avr-asm-tutorial.net

9.6.4 Binary rotatio

n

For understanding the multiplication operation, it is

o

1|D 1| D|1|D|1|D|

ROL

1
[—]
o|l{o|l1l|ojljolo

1

necessary to understand the binary rotation
instructions ROL and ROR. These instructions shift all
bits of a register one position left (ROL) resp. right
(ROR). The void position in the register is filled with
the content of the carry bit in the status register, the
bit that rolls out of the register is shifted to this carry
bit. This operation is demonstrated using OxAA as an
example for ROL and 0x55 as an example for ROR.

9.6.5 Multiplication in the studio

:

o]

—

The following screen shots show the multiplication program in the simulator (to make a difference: here Studio version 3).

AVR Studio - MultBe.asm =] E3

File Edit Project Debug Breakpoints Trace & tiggers ‘Watch Options Wiew Toolz Window Help
|BEE @ o|=E - e || g 6 o 2L B ® TG0 =R =

|[FE0DE=4|m

I Mult8e.asm
Used registers

'DEF rml :
. Rl : Interin storages
DEF rel :)
. R4 . Result. HSE
i - Ti =3

| ldi . :

mov rml.rmp
1 . : ezamnple binary 0101.0101
]

LEF rmh
Binary number to be multiplicated with (&
LEF reh
Multi purpose register for loading
CSEG
i rmp. 0=zidd example binary 1010.1010
to the first binary register
1di rmp. 0=G55
to the second binary register
Here we =tart with the multiplication of the two binari
in rml und rm2,
MULTS
Clear start values
[~lear interin storage
)
[| |Simulator |ATI058515 |Ln 32. Cal 1 MNLIM o

RO Binary number to be multiplicated (8 Bit}

[T}
fal
N

LEF rm2
R3 Fesult. LSE (1t Bit
DEF rmp
CORG 0000
mov rme.rmp
the result will go to reh:rel {16 Bit)
=11 rmh

“ A¥HR Studio - MultBe.asm Hi=1E3

File Edit Project Debug Breakpoints Trace & tiggers “Watch DOptions View Toolz ‘Window Help
B Ego|me s - am || Q|6 s LB T (P 0B
HED E|Q|Jm‘ Riedo (Cuk)
I MultBe_asm [_ O]]| Gl i o =] =
START: a|||RD = O=xdd R17 = 0=00
1di rmp, O=xdd ;| ezanple binaxy 10101010 Rl = 0=x00 R18 = 0=d40
mov rml.rmp | to the first binary register R2 = 0x55 E19 = 0=x00
1di rmp, 0x55 : ezamnple binsry 0101.0101 R3 = 0=x00 R20 = 0x=00
mov rm2,.rmp | to the second binary register E4 = 0=x00 R21 = 0=00
L H tart with the multiplication of the two bi e
. Here we start wi = multiplication of e two binari R6 = 0=00 R2?2 = 0=00
in rml und rm2, the result will go to reh:rel (16 Bit) B7 = 0202 F74 = 0200
Y X R8 = 0=x00 R25 = 0x00
MUI‘TS' R9 = 0=x00 R2e = 0=x01
. R10 = 0x01 R27 = 0=00
;. Clear start walues
= ; clear interim storage R1l = 0x00 R28 = 0=00
clr rel : clear result registers R12 = O0=00 R29 = 0=00
clr reh R13 = 0x00 R30 = 0=01
: R14 = 0O=58 R31 = 0x00
: Here we =start with the multiplication loop _||rR15 = 0O=04
: R16 = 0=55%
MULTS=:
Step 1: Rotate lowest bit of binary number 2 to the cax
: flag {(divide by 2. rotate a zero into bit 7)
cle ; clear carry bit
ror rm2 ; bit 0 to carry, bit 1 to 7 on= position
; the right, carry bit to bit 7
4 | o
4]

3
|Fieda the previoushy .| | Simnulator |AT 058515 |Ln 46, Cal 1 MUK 7

The object-code has been opened,
the cursor is placed on the first
executable instruction. F11 does
single steps.

The registers RO and R2 are set to
OxAA and 0x55, our test binaries, to
be multiplied.

Avr-Asm-Tutorial 47 http://www.avr-asm-tutorial.net

File Edit Pmject Debug Breakpoints Trace & tiggers “Watch Options Miew Tools 'window Help
ez ta o|me s o <[82, || 60 5 | =L 3% B B (P 1 =8 [=h
| & cifieR=Ny. |
= MultBe.asm H =] B || EReasies T]
B | ||R0 = 0D=Ad R17 = 0=00
; Hers we start with the multiplication of the two binard Rl = 0=00 ER1&8 = 0=40
in rml und rmZ. the result will go to reh:rel {16 Bit) R2 = 0=55 ER19 = 0O=x00
: R3 = 0=x00 RZ0 = 0=x00
MULTS : R4 = 0=00 RZ1 = 0O=00
: RS = 0=00 R2Z2z = 0O=00
Clear start valuss . . R6 = 0x00 R23 = 0=00
cir rm? B ciear 1ntef1m storage 7 = 002 R24 = 0=00
gli iZh clear result registers RS = 0=00 R25 = 000
RE9 = 0=x00 R:Z6 = 0=01
: : : : R10 = 0=01 R27 = 0=00
: Here we start with the multiplication loop Bil = O=00 D28 = 0=00
HIT.TEa - R12 = 0x00 E29 = 0=x00
: R13 = 0=00 R30 = 0=01
Step 1. REotate lowest bit of binary number 2 to the car Ri4 = 0O=x58 R3I1 = 0=00
B flag (diwide by 2. rotate a zero into bit 7)) R15 = 0O=04
: L J||F16 = 0O=&5
| BR clesr carry bit
ror rm2 bit 0 to carry. bit 1 to 7 onse position
the right. carrvy bit to bit 7
Step 2: Branch depending i€ a 0 or 1 ha= been rotated t
the carrvy bit
brocc MUOLTEL | jump over adding, 12 carry has a 0 "
4] | Bl =

- AYR Studio - Mult8e_asm H[=] E3

File Edit Project Debug Breakpointz Trace & tiggers ‘watch Option: Yiew Tool: ‘window Help
lazE@o e @[1R [de e (20 2 B TR 0 = (e
EEEEEE

= MultZe asm =] EE || E6es S [o
; a|||F0 = 0=xdd R17 = 0=00
;. Here we start with the nultiplication of the two binard Rl = 0=x00 R18 = 0=40
in rml und rm2. the result will go to reh:rel (16 Bit) RZ = 0=24& F19 = 0=x00
: RE3 = 0=00 R20 = 0=00
MOLTS: R4 = 0=00 R21 = 0=00
: R5 = 0=00 E22 = 0=x00
Clear start values Re = 0x00 R23 = 0=00
cir rm? : Ciear inteiim storage B7 = 0x02 B?4 = 0=00
clr re clear result registers RS = 0m00 R2?5 = O=00
=l reh R9 - 0=00 R26 = 0=01
Here we start with the multiplication loop gi? - gxgé ggg = gxgg
. = 0= = 0=
MULTSa - R12 = 0=00 R29 = 0=00
: F13 = 0=00 R30 = 0=01
Step 1: Rotate lowest bit of binary number 2 to the car R14 = 0x58 R3I1 = 0=00
flag i(diwvide by 2. rotate a zero into bit 7) E15 = 0=04
Rle = 0=EE
clc | clear carry bit
Tor Tme bit 0 to carry., bit 1 to 7 one positior
the right. carry bit to bit 7
E Step 2. Branch depending 1if a 0 or 1 has been rotated t
: the carrv bit
®|' brcc MULTS jump over adding, if carry has a2 0 e
4| | Moz -
<]

»
| [[Simulator [AT 056515 |Lr B4, Cal NLIM b

i AVR Studio - MultBe_asm _ (O]]

Eile Edit Project Debug Breakpoints Trace & tiggers “Watch Options Miew Tools Window Help
@z Eg@o|me o - m | =18 | 65 5 [[EL Y B B (P 0 =3 =

EEEEEEIEE

i Mult8e_asm =] E3 ||=aiReaisters I [m]
clc ;. clear carry bit a|||RO = 0=xdd E17 = 0=00
ror rmZ2 ; bit 0 to carry, bit 1 to 7 ons positiox Rl = 0=x00 R18 = 0=40

the right, carry bit to bit 7 EZ = 0=x2& K19 = 0=x00

R3 = 0OxAd R20 = 0=00

Step 2: Branch depending if a2 0 or 1 has been rotated t R4 = 000 R2Z1 = 0=00

the carry bit RS = 0=x00 R22 = 0x00

Rt = 0=x00 R23 = 0=00

broo MULTSL . jump over adding. 1f carry ha=s a [R? = 0202 RI4 = DzDD

Step 3: Add 16 bits in rmh:rml to the result. with owver gg f gxgg ggg f gxgg

from LSE to HSB - E - E

R10 = 0=x01 R27 = 0=00

add rel.rml add LSE of rml to the result Ril = 0=x00 ER28 = D=00

adc reh.rmh © add carry and MSE of rml Rlz = 0x00 ER29 = 0x00

. R13 = 0=x00 R30 = 0O=x01

HULTSb: R14 = 0x58 R31 = 0=00
: R15 = 0=x04
Step 4 MHultiply rmh:rml by 2 (16 bit=s, shiit leit) Ries = 0O=55

5) ; clear carry bit
rol rml rotate LSE left (multiplv by 22
rol rmh ;| rotate carry into M5B and MSE one leit

Step 5. Checlk if there are =till one's in binary 2. il
ves, go on nultiplicating
t=t rm? A1l hit=s =ero?

4] | »

<]

|

|Sirulatar |ATI058515 |Ln 7B, Cal 1

R2 is rotated to the
right, to roll the least
significant bit into the
carry bit. 0x55
(0101.0101) yielded
0x2A (0010.1010).

Because the carry bit
had a one, the content
of the registers R1:RO is
added to the (empty)

register pair R4:R3,
resulting in Ox00AA
there.

Now the register pair
R1:RO is rotated one
position left to multiply
this binary by 2. From
0x00AA, multiplication
by 2 yields 0x0154.

The whole multipli-
cation loop is repeated
as long there is at least
one binary 1 in register
R2. These following
loops are not shown
here.

Avr-Asm-Tutorial

48

http://www.avr-asm-tutorial.net

- AVR Studio - Mult8e_asm H=1 &3

File Edit Pmoject Debug EBreakpoints Trace & triggers “Watch Options Yiew Tools

window Help

|2z E@ o

B o o gd @HWULTBE

it

| 6o o | D 5 B O (P 13 5B B

EEEEREEIED

= MultBe_asm [_ O] EA Registers
B AI RO = 0=54 R17 = 0=00
MULTEL: Rl = 0=01 R18 = 0=40
B R2 = 0x2& R19 = 0=00
D Step 40 Multiply rmh:rml by 2 (16 bit=s. shift leit) E3 = 0xad E20 = 0=00
: R4 = 0=00 R21 = 0=00
clc ;| clear carrv bit RS = 000 R22? = 0=00
rol rml ; rotate LSE left (multiply by 2) BE6 = 0x00 F?3 = 0=00
rol rmh ; rotate carry into MSBE and MSE one left R? = 0202 Ro4 = DZDD
E Step 5: Check if there grelsti;l one's in binarv 2, il gg : gzgg ggg : gig?
; yves, go on multiplicating Ri0 = O=01 B27 = O=00
o e = -=ll bits z=ro? R11l = 0=00 R28 = 0x=00
brne MULT8a : if not, go on in the loop R1z = 0x00 E29 = 0=00
- R13 = 0=00 R30 = 0=01
; End of the multiplication, result in reh:rel R14 = 0=x58 E21 = 0=00
B R15 = 0=04
; Endle=ss loop Rle = 0=xto
LOOP:
rimp loop
=
| i w
4]

| Simulator

[T 3058515

*
|Ln 83, Col 1 ML G

I]

-

Using key F5 of the
studio we multi-
stepped over these
loops to a breakpoint
at the end of the
multiplication routine.

The result register
pair R4:R3 has the
result of the

multiplication of OxAA
by 0x55: 0x3872.

This wasn't that complicated, just remind yourself on the similar decimal operations. Binary multiplication is much easier

than decimal.

9.7 Hardware multiplication

All ATmega, ATXmega, AT90CAN and AT9OPWM have an on-board hardware multiplicator, that performs 8 by 8 bit
multiplications in only two clock cycles. So whenever you have to do multiplications and you are sure that this software
never ever needs not to run on an AT90S- or ATtiny-chip, you can make use of this hardware feature.

The following shows how to multiply

® 8-by-8-binaries,

® 16-by-8-binaries,

® 16-by-16-binaries,

® 16-by-24-binaries.

9.7.1 Hardware multiplication of 8-by-8-bit binaries

The use is simple and straight-forward: if the two binaries to be multiplied are in the registers R16 and R17, just type

.def ResL = RO
.def ResH = Rl
def ml RiA
.def m2 R17

] 1di ml. 250

1di m2.100

mul ml.m2

l6-bit re=ult

Define Registers

Load multiplicators

Ferform multiplication

i= in R1:E0

Test=z 8-bw—-8-bit hardware multiplication with ATmegal

mul R16,R17

As the result of these two 8-bit binaries
might be up two 16 bits long, the result
will
significant byte) and RO (least significant
byte). That's all about it.

al* bl =eZel

al* b1

Hardware-Multiplication 8-Bit * 8-Bit

a1 * b e

Registerplan
m1
m2
R1
RO

be

in the

registers R1 (most

The program demonstrates the simulation in the Studio. It multiplies decimal 250 (hex FA) by decimal 100 (hex 64), in the

registers R16 and R17.

Avr-Asm-Tutorial 49 http://www.avr-asm-tutorial.net
After execution, the registers
Register Procassor =1 RO (LSB) and R1 (MSB) hold
ROO= 0xRkE RO1= 0xél RO2= 0x00 Program Courter (000003 the result hex 61A8 or
eis= GOl = RESS GxE0 - R0== Uil Stack Pointer 0000 decimal 25,000.
RS- 0x00 10— 0x00 R1l- 0%00 Xpoiter C<0000
= 0x = Ux = X .

RlZ= 0x00 El3= 0x00 Rld= 0x00 limome Ll g
R1S5= 0x00 R16= OxFA R17= Ox64 Z pointer L LY And: yes, that requires only
R18= 0x00 R19= 0x00 R20= 0x00 T S | two cycles, or 2 microseconds
R21= 0x00 R22= 0x00 R23= 0x00 Frequency 1.0000 MHz with a 1 Mcs/s clock
R24= 0x00 R25= 0x00 R26= 0x00 Stop Watch 200us :
R27= 0x00 E28= O0x00 E29= 0x00 SREG | = o o e
R30= 0x00 R31= 0x00 # Pogeas
B project |E Register B Project | Processor | E Register

9.7.2 Hardware multiplication of a 16- by an 8-bit-binary

You have a larger binary to multiply? Hardware is limited to 8, so we need to invest some genius ideas instead. To solve
the problem with larger binaries, we just look at this combination of 16 and 8 first. Understanding this concept helps
understanding the method, so you will be able to solve the 32-by-64-bit multiplication problem later.

First the math: a 16-bit-binary m1M:m1L are simply two 8-bit-binaries m1M and m1L, where the most significant one m1M
of these two is multiplied by decimal 256 or hex 100. (For those who need a reminder: the decimal 1234 is simply (12
multiplied by 100) plus 34, or (1 multiplied by 1000) plus (2 multiplied by 100) plus (3 multiplied by 10) plus 4.

Hardware-Multiplication 16-Bit * 8-Bit

Registerplan

miM-m1L * = m1M
miL
(266*m1IM + m1L) * m2 = m2
Resd
256" mIM * m2 + m1['u'1*m.'2_h Res?
miL * m2 m1L”m2_’- Res1

So the 16-bit-binary m1 is equal to 256*m1M plus
miL, where m1M is the MSB and milL is the LSB.
Multiplying m1 by 8-bit-binary m2 so s,
mathematically formulated:

® ml*m2=(256*m1M + milL)* m2, or
® 256*m1M*m2 + mill*ma2.

So we just need to do two multiplications and to add both results. Sorry, if you see three asterisks in the formula: the
multiplication with 256 in the binary world doesn't require any hardware at all, because it is a simple move to the next
higher byte. Just like the multiplication by 10 in the decimal world is simply moving the number one left and write a zero

to the least significant digit.

So let's go to a practical example. First we need some registers to

® load the numbers m1and m2,

® provide space for the result, which might have 24 bits length.

 Test hardware multiplication 16-by-8-bit
Register definitions:

‘def Res1 = R2

.def Res2 = R3

.def Res3 = R4

defmiL = R16
defmiM =R17
.defm2 =R18

First we load the numbers:

Load Registers

‘equ m1 = 10000

’

Idi m1M,HIGH(m1) ; upper 8 bits of m1 to m1M

Idi m1L,LOW(m1) ; lower 8 bits of m1 to m1L
Idi m2,250 ; 8-bit constant to m2

The two numbers are loaded into R17:R16 (dec 10000 = hex 2710)

and R18 (dec 250 = hex FA).

Then we multiply the LSB first:

Register LS
RO0O= 0Ox00 ROl= Ox00 ROZ2= 0x00
R03= 0x00 RO04= 0x00 ROS= 0x00
R06= 0x00 RO7= 0x00 ROE= 0x00
R09= 0x00 R10= 0x00 RI1l1= 0x00
Rlz= 0x00 RI13= 0x00 R14= 0x00
R15= 0x00 Rlé= 0x10 R17= 0x27
Rlg= OxFA RI1%= 0x00 R2Z0= 0x00
R2l= 0x00 R22= 0x00 R23= 0x00
R24= 0x00 R25= 0x00 R26= 0x00
R27= 0x00 R28= 0x00 RZ%9%= 0x00
R30= 0x00 R31= 0x00

Project

Processor Reqister

Avr-Asm-Tutorial 50

* Multiply

mul m1L,m2 ; Multiply LSB
mov Res1,R0 ; copy result to result register
mov Res2,R1

The LSB multiplication of hex 27 by hex FA yields hex OFOA, written to

the registers ROO (LSB, hex AO) and RO1 (MSB, hex OF). The result is
copied to the lower two bytes of the result register, R3:R2.

Now the multiplication of the MSB of m1 with m2 follows:

mul m1M,m2 ; Multiply MSB

The multiplication of the MSB of m1, hex 10, with m2, hex FA, yields
hex 2616 in R1:RO.

Now two steps are performed at once: multiplication by 256 and

. . - . ister
adding the result to the previous result. This is done by adding R1:R0 to i:g JwlE B0l 0x26
. . . . = UX = UHZ
Res3:Res2 instead of Res2:Resl. R1 can just be copied to Res3. ROis | pha nyos pos= nuzs
added to Res2 then. If the carry is set after adding, the next higher byte | ros= nxoo E07= 0z0o
Res3 is increased by one. R09= 0x00 R10= 0x00
R12= 0x00 R13= 0x00
mov Res3,R1 ; copy MSB result to result byte 3 R15= 0x00 RE16= 0xl0
add Res2,R0 ; add LSB result to result byte 2 Rl18= 0xFZ R19%= 0x00
bree Nolnc ; if not carry, jump R21= 0x00 R22= 0x00
inc Res3 R24= 0x00 R25= 0x00
Nolnc: R27= 0x00 R28= 0x00
R30= 0x00 R31= 0x00
The result in R4:R3:R2 is hex 2625A0, which is decimal 2500000 (as
everybody knows), and is obviously correct.
ybody y B Project
Processor b4
Program Counter k000008
Stack Pointer k0000
X poirter 0000
¥ poirter <0000 The cycle counter of the multiplication points to 10, at 1 MHz clock a
Z poirter (0000 total of 10 microseconds. Very much faster
Dyceil e i | multiplication!
Frequency 1.0000 MHz
Stop Watch 10.00us
SREG DOREMNmHED
+| Registers
Project | Processor | B2l Register

http://www.avr-asm-tutorial.net

Register

B00= 0OxZ0 ROl= 0x0F RO2= 0x00
RO3= 0x00 RO4= 0x00 RO5= 0x00
RO&= 0x00 ROT= 0x00 ROEB= 0x00
RO%9= 0x00 R10= 0x00 R11l= 0x00
Bl2= 0x00 R13= 0x00 Rld= 0x00
B15= 0x00 Rlée= 0xl0 R17= 0x27
R13= 0xFL R19= 0x00 R20= 0x00
R21= 0x00 R22= 0x00 R23= 0x00
R24= 0x00 R25= 0x00 R26= 0x00
B27= 0x00 R2&8= 0x00 R29= 0x00
B30= 0x00 BR31l= 0x00

Register

E00= 0xlé BR0Ol= Ox2& RO2= 0xh0
R03= 0x0F RO4= 0x00 ROS= 0x00
R06= 0x00 RO7= 0x00 ROS= 0x00
R09= 0x00 R10= 0x00 R1ll= 0x00
El2= 0x00 Rl3= 0x00 Rl4= 0x00
BEl5= 0x00 Rle= 0xl0 R17= 0x27
R13= 0xFL R19= 0x00 R20= 0x00
R21= 0x00 R22= 0x00 R23= 0x00
R24= 0x00 R25= 0x00 R26= 0x00
R27= 0x00 R28= 0x00 R29= 0x00
E30= 0x00 BR31= 0x00

Project | Processor | & Register

ROZ=
RO5=
RO&=
Rll=
Rli=
R17=
R20=
R23=
R26=
RZ9=

0xR0
0x00
0x00
0x00
0x00
0x27
0x00
0x00
0x00
0x00

Processor Reqister

9.7.3 Hardware multiplication of a 16- by a 16-bit-binary

Now that we have understood the principle, it should be easy to do 16-by-16. The result requires four bytes now

(Res4:Res3:Res2:Resl, located in R5:R4:R3:R2). The formula is:

than

Avr-Asm-Tutorial

51

Hardware-Multiplication 16-Bit * 16-Bit

Registerplan

miM:miL * m2M:m2L = m1M

milL
(256*m1M + miL) * (266" m2M + m2L) = m2M

mZL
266%256* mIM* m2M + m1M * m2M Resd
266" m1M * m2L + miM * m2L Res3
26" m1L * m2M + miL * m2M Res?
miL * m2L miL * m2L Res1

http://www.avr-asm-tutorial.net

ml*m2 = (256*m1M + mlL) *

(256*m2M + m2L)

= 65536*m1M*m2M +
256*m1M*m2L +
256*m1L*m2M +
miL*m2L

Obviously four multiplications now. We start with the first and the last as the two easiest ones: their results are simply
copied to the correct result register positions. The results of the two multiplications in the middle of the formula have to
be added to the middle of our result registers, with possible carry overflows to the most significant byte of the result. To

do that, you will see a simple trick that is easy to understand. The software:

Test Hardware Multiplication 16 by 16

; Define Registers
.def Res1 =R2
.def Res2 = R3
.def Res3 = R4
.def Res4 = R5
.defmi1L = R16
.defmiM =R17
.defm2L = R18
.def m2M = R19
.deftmp = R20

Load input values

.equ m1 = 10000

.equ m2 = 25000
Idi m1M,HIGH(m1)
Idi m1L,LOW(m1)
Idi m2M,HIGH(m2)
Idi m2L,LOW(m2)

; Multiply
clr R20 ; clear for carry operations
mul m1M,m2M ; Multiply MSBs
mov Res3,R0 ; copy to MSW Result
mov Res4,R1
mul m1L,m2L ; Multiply LSBs
mov Res1,R0 ; copy to LSW Result
mov Res2,R1
mul m1M,m2L ; Multiply 1M with 2L
add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp ; add carry
mul m1L,m2M ; Multiply 1L with 2M
add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp

Muiltiplication done

’

Simulation shows the following steps.

Loading the two constants 10000 (hex 2710) and 25000 (hex 61A8) to
the registers in the upper register space ...

Multiplying the two MSBs (hex 27 and 61) and copying the result in R1:R0 to the two most upper result registers R5:R4 ...

Register

ROO= 0x00
RO3= 0x00
RO&= 0x00
R0O9= 0x00
Rl2= 0x00
R15= 0x00
R1E8= Ox&E
R21= 0x00
R24= 0x00
R27= 0x00
R30= 0x00

RO1=
Rl4=
RO7=
Rl0=
El3=
Elé=
Rl3=
RZZ=
R25=
R28=

R3l=

Project Register

0x00
0x00
0x00
0x00
0x00
0xl10
0x6l
0x00
0x00
0x00
0x00

ROZ2=
RO5=
ROE=
Rll=
Rl4=
R17=
RZ0=
RZ3=
RZ6=
R29=

0x00
0x00
0x00
0x00
0x00
0x27
0x00
0x00
0x00
0x00

Avr-Asm-Tutorial 52

http://www.avr-asm-tutorial.net

Register *
ROO= 0xC7 ROl= 0x0OE ROZ= 0x00
RO3= 0x00 RO4= 0xC7 ROS= 0xCE
ROG= 0x00 RO7= 0x00 ROS= 0x00
RO%9= 0x00 R10= 0x00 R1l= 0x00
RlZ= 0x00 R13= 0x00 R1l4= 0x00
R15= 0x00 R16= 0x10 R17= 0x27
=
Ox0Z RO2= O0xE0
Multiplying the two LSBs (hex 10 and A8) and copying the result in 0xC7 RO5= 0x0E
R1:RO to the two lower result registers R3:R2 ... 0x00 ROB= 0x00
0x00 R1ll= 0x00
0x00 Rld= 0x00
0x10 R17= 0x27
0x6l R20= 0x00
0x00 R23= 0x00
0x00 R26= 0x00
0x00 R29%= 0x00
0x00
Reqgister x
ROO= 0x98 ROl= 0x13 RO2= 0xa0
RO3= 0xAZ RO4= 0XEQ ROS= 0x0E
Multiplying the MSB of m1 with the LSB of m2 and adding the result in |/ R0g= 0x00 RO7= 0x00 RO&= 0x00
R1:RO to the result register's two middle bytes, no carry occurred ... RO0S= 0x00 R10= 0x00 RIl= 0x00
RlZ= 0x00 R13= 0x00 Rl4= 0x00
RlS= 0x00 R1l&= 0x10 R17= 0x27
R1f= 0xL& R19= 0OxAl R20= 0x00
R21= 0x00 E22= 0x00 R23= 0x00
R24= 0x00 R25= 0x00 R2&= 0x00
R27= 0x00 R28= 0x00 R2%= 0x00
R30= 0x00 R31= 0x00
Register ®
o)]] ROO= 0x10 ROl= 0x06 RO2= Ox&0
Multiplying the LSB of m1 with the MSB of m2 and adding the result in |} zns= nxE2 EBAO4= 0xFE BOS= Ox0E
R1:RO to the result register's two middle bytes, no carry occurred. The |||R0&= 0x00 ROT= 0x00 RO&= 0x00
result is hex OEE6B280, which is 250000000 and obviously correct ... RO2= 0x00 R10= 0x00 RI1= 0x00
RlZ= 0x00 R13= 0x00 Rl4= 0x00
R1S= 0x00 R16= 0x10 R17= 0x27
= - < Rla= 0xR8 R19%9= 0xal R20= 0x00
rocesso R21= 0x00 R22= 0x00 R23= 0x00
Program Counter (0000732 R24= 0x00 R25= 0x00 R2&= 0x00
Stack Pointer 0000 R27= 0x00 R28= 0x00 R2%= 0x00
¥ pointer GeD000 R30= 0x00 R31l= 0x00
Y pointer (D000
Z pointer (cDDDD
Cyde Counter 13 B project | Register
Frequency 1.0000 MHz Multiplication
Stop Watch [19.00us | needed 19 clock
SREG OEHEEMEELD cycles, which is very much faster than with software multiplication.
| Registers Another advantage here: the required time is ALWAYS exactly 19
cycles, and it doesn't depend on the input numbers (like is the case
| - i ftwar iplicati verf r
Bl Project | Processor | E=l Register with so twaT e mult RI cation ar.1d on overflow occurrences (thanks to
our small trick of adding zero with carry). So you can rely on this ...

9.7.4 Hardware multiplication of a 16- by a 24-bit-binary

Hardware-Multiplication 16-Bit * 24-Bit The multiplication of a 16 bit binary

. "a" with a 24 bit binary "b" leads to

Registerplan results with up to 40 bit length. The

aZz:al * b3:b2Zb1 = ededede2 el a2 multiplication scheme requires six 8-

al by-8-bit multiplications and adding

(256%a2 + a1) * (65536%b3 + 256%b2 + b1) = b3 the results to the appropriate position

b2 in the result registers.

2506 *6bh36 " a2 " b3 + az” b3
256 * 256 * a2 * h2 + a2* b2

256 "a2 " b1+
65536 “ a1 * b3 +
296 *al * b2 +
a1l * b

a2 b1
al’ b3
al” b2

b1
\ ed The assembler source code for this:
ed
k* e3

—_—| e2

al*phl ————p el ; Hardware Muitiplication 16 by 24 bit

; Register definitions
.def a1 = R2 ; define 16-bit register
.defa2 =R3

.include "m8def.inc"

s

Avr-Asm-Tutorial

.def b1 = R4 ; define 24-bit register

.def b2 =R5

.def b3 = R6

.def e1 = R7 ; define 40-bit result register
.defe2=R8

.defe3 =R9
.defe4=R10
.defeb5 =R11

.def c0 = R12 ; help register for adding
.defrl = R16 ; load register

; Load constants
.equ a = 10000 ; multiplicator a, hex 2710
.equ b = 1000000 ; multiplicator b, hex 0F4240
Idi rl,BYTE1(a) ; load a
mov af,rl
Idi rl,BYTEZ2(a)
mov a2,rl
Idi rl,BYTE1(b) ; load b
mov b1,rl
Idi r,BYTE2(b)
mov b2,rl
Idi r,BYTE3(b)
mov b3,rl

; Clear registers
clre1; clear result registers
clre2
clre3
clre4
clrebd
clr c0; clear help register

, Multiply
mul a2,b3 ; term 1
add e4,R0 ; add to result
adc e5,R1
mul a2,b2 ; term 2
add e3,R0
adc e4,R1
adc eb,c0 ; (add possible carry)
mul a2,b1 ; term 3
add e2,R0O
adc e3,R1
adc e4,c0
adc e5,c0
mul a1,b3 ; term 4
add e3,R0O
adc e4,R1
adc e5,c0
mul a1,b2 ; term 5
add e2,R0O
adc e3,R1
adc e4,c0
adc e5,c0
mul a1,b1 ; term 6
add e1,R0O
adc e2,R1
adc e3,c0
adc e4,c0
adc e5,c0

done.
nop
; Result should be hex 02540BE400

The complete execution requires
® 10 clock cycles for loading the constants,
® 6 clock cycles for clearing registers, and

® 33 clock cycles for multiplication.

9.8 Division

No, unfortunately there is no hardware division. You need to do this in software!

9.8.1 Decimal division

53

http://www.avr-asm-tutorial.net

Again we start with the decimal division, to better understand the binary division. We assume a division of 5678 by 12.

This is done like this:

Avr-Asm-Tutorial 54 http://www.avr-asm-tutorial.net

878

- 7 * 120 = 840
38

- 37 12 = 36
2

Result: 5678 : 12 = 473 Remni nder 2

9.8.2 Binary division

In binary the multiplication of the second number in the above decimal example (4 * 1200, etc.) is not necessary, due to
the fact that we have only 0 and 1 as digits. Unfortunately binary numbers have much more single digits than their decimal
equivalent, so transferring the decimal division to its binary equivalent is a little bit inconvenient. So the program works a
bit different than that.

The division of a 16-bit binary number by a 8-bit binary in AVR assembler is listed in the following section.

; Div8 divides a 16-bit-number by a 8-bit-number (Test: 16-bit-number: 0XAAAA, 8-bit-number: 0x55)
.NOLIST

.INCLUDE "C:\avrtools\appnotes\8515def.inc" ; adjust the correct path to your system!
.LIST

; Registers

.DEF rd1] = RO ; LSB 16-bit-number to be divided

.DEF rd1h = R1 ; MSB 16-bit-number to be divided

.DEF rd1u = R2 ; interim register

.DEF rd2 = R3; 8-bit-number to divide with

.DEF rel = R4 ; LSB result

.DEF reh = R5; MSB result

.DEF rmp = R16; multipurpose register for loading

.CSEG
.ORG 0
rimp start
start:
; Load the test numbers to the appropriate registers
Idi rmp,0xAA ; OXAAAA to be divided
mov rd1h,rmp
mov rd1l,rmp
Idi rmp,0x55 ; 0x55 to be divided with
mov rd2,rmp
; Divide rd1h:rd1l by rd2
div8:
clr rd1u ; clear interim register
clr reh ; clear result (the result registers
clr rel ; are also used to count to 16 for the
inc rel ; division steps, is set to 1 at start)
, Here the division loop starts
div8a:
clc ; clear carry-bit
rol rd11 ; rotate the next-upper bit of the number
rol rd1h ; to the interim register (multiply by 2)
rol rd1u
bres div8b ; a one has rolled left, so subtract
cp rd1u,rd2 ; Division result 1 or 0?
bres div8c ; jump over subtraction, if smaller

div8b:

sub rd1u,rd2; subtract number to divide with

sec ; set carry-bit, result is a 1

rfmp div8d ; jump to shift of the result bit
div8c:

clc ; clear carry-bit, resulting bit is a 0
div8d:

rol rel ; rotate carry-bit into result registers

rol reh

brec div8a ; as long as zero rotate out of the result registers: go on with the division loop
; End of the division reached
stop:
rjimp stop ; endless loop
9.8.3 Program steps during division
During execution of the program the following steps are ran:

» Definition and preset of the registers with the test binaries,

« presetting the interim register and the result register pair (the result registers are presetted to 0x0001! After
16 rotations the rolling out of the one stops further division steps.),

Avr-Asm-Tutorial 55

http://www.avr-asm-tutorial.net

« the 16-bit-binary in rd1h:rd1l is rotated bitwise to the interim register rd1lu (multiplication by 2), if a 1 is
rotated out of rd1u, the program branches to the subtraction step in step 4 immediately,

» the content of the interim register is compared with the 8-bit binary in rd2, if rd2 is smaller it is subtracted
from the interim register and the carry-bit is set to one, if rd2 is greater the subtraction is skipped and a zero

is set to the carry flag,

« the content of the carry flag is rotated into the result register reh:rel from the right,

- if a zero rotated out of the result register, we have to repeat the division loop, if it was a one the division is

completed.

If you don't understand rotation yet you'll find this operation discussed in the multiplication section.

9.8.4 Division in the simulator

= Div8e.azm [_ [O] x]

Diwd dividez a lé-bit-number by a 8-bit-number -
Te=st: l6-bit-number: Oxdidd, S-bit-number: 0xL55 —

NOLIST

JIHCLUDE "2 wawvrtools-appnotes~8515des inc"

LIST

: Regi=zters

_DEF rdil = RO L5E le-bit—number to be divided

.DEF rdlh = R1 MSE leé-bit—number to be divided =

.DEF rdlu = RZ interim register

DEF rd2 = R32 G—bit—numbser to diwvide with

.DEF r=l = R4 LSE result

.DEF reh = RE HSE result

.DEF rmp = Rl6: multipurpose regiszter Zor loading

(CSEG

LORG O

ol

étart:

Load the test numbers to the appropriate registers
I’ Tdd +rmn O=dd - (=idi4 to he diwided I bl
A »

4

The following screen shots demonstrate the
program steps in the studio (here in version 3, so it
looks different). To do this, you have to assemble
the source code and open the resulting object file
in the studio.

The object code has been started, the cursor
(yellow arrow) is on the first executable
instruction. The key F11 performs single steps.

= AVA Studio - DivBe_asm

File Edit Project Debug Breakpoints Trace & tiggers “Watch Options Wiew Tools Window Help

The test binaries OxAAAA and
0x55, to be divided, have been

[_ (O] x]

o=@ o|lme o s ||ove

||| g o0 S B P 0 2R

Bl = &

written to the registers R1:R0 and

File Edit Project Debug Breakpoints Trace & tiggers Watch Options “iew Tools Window Help

i DivBe.asm Col=| B =1k |
: ~[l[r0 = 0=a2 R17 = 0=00
: Load the test numbesrs to the sppropriate registers RF1l = Oxaz R18 = 000
B . L R2 = 0x00 R19 = 0=x00
1di rmp.O=zdd @ O=iidé to be divided E3 = 0=5t R20 = 0=00
oy ;g}?fimg R4 - 0=00 R21 - 0x00
1di rmp.0x55 © 0=55 to be divided with Re C pmnb R22 - w0
mov rd2. rmp RE? = 0=00 R24 = 0=00
© Divide rdih:rdll by rd2 RS = 0=00 R25 = 0O=00
B R9 = 0=00 R26 = 0O=x00
dive: R10 = 0=00 R27 = 0=00
1 ; clear interim register R11 = 0x00 R28 = 0x00
; clear result (the result registers R12 = 0=x00 R29 = 0x00
; are also used to count to 16 for the R12 = 0x00 R30 = 0=00
inc rel : diwision steps. is set to 1 at start) Rl4 = 0x00 R3I1 = 0O=x00
- R15 = 0=00
: Here the diwision loop starts R16 = 0=55S
divEa:
cle . clear carry-bit
rol rdll : rotate the next—upper bit of the numbe
rol rdlh : to the interim register (nultiply by -
rol rdlu
- bros div8b : a one ha=s rolled left. =o subtract
cp rdlu,rd2 | Division result 1 or 07
bres Aiwhe dumt et =suhtrastdion if =mal 'Iﬁr_lLI
4] A
L] 3
[|Simulator |AT30S8515 ILn 36, Col 1 N Z
The interim register R2 and the
% A¥R Studio - DivBe_asm [_ [O] <] g

result register pair are set to their

|8z ao|=e - - a || Ea[f*

| gt o | [EL B B T (P X0 R [Eh |

predefined values.

EEEREEEI

[DivBe asm =] E3 I EA Reagisters O] x| l

: ~[l[rRD = 0O=x&& R17 = 0=00
: Load the test numbers to the appropriate registers Rl = Oxai FRI18 = 0=x00
Rz = 0x00 R19 = 0=x00
1di rnp, O0xdd ;| Oxd224 to be divided R3 = 0=55 ER20 = 0=00
moy igig'img R4 = Oz=01 E21 = Ox=00
1d1 rmp,ﬁxSS ; O0x55 to be diwided with gg : gzgg Egg : gzgg
. nev rdz. rne R7 = 0=00 R24 = 0x00
; Divide rdih:rdll by »d2 R8 - 0x00 R25 - 0=00
: R9 = 0x00 R26 = 0x00
diva: R10 = 0=x00 R27 = 0=00
clr rdlu : clear interim register Ri1l = 0=00 R28 = 0=00
clr reh clear result (the result registers R12 = 0=x00 R29 = 0=00
clr rel . are also used to count to 16 for the R13 = 0=00 R30 = 0=00
inc rel : division steps. i= set to 1 at =start) R14 = 0=x00 R21 = 0O=00
: N R15 = 0O=00
: Here the division loop starts Ri6 = 0O=55
divEa:
: clear carrv-bit
rol rdll . rotate the next—upper bit of the nunbe
rol rdlh | to the interim register {(multiply by Z
rol rdlu
| bros diwlb @ 2 one has rolled left. =so subtract
cp rdlu.rd? | Diwvision result 1 ox 07
hre= diwfe Gumn ower suhtraction if o= alleT_J:J
4| F Ll]
[« E

ATI0S8515

[|Simulator

[Ln 44, Cal 1

[TTINOHITTT 2

Avr-Asm-Tutorial 56
i AVR Studio - Divie.asm =] B3
File Edit Project Debug Breakpointz Trace &triggers ‘wiatch Options Wiew Toolz ‘window Help
ez a o] o wm o [8 [[£ o [26 B B (R 0 = b
(REOE| e @ m]
i DivBo.aom e e S 1] |
: - [RO = O=54 R17 = O=00
: Load the test numbers to the appropriste registers R1 = 0x55 Rig = 0x00
:) o E2 = 0z01 R19 = 0=00
1di rmp.Oxdd © Oxiiii to be diwvided B3 = 0=55 R20 = 0=00
mgg ;gi?,;mg R4 = 0O=01 R21 = 0=00
1di rmp,ﬁxSS . D=55 to be divided with gg : gzgg ggg : gigg
mow rdZ. rnp R? = O=00 R24 - D=00
! Divide rdih:rdll by rdz RS = 0=00 R25 = 0=00
B R9 = 0x00 R26 = 0=x00
diwd: R10 = 0x00 E27 = 0=x00
n clr rdlu @ clesr interim register R11 = 0=00 R28 = 0O=00
clr reh ; clear result {the result registers R12 = 0x00 R29 = 0x00
clr rel | are also used to count to 16 for the R13 = 0=00 R30 = 0=00
inc rel | diwvision steps. is ==t to 1 at start) R14 = 0=00 R31 = 0=00
- R15 = 0O=00
; Here the division loop starts Ri16 = 0xG5
diva:
SIt ... :cleer egprvobir ————
B T I T s o S S PRSP AL NS, B
“AVR Sludio - DivBe.asm IS[=] E3
File Edit Pioject Debug Breakpointz Trace & tiggers ‘wWatch Options Yiew Tools Window Help
[azgo|me s o ||ove Slliker % BIE W B G 0EE
|Re0= =& m|
i DivBe.asm !EE I [ox] Heglslels 5 [=] B3 l

File Edit

Project

brocs divib
cp rdlu, rd2

divi8c

sub rdlu.rd2:

breos=
div8b:

=ec

rinp
diwv8c:

clo
divid:

EX|

: End of the
=top:

rimp

divad

; clear carrv-bit.

division

=top

2 one has rolled left.

. jump over subtraction.

zet carrv-bit,
oodjump to shift of the result bit

; rotate carry-bit into result registers

. as long as zero rotate out of the ¥

. endless loop

=0 subtract
Division result 1 or 07
if =maller

subtract numbsr to divide with

result i= a 1

resulting bit is a 0

registers:
reached

go on with the division

2 AYR Studio - DivBe.asm [_ O] =}

Debug Breakpointz Trace & triggers “Watch DOptionz Yiew Toolz

[RO = 0=Ed4 Ri7 = Om00
0=x55
O0z01
0xEE
0=02
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=x55

Wwindow Help

R17
R18
R19
R20
R21
R22
R23
R24
R25
R2p
R27
R28
R29
R30
R31

0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00

http://www.avr-asm-tutorial.net

R1:RO was rotated left to R2,
from OXAAAA the doubled value
of 0x015554 was yielded.

No overflow from rotation into
carry has occurred and 0x01 in
R2 was smaller than 0x55 in R3,
so subtraction was skipped. A
zero in the carry is rotated into
the result register R5:R4. The
former content of the result
register, a single 1-bit in position
0 has rotated to position 1
(content now: 0x0002). As a zero
was rotated out of the result
register pair, the next step to be
executed is a branch to the
beginning of the division loop
start and the loop s
repeated.

J"@|D”Eﬁ|0“ﬁ,ﬂ “M@‘“DNBE

i+

| g o0 [0 30 B T B0 =R [

After executing the loop 16

[geoE pd @

times we have reached the

= Div8e.asm !EI- I [5x] Heglslels |0 =] I

divih: [R0 = 0=00 RI17 = O=00
sub rdlu,rd?; subtract number to divide with Rl = 0=00 R18 = 0=00
=EC . ==t carry-bit, result iz a 1 E? = 0=00 FE19 = 0=00
div rimnp diwdd jump to shift of the result bit F? = 0x55 F20 = 0=00
1VHG: . . A R4 = 0=02 EZ1 = 0=00
divad. clo ; clear carry-bit. resulting bit i= a 0 RS = 0=02? R2?2 = D=00
rol rel | rotate carry-bit into result registers Reé = 0x00 RZ3 = 0=00
rol reh E7 = 0=00 EZ4 = 0=00
brocc diwBa ; as long as zero rotate out of the I R = 0x00 R25 = D=00
. registers: go on with the division k3 = 0=00 E26 = 0=00
: End of the diviszion reached R10 = 0x00 ER27 = 0=00
=top: R11 = 0=00 R28 = 0=00
; endless loop RFlz = 0=00 R29 = 0=00
E13 = 0=x00 E30 = 0=00
Fl4 = 0=x00 E31 = 0=00

R15 = 0=00

Rl6 = 0=EE

| |
<]

breakpoint set at the end of
the division routine. The
result register in R5:R4 holds
0x0202, the result of the
division. The registers
R2:R1:RO are empty, so we
do not have a remainder
left. If a remainder would
have been resulted we can
use it to decide whether an
incrementation of the result
should take place, rounding
of the result up. This step is
not coded here.

Cd Processor

Program Counter [0=00000018 =-Fegister |0=20001
Stack Painter 000000000 Y-Fegister |O=0000
Cycle Counter onoaozz2 Z-Register |0=000
Time Elapsed ID-DE m Frequency |4.D fHz
Flags Stoptafatch
| RErA E v ERaess b et bkt [o] | 006 |
rrre-wi I+ el L

9.9 Number conversion

Number conversion routines are not included here. Please refer to the website at

4. Cal1

I_IWI_ 4

http://www.avr-asm-tutorial.net/avr_en

if you need the source code or a better understanding.

The whole division needs 60 micro-seconds
processor time (open a processor view in the
studio menu). A rather long time for a division.

http://www.avr-asm-tutorial.net/avr_en

Avr-Asm-Tutorial 57 http://www.avr-asm-tutorial.net

9.10 Decimal Fractions

First: Do not use any floating points, unless you really need them. Floating points are resource killers in an AVR, lame ducks
and need extreme execution times. Run into this dilemma, if you think assembler is too complicated, and you prefer Basic
or other languages like C or Pascal.

Not so, if you use assembler. You'll be shown here, how you can perform the multiplication of a fixed point real number in
less than 60 micro-seconds, in special cases even within 18 micro-seconds, at 4 MHz clock frequency. Without any floating
point processor extensions and other expensive tricks for people too lazy to use their brain.

How to do that? Back to the roots of math! Most tasks with floating point reals can be done using integer numbers.
Integers are easy to program in assembler and perform fast. The decimal point is only in the brain of the programmer, and
is added somewhere in the decimal digit stream. No one realizes, that this is a trick.

9.10.1 Linear conversions

As an example the following task: an 8-Bit-AD-Converter measures an input signal in the range from 0.00 to 2.55 Volt, and
returns as the result a binary in the range from $00 and SFF. The result, a voltage, is to be displayed on a LCD display. Silly
example, as it is so easy: The binary is converted to a decimal ASCII string between 000 and 255, and just behind the first
digit the decimal point has to be inserted. Done!

The electronics world sometimes is more complicated. E. g., the AD-Converter returns an 8-Bit-Hex for input voltages
between 0.00 and 5.00 Volt. Now we're tricked and do not know how to proceed. To display the correct result on the LCD
we would have to multiply the binary by 500/255, which is 1.9608. This is a silly number, as it is almost 2, but only almost.
And we don't want that kind of inaccuracy of 2%, while we have an AD-converter with around 0.25% accuracy.

To cope with this, we multiply the input by 500/255*256 or 501.96 and divide the result by 256. Why first multiply by 256
and then divide by 2567? It's just for enhanced accuracy. If we multiply the input by 502 instead of 501.96, the error is just
in the order of 0.008%. That is good enough for our AD-converter, we can live with that. And dividing by 256 is an easy
task, because it is a well-known power of 2. By dividing with numbers that are a power of 2, the AVR feels very
comfortable and performs very fast. By dividing with 256, the AVR is even faster, because we just have to skip the last byte
of the binary number. Not even shift and rotate!

The multiplication of an 8-bit-binary with the 9-bit-binary 502 (hex 1F6) can have a result larger than 16 bits. So we have to
reserve 24 bits or 3 registers for the result. During multiplication, the constant 502 has to be shifted left (multiplication by
2) to add these numbers to the result each time a one rolls out of the shifted input number. As this might need eight shifts
left, we need further three bytes for this constant. So we chose the following combination of registers for the
multiplication:

Number Value (example) Register
Input value 255 R1
Multiplicand 502 R4 :R3:R2
Result 128,010 R7 : R6: R5

After filling the value 502 (00.01.F6) to R4 : R3 : R2 and clearing the result registers R7 : R6 : R5, the multiplication goes like
this:

1. Test, if the input number is already zero. If yes, we're done.

2. If no, one bit of the input number is shifted out of the register to the right, into the carry, while a zero is
stuffed into bit 7. This instruction is named Logical-Shift-Right or LSR.

3. If the bit in carry is a one, we add the multiplicand (during step 1 the value 502, in step 2 it's 1004, a. s. 0.) to
the result. During adding, we care for any carry (adding R2 to R5 by ADD, adding R3 to R6 and R4 to R7 with
the ADC instruction!). If the bit in the carry was a zero, we just don't add the multiplicand to the result and
jump to the next step.

4. Now the multiplicand is multiplied by 2, because the next bit shifted out of the input number is worth double
as much. So we shift R2 to the left (by inserting a zero in bit 0) using LSL. Bit 7 is shifted to the carry. Then we
rotate this carry into R3, rotating its content left one bit, and bit 7 to the carry. The same with R4.

5. Now we're done with one digit of the input number, and we proceed with step 1 again.

The result of the multiplication by 502 now is in the result registers R7 : R6 : R5. If we just ignore register R5 (division by
256), we have our desired result. To enhance accuracy, we can use bit 7 in R5 to round the result. Now we just have to
convert the result from its binary form to decimal ASCIl (see Conversion bin to decimal-ASCIl on the website). If we just
add a decimal point in the right place in the ASCII string, our voltage string is ready for the display.

The whole program, from the input number to the resulting ASCIl string, requires between 79 and 228 clock cycles,
depending from the input number. Those who want to beat this with the floating point routine of a more sophisticated
language than assembler, feel free to mail me your conversion time (and program flash and memory usage).

Avr-Asm-Tutorial 58 http://www.avr-asm-tutorial.net

9.10.2 Example 1: 8-bit-AD-converter with fixed decimal output

; Demonstrates floating point conversion in Assembler, (C)2003 www.avr-asm-tutorial.net

; The task: You read in an 8-bit result of an analogue-digital-converter, number is in the range from hex 00 to FF.
; You need to convert this into a floating point number in the range from 0.00 to 5.00 Volt
; The program scheme:
;1. Multiplication by 502 (hex 01F6). That step multiplies by 500, 256 and divides by 255 in one step!
;2. Round the result and cut the last byte of the result. This step divides by 256 by ignoring the last byte of the result.
; Before doing that, bit 7 is used to round the resuilt.
;3. Convert the resulting word to ASCII and set the correct decimal sign. The resulting word in the range from 0 to 500
; is displayed in ASCll-characters as 0.00 to 5.00.
, The registers used:
, The routines use the registers R8..R1 without saving these before. Also required is a multipurpose register called rmp,
, located in the upper half of the registers. Please take care that these registers don't conflict with the register use in the
, rest of your program.
; When entering the routine the 8-bit number is expected in the register R1. The multiplication uses R4:R3:R2 to hold
;the multiplicator 502 (is shifted left max. eight times during multiplication). The result of the multiplication is calculated
, In the registers R7:R6:R5. The result of the so called division by 256 by just ignoring R5 in the result, is in R7:R6. R7:R6
; Iis rounded, depending on the highest bit of R5, and the result is copied to R2:R1.
; Conversion to an ASCII-string uses the input in R2:R1, the register pair R4:R3 as a divisor for conversion, and places the
; ASCII result string to R5:R6:R7:R8 (R6 is the decimal char).
; Other conventions:
; The conversion uses subroutines and the stack.The stack must work fine for the use of three levels (six bytes SRAM).
; Conversion times:
; The whole routine requires 228 clock cycles maximum (converting $FF), and 79 clock cycles minimum (converting $00).
; At 4 MHz the times are 56.75 microseconds resp. 17.75 microseconds.
; Definitions:
; Registers
.DEF rmp = R16 ; used as multi-purpose register
; AVR type: Tested for type AT90S8515, only required for stack setting, routines work fine with other AT90S-types also
.NOLIST
.INCLUDE "8515def.inc"
.LIST
; Start of test program
; Just writes a number to R1 and starts the conversion routine, for test purposes only
.CSEG
.ORG $0000
rfmp main
main:
Idi rmp,HIGH(RAMEND) ; Set the stack
out SPH,rmp
Idi rmp,LOW(RAMEND)
out SPL,rmp
Idi rmp,$FF ; Convert $FF
mov R1,rmp
rcall fpconv8 ; call the conversion routine
no_end: ; unlimited loop, when done
rfmp no_end
; Conversion routine wrapper, calls the different conversion steps
foconv8:
reall foconv8m ; multiplicate by 502
rcall fpconv8r ; round and divide by 256
rcall fpconv8a ; convert to ASCII string
Idi rmp,"." ; set decimal char
mov R6,rmp
ret ; all done
; Subroutine multiplication by 502
fpconv8m:
clr R4 ; set the multiplicant to 502
Idi rmp,$01
mov R3,rmp
Idi rmp, $F6
mov R2,rmp
clr R7 ; clear the result
clr R6
clr R5
fpconv8m1:
or R1,R1 ; check if the number is all zeros
brne foconv8m?2 ; still one's, go on convert
ret ; ready, return back
foconv8m2:
Isr R1 ; shift number to the right (div by 2)
brec fpconv8ma3 ; if the lowest bit was 0, then skip adding
add R5,R2 ; add the number in R6:R5:R4:R3 to the result
adc R6,R3
adc R7,R4
foconv8ma3:
Isl R2 ; multiply R4:R3:R2 by 2
rol R3
rol R4
rimp fpconv8m1 ; repeat for next bit
; Round the value in R7:R6 with the value in bit 7 of R5
fpconv8r:
clr rmp ; put zero to rmp

Avr-Asm-Tutorial 59 http://www.avr-asm-tutorial.net

Isl R5 ; rotate bit 7 to carry
adc R6,rmp ; add LSB with carry
adc R7,rmp ; add MSB with carry
mov R2,R7 ; copy the value to R2:R1 (divide by 256)
mov R1,R6
ret
; Convert the word in R2:R1 to an ASCI| string in R5:R6:R7:R8
fpconv8a:
clr R4 ; Set the decimal divider value to 100
Idi rmp, 100
mov R3,rmp
rcall fpconv8d ; get ASCII digit by repeated subtraction
mov R5,rmp ; set hundreds string char
Idi rmp, 10 ; Set the decimal divider value to 10
mov R3,rmp
rcall fpconv8d ; get the next ASCII digit
mov R7,rmp ; set tens string char
Idi rmp,’0" ; convert the rest to an ASCII char
add rmp,R1
mov R8,rmp ; set ones string char
ret
; Convert binary word in R2:R1 to a decimal digit by substracting the decimal divider value in R4:R3 (100, 10)
fpconv8d:
Idi rmp,'0" ; start with decimal value 0
fpconv8d1:
cp R1,R3 ; Compare word with decimal divider value
cpc R2,R4
brec fpconv8d2 ; Carry clear, subtract divider value
ret ; done subtraction
fpconv8d2:
sub R1,R3 ; subtract divider value
sbc R2,R4
inc rmp ; up one digit
rfimp fpconv8d1 ; once again
: End of conversion test routine

9.10.3 Example 2: 10-bit-AD-converter with fixed decimal output

This example is a bit more complicated. Refer to the website if you need it.

Avr-Asm-Tutorial 60 http://www.avr-asm-tutorial.net

10 Project planning

10.1 How to plan an AVR project in assembler

Here are the basics on how to plan a simple project, to be programmed in assembler. Because the hardware components
determine a lot, the hardware considerations are discussed first. Then a chapter on interrupt follows and after that timing
issues are discussed.

10.2 Hardware considerations

The decision, which type of AVR fits best to your needs, a number of considerations can play a role. Here are the most
relevant ones:

1. Which port connections with a fixed location are needed? Fixed locations are 1/O ports of internal components
that are only available on certain pins, and cannot be moved to another portpin. Components and connections of
this kind are:

1. If the processor should be programmable within the circuit (ISP interface), the pins SCK, MOSI and MISO
have to be assigned for this purpose. If your peripheral allows that those can be used as inputs (e. g. SCK
and MOSI) or as outputs (by decoupling them via resistors or multiplexers).

2. If a serial interface is needed, RXD and TXD have to be reserved for that purpose. If the RTS/CTS
hardware handshake protocol shall be implemented as well, two additional portpins are required, but
can be placed at any other free location.

If an analog comparator is needed, AINO and AIN1 have to be reserved for that.

If external signals are to be monitored for level changes, INTO and/or INT1 have to be reserved for that.

5. If AD converters arew to be used, the ADC inputs have to be placed and reserved for that purpose. If the

converter has the external AVCC and AREF connections, those should be used and wired accordingly.

6. If external pulses are to be counted, the timer input pins TO, T1 and T2 are fixed and exclusive for that
use.

7. If external SRAM is to be attached, the respective address and data ports together with ALE, RD and WR
have to be reserved.

8. If the processor clock should be generated from an external crystal oscillator, XTAL1 has to be reserved. If
an external crystal or ceramic resonator shall control the clock frequency, XTAL1 and XTAL2 are fixed for
that purpose.

2. Are there any external components that require more than one portpin (e. g. 2, 4 or 8) to be written or read?
These should be defined in an appropriate way (in the same port, in the right order).

1. If controlling of an external device requires writing or reading of more than one bit at once, e. g. a four-
or eight-bit LCD interface, the necessary port bits should be in the right order. If it isn't possible to place
the whole interface in a single port, the interface can be divided into two pieces. The software is easier, if
the resulting portions are left- or right-adjusted in the port.

2. If two or more ADC channels are required, the software is easier, if those are placed in an order (e. g.
ADC2+ADC3+ADC4).

3. Atthe end, all external components are placed that do not require fixed pins.

1. If only a single pin causes you to select a larger device, you can consider using the RESET pin for that
purpose. This can be used as an input pin if a certain fuse is set. Setting of that fuse disables further ISP
programming, the chip can only be programmed in high-voltage programming modes. For final
productions with a large number of identical devices, this is acceptable, but not for prototyping. In case
of prototyping a high-voltage programmer interface on the ISP pin can be used, if the component on the
RESET pin is protected against the 12 V on this pin during ISP programming, e. g. with a resistor and a
zener diode.

bl

Further considerations for the decision, which processor type fits best, are:

¢ How many timers are needed and which resolution should these provide?

* Which values/informations should be preserved when the operating voltage is shut down? (EEPROM capacity)

¢ How much storage space is required? (SRAM capacity)

« Space requirements on your PCB, how much space for the processor fits best, which package types are available?

* Operating voltages and power requirements. If the operating voltage comes from a battery or an accumulator,
the power characteristics play an important role.

e Price for the device? Only relevant for production in larger series. Not at all depending from the processor's
internals, and a matter of unpredictable market conditions.

* Availability? If one starts a project with the AT90S1200, probably from a rummage table, can make it cheap. Such
a decision is not very sustainable. Porting such a project to a tiny- or mega-device mostly ends up in a complete
redesign of the software, that also looks and feels much better, works better and requires only a fraction of code
lines.

10.3 Considerations on interrupt operation

Very simple tasks work fine without interrupts. If power consumption is an issue, this ain't true either. Nearly all projects
require interrupts. And this should be planned thoroughly.

Avr-Asm-Tutorial 61 http://www.avr-asm-tutorial.net

10.3.1 Basic requirements of interrupt-driven operation
If not aware any more, here are the basics.

* Enabling interrupts:

* Interrupts require the stack hardware. So set SPL (and in larger devices SPH) at the beginning to
RAMEND, and reserve the upper part of the SRAM for that purpose (e. g. the last 8 to x bytes).

* Each internal component and each condition that should be able to trigger an interrupt has to be
enabled to do that, by setting the respective interrupt enable flag bit. Switching those bits on and off is a
risky thing, so better design your software without switching.

« The I flag in the status register SREG has to be set at the begin and remains set during operation. If it is
necessary to clear the | flag during an operation outside an interrupt service routine, add the set-I-flag
instruction within a few instruction words.

* Interrupt vector table:

* Each internal component and each enabled interrupt condition corresponds to a specific interrupt
vector, placed in a certain address in the flash program storage. The instruction at this address is a single-
word RIJMP instruction, in large ATmega processors a two-word JMP instruction, to the respective
interrupt service routine.

* The vector addresses are type-specific. When porting the software to a different type, those require
adjustment.

» Each vector address in the table, that is currently not used, is given a RETI instruction (in large ATmega
types a RETI, followed by an NOP). That prevents erroneous ghost interrupts to be running into false
code. The use of the .ORG directive for adjusting vector addresses does not provide safety against those
events.

* If an interrupt condition occurs, the respective flag in the control register of the internal component is
set. This is automatically cleared, if the interrupt is executed. In some rare cases (e. g. in case of a TX
buffer empty interrupt condition of an UART, if no further character is to be sent), the interrupt enable
flag of the component has to be cleared first and the interrupt condition flag at last.

» If the interrupt condition gets true for more than one component at a time, the interrupt with a lower
address wins the race.

* Interrupt service routines:

» Each service routine starts with saving the status register SREG in a register exclusively reserved for that
purpose, and ends with restoring that status register. Because interrupts can occur every time, also in
times while the processor is performing instructions in the main program loop, any disturbance of that
status register can cause unpredictable malfunctions.

» Before jumping to the service routine, the processor pushes the current instruction counter to the stack.
The interrupt and the jump to the respective service routine disables further interrupts by temporarily
clearing the | flag in the status register SREG. Each service routine ends with the instruction RETI, that
pops the instruction pointer from the stack and sets the | flag on again.

* Because the execution of an interrupt service routine blocks any further interrupt requests from being
served, even those of a higher priority, each service routine has to be as short as possible and performs
only the time critical portions of the task. Lengthy response operations have to be performed outside the
interrupt service routine.

* Because interrupting an interrupt service routine does not happen, all interrupt service routines can use
the same temporary register.

* Interfacing interrupt service routine and main program loop:

e The communication between the interrupt serve routine and the main program loop is performed via
single flags, that are set within the service routine and cleared in the main program loop. The clearing of
flags is either performed in single word instructions or interrupts are temporarily disabled during that
step to block erroneous overwriting of other flags that were possibly changed in between the three steps
read-modify-write.

» Values that the interrupt service routines provides are handed over in dedicated registers or in specific
SRAM locations. Each change of those values, that are used later on outside the service routine, have to
be checked for possible corruption, if another interrupt can occur in between. Single byte handling is
easy, but handing over two or more bytes requires a hand-over protocol (interrupt disable during hand-
over, flag setting to prevent overwrite, etc.). As an example, the handover of a 16-bit timer value requires
disabling of interrupts first. Otherwise the first byte read does not necessarily correspond to the second
byte read, if another interrupt happened in between.

¢ Main program loop:

* Within the main program loop the processor is sent to sleep, with the sleep mode "idle" selected. Each
interrupt wakes up the processor, jumps to the respective interrupt service routine and, after its return
from interrupt, continues its operation in the main program loop. It makes sense to check for any flags
that were set within the service routine. If that is the case, the treatment of the flag can be performed.
After all things were finalized, another check for the flag settings can be made (in case of long routines)
and the processor can be sent back to sleep.

10.3.2 Example for an interrupt-driven assembler program

The following provides an example for an interrupt-driven assembler program, that utilizes all the above mentioned rules.

Register definitions

Avr-Asm-Tutorial 62

.EQU rsreg = R15 ; saving the status during interrupts
.EQU rmp = R16 ; Temporary register outside interrupts
.EQU rimp = R17 ; Temporary register inside interrupts
.EQU rflg = R18 ; Flag register for communication
.EQU bint0 = 0 ; Flag bit for signaling INTO-Service
.EQU btc0 = 1 ; Flag bit for signaling TC0-Overflow

" ISR-Table

'CSEG
‘ORG $0000

rjimp main ; Reset vector, executed at start-up

rjmp isr_int0 ; INTO-vector, executed on level changes on the INTO input line
reti ; unused interrupt

reti ; unused interrupt

http://www.avr-asm-tutorial.net

rjmp isr_tcO_Overflow ; TCO-Overflow-vector, executed in case of a TCO overflow

reti ; unused interrupt
reti ; unused interrupt
; ... other int vectors

; Interrupt service routines

isr_int0: ; INTO-Service Routine

in rsreg,SREG ; safe status

in rimp,PINB ; read port B to temp register

out PORTC,rimp ; write temp register to port C
; ... do other things

sbr rflg,1<<bint0 ; signaling INTO to outside

out SREG,rsreg ; restore status

reti ; return back and enable interrupts

isr_tcO_Overflow: ; TCO Overflow Service Routine

; Mai

main

- Mai

loop:

in rsreg,SREG ; safe status

in rimp,PINB ; read port B in temp register

out PORTC,rimp ; write temp register to port C
; ... do other things

sbr rflg,1<<btc0 ; set TCO-flag

out SREG,rsreg ; restore status

reti ; return back and enable interrupts

n program start
Idi rmp,HIGH(RAMEND) ; set stack register
out SPH,rmp
Idi rmp,LOW(RAMEND)
out SPL,rmp
; ... other things to do
; INT Enable for TCO overflows
Idi rmp,1<<TOIEOQ ; Overflow Interrupt Enable Timer 0
out TIMSK,rmp ; set interrupt-mask of the timer
Idi rmp,(1<<CS00)|(1<<CS02) ; prescaler by 1024
out TCCRO,rmp ; start timer
; INT Enable of the INTO input
Idi rmp,(1<<SE)|(1<<ISC00) ; SLEEP-Enable and INTO int on all level changes
out MCUCR,rmp ; to the control register
Idi rmp,1<<INTO ; enable INTO interrupts
out GICR,rmp ; to the interrupt control register
; set interrupt status flag
sei ; set interrupt flag

n program loop

sleep ; processor to sleep

nop ; dummy for wake-up

sbrc rflg,bint0 ; INTO flag not set

rcall mache_int0 ; handle INTO event
sbrc rflg,btc0 ; TCO-Overflow flag not set
rcall mache_tc0O ; handle TCO overflow
rimp loop ; go back to sleep

; Handle event results

mache_int0: ; handle INTO result

cbr rflg,1<<bint0 ; clear INTO flag
; ... do other things
ret ; ready, back to loop

mache_tc0: ; handle TCO overflow

Avr-Asm-Tutorial 63 http://www.avr-asm-tutorial.net

cbr rflg,1<<btc0 ; clear TCO flag
; ... do other things
ret ; ready, back to loop

10.4 Considerations on timing

If an AVR project goes beyond polling an 1/O port and, depending from that result, doing something, considerations on
timing are necessary. Timing

» starts with the selection of the processor type,

« continues with the question, what has be executed periodically and with which precision,
« and which timing control opportunities exist,

* how those things can be combined.

Selection of the clock frequency of the processor

The main question is on the necessary precision of the processor clock.

Is it unnecessary in the application to perform times less than a few percent inaccurate, the internal RC oscillator of most
of the AVR types is sufficient. In the tiny and mega types, a oscillator calibration is built in, so that differences between the
nominal and the effective frequency are reduced. Note that the default internal calibration byte was selected at a certain
operating voltage. If your operating voltage is fixed at a different level, rewriting the calibration byte brings more accuracy.
If the operating voltage is fluctuating, the error can be too large.

If the internal RC clock is too slow or too large, some device types have a clock prescaler on board. This feature allows to
optimize the clock frequency, and different clock frequencies can be selected. This is either done once with changing a
hardware fuse (the DIV8 fuse) or within the software (e. g. to reduce the supply power during pauses). But be aware that
some devices with a limited clock specification (V types) should not be set to beyond their limit, otherwise they won't work
correct any more.

If the internal RC oscillator is too inaccurate, fuses can be set for external RC combination, an external oscillator, a crystal
(Xtal) or a ceramic device. Because false fuse setting can cause a catastophe, a rescue board with an external oscillator
might be the last chance to get the device working and the fuse resetted again.

The absolute clock frequency should be appropriate for the application. As an indicator, the repeat frequency of the most
often performed work package can be used. If a key has to be polled any 2 ms, and, after 20 times, should be debounced
long enough, there is plenty of time, if a 1 MHz clock is used (2,000 clock cycles between any two polls, 20,000 clocks for
repeated execution of the key command).

It's only getting narrower, if a pulse width modulated signal with high resolution and a high PWM frequency has to be
reached. With a PWM frequency of 10 kHz and 8 bits resolution 2.56 MHz are too slow for a software-driven solution. If a
timer with some software-overhead can take over that burden, that's better.

Avr-Asm-Tutorial

11 Annex

64

11.1 Instructions sorted by function

For the abbreviations used see the list of abbreviations.

http://www.avr-asm-tutorial.net

Function

Register
set

Copy

Add

Subtract

Shift

Binary

Sub function
0
255
Constant
Register => Register
SRAM => Register, direct
SRAM => Register
SRAM => Register and INC
DEC, SRAM => Register
SRAM, displaced => Register
Port => Register
Stack => Register
Program storage Z => RO
Register => SRAM, direct
Register => SRAM
Register => SRAM and INC
DEC, Register => SRAM
Register => SRAM, displaced
Register => Port
Register => Stack
8 Bit, +1
8 Bit
8 Bit + Carry
16 Bit, constant
8 Bit, -1
8 Bit
8 Bit, constant
8 Bit - Carry
8 Bit - Carry, constant
16 Bit
logic, left
logic, right
Rotate, left over Carry
Rotate, right over Carry
Arithmetic, right
Nibble exchange
And
And, constant
Or
Or, constant
Exclusive-Or
Ones-complement

Twos-complement

instruction
ClRrl
SER rh
LDI rh,c255

MOV rl,r2

LDS r1,c65535

D rlrp

LD rl,rp+

LD rl,-rp

LDD rl,ry+k63
INrlpl
POPr1

LPM

STS ¢65535,r1

STrp,rl

ST rp+,rl

ST -rp,rl

STD ry+k63,rl

OUTplrl
PUSH r1

INCrl

ADD rl,r2
ADCrl,r2
ADIW rd k63
DECrl

SUB r1,r2
SUBI rh,c255
SBCrl,r2
SBCI rh,c255
SBIW rd, k63
LSLrl

LSR r1
ROLr1

SWAP r1
AND r1,r2

ANDI rh,c255

ORrl,r2

ORI rh,c255

EORrl,r2
COM r1
NEG r1

Flags
ZNV

ZNV
ZCNVH
ZCNVH
ZCNVS
ZNV
ZCNVH
ZCNVH
ZCNVH
ZCNVH
ZCNVS
ZCNV
ZCNYV
ZCNYV
ZCNYV
ZCNYV

ZNV
ZNV
ZNV
ZNV
ZNV
ZCNV
ZCNVH

Clk

R R R R R R R R R R R R RN R R R R RN R R RPN P NNNNNWNRNDNNNNR R R R

file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#ComNeg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#ComNeg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Eor
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Ori
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Or
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#ANDI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#And
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Swap
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Asr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Ror
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Rol
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Lsr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Lsl
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#ASIW
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#SBCI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#SubSbc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#SUBI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#SubSbc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#DEC
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#ASIW
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#AddAdc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#AddAdc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Inc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/SRAM.html#PushPop
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#OUT
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/SRAM.html#StdLdd
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDSI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDSI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDSI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/SRAM.html#STSLDS
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LPM
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/SRAM.html#PushPop
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PORTS.html#IN
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/SRAM.html#StdLdd
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDSI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDSI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDSI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/SRAM.html#STSLDS
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#MOV
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#LDI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#SER
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#CLR

Avr-Asm-Tutorial 65 http://www.avr-asm-tutorial.net

Function Sub function instruction Flags Clk
Register, set SBR rh,c255 ZNV 1
Register, clear CBR rh,255 ZNV 1
Bits Register, copy to T-Flag BST r1,b7 T 1
change Register, copy from T-Flag BLD r1,b7 1
Port, set SBI pl,b7 2
Port, clear CBI pl,b7 2
Zero-Flag SEZ z 1
Carry Flag SEC C 1
Negative Flag SEN N 1
Status bit Twos complement carry Flag SEV \Y 1
set Half carry Flag SEH H 1
Signed Flag SES S 1
Transfer Flag SET T 1
Interrupt Enable Flag SEI I 1
Zero-Flag CL.z z 1
Carry Flag CLC C 1
Negative Flag CLN N 1
Status bit Twos complement carry Flag CLV \Y 1
clear Half carry Flag CLH H 1
Signed Flag CLS S 1
Transfer Flag CLT T 1
Interrupt Enable Flag CLI I 1
Register, Register CPrl,r2 ZCNVH 1
Register, Register + Carry CPCrl,r2 ZCNVH 1
Compare
Register, constant CPI rh,c255 ZCNVH 1
Register, <0 TSTrl ZNV 1
Relative RIMP c4096 2
Indirect, Address in Z 1IMP 2
Immediate Subroutine, relative RCALL c4096 3
Jump Subroutine, Address in Z ICALL 3
Return from Subroutine RET 4
Return from Interrupt RETI 4

file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Reti
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Ret
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#IjmpIcall
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Rcall
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#IjmpIcall
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Rjmp
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Tst
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#CPI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#CpCpc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#CpCpc
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PDETAIL.html#SREG
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PORTS.html#CBISBI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PORTS.html#CBISBI
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#Bld
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/CALC.html#CltSetBst
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#CBR
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/REGISTER.html#SBR

Avr-Asm-Tutorial

66

http://www.avr-asm-tutorial.net

Function

Conditional
Jump

Conditioned
Jumps

Others

Sub function
Status bit set
Status bit clear
Jump if equal
Jump if not equal
Jump if carry set
Jump if carry clear
Jump if equal or greater
Jump if lower
Jump if negative
Jump if positive
Jump if greater or equal (Signed)
Jump if lower than zero (Signed)
Jump on half carry set
Jump if half carry clear
Jump if T-Flag set
Jump if T-Flag clear
Jump if Twos complement carry set
Jump if Twos complement carry clear
Jump if Interrupts enabled
Jump if Interrupts disabled
Register bit=0
Register bit=1
Port bit=0
Port bit=1
Compare, jump if equal
No Operation
Sleep
Watchdog Reset

instruction Flags

BRBS b7,c127
BRBC b7,c127
BREQ c127
BRNE c127
BRCS c127
BRCC c127
BRSH c127
BRLO c127
BRMI c127
BRPL c127
BRGE c127
BRLT c127
BRHS c127
BRHC c127
BRTS c127
BRTC c127
BRVS c127
BRVC c127
BRIE c127
BRID c127
SBRC r1,b7
SBRS r1,b7

SBIC pl,b7

SBIS pl,b7
CPSE r1,r2

NOP
LEEP

(92

=

DR

Clk
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2/3
1/2/3
1/2/3
1/2/3
1/2/3
1
1
1

11.2 Directives and Instruction lists in alphabetic order

11.2.1 Assembler directives in alphabetic order

Directive
.CSEG
.DB

.DEF

DW
.ENDMACRO
.ESEG

EQU
INCLUDE
.MACRO

.ORG

<

... means ...
Assemble to the Code segment
Insert data byte(s)

Define a register name

Insert data word(s)

Macro is complete, stop recording
Assemble to the EEPROM segment

Define a constant by name and set its value

Insert a file's content at this place as if it would be part of this file

Start to record the following instructions as a macro definition

Set the assembler output address to the following number

file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#CsegOrg
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/PORTS.html#SLEEP
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#NOP
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Cpse
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#SBICS
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#SBICS
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#SBRCS
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#SBRCS
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brne
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Breq
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Brxx

Avr-Asm-Tutorial

67 http://www.avr-asm-tutorial.net

11.2.2 Instructions in alphabetic order

Instruction ... performs ...

ADC r1,r2 Add r2 with Carry to r1 and store result in r1

ADD r1.r2 Add r2 to r1 and store result in r1

ADIW rd. k63 Add the immediate word constant k63 to the double register rd+1:rd (rd = R24, R26, R28, R30)

AND r1,r2 And bit wise r1 with the value in r2 and store the result in r1

ANDI rh,c255 And bit wise the upper register rh with the constant c255 and store the result in rh

ASR r1 Arithmetic shift the register r1 right

BLD r1,b7 Copy the T-flag in the status register to bit b7 in register r1

BRCC c127 Branch by c¢127 instructions for- or backwards if the carry flag in the status register is clear

BRCS c127 Branch by ¢127 instructions for- or backwards if the carry flag in the status register is set

BREQ c127 Branch by c¢127 instructions for- or backwards if the zero flag in the status register is set

BRGE c127 Branch by ¢127 instructions for- or backwards if the carry flag in the status register is clear

BRHC c127 Branch by c¢127 instructions for- or backwards if the half carry flag in the status register is clear

BRHS c127 Branch by ¢127 instructions for- or backwards if the half carry flag in the status register is set

BRID c127 Branch by c¢127 instructions for- or backwards if the interrupt flag in the status register is clear

BRIE c127 Branch by ¢127 instructions for- or backwards if the interrupt flag in the status register is set

BRLO c127 Branch by ¢127 instructions for- or backwards if the carry flag in the status register is set

BRLT c127 Br?nch by ¢127 instructions for- or backwards if the negative and overflow flag in the status register are
se

BRMI c127 Branch by ¢127 instructions for- or backwards if the negative flag in the status register is set

BRNE c127 Branch by ¢127 instructions for or backwards if the zero flag in the status register is set

BRPL ¢c127 Branch by ¢127 instructions for- or backwards if the negative flag in the status register is clear

BRSH c127 Branch by ¢127 instructions for- or backwards if the carry flag in the status register is clear

BRTC c127 Branch by ¢127 instructions for- or backwards if the transfer flag in the status register is clear

BRTS c127 Branch by c¢127 instructions for- or backwards if the transfer flag in the status register is set

BRVC c127 Branch by ¢127 instructions for- or backwards if the overflow flag in the status register is clear

BRVS c127 Branch by ¢127 instructions for- or backwards if the overflow flag in the status register is set

BST r1,b7 Copy the bit b7 in register r1 to the transfer flag in the status register

CBlI pl.b7 Clear bit b7 in the lower port pl

CBR rh.k255 Clear all the bits in the upper register rh, that are set in the constant k255 (mask)

CLC Clear the carry bit in the status register

CLH Clear the half carry bit in the status register

CLI Clear the interrupt bit in the status register, disable interrupt execution

CLN Clear the negative bit in the status register

CLRr1 Clear the register r1

CLS Clear the signed flag in the status register

CLT Clear the transfer flag in the status register

CcLv Clear the overflow flag in the status register

CLZ Clear the zero flag in the status register

COMr1 Complement register r1 (ones complement)

CPr1,r2 Compare register r1 with register r2

CPCri1,r2 Compare register r1 with register r2 and the carry flag

CPI rh,c255 Compare the upper register rh with the immediate constant c255

CPSE r1.,r2 Compare r1 with r2 and jump over the next instruction if equal

DEC r1 Decrement register r1 by 1

EORr1,r2 Exclusive bit wise Or register r1 with register r2 and store result in r1

ICALL Call the subroutine at the address in register pair Z (ZH:ZL, R31:R30)

IJMP IN r1.p1
INC r1

LD r1.(rp.rp+.-rp)

LDD r1.ry+k63

LDl rh.c255

LDS r1.c65535

Jump to the address in register pair Z (ZH:ZL, R31:R30)
Increment register r1 by 1

Load the register r1 with the content at the location that register pair rp (X, Y or Z) points to (rp+
increments the register pair after loading, -rp decrements the register pair prior to loading)

Load the register r1 with the content at the location that register pair ry (Y or Z), displaced by the
constant k63, points to

Load the upper register rh with the constant c255

Load register r1 with the content at location c65535

file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr

Avr-Asm-Tutorial

68 http://www.avr-asm-tutorial.net

LPM Load register RO with the content of the flash memory at the location that register pair Z (ZH:ZL,
LPM r1 R31:R30), divided by 2, points to, bit 0 in Z points to lower (0) or upper (1) byte in flash (Load register
LPMr1,Z+ r1, Z+ increment Z after loading, -Z decrement Z prior to loading)

LPMri,-Z

LSLr1 Logical shift left register r1

LSRr1 Logical shift right register r1

MOV r1,r2 Move register r2 to register r1

NEG r1 Subtract register r1 from Zero

NOP No operation

ORr1,r2 Bit wise or register r1 with register r2 and store result in register r1

ORI rh,c255 Bit wise or the upper register r1 with the constant c255

OUT p1.r1 Copy register r1 to I/O port p1

POP r1 Increase the stack pointer and pop the last byte on stack to register r1

PUSH r1 Push register r1 to the stack and decrease the stack pointer

RCALL c4096 Push program counter on stack and add signed constant c4096 to the program counter (relative call)
RET Pop program counter from stack (return to call address)

RETI Enable interrupts and pop program counter from stack (return from interrupt)

RJMP ¢c4096 Relative jump, add signed constant c4096 to program address

ROL r1 Rotate register r1 left, copy carry flag to bit 0

ROR r1 Rotate register r1 right, copy carry flag to bit 7

SBC r1,r2 Subtract r2 and the carry flag from register r1 and write result to r1

SBCI rh,c255 Subtract constant c255 and carry flag from the upper register rh and write result to rh
SBI pl.b7 Set bit b7 in the lower port pl

SBIC pl.b7 If bit b7 in the lower port pl is clear, jump over the next instruction

SBIS pl.b7 If bit b7 in the lower port pl is set, jump over the next instruction

SBIW rd. k63 Subtract the constant k63 from the register pair rd (rd+1:rd, rd = R24, R26, R28, R30)
SBR rh,c255 Set the bits in the upper register rh, that are one in constant c255

SBRC r1,b7 If bit b7 in register r1 is clear, jump over next instruction

SBRS r1.b7 If bit b7 in register r1 is set, jump over next instruction

SEC Set carry flag in status register

SEH Set half carry flag in status register

SEI Set interrupt flag in status register, enable interrupt execution

SEN Set negative flag in status register

SER rh Set all bits in the upper register rh

SES Set sign flag in status register

SET Set transfer flag in status register

SEV Set overflow flag in status register

SEZ Set zero flag in status register

SLEEP Put controller to the selected sleep mode

ST (rp/rp+/-rp).r1

STD ry+k63.r1

STS ¢65535,r1
SUB r1.r2
SUBI rh,c255
SWAP r1
ISTr1

WDR

Store content in register r1 to the memory location in register pair rp (ro = X, Y, Z; rp+: increment
register pair after store; -rp: decrement register pair prior to store)

Store the content of register r1 at the location that register pair ry (Y or Z), displaced by the constant
k63, points to

Store the content of register r1 at the location c65535
Subtract register r2 from register r1 and write result to r1
Subtract the constant c255 from the upper register rh
Exchange upper and lower nibble in register r1
Compare register r1 with Zero

Watchdog reset

file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr
file:///C:/Users/gerd/Documents/dev/AVR/webpage/html/avr_en/beginner/JUMP.html#Wdr

Avr-Asm-Tutorial 69

11.3 Port details

http://www.avr-asm-tutorial.net

The table of the relevant ports in the ATMEL AVR types AT90S2313, 2323 and 8515. Byte wise accessible ports or register
pairs are not displayed in detail. No warranty for correctness, see the original data sheets!

11.3.1 Status-Register, Accumulator flags

Port Function Port-Address RAM-Address
SREG Status Register Accumulator Ox3F Ox5F
7 6 5 4 2 1 0
| T H S Vv N z C
Bit Name Meaning Opportunities Conmmand
0: Interrupts disabled CLI
7 1 Global Interrupt Flag
1: Interrupts enabled SEI
0: Stored bitis 0 CLT
6 T Bit storage
1: Stored bit is 1 SET
0: No halfcarry occurred CLH
5 H Halfcarry-Flag
1: Halfcarry occurred SEH
0: Sign positive CLS
4 S Sign-Flag
1: Sign negative SES
0: No carry occurred CLv
3 Vv Two's complement-Flag
1: Carry occurred SEV
0: Result was not negative/smaller CLN
2 N Negative-Flag
1: Result was negative/smaller SEN
0: Result was not zero/unequal CL.z
1 Z Zero-Flag
1: Result was zero/equal SEZ
0: No carry occurred CLC
0 C Carry-Flag
1: Carry occurred SEC
11.3.2 Stackpointer
Port Function Port-Address RAM-Address
SPL/SPH Stackpointer 003D/0x3E 0x5D/0x5E
Name Meaning Availability

Low-Byte of Stack

SPL .
pointer

From AT90S2313 upwards, not in 1200

High-Byte of Stack

SPH .
pointer

From AT90S8515 upwards, only in devices with >256 bytes internal SRAM

11.3.3 SRAM and External Interrupt control

Port Function Port-Address RAM-Address
MCUCR MCU General Control Register 0x35 0x55
7 6 5 4 3 2 1 0
SRE SRW SE SM ISC11 ISC10 ISCO1 ISC00
Bit Name Meaning Opportunities
0=No external SRAM connected
7 SRE Ext. SRAM Enable
1=External SRAM connected
0=No extra wait state on external SRAM
6 SRW Ext. SRAM Wait States
1=Additional wait state on external SRAM

Avr-Asm-Tutorial

70

http://www.avr-asm-tutorial.net

Bit Name Meaning Opportunities
O=Ignore SLEEP instructions
5 SE Sleep Enable
1=SLEEP on instruction
O=Idle Mode (Half sleep)
4 SM Sleep Mode
1=Power Down Mode (Full sleep)
3 IsC11 00: Low-level initiates Interrupt
Interrupt control Pin INT1 01: Undefined
2 i1sc1o (connected to GIMSK) 10: Falling edge triggers interrupt
11: Rising edge triggers interrupt
1 Isco1 00: Low-level initiates interrupt
Interrupt control Pin INTO 01: Undefined
0 1scoo (connected to GIMSK) 10: Falling edge triggers interrupt

11: Rising edge triggers interrupt

11.3.4 External Interrupt Control

Port Function Port-Address RAM-Address
GIMSK General Interrupt Maskregister 0x3B 0x5B
7 6 5 4 3 2 1 0
INT1 INTO - - - - - -
Bit Name Meaning Opportunities
Interrupt by external pin INT1 0: External INT1 disabled
7 INT1 .
(connected to mode in MCUCR) 1: External INT1 enabled
Interrupt by external Pin INTO 0: External INTO disabled
6 INTO .
(connected to mode in MCUCR) 1: External INTO enabled
0...5 (Not used)
Port Function Port-Address RAM-Address
GIFR General Interrupt Flag Register 0x3A Ox5A
7 6 5 4 3 2 1 0
INTF1 INTFO - - - - - -
Bit Name Meaning Opportunities
7 INTF1 Interrupt by external pin INT1 occurred Automatic clear by execution of the Int-Routine or
6 INTFO Interrupt by external pin INTO occurred Clear by instruction
0..5 (Not used)

11.3.5 Timer Interrupt Control

Port Function Port-Address RAM-Address
TIMSK Timer Interrupt Maskregister 0x39 0x59
7 6 5 4 3 2 1 0
TOIE1 OCIE1A OCIE1B - TICIEL - TOIEO -

Avr-Asm-Tutorial 71 http://www.avr-asm-tutorial.net
Bit Name Meaning Opportunities
0: No Int at overflow
7 TOIE1 Timer/Counter 1 Overflow-Interrupt
1: Int at overflow
0: No Int at equal A
6 OCIE1A Timer/Counter 1 Compare A Interrupt
1:Int at equal A
O:NolIntatB
5 OCIE1B Timer/Counter 1 Compare B Interrupt
1:Int at equal B
4 (Not used)
0: No Int at Capture
3 TICIE1 Timer/Counter 1 Capture Interrupt
1: Int at Capture
2 (Not used)
0: No Int at overflow
1 TOIEO Timer/Counter 0 Overflow-Interrupt
1: Int at overflow
0 (Not used)
Port Function Port-Address RAM-Address
TIFR Timer Interrupt Flag Register 0x38 0x58
7 6 5 4 3 2 1 0
TOV1 OCF1A OCF1B - ICF1 - TOVO -
Bit Name Meaning Opportunities
7 TOovi Timer/Counter 1 Overflow reached
Interrupt-Mode:
6 OCF1A Timer/Counter 1 Compare A reached Automatic Clear
5 OCF1B Timer/Counter 1 Compare B reached by execution of the
Int-Routine
4 (Not used)
3 ICF1 Timer/Counter 1 Capture-Event occurred OR
2 (not used) Polling-Mode:
1 TOVO Timer/Counter 0 Overflow occurred Clear by
instruction
0 (not used)
11.3.6 Timer/Counter 0
Port Function Port-Address RAM-Address
TCCRO Timer/Counter 0 Control Register 0x33 0x53
7 6 5 4 3 2 1 0
- - - - - Cs02 Cso1 CS00
Bit Name Meaning Opportunities
000: Stop Timer
001: Clock = Chip clock
010: Clock = Chip clock / 8
011: Clock = Chip clock / 64
2.0 (CS02..Ccs00 Timer Clock
100: Clock = Chip clock / 256
101: Clock = Chip clock / 1024
110: Clock = falling edge of external Pin TO
111: Clock = rising edge of external Pin TO

3.7

(not used)

Avr-Asm-Tutorial 72 http://www.avr-asm-tutorial.net
Port Function Port-Address RAM-Address
TCNTO Timer/Counter O count register 0x32 0x52
11.3.7 Timer/Counter 1
Port Function Port-Address RAM-Address
TCCR1A Timer/Counter 1 Control Register A Ox2F Ox4F
7 6 5 4 3 2 1 0
COM1A1 COM1A0 COM1B1 COM1BO - - PWM11 PWM10
Bit Name Meaning Opportunities
7 COM1A1
Compare Output A 00: OC1A/B not connected
6 COM1A0 01: OC1A/B changes polarity
[COM1B1 10: OC1A/B to zero
Compare Output B 11: OC1A/B to one
4 COM1BO
3
(not used)
2
00: PWM off
PWM11 . 01: 8-Bit PWM
1.0 PWM10 Pulse width modulator 10: 9-Bit PWM
11: 10-Bit PWM
Port Function Port-Address RAM-Address
TCCR1B Timer/Counter 1 Control Register B Ox2E Ox4E
7 6 5 4 3 2 1 0
ICNC1 ICES1 - - CTC1 Cs12 Cs11 Cs10
Bit Name Meaning Opportunities
i 0: disabled, first edge starts sampling
7 ICNC1 Noise Ca'nceler
on ICP-Pin 1: enabled, min four clock cycles
; 0: falling edge triggers Capture
6 ICES1 Edge selection
on Capture 1: rising edge triggers Capture
5..4 (not used)
Clear at .
3 CTC1 Compare Match A 1: Counter set to zero if equal
000: Counter stopped
001: Clock
010: Clock / 8
011: Clock / 64
2..0 (CS12..Cs10 Clock select 100: Clock / 256
101: Clock / 1024
110: falling edge external Pin T1
111: rising edge external Pin T1
Port Function Port-Address RAM-Address
TCNT1L/H Timer/Counter 1 count register 0x2C/0x2D 0x4C/0x4D

Avr-Asm-Tutorial 73 http://www.avr-asm-tutorial.net
Port Function Port-Address RAM-Address
OCR1AL/H Timer/Counter 1 Output Compare register A 0x2A/0x2B 0x4A/0x4B hex
Port Function Port-Address RAM-Address
OCR1BL/H Timer/Counter 1 Output Compare register B 0x28/0x29 0x48/0x49
Port Function Port-Address RAM-Address
ICRIL/H Timer/Counter 1 Input Capture Register 0x24/0x25 0x44/0x45
11.3.8 Watchdog-Timer
Port Function Port-Address RAM-Address
WDTCR Watchdog Timer Control Register 0x21 0x41
7 6 5 4 3 2 1 0
- - - WDTOE WDE WDP2 WDP1 WDPO
Bit Name Meaning WDT-cycle at 5.0 Volt
7.5 (not used)
Previous set to
4 WDTOE Watchdog Turnoff Enable disabling of WDE required
3 WDE Watchdog Enable 1: Watchdog active
000: 15 ms
001: 30 ms
010: 60 ms
. 011: 120 ms
2..0 WDP2..WDPO Watchdog Timer Prescaler 100: 240 ms
101: 490 ms
110: 970 ms
111:1,9s
11.3.9 EEPROM
Port Function Port-Address RAM-Address
EEARL/H EEPROM Address Register Ox1E/Ox1F 0x3E/Ox3F
EEARH only in types with more than 256 Bytes EEPROM (from AT90S8515 upwards)
Port Function Port-Address RAM-Address
EEDR EEPROM Data Register 0x1D 0x3D
Port Function Port-Address RAM-Address
EECR EEPROM Control Register 0x1C 0x3C
7 6 5 4 3 2 1 0
- - - - - EEMWE EEWE EERE

Avr-Asm-Tutorial

74

http://www.avr-asm-tutorial.net

Bit Name Meaning

7.3

2 EEMWE EEPROM Master Write Enable
1 EEWE EEPROM Write Enable

0 EERE EEPROM Read Enable

Function
(not used)
Previous set enables write cycle
Set to initiate write

Set initiates read

11.3.10 Serial Peripheral Interface SPI

Port Function Port-Address RAM-Address
SPCR SPI Control Register 0x0D 0x2D
7 6 5 4 3 2 1 0
SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO
Bit Name Meaning Function
0: Interrupts disabled
7 SPIE SPI Interrupt Enable
1: Interrupts enabled
0: SPI disabled
6 SPE SPI Enable
1: SPl enabled
0: MSB first
5 DORD Data Order
1: LSB first
0: Slave
4 MSTR Master/Slave Select
1: Master
0: Positive Clock Phase
3 CPOL Clock Polarity
1: Negative Clock Phase
0: Sampling at beginning of Clock Phase
2 CPHA Clock Phase
1: Sampling at end of Clock Phase
1 SPR1 00: Clock / 4
01: Clock / 16
SCK clock frequency
0 SPRO 10: Clock / 64
11: Clock / 128
Port Function Port-Address RAM-Address
SPSR SPI Status Register OxOE Ox2E
7 6 5 4 3 2 1 0
SPIF WCOL - - - - - -
Bit Name Meaning Function
7 SPIF SPI Interrupt Flag Interrupt request
6 WCOL Write Collision Flag Write collission occurred
5..0 (not used)
Port Function Port-Address RAM-Address
SPDR SPI Data Register OxOF Ox2F

Avr-Asm-Tutorial 75 http://www.avr-asm-tutorial.net
11.3.11 UART
Port Function Port-Address RAM-Address
UDR UART I/O Data Register 0x0C 0x2C
Port Function Port-Address RAM-Address
USR UART Status Register 0x0B 0x2B
7 6 5 4 3 2 1 0
RXC TXC UDRE FE OR - - -
Bit Name Meaning Function
7 RXC UART Receive Complete 1: Char received
6 TXC UART Transmit Complete 1: Shift register empty
5 UDRE UART Data Register Empty 1: Transmit register available
4 FE Framing Error 1: Illegal Stop-Bit
3 OR Overrun 1: Lost char
2.0 (not used)
Port Function Port-Address RAM-Address
UCR UART Control Register O0x0A 0x2A
7 6 5 4 3 2 1 0
RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8
Bit Name Meaning Function
7 RXCIE RX Complete Interrupt Enable 1: Interrupt on received char
6 TXCIE TX Complete Interrupt Enable 1: Interrupt at transmit complete
5 UDRIE Data Register Empty Interrupt Enable 1: Interrupt on transmit buffer empty
4 RXEN Receiver Enable 1: Receiver enabled
3 TXEN Transmitter Enable 1: Transmitter enabled
2 CHR9 9-bit Characters 1: Char length 9 Bit
1 RXB8 Receive Data Bit 8 (holds 9*" data bit on receive)
0 TXB8 Transmit Data Bit 8 (write 9™ data bit for transmit here)
Port Function Port-Address RAM-Address
UBRR UART Baud Rate Register 0x09 0x29
11.3.12 Analog Comparator
Port Function Port-Address RAM-Address
ACSR Analog Comparator Control and Status Register 0x08 0x28
7 6 5 4 3 2 1 0
ACD - ACO ACI ACIE ACIC ACIS1 ACISO
Bit Name Meaning Function
7 ACD Disable Disable Comparators
6 (not used)
5 ACO Comparator Output Read: Output of the Comparators
4 ACI Interrupt Flag 1: Interrupt request

Avr-Asm-Tutorial 76

Bit Name Meaning Function

3 ACIE Interrupt Enable 1: Interrupts enabled

2 ACIC Input Capture Enable 1: Connect to Timer 1 Capture

1 ACIS1 00: Interrupt on edge change
01: (not used)

Input Capture Enable

0 ACISO 10: Interrupt on falling edge

11: Interrupt on rising edge

11.3.13 I/O Ports

Port Register

PORTA
DDRA
PINA
PORTB
DDRB
PINB
PORTC
DDRC
PINC
PORTD
DDRD
PIND

Function Port-Address RAM-Address
Data Register 0x1B 0x3B
Data Direction Register Ox1A Ox3A
Input Pins Address 0x19 0x39
Data Register 0x18 0x38
Data Direction Register 0x17 0x37
Input Pins Address 0x16 0x36
Data Register 0x15 0x35
Data Direction Register 0x14 0x34
Input Pins Address 0x13 0x33
Data Register 0x12 0x32
Data Direction Register 0x11 0x31
Input Pins Address 0x10 0x30

11.4 Ports, alphabetic order

ACSR, Analog Comparator Control and Status Register
DDRYX, Port x Data Direction Register

EEAR, EEPROM address Register

EECR, EEPROM Control Register

EEDR, EEPROM Data Register

GIFR, General Interrupt Flag Register
GIMSK, General Interrupt Mask Register
ICR1L/H, Input Capture Register 1

MCUCR, MCU General Control Register
OCR1A, Output Compare Register 1 A
OCR1B, Output Compare Register 1 B

PINx, Port Input Access

PORTX, Port x Output Register

SPL/SPH, Stackpointer

SPCR, Serial Peripheral Control Register
SPDR, Serial Peripheral Data Register
SPSR, Serial Peripheral Status Register
SREG, Status Register

TCCRO, Timer/Counter Control Register, Timer O
TCCR1A, Timer/Counter Control Register 1 A
TCCR1B, Timer/Counter Control Register 1 B
TCNTO, Timer/Counter Register, Counter 0
TCNT1, Timer/Counter Register, Counter 1
TIFR, Timer Interrupt Flag Register

TIMSK, Timer Interrupt Mask Register

UBRR, UART Baud Rate Register

UCR, UART Control Register

UDR, UART Data Register

WDTCR, Watchdog Timer Control Register

http://www.avr-asm-tutorial.net

Avr-Asm-Tutorial

77

11.5 List of abbreviations

The abbreviations used are chosen to include the value range. Register pairs are named by the lower of the two registers.
Constants in jump instructions are automatically calculated from the respective labels during assembly.

Category

Register

Constant

Bit

Port

Abbrev.

rl

r2

rh

rd

rp

ry
k63
cl27
€255
c4096
€65535
b7
pl

p

Means ...
Ordinary Source and Target register
Ordinary Source register
Upper page register
Twin register
Pointer register
Pointer register with displacement
Pointer-constant
Conditioned jump distance
8-Bit-Constant
Relative jump distance
16-Bit-Address
Bit position
Ordinary Port

Lower page port

http://www.avr-asm-tutorial.net

Value range

RO..R31

R16..R31

R24(R25), R26(R27), R28(R29), R30(R31)
X=R26(R27), Y=R28(R29), Z=R30(R31)
Y=R28(R29), Z=R30(R31)

0..63

-64..+63

0..255

-2048..+2047

0..65535

0.7

0..63

0..31

	 1 Why learning Assembler?
	 2 The concept behind the language assembler in micro-controllers
	 2.1 The hardware of micro-controllers
	 2.2 How the CPU works
	 2.3 Instructions in assembler
	 2.4 Difference to high-level languages
	 2.5 Assembler is not machine language
	 2.6 Interpreting and assembler
	 2.7 High level languages and Assembler
	 2.8 What is really easier in assembler?

	 3 Hardware for AVR-Assembler-Programming
	 3.1 The ISP Interface of the AVR processor family
	 3.2 Programmer for the PC-Parallel-Port
	 3.3 Experimental boards
	 3.3.1 Experimental board with an ATtiny13
	 3.3.2 Experimental board with an AT90S2313/ATmega2313

	 3.4 Ready-to-use commercial programming boards for the AVR-family
	 3.4.1 STK200
	 3.4.2 STK500
	 3.4.3 AVR Dragon

	 4 Tools for AVR assembly programming
	 4.1 The editor
	 4.1.1 A simple typewriter
	 4.1.2 Structuring assembler code

	 4.2 The assembler
	 4.3 Programming the chips
	 4.4 Simulation in the studio

	 5 What is a register?
	 5.1 Different registers
	 5.2 Pointer-registers
	 5.2.1 Accessing memory locations with pointers
	 5.2.2 Reading program flash memory with the Z pointer
	 5.2.3 Tables in the program flash memory
	 5.2.4 Accessing registers with pointers

	 5.3 Recommendation for the use of registers

	 6 Ports
	 6.1 What is a Port?
	 6.2 Write access to ports
	 6.3 Read access to ports
	 6.4 Read-Modify-Write access to ports
	 6.5 Memory mapped port access
	 6.6 Details of relevant ports in the AVR
	 6.7 The status register as the most used port
	 6.8 Port details

	 7 SRAM
	 7.1 What is SRAM?
	 7.2 For what purposes can I use SRAM?
	 7.3 How to use SRAM?
	 7.3.1 Direct addressing
	 7.3.2 Pointer addressing
	 7.3.3 Pointer with offset

	 7.4 Use of SRAM as stack
	 7.4.1 Defining SRAM as stack
	 7.4.2 Use of the stack
	 7.4.3 Common bugs with the stack operation

	 8 Jumping and branching
	 8.1 Controlling sequential execution of the program
	 8.2 Linear program execution and branches
	 8.3 Timing during program execution
	 8.4 Macros and program execution
	 8.5 Subroutines
	 8.6 Interrupts and program execution

	 9 Calculations
	 9.1 Number systems in assembler
	 9.1.1 Positive whole numbers (bytes, words, etc.)
	 9.1.2 Signed numbers (integers)
	 9.1.3 Binary Coded Digits, BCD
	 9.1.4 Packed BCDs
	 9.1.5 Numbers in ASCII-format

	 9.2 Bit manipulations
	 9.3 Shift and rotate
	 9.4 Adding, subtracting and comparing
	 9.4.1 Adding and subtracting 16-bit numbers
	 9.4.2 Comparing 16-bit numbers
	 9.4.3 Comparing with constants
	 9.4.4 Packed BCD math

	 9.5 Format conversion for numbers
	 9.5.1 Conversion of packed BCDs to BCDs, ASCII or Binaries
	 9.5.2 Conversion of Binaries to BCD

	 9.6 Multiplication
	 9.6.1 Decimal multiplication
	 9.6.2 Binary multiplication
	 9.6.3 AVR assembler program
	 9.6.4 Binary rotation
	 9.6.5 Multiplication in the studio

	 9.7 Hardware multiplication
	 9.7.1 Hardware multiplication of 8-by-8-bit binaries
	 9.7.2 Hardware multiplication of a 16- by an 8-bit-binary
	 9.7.3 Hardware multiplication of a 16- by a 16-bit-binary
	 9.7.4 Hardware multiplication of a 16- by a 24-bit-binary

	 9.8 Division
	 9.8.1 Decimal division
	 9.8.2 Binary division
	 9.8.3 Program steps during division
	 9.8.4 Division in the simulator

	 9.9 Number conversion
	 9.10 Decimal Fractions
	 9.10.1 Linear conversions
	 9.10.2 Example 1: 8-bit-AD-converter with fixed decimal output
	 9.10.3 Example 2: 10-bit-AD-converter with fixed decimal output

	 10 Project planning
	 10.1 How to plan an AVR project in assembler
	 10.2 Hardware considerations
	 10.3 Considerations on interrupt operation
	 10.3.1 Basic requirements of interrupt-driven operation
	 10.3.2 Example for an interrupt-driven assembler program

	 10.4 Considerations on timing

	 11 Annex
	 11.1 Instructions sorted by function
	 11.2 Directives and Instruction lists in alphabetic order
	 11.2.1 Assembler directives in alphabetic order
	 11.2.2 Instructions in alphabetic order

	 11.3 Port details
	 11.3.1 Status-Register, Accumulator flags
	 11.3.2 Stackpointer
	 11.3.3 SRAM and External Interrupt control
	 11.3.4 External Interrupt Control
	 11.3.5 Timer Interrupt Control
	 11.3.6 Timer/Counter 0
	 11.3.7 Timer/Counter 1
	 11.3.8 Watchdog-Timer
	 11.3.9 EEPROM
	 11.3.10 Serial Peripheral Interface SPI
	 11.3.11 UART
	 11.3.12 Analog Comparator
	 11.3.13 I/O Ports

	 11.4 Ports, alphabetic order
	 11.5 List of abbreviations

